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Abstract 30 

Effective satellite-based monitoring of ecosystem integrity or condition needs to address four key 31 

challenges: (a) context dependency; (b) alternative ecological states; (c) short-term temporal 32 

ecosystem dynamics; and (d) scarcity of reference data where ecosystems retain high levels of 33 

integrity. Here we present a typology, and outline strengths and weaknesses, of different approaches 34 

to mapping and monitoring ecosystem integrity across entire regions or continents using time series 35 

satellite data. We then describe how one of these approaches, the Habitat Condition Assessment 36 

System (HCAS), addresses all of the above challenges, and provide an outline of the evolved 37 

method which includes annual outputs, and Australian continent applications. HCAS requires three 38 

readily available inputs (i.e., representative examples of relatively natural areas as reference sites, 39 

remotely sensed ecosystem characteristics, and environmental covariate data) and could be easily 40 

adapted and applied by other countries to provide an effective indicator of ecosystem integrity for 41 

nature-based decisions.  42 
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Globally, less than 25% of the world’s terrestrial ecosystems are estimated to remain relatively free 50 

of direct anthropogenic disturbance and nearly 60% are under moderate or intense human pressure 51 

(Williams B. A. et al. 2020a). The cumulative and interacting effects of chronic and acute pressures 52 

are driving widespread ecosystem collapse (Bergstrom et al. 2021). In turn, consumers are using 53 

market behaviours to communicate concerns about risks to the environment (Bradshaw et al. 2021, 54 

White K. et al. 2019), businesses and financiers are evaluating their exposure to nature-negative 55 

outcomes (TNFD 2023), and shareholders are demanding corporate balance sheets include 56 

accounting for natural capital (Barker 2019, Unerman et al. 2018). In response, the United Nations 57 

has formulated an approach to ecosystem accounting to make visible the contributions of nature to 58 

the economy and people (United Nations et al. 2021), incorporating concepts of ecosystem 59 

condition and integrity (Roche and Campagne 2017), and countries have agreed to report against 60 

sustainable development goals related to life on land and to combat desertification (e.g., Sims et al. 61 

2020, Sims et al. 2019) and to achieve the global vision of a world living in harmony with nature 62 

(CBD 2022a, United Nations 1992). Thus, due to systemic over-utilisation, the conservation of 63 

nature and natural resources has become a mainstream concern (Scott et al. 2022), requiring that 64 

governments and corporates institute monitoring for social license to operate (Brand et al. 2023).  65 

To support the accelerating need for regular information about the status of ecosystems, pressures, 66 

drivers and impacts, scientists and regulators are collaborating to develop monitoring systems and 67 

reporting tools for tracking change (e.g., Tallis et al. 2012, Timmermans and Daniel Kissling 2023). 68 

A wide range of environmental indicators have been proposed for reporting on status and trends 69 

within different frameworks, with ecosystem condition and its synonyms such as integrity (e.g. 70 

Supplemental Material A Table S1) and antonyms such as pressures (via hemeroby) are a common 71 

thread (e.g., Cowie et al. 2018, UN 2015, UNCCD 2016, United Nations 1992, United Nations 72 

Forum on Forests Secretariat 2019). Under the Kunming-Montreal Global Biodiversity Framework 73 

(CBD 2022a), for example, Goal A seeks to substantially increase the extent of all natural 74 

ecosystems by 2050 by maintaining, enhancing or restoring their integrity, connectivity and 75 
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resilience; thereby reducing the risk of further collapse (Nicholson et al. 2021). The extent and 76 

integrity (i.e. condition) of ecosystems sustained within a country has direct consequences for 77 

regional persistence of native species and genetic diversity, as well as human wellbeing (e.g., Ulrich 78 

et al. 2023). 79 

It is not surprising therefore, that we see a renewed focus on methods for measuring 80 

ecosystem condition (here, synonymous with “integrity” for nature conservation, sensu Roche and 81 

Campagne 2017) as a leading indicator of the risk of ecosystem collapse and potential for species 82 

extinction (Hansen et al. 2021, Stevenson et al. 2021). There is also growing interest in the role of 83 

satellite remote sensing in ecosystem integrity assessment (Harwood et al. 2016, Lawley et al. 2016, 84 

Murray N. J. et al. 2018, Tehrany et al. 2017). It is therefore timely to reflect on the challenges of 85 

using remote sensing to monitor ecosystem condition (i.e. integrity) as an input to assessments of 86 

biodiversity outcomes (Ferrier et al. 2020). Because multiple terms with similar meaning and 87 

purpose are in common use (Supplemental Material A Table S1), we consider methods that aim to 88 

address the quality, integrity, condition, health, capacity, intactness or naturalness of ecosystems, as 89 

conceptually consistent for monitoring the quality of habitat for native species persistence. 90 

Herein, we outline those challenges, present a typology of how well existing approaches 91 

address them, and detail recent advances in developing one of these approaches – the ‘Habitat 92 

Condition Assessment System’, since the framework for this approach was first published 93 

(Harwood et al. 2016). Our concept of ecosystem condition follows that outlined in the United 94 

Nations System of Environmental-Economic Accounting—Ecosystem Accounting (United Nations 95 

et al. 2021), wherein ecosystem condition is measured relative to areas of an ecosystem type 96 

considered to be in reference condition, with condition defined as the system’s capacity to maintain 97 

composition, structure, autonomous functioning and self-organisation over time using processes 98 

and elements characteristic for its ecoregion and within a natural range of variability (Keith et al. 99 

2020).   100 
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Challenges of using remote sensing to monitor ecosystem condition 101 

The main ecological application challenges inherent to use of satellite remote sensing for estimating 102 

ecosystem condition were outlined by Harwood et al. (2016). These challenges all relate to the 103 

over-arching ambition to separate effects of exogenous, anthropogenic disturbances that modify 104 

ecosystems from endogenous regimes inherent to an environment that species and ecosystems have 105 

adapted to over evolutionary time scales—in order to correctly measure the ecological similarity of 106 

the current state of an ecosystem to its reference state (high levels of ecosystem integrity). Here we 107 

rephrase and extend those challenges, namely: (a) context dependency, (b) alternative ecological 108 

states, (c) short-term temporal ecosystem dynamics, and (d) scarcity of reference data where 109 

ecosystems retain high levels of integrity (broadly illustrated in Figure 1).  110 

Context dependency. The ecological context of an ecosystem is its environment and 111 

historical legacies of disturbance (both natural and anthropogenic) that have shaped its 112 

characteristic structure, function and composition. The challenge of context dependency relates to 113 

making the correct ecological interpretation of remotely sensed land cover data. Different locations 114 

in substantially different environments can exhibit the same set of remotely sensed ecosystem 115 

characteristics, when viewed from satellites, but may actually have very different levels of 116 

ecosystem condition from an integrity perspective in nature conservation. This is because spatial 117 

variation in environmental factors shaping distribution of natural ecosystem types, and variability 118 

within types, can be conflated with anthropogenic processes that modify ecosystems. For example, 119 

from a remote sensing perspective, characteristics of an intact (natural) open grassy woodland might 120 

appear identical to a former closed forest which has long since been modified to promote grass 121 

growth and continues to be managed for livestock grazing (Figure 1). A correct interpretation 122 

requires additional information about the reference state of the ecosystem prior to industrial era 123 

anthropogenic influences. If not addressed, the ensuing error of detection is one of measuring 124 

differences in ecosystem characteristics from the wrong reference point or baseline, especially 125 
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where anthropogenic influences altered those characteristics prior to acquisition of remote sensing 126 

imagery (Harwood et al. 2016). 127 

Alternative ecological states. More than one type of ecosystem or biome can occur 128 

naturally at any given location depending on long-term endogenous disturbance regimes (over 129 

multiple decades to hundreds of years) such as fire or large vertebrate herbivory (Pausas and Bond 130 

2020). For example, savanna and forest distribution in many parts of the world, including Africa 131 

and Australia, depends upon maintenance or removal of specific disturbance regimes that advantage 132 

one or other ecological state, which recognised as distinct types yet occupying the same 133 

environment (i.e. similar combinations of soil, climate, landform and hydrology) (Murphy and 134 

Bowman 2012, Staver et al. 2011). When viewed from satellites, these juxtaposed alternative 135 

ecological states will look quite different, but have the same ecosystem reference condition (Figure 136 

1). A long-term view of remote sensing data (e.g., multi-decadal) is needed to clearly distinguish 137 

endogenous disturbance and recovery dynamics from anthropogenic influences. If not addressed, 138 

the ensuing error is again one of measuring ecosystem condition from the wrong reference point or 139 

baseline (Harwood et al. 2016). 140 

Short-term temporal ecosystem dynamics. Within a given ecosystem type, different forms 141 

may persist for short periods (months to years) at a given location, due to periodic events such as 142 

fire and rainfall followed by biomass recovery, which may or may not be seasonal. For example, 143 

natural phenomenon of low leaf cover or bare ground can occur annually, such as deciduousness or 144 

dieback during regular dry or cold periods (Moore et al. 2016), or over several years (e.g., El Niño–145 

Southern Oscillation - Wang et al. 1999). Such short-term drivers within the natural range of 146 

variability, do not affect the ecosystem’s condition but do alter its appearance when viewed from 147 

satellites. A long time series is needed to rule out change in ecosystem characteristics being due to 148 

an exogenous driver, and not part of a natural short- or medium-term disturbance-response dynamic 149 

(Burton et al. 2020, Harwood et al. 2016).  150 
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Scarcity of reference data where ecosystems retain high levels of integrity. Ecosystem 151 

condition is typically estimated relative to reference levels of specified ecosystem characteristics 152 

(Czúcz et al. 2021). In transformed landscapes, high ecosystem integrity reference sites can be 153 

scarce or non-existent. Inadequate or poorly specified reference sites can result in shifting baselines 154 

when anthropogenically modified ecosystems are substituted for missing data, if the condition 155 

assessment methodology does not adjust for this scarcity (Harwood et al. 2016). Reference sites 156 

used in condition assessment need to represent, as far as possible, spatial-temporal variation in 157 

ecosystem characteristics and related environmental gradients. There are many different ways to 158 

conceptualise and establish the prevailing natural reference state for ecosystem condition 159 

assessment (e.g., Jakobsson et al. 2020, Keith et al. 2020, McNellie et al. 2020). Hansen et al. 160 

(2021), for example, related these choices to the degree of ecological representation of the natural 161 

reference state versus feasibility of data collection (see Figure 3 therein). 162 

These four interacting challenges, inherent to the use of satellite remote sensing for 163 

monitoring ecosystem condition, are a worldwide problem. Approaches to addressing any one of 164 

these can have implications for one or more of the other challenges, and so they need to be 165 

addressed collectively (Harwood et al. 2016). 166 

Strengths and weaknesses of different analytical strategies 167 

A wide range of approaches have been developed to solve the multiple challenges of monitoring 168 

and mapping ecosystem condition across large spatial extents using satellite-based remotely sensed 169 

ecosystem characteristics. These strategies may use remote sensing directly or indirectly (e.g., via 170 

land use mapping). We arranged these different approaches into a high-level typology, with an 171 

emphasis on use of satellite data (Figure 2). Each approach has particular strengths and weaknesses 172 

with respect to the challenges introduced in the previous section, which we outline below with 173 

examples. The effectiveness of any given approach, however, depends on the precise focus of the 174 

application of interest, and the nature, quality and quantity of available data streams.  175 
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Condition inference from mapped pressures 176 

The first major split in this typology is between approaches which infer or predict ecosystem 177 

condition indirectly from mapping of pressures (i.e. hemeroby), as opposed to approaches which 178 

estimate condition more directly from remote sensing. Deriving spatially-complete mapping of 179 

ecosystem condition—by overlaying best-available mapping of pressure indicators such as land use 180 

or tenure, human-population density, distance to roads or urban centres, etc—offers a means of 181 

estimating condition rapidly, and at low cost, across very large spatial extents, including globally 182 

(Purvis et al. 2018, Venter et al. 2016, Williams B. A. et al. 2020a). Another notable benefit of this 183 

approach is that it potentially allows consideration of the impact of pressures which are not readily 184 

detected directly from remote sensing, such as predicting relative impact of feral predators as a 185 

function of distance from roads and human settlements (Andrews 1990, Doherty et al. 2015, 186 

Forman and Alexander 1998, Schneider 2001). However, a potential weakness is inability to 187 

distinguish between situations in which a given level of pressure has already resulted in loss of 188 

ecosystem condition versus situations in which impacts from that pressure are yet to be realised 189 

(e.g., an area of intact habitat which is vulnerable to future transformation given its tenure, 190 

proximity to roads, etc). This means that any use of this approach for monitoring change in site 191 

condition over time will only reflect changes in pressures, not the realisation of those pressures in 192 

terms of actual impacts on condition. Another weakness is that the approach often uses pressure 193 

data drawn from multiple sources of varying temporal currency which reduces accuracy of change 194 

detection. Given the respective, largely complementary, strengths and weakness of pressure-based-195 

versus-direct-remote-sensing approaches to ecosystem condition mapping, these two broad 196 

approaches are sometimes applied in combination (e.g., Grantham et al. 2020, Hansen et al. 2021, 197 

Love et al. 2020).  198 

Estimation of condition as a direct function of remote-sensing variables   199 

Among methods that estimate condition directly from remote sensing are those that estimate 200 

condition as a direct function of one or more remote sensing-derived variables. These methods 201 
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assume that higher tree canopy density, above-ground biomass or productivity such as derived from 202 

normalized difference vegetation index (NDVI) and its modifications, for example, equates to 203 

higher condition. Naicker et al. (2024) developed modified NDVI-type indices to assist rangeland 204 

managers assessing change in vegetation condition in high density grasslands. Zelený et al. (2021) 205 

range-normalised three remote sensing variables—NDVI, at-satellite brightness temperature (BT) 206 

and vegetation surface heterogeneity (HG) derived from Sentinel-2 and Landsat 8 sensors—to rank 207 

land classes along an ecosystem integrity gradient; although even the best performing land class 208 

could still have low ecosystem integrity. Huang et al. (2020) used top 10% above-ground biomass 209 

obtained through remote sensing as a benchmark of naturalness for assessing ecosystem asset 210 

quality. Such applications are necessarily restricted to particular regions or ecosystems where 211 

assumptions remain valid. They are not transferable or generalisable to entire continents or 212 

countries because they do not inherently address challenges of context dependency or alternative 213 

ecological states. 214 

Correlative modelling of condition from remote-sensing data 215 

Efforts over the past 25 years to estimate, and thereby map, ecosystem condition more directly from 216 

remote sensing have mostly pursued one of two main analytical paradigms. The first of these 217 

involves treating the problem as a relatively standard correlative-modelling challenge, solvable 218 

through application of standard statistical-regression or machine-learning tools. Data on sample 219 

locations known to exhibit different levels of ecosystem condition (i.e., the response, or dependent, 220 

variable) are used to train a correlative model capable of predicting condition as a function of 221 

predictor (independent) variables derived from remote sensing (along with any other relevant 222 

environmental covariates), thereby allowing condition to be mapped predictively across the entire 223 

region of interest. Two variants of this approach are worth distinguishing. The most widely applied 224 

of these employs training data generated through site-based condition assessment activities—that is, 225 

the training data consist of a set of field sites at which condition has been assessed through ground-226 

based observation (Newell et al. 2006, Zerger et al. 2009).  227 
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The other variant of this correlative-modelling approach employs spatially complete training 228 

data across the region of interest. These data typically consist of best-available mapping of 229 

ecosystem condition derived through some form of the pressure-based approach described above. 230 

The logic of this variant is that, by building a correlative model relating best-available mapping of 231 

ecosystem condition to remote sensing predictor variables, this model can then be used to estimate 232 

changes in condition directly from remote sensing (Hoskins et al. 2016, Keys et al. 2021). If the 233 

spatial resolution of the condition layer used as training data is much coarser than the resolution of 234 

the remote-sensing data used to fit, and make predictions from the model, then this process is 235 

essentially one of statistical downscaling. 236 

A major advantage of mapping condition through standard regression or machine-learning 237 

techniques is that these techniques are both readily available and well proven through their 238 

extensive application across other domains. However, their application to mapping ecosystem 239 

condition from remote sensing needs to overcome a significant challenge rarely shared by other 240 

applications. This is the challenge of context dependency, and of alternative ecological states 241 

because of the deterministic nature of predictions. Unlike correlative modelling of more 242 

straightforward ecosystem characteristics such as tree height, biomass or primary productivity, 243 

different locations exhibiting precisely the same set of measurement values for a set of remotely 244 

sensed ecosystem characteristics can actually be at very different levels of condition depending on 245 

their ecological context; and vice versa with regard to ecological states. Strategies for addressing 246 

these challenges—for example, by fitting separate models for different natural ecosystem types or 247 

biomes, or by including contextual environmental variables as interacting covariates within fitted 248 

models—usually require sizeable amounts of training data to perform effectively, especially when 249 

this approach is applied across large spatial extents encompassing a wide range of ecosystem types 250 

and their alternative states (e.g., Spatial BioCondition - DES 2021).  251 

 252 



11 

Estimation of condition from difference between observed and expected vegetation 253 

characteristics 254 

The other main analytical paradigm for estimating ecosystem condition from satellite remote 255 

sensing approaches the problem from a different angle. Rather than attempting to model, and 256 

thereby predict, condition directly as a correlative function of remote sensing variables, this 257 

paradigm instead focuses on predicting what the ecosystem at any given location would be 258 

‘expected’ to look like (from a remote-sensing perspective) as if it had persisted with high levels of 259 

integrity. Then the actual condition of the ecosystem at that location and given time point is 260 

estimated as a function of the deviation in observed remotely sensed characteristics from this 261 

expectation. This paradigm is designed, from the outset, to deal directly with the challenge of 262 

context dependency outlined above. Three variants of this general approach have emerged over 263 

recent years.  264 

The first of these involves comparing the spatial distribution of discrete land-cover classes 265 

mapped from remote sensing with the distribution of classes expected if the entire landscape were 266 

in reference condition (highest attainable integrity). Mapping of expected reference condition land-267 

cover classes is essentially equivalent to mapping ‘potential natural vegetation’ classes which has 268 

been undertaken using a wide range of correlative, mechanistic, and expert-based modelling 269 

techniques (Bonannella et al. 2023, Hengl et al. 2018). The deviation between observed and 270 

expected (reference condition) land-cover classes can be assessed with varying degrees of rigour, 271 

ranging from binary match/mismatch analysis through to relatively sophisticated consideration of 272 

relationships between multiple ecosystem states within a state-and-transition modelling framework 273 

(Blankenship et al. 2015, Daniel et al. 2016, Richards et al. 2021). The use of discrete classes in this 274 

first variant confers a clear advantage in eliciting expert knowledge and communicating with policy 275 

and management practitioners. However, this same feature also brings with it some potential 276 

disadvantages, including the risk that any error in mapping the expected distribution of natural 277 
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vegetation classes, or ecosystem types, can result in a spurious divergence between observed and 278 

expected remote-sensing characteristics, and therefore error in the estimation of condition. 279 

The second variant of the observed-versus-expected paradigm works with continuous habitat 280 

or ecosystem variables rather than discrete land cover classes. Ecosystem condition can potentially 281 

be estimated by comparing remotely sensed spatial variation in ecosystem characteristics with that 282 

expected if the entire landscape were in reference condition, based on correlative or mechanistic 283 

modelling. Amongst the surprisingly few applications of this approach to date, the most prominent 284 

are those comparing observed and expected (mechanistically modelled) levels of Net Primary 285 

Production, including at global scale (Haberl et al. 2014). As for the comparison of observed and 286 

expected land-cover classes (above), any error in modelling the expected distribution of continuous 287 

ecosystem variables can again result in a spurious divergence between the observed and expected 288 

distribution of these variables. The highly deterministic nature of this approach may also be 289 

challenged by the existence of multiple valid alternative ecological states occurring at a given 290 

location within abiotic environmental space; for example, mosaics of woodland/open-forest and 291 

closed forest (rainforest) vegetation shaped largely by relatively stochastic patterns in the 292 

distribution of past fire events.  293 

A related approach works with expected values from particular remotely sensed ecosystem 294 

characteristics of interest (e.g., persistent ground cover) as reference pixels within a neighbourhood 295 

around each pixel of interest (Bastin et al. 2012, Donohue et al. 2022, Pickup et al. 1994). This 296 

variant of “difference based on continuous remote sensing-derived habitat or ecosystem variables” 297 

(Figure 2) uses proximity in geographical space, sometimes also stratified by soil type, rather than 298 

directly using environmental space (or discrete vegetation types), to deal with context dependency. 299 

It was developed for rangeland environments where the local environment changes relatively slowly 300 

across geographical space to separate the effects of grazing from rainfall in assessing rangeland 301 

pasture condition to inform management practice sustainability. This approach is context limited 302 
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and will not be applicable in environmentally heterogenous landscapes with steep climatic, soil and 303 

topographic gradients.   304 

A more extensively applied approach to estimating condition based on mapping of 305 

continuous habitat or ecosystem characteristics involves comparing the value for each (at any given 306 

location) with that expected for the reference ecosystem type, or vegetation community, concerned. 307 

This comparison is typically based on knowing reference values for the relevant characteristics, 308 

obtained through field-based ecological survey at reference (benchmark) sites within each 309 

vegetation type (Cohen et al. 2001, DES 2021, Kocev et al. 2009, McNellie et al. 2021). While 310 

offering one of the most rigorous approaches to mapping ecosystem condition from remote sensing, 311 

this approach requires reliable mapping of natural ecosystem types (or vegetation communities), the 312 

existence of field-based survey data for benchmarking ecosystem characteristics within each type, 313 

and the ability to use remote sensing to accurately map the same ecosystem characteristics as those 314 

assessed in the field (including sub-canopy and ground-layer features which may be difficult to 315 

detect from satellite imagery). These methods may also not cope well if there’s significant natural 316 

variation in the remotely sensed ecosystem characteristics (due to local heterogeneity or multiple 317 

ecological states) within each class of ecosystem type.  318 

The third and final variant of the observed-versus-expected paradigm, which includes the 319 

Habitat Condition Assessment System (HCAS) approach, makes no attempt to map land-cover 320 

classes, or to estimate ecosystem characteristics that precisely match those employed in field-based 321 

condition assessments. It instead works with best-available remotely sensed variables characterising 322 

continuous variation in overall ecosystem structure, function and composition (within contemporary 323 

technology limits of remote sensing). These remotely sensed ecosystem characteristics are viewed 324 

as forming a multidimensional space, within which comparisons between the observed state and 325 

expected reference state are made in terms of the ecological differences (i.e. distances) between any 326 

two points within that space. In this approach, ecosystems are characterised within a continuum 327 

rather than predefined discrete classes. While the analytical approach employed in HCAS is 328 
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described in detail elsewhere (Harwood et al. 2016, Lehmann et al. 2021, Williams K. J. et al. 329 

2023a, Williams K. J. et al. 2023c, Williams K. J. et al. 2021b, Williams K. J. et al. 2020b), it is 330 

worth briefly contrasting this particular approach with other potential options for using the analysis 331 

of ecological differences (or distances) within a multidimensional remote-sensing space to map 332 

ecosystem condition across large spatial extents.  333 

The first of these options would involve working with a discrete set of natural ecosystem 334 

types, or vegetation classes. If a set of locations known to be in reference condition within each of 335 

these types can be identified, then the condition of all other locations (pixels) within that same type 336 

might be readily estimated from the difference between the ecological position of any given pixel in 337 

this multidimensional space and the positions of the reference sites. This option would, however, 338 

require reliable mapping of the distribution of natural ecosystem types, and ready availability of a 339 

representative set of reference locations within each of those types. Given that species composition 340 

varies continuously in space or time (Austin 2013, McGeoch et al. 2019), this approach risks 341 

quantifying natural within-class variation as variation in condition (i.e. the challenge of multiple 342 

ecological states). The HCAS approach relaxes this requirement by modelling the expected remote-343 

sensing differences in ecosystem characteristics between locations as a continuous function of 344 

abiotic environmental differences between those locations rather than as a binary function of 345 

ecosystem-type membership.  346 

Another variation on the HCAS approach might have been to directly compare the observed 347 

position of a pixel in multidimensional remote-sensing space with the expected position of that 348 

same pixel, as if it were in reference condition. However, this would not have allowed for the 349 

existence of alternative ecological states at any given position in abiotic environmental space. 350 

Hence the approach adopted in HCAS makes comparisons among the observed and expected 351 

differences in multi-dimensional remotely sensed ecosystem characteristic space between the 352 

position of a site (pixel) of interest and the positions of all relevant reference sites.  353 
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Benefits of the Habitat Condition Assessment System (HCAS) approach 354 

Different approaches to using remote sensing to monitor ecosystem condition typically address one 355 

or other of the four challenges illustrated in Figure 1. HCAS was specifically configured to address 356 

all four challenges (Harwood et al. 2016). We are not aware of any other approach that has been 357 

designed to do this.  358 

A schematic of HCAS ‘mechanics’ in Figure 3, summarises how ecosystem condition is 359 

assessed for the simplest case of one test site and one reference site. The test site is a location for 360 

which condition needs to be estimated from remotely sensed ecosystem characteristics data alone. 361 

The reference site is a location in a relatively similar abiotic environment to the test site, and is 362 

known to be in reference condition (i.e. has high ecosystem integrity from a nature conservation 363 

perspective). The challenge of context dependency is addressed using a model predicting the 364 

multivariate remote-sensing distance (or ‘difference’) expected between any two sites if both these 365 

sites are in reference condition. This remote-sensing difference is predicted as a function of the 366 

abiotic environmental characteristics (e.g., climate, soil, landform, hydrology) of the two sites 367 

concerned. The ecological difference, based on Manhattan distances, between the test site and 368 

reference site is derived for both the observed (dobs) and predicted (dpred) sets of remotely sensed 369 

ecosystem characteristics (Figure 3). Observed remotely sensed characteristics are selected (insofar 370 

as possible) to represent the structure, function and compositional features of ecosystems, for which 371 

their inter- and intra-annual variability has been summarised over a specified period (at least 10 372 

years). These summaries aim to address spatial-temporal challenges of short- to medium-term 373 

seasonal dynamics. 374 

The two dimensions of these multivariate ecological differences are plotted (observed and 375 

predicted reference states). The y-axis is the observed difference in remotely sensed ecosystem 376 

characteristics between the test site and a particular reference site (dobs). The x-axis is the difference 377 

in remotely sensed characteristics expected between these two sites if both were in reference 378 
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condition (dpred), predicted as a function of their environmental difference. If a test site has high 379 

levels of ecosystem integrity then observed differences between this site and each reference site 380 

will, on average, fall close to the 1:1 line, approaching a maximum condition score of 1.0. However, 381 

if a test site has low levels of ecosystem integrity then observed differences between this sites and 382 

each reference site will, on average, fall further way from the 1:1 line, approaching a minimum 383 

condition score of 0.0 (Figure 3).Points that fall further along the predicted (dpred) axis represent 384 

comparisons with reference sites that are increasingly dissimilar in predicted remotely sensed 385 

ecosystem characteristics from the test site of interest (i.e., could be classed as entirely different 386 

ecosystem types), and these therefore play less of a role, and/or carry less weight, in assessing 387 

condition than those closer to the origin. These more dissimilar ecosystems, however, may have a 388 

role in assessing condition when similar ecosystem reference sites to the test site no longer exist, 389 

thereby addressing the challenge of scarce reference sites (discussed below).  390 

The challenge of accommodating alternative ecological states is addressed by further 391 

weighting the influence of reference sites which are not only similar in predicted ecosystem 392 

characteristics to the test site, but are also most similar in terms of their observed remotely sensed 393 

characteristics. Emphasising reference sites that are most similar to the test site in terms of both 394 

their predicted and observed remotely sensed ecosystem characteristics also helps address the 395 

challenge of seasonal dynamics (along with the longer time-series of remote sensing data), because 396 

observed remotely sensed characteristics of reference and test sites are expected to change in similar 397 

ways, especially if these are also selected to be in close geographical proximity to one another.  398 

The challenge of scarcity of reference sites is addressed through the scatter plot of observed 399 

and predicted differences in remotely sensed ecosystem characteristics (Figure 3) which does not 400 

require every possible test site to have a reference site in an identical environment—as scaled by 401 

parameters of the reference ecosystem model which simulates the continuum in ecosystem types (a 402 

prior step in the HCAS workflow, Figure 4). The difference in remotely sensed ecosystem 403 

characteristics between a test and reference site is considered a function not only of condition, but is 404 
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also an ecological legacy of its physical environment. Accounting for differences in environment 405 

(i.e., the challenge of context dependency) ensures condition is assessed using reference sites from 406 

environments most similar to the test site, while simultaneously adjusting for the effect that any 407 

deviation from exact environmental similarity is expected to have on the difference in predicted 408 

remotely sensed ecosystem characteristics observed between test and reference sites. A certain 409 

density of reference sites is needed to account for both short- and long-term dynamics of 410 

ecosystems expressed through alternative natural ecological states due to disturbance regimes such 411 

as fire, drought and flood. Identification and selection of reference sites that are representative, 412 

insofar as possible, of both environmental and remote sensing variability is therefore crucial to 413 

addressing the challenge of reference site scarcity.  414 

Implementation of an enhanced HCAS across the Australian continent 415 

Since the original conceptual framework and proof of concept by Harwood et al. (2016), the 416 

implementation of HCAS to the Australian continent has significantly advanced though successive 417 

updates, as summarised in Supplemental Material B Table S2. The method requires three types of 418 

input data: reference sites (the most intact examples of contemporary natural ecosystems), 419 

environmental covariates (relatively stable physical drivers of ecosystem distribution and diversity) 420 

and remote sensing variables (characterising as far as possible the structure, function and 421 

composition of ecosystems). Major steps in the workflow (Figure 4) include:  422 

1) a model of the remotely sensed reference ecosystem characteristics, using a representative 423 

training sample of reference sites (inferred to have high levels of ecosystem integrity such that 424 

condition is approaching 1.0), to predict those characteristics across all locations of interest 425 

based on long-term stable environmental covariates; and  426 

2) a benchmarking stage, involving:  427 

a) a process for selecting several reference sites that are most like the reference ecosystem 428 

characteristics of the test site of interest for estimating its condition; and  429 
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b) an algorithm for estimating proximity of each test site to the selected reference sites based 430 

on differences in their remotely sensed ecosystem characteristics.  431 

A detailed schematic representation of the workflow is provided in Supplemental Material Figure 432 

S2. The status of these workflow components is summarised below, illustrated using results from 433 

the published HCAS version 2.3 (Harwood et al. 2023a, Williams K. J. et al. 2023c) applied at 434 

250m grid resolution (see Supplemental Material C for method details, and Supplemental Material 435 

B Table S2 for a brief technical summary). 436 

Reference sites 437 

Reference sites are contemporary locations where we expect to find the most intact examples of 438 

natural ecosystems and their variants. HCAS assumes reference sites retain their status for the 439 

duration of the remote sensing period over which ecosystem condition is assessed. Reference sites 440 

serve two primary purposes: 1) as training data in the reference ecosystem model for predicting the 441 

continuous expectation of remotely sensed reference ecosystem characteristics across all sites, as 442 

used in the two-way scatterplot shown in Figure 3, and 2) as benchmarks for estimating the 443 

condition of test sites based on each test sites’ proximity to a dynamic reference state (expressed 444 

through multiple reference sites and their remotely sensed ecosystem characteristics). Reference 445 

sites used as training data need to represent, as far as possible, the potential diversity of ecosystems; 446 

whereas reference sites used as benchmarks need to also represent contemporary alternative 447 

ecological states and seasonal dynamics.   448 

Logical inference is the primary way reference sites are derived for use in HCAS, 449 

supplemented by expert knowledge and field observations (Supplemental Material C: Reference 450 

Sites). Multiple lines of evidence from existing mapped data are used to infer the location of 451 

reference sites applying methods similar to hemeroby but focussed only on identifying locations 452 

most likely to have retained high levels of ecosystem integrity. Spatially inferred reference sites 453 

therefore largely occur within protected areas or relatively natural areas where no significant land 454 
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use prevails. They make up approximately 35% of the Australian continent (Figure 5). HCAS 455 

assumes inferred reference sites are accurate, especially those used as benchmarks. An index of 456 

native species proportions derived from Mokany et al. (2022b) provided supporting evidence for the 457 

multiple lines of evidence approach.  458 

Inferred reference sites were representatively subsampled using a detailed ecological land 459 

classification derived from fine-scale mapping of ecological regions (Department of the 460 

Environment 2014) and native vegetation (DAWE 2020), resulting in more than 5000 units for 461 

continental Australia (Supplemental Material C: Sub-sampling reference sites). A stratified random 462 

sample of approximately 100,000 sites are used as training data and 200,000 sites as benchmarks, 463 

although numbers can vary in different HCAS versions (Supplemental Material B Table S2) 464 

depending on what is both computationally tractable and provides comprehensive coverage of 465 

ecosystem diversity. Optimal sampling methods for training and benchmark data are being explored 466 

as a future refinement.  467 

Environmental covariates 468 

We use the existence of a relationship between the reference state of remotely sensed ecosystem 469 

characteristics and environmental covariates to develop a predictive capacity – the HCAS reference 470 

ecosystem model (Figure 4). This statistical model describes the correlative relationship observed 471 

between a set of remote sensing (response) variables and a set of environmental (predictor) 472 

covariates for the training subsample of reference sites. The fitted model is then used to predict the 473 

reference state of the remotely sensed ecosystem characteristics based on the environmental 474 

covariates, for every location across continental Australia. For this purpose, the environmental 475 

covariates need to characterise the equilibrium reference states of the environment to which natural 476 

ecosystems have become adapted and diversified, over ecological and evolutionary time frames. 477 

Suitable data are compiled from multiple sources (Supplemental Material C – Environmental 478 

covariates). Exploratory data analyses then help to identify and reduce multicollinearity to derive a 479 

candidate set for use as potential predictors (Supplemental Material C Table S3).  480 
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Remotely sensed ecosystem characteristics  481 

A multi-decadal assessment period is required of the remote sensing variables to distinguish natural 482 

ecosystem processes of within- and between-year seasonal dynamics from variability due to 483 

anthropogenic influences that cause a departure from this predictable behaviour; in order to avoid 484 

errors of interpretation. Satellite-based remote sensing is used as the ecosystem observatory, and 485 

therefore the choice of variables aims to encompass, as comprehensively as possible, the 486 

characteristic variability in structure, function and composition of all ecosystems. In practice, not all 487 

field observable features relevant to condition assessment can be detected from satellites, but this 488 

will improve over time with advances in sensor and satellite technology (Murray Cameron et al. 489 

2022, Pettorelli et al. 2017). The accuracy of condition assessment is therefore necessarily limited 490 

to remote sensing data that meet minimum requirements of a multi-decadal time series and seasonal 491 

completeness—having relatively high frequency imagery to reduce missing data due to cloud and 492 

smoke. For this reason, data derived from the Moderate Resolution Imaging Spectroradiometer 493 

(MODIS) satellite was originally selected for use with HCAS, thereby restricting the output 494 

resolution to 250 m2 (see rationale in Williams K. J. et al. 2021b). Alternative approaches based on 495 

long time-series Landsat data (Wulder et al. 2022) are being explored as a future refinement. 496 

Remote sensing variables derive from four MODIS Collection 6 fractional cover products 497 

using satellite imagery generated between 1st January 2001 and 31st December 2018 (Supplemental 498 

Material C – Remote sensing variables). Persistent and recurrent green foliage fractions were 499 

derived from MOD13Q1 (Didan 2015) using the method of Donohue et al. (2009); and bare ground 500 

and litter cover fractions from MOD09A1 (Vermote 2015) using the method of Guerschman and 501 

colleagues (Guerschman 2019, Guerschman and Hill 2018). Persistent green cover fractions mainly 502 

characterise perennial plant species (e.g., non-deciduous shrubs and trees) whereas recurrent 503 

fractions mainly characterise annual species (e.g., grass and herbage, deciduous shrubs and trees). 504 

Litter fractions mainly characterise non-photosynthesising plant material and bare ground fractions 505 

are neither covered by litter nor green foliage. Collectively, these predominantly represent 506 
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ecosystem structural characteristics and, to some extent, ecosystem function and composition. The 507 

long-term average and maximum statistics were derived from the 18-year time series, after first 508 

deriving the annual statistics. The maximum statistic for the persistent green cover fraction did not 509 

vary significantly from the mean and so it was not used, resulting in seven variables to characterise 510 

ecosystems. Each variable was then standardised (i.e., mean centred with a standard deviation of 511 

one) to ensure a common scaling for the calculation of Manhattan distances, used in the 512 

benchmarking algorithm.  513 

Predicting reference ecosystem characteristics 514 

Projection pursuit regression (PPR) was used to collectively model the seven standardised remotely 515 

sensed ecosystem characteristics to 29 candidate environmental covariates using a training data 516 

sample of around 100,000 reference sites (method detailed in Supplemental Material C: Predicting 517 

reference ecosystem characteristics). The resulting frequency distribution between observed versus 518 

predicted Manhattan distances for a random sample of c. 100,000 reference site-pairs is shown in 519 

Figure 6. This plot is indicative of the two-dimensional plot of differences used in condition 520 

benchmarking (Figure 3). The scatter of points is due to various processes such as alternative 521 

ecological states and seasonal variation for the same type of ecosystem, as well as inherent error in 522 

reference site assignments and other sources of model error. We expect more variability in observed 523 

remotely sensed ecosystem characteristics due to these natural dynamics than can be represented by 524 

their predictions based on stable environments. 525 

Estimating ecosystem condition (benchmarking) 526 

The approach to estimating ecosystem condition using observed and predicted remotely sensed 527 

ecosystem characteristics addresses the four challenges in an integrated way. The predicted 528 

remotely sensed ecosystem characteristics represent the reference state expected as a function of a 529 

stable natural environment (i.e., addressing the challenge of context dependency and scarcity of 530 

reference sites). The observed remotely sensed characteristics represent the ecosystem in its 531 



22 

contemporary state which could be shaped by a combination of natural and/or anthropogenically-532 

driven processes (i.e., addressing the challenges of alternative ecological states and seasonal 533 

dynamics). A multi-decadal remote sensing assessment period, over which the remote sensing 534 

variables are summarised, also helps to address the challenge of short- to medium-term temporal 535 

dynamics. Reference sites used as benchmarks then aim to characterise spatial and temporal 536 

variability among the alternative ecological states of any particular natural ecosystem in high 537 

integrity (i.e., reference condition).  538 

The analysis is conducted using Manhattan distances derived from reference-reference and 539 

test-reference site-pairs (method detailed in Supplemental Material C: Estimating ecosystem 540 

condition). Two sets of Manhattan distances are first derived for each reference-reference site-pair 541 

using the training data: (1) observed and (2) predicted remotely sensed characteristics. A normalised 542 

two-dimensional frequency histogram of observed versus predicted distances is used to approximate 543 

a probability density surface of the ecosystem reference state. For each test site, 20 reference sites 544 

are selected that are the most relevant as benchmarks, and two sets of test-reference site Manhattan 545 

distances (observed and predicted) calculated. These distances are plotted over the density surface, 546 

to derive expected probabilities. Condition of the test site is then calculated as the predicted 547 

distance-weighted average of the 20 test-benchmark probabilities of being in reference condition 548 

(see Supplemental Material C Figure S20). The number of benchmarks is necessarily a trade-off 549 

between context dependency and the need to address the challenges of alternative ecological states 550 

and seasonal dynamics.  551 

Calibrating ecosystem condition (0.0-1.0 scaling) 552 

The output is calibrated and standardised in the range 0.0 (lowest – ecosystem removed) and 1.0 553 

(highest – ecosystem integrity in reference condition). Calibration ideally draws on independent 554 

observations of site condition; however, such data are not readily available. While some land 555 

management agencies in Australia have implemented field protocols for estimating ecosystem 556 

condition to regulate native vegetation clearing—for example, the State of Queensland (Eyre et al. 557 
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2017, Eyre et al. 2015), the State of Victoria (DSE 2004, Parkes et al. 2003), Tasmania (Michaels 558 

2006, Michaels et al. 2020), South Australia (DNR and NVC 2020), New South Wales (DPIE 2020, 559 

Oliver et al. 2021)—these have not been harmonised for consistent national use. Therefore, we 560 

developed a calibration approach using other sources of data (method detailed in Supplemental 561 

Material C: Calibrating ecosystem condition).  562 

A piecewise linear rescaling algorithm with two inflection points was used to account for 563 

potential non-linearity. The x-axis coordinates for the inflection points were defined by the average 564 

uncalibrated condition values in areas of intensive land use (i.e., highly modified ecosystems) as of 565 

2015–16 (ABARES 2022), and mapping of inferred reference sites *i.e. relatively natural areas), 566 

respectively (Table 1, Figure 5). The y-axis coordinates for condition scores were derived from a 567 

species-area relationship (S=Az; for z = 0.25) transformation of PREDICTS project coefficients 568 

(i.e., the proportion of native species in an intact landscape which are found in paired modified 569 

habitats of that type) (Hudson et al. 2017) for 2015 global harmonised land use classes (LUH2 - 570 

Chini et al. 2020, Hurtt et al. 2020) that aligned with highly modified or relatively natural areas, and 571 

averaged using an area-weighting. The end points of the scaling (0, 1) were defined by minimum 572 

and maximum uncalibrated values, respectively (Figure 7). The calibrated result is shown in Figure 573 

8. Implementation of calibration could alternatively use a monotonic spline (Dougherty et al. 1989).  574 

Annual epochs of ecosystem condition 575 

Annual epochs of ecosystem condition were derived using the same benchmarking process and 576 

calibration algorithm as the long-term epoch by substituting the observed long-term remotely 577 

sensed ecosystem characteristics with annual equivalents in test-benchmark comparisons.  578 

Evaluating ecosystem condition 579 

Validation was performed using two independent sources of ecosystem condition data derived 580 

through expert elicitation: (1) virtual transects (methods detailed in Supplemental Material) and (2) 581 

site condition assessments (White M. D. et al. 2023). Nine ecologists with extensive field 582 
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experience in specific regions visually assessed condition at 11 evenly spaced points along one or 583 

two of 11 pre-defined virtual transects using Google Earth imagery. The transects traversed large 584 

swathes of the Australian continent. Twenty-one experts contributed 314 site condition assessments 585 

through the Habitat Condition Assessment Tool (Brenton et al. 2018), which included a method for 586 

expert cross-calibration enabling the results to be rescaled (White M. D. et al. 2023). A Major Axis 587 

Type-II regression (Legendre and Legendre 2012), which assumes error variances are 588 

approximately equal in the comparisons, demonstrated reasonable agreement between HCAS and 589 

each set of expert scores (Figure 9).  590 

The calibrated HCAS scores were also compared with categorical mapping of native 591 

vegetation modification levels derived from a wide range of land use and land cover datasets for 592 

Australia (Lesslie et al. 2010) consistent with the Vegetation Assets, States and Transitions (VAST) 593 

narrative framework (Thackway and Lesslie 2006, 2008). The continuous HCAS scores were 594 

assigned to discrete VAST classes on the basis of elicited expert’s condition scores (methods 595 

detailed in Supplemental Material) to enable a comparison of ordered categories. Concordance 596 

between the two datasets was qualitatively assessed using a confusion matrix. To approximate the 597 

temporal range of the VAST spatial data (1995-2006), the average of the six HCAS annual epochs 598 

of the ecosystem site condition index in the overlapping temporal range, 2001 to 2006, were used 599 

for the comparison (Supplemental Material C Figure S36). Overall concordance for the comparison 600 

of five common categories was 42% indicating moderate agreement and, when collapsed to two 601 

classes depicting relatively natural versus intensively modified areas, overall concordance was 87%, 602 

indicating high agreement.  603 

Example applications 604 

Two HCAS versions derived using MODIS remote sensing data have been published as continent-605 

wide datasets (Harwood et al. 2023a, Harwood et al. 2021) along with several regional versions 606 

(listed in Supplemental Material B Table S2), and applied to both operational and research uses. For 607 
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example, Mokany et al. (2022a) used HCAS as one of the primary inputs to habitat-based 608 

biodiversity assessment for ecosystem accounting in the extensive Murray-Darling Basin region of 609 

Australia. Giljohann et al. (2022) used HCAS as the main input to a continent-wide connectivity 610 

index for operational use in conservation planning and policy, and both are included in Australian 611 

Government performance reporting on environmental outcomes (DCCEEW 2023). Williams K. J. 612 

(2023) used HCAS to define three regions of Australia – intensive use, extensive use and relatively 613 

natural – for operational state of the environment reporting, and for reporting on average condition 614 

within a particular ecosystem (Williams K. J. et al. 2021a). Forbes et al. (2021) used ecosystem 615 

condition from the proof-of-concept version of HCAS (Harwood et al. 2016) along with other 616 

factors to model the drivers and risks of the infectious zoonotic disease, cryptosporidiosis. 617 

Nowrouzi et al. (2019) used that same earlier version of ecosystem condition from HCAS, 618 

combined with a model of native ant species compositional diversity in rainforest, to predict the 619 

impacts of climate change on effective habitat area. Ward et al. (2024) used HCAS as a line of 620 

evidence in assessing the impacts of forest harvesting and degradation on threatened species. 621 

Williams K. J. et al. (2023c) used a trend analysis over the 18 years of HCAS annual epochs to map 622 

locations of statistically significant change in condition, summarised as either increasing or 623 

decreasing extents (e.g., Table 2 and Figure 11). Giljohann et al. (2024) used HCAS annual epochs 624 

to track progress in providing habitat for threatened species over time and space. These applications 625 

are just a few of the multiple ways in which ecosystem condition from HCAS can be used.  626 

HCAS as an indicator of ecosystem integrity 627 

The HCAS conceptual framework and method addresses all evaluation criteria outlined by Hansen 628 

et al. (2021) for systematically monitoring and evaluating trends in ecosystem integrity (reproduced 629 

in Box 1). As far as possible, remote sensing variables are selected to represent common ecosystem 630 

characteristics of structure, function, and composition (criterion 1, Box 1). HCAS to date has 631 

largely been based on structural variables from remote sensing (e.g., fractional cover of visible 632 
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ground and canopy properties), but the method can flexibly take advantage of new remote sensing 633 

products that provide greater coverage of ecosystem properties or improve on previous measures.  634 

The HCAS has been successfully applied to the continent of Australia, which is 635 

representative of the majority of global biomes (criterion 2, Box 1). With inclusion of reference 636 

sites agreed by participating countries as indicative of their natural areas (Neugarten et al. 2024, 637 

Xiao et al. 2024), the approach can feasibly be applied across terrestrial ecosystems globally. The 638 

pilot application of HCAS used a 1 km grid to test method feasibility (Harwood et al. 2016) and 639 

then implemented using a 250 m grid across Australia (Harwood et al. 2023a, Harwood et al. 2021) 640 

(criterion 3, Box 1). The next phase of work at 90 m is underway (Munroe et al. 2024). The first 641 

published version of HCAS introduced a time series of annual epochs as a derivative of the long-642 

term model (Harwood et al. 2021, Williams K. J. et al. 2021b). HCAS annual epochs have been 643 

used to estimate change in condition using statistical trend analyses considering serial correlation 644 

bias (Harwood et al. 2023a, Lehmann et al. 2023, Williams K. J. et al. 2023c), as demonstrated in 645 

Figure 11 (criterion 3, Box 1).  646 

The HCAS method can be applied at any scale and region depending on suitable resolution 647 

input data. Being a site-level assessment across whole landscapes or continents, regional 648 

assessments are inherently comparable, and results can be aggregated at higher levels for reporting 649 

without introducing bias (criterion 4, Box 1). Alternatively, analyses of trends in annual epochs 650 

over a given time-series applied to individual pixels can be used to derive an average estimate of 651 

condition change per year. This estimate can be aggregated by summing pixel values to derive an 652 

area estimate (e.g., change in condition-hectares per year), and then multiplied by the number of 653 

years of the trend analysis, for any subsequent regionalisation, without introducing scaling bias 654 

(e.g., Figure 11).  655 

The general approach to HCAS has been published (Harwood et al. 2016), and successive 656 

technical enhancements co-designed through stakeholder and science consultative processes, have 657 

also been peer reviewed and published, as outlined in Supplemental Material B Table S2 (criterion 658 



27 

5, Box 1). Detailed evaluations of the output were conducted using multiple lines of evidence, to 659 

inform a schedule of limitations and recommendations for continuous improvement (Williams K. J. 660 

et al. 2023c, Williams K. J. et al. 2021b). The data and metadata are publicly available using open 661 

standards – CC By licenses (e.g., Harwood et al. 2023a, Harwood et al. 2023b, Harwood et al. 662 

2021).  663 

The HCAS framework is inherently referenced to states characteristic of the climatic, geomorphic, 664 

and native community ecosystem (criterion 6, Box 1). The reference ecosystem model part of 665 

HCAS (Figure 4) uses climatic and geomorphic covariates of native ecosystems in their high 666 

integrity reference state to predict the reference state characteristic of ecosystems using satellite 667 

remote sensing as the observation platform. These predicted reference state characteristics are used 668 

in the benchmarking part of HCAS (Figure 4) to ensure correct and most effective use of scarce 669 

reference site data in estimating condition at a site of interest. Furthermore, HCAS has been 670 

designed to explicitly account for alternative ecological states among reference ecosystems. The 671 

resulting spatial data can be intersected with other map products, for example depicting type and 672 

extent of native ecosystems (Williams K. J. et al. 2023b), and for nuanced reporting on gains and 673 

losses with implications for biodiversity (Mokany et al. 2022a). 674 

Future directions 675 

Given access to the three input datasets (reference sites depicting relatively natural areas, remotely 676 

sensed ecosystem characteristics, and environmental covariate determinants of ecosystem 677 

diversity), the HCAS approach could be applied to any region of the world. Identification of 678 

suitable reference sites is the most limiting input (Harwood et al. 2016). However, using multiple 679 

lines of evidence from time series human footprint mapping (Grantham et al. 2020, Watson and 680 

Venter 2019, Williams B. A. et al. 2020a), contemporary natural areas can be inferred where there 681 

are low levels of human-influenced ecosystem conversions (Neugarten et al. 2024, Xiao et al. 682 

2024); thereby enabling global or country-based applications to support consistent reporting on 683 
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ecosystem condition and integrity under the CBD (CBD 2022b) and SEEA EA frameworks (United 684 

Nations et al. 2021), and for business reporting on environmental performance, nature-related risks 685 

or nature positive outcomes (e.g., zu Ermgassen et al. 2022). 686 

Within Australia, continued investment in HCAS is addressing the limitations summarised 687 

in Williams K. J. et al. (2021b). Prioritised improvements include: 1) spatial resolution, accuracy 688 

and utility of HCAS by undertaking further work on reference sites, environmental covariates and 689 

remote sensing variables; 2) implementing uncertainty quantification to derive confidence intervals 690 

and guide appropriate use in decision-making; 3) revising the benchmarking algorithm to 691 

incorporate very low condition (‘removed’) sites (~0.0) in addition to high ecosystem integrity 692 

reference sites (~1.0) as the method originally envisaged (see Fig. 1 in Harwood et al. 2016); 4) 693 

introduction of parameter tuning in the benchmarking algorithm to address inherent trade-offs; 5) 694 

streamlining workflows and refactoring software for transparency, traceability and near real time 695 

generation of outputs; and 6) developing methods to support interpretation and attribution of 696 

condition change and trends including detection of abrupt versus gradual and other types of change 697 

(e.g., Bergstrom et al. 2021). The next phase of work on HCAS is being developed at 90 m pixel 698 

resolution utilising the long time-series of Landsat data (Commonwealth of Australia 2021) and an 699 

extensive 90 m compilation of environmental covariates filtered to remove signatures of 700 

anthropogenic land use (Searle 2023, Searle et al. 2022). In addition to terrestrial environments, the 701 

three inputs will be extend to improve depiction of land surface condition in wetland, riparian and 702 

floodplain environments (Munroe et al. 2024).  703 

A key limitation in remote sensing of ecosystem condition is the ability to detect ecosystem 704 

characteristics below a closed canopy (Lawley et al. 2016, Tehrany et al. 2017); for example, where 705 

a canopy is intact, but the structure below has been modified by alien invasive browsing ungulates 706 

(Mitchell et al. 2017, Russo et al. 2023). These changes will not be evident from optical satellite 707 

sensors but may become evident with longer periods of monitoring from satellite-based radar and 708 

lidar detecting complex three-dimensional woody structures (Bergen et al. 2009, Mitchell et al. 709 
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2017). In the interim, therefore, field observation, expert opinion, empirical analysis and ecological 710 

theory will continue to be needed to infer processes impacting ecosystem integrity at the site level 711 

beyond that detected using satellite remote sensing (Cavender-Bares et al. 2020, Gao et al. 2020).  712 

To fill some of these gaps in satellite-based remote detection of ecosystem characteristics 713 

that have been negatively impacted by surrounding pressures, we applied a simple proximity 714 

algorithm to infer diffuse local pressures that potentially negatively influence the realised condition 715 

at a site (Supplemental Material C: Deriving ecosystem site condition). The derived index of 716 

‘ecosystem site condition’ (Figure 10) provides a slightly improved index for operational purposes 717 

such as ecosystem accounting (e.g., Richards et al. 2023). More comprehensive, context-specific 718 

edge effects analyses would be equally applicable (e.g., Ries et al. 2017, Zurita et al. 2012).   719 

While a further novel aspect of HCAS is its ability to incorporate new remote sensing 720 

technologies as these become available, these also need to address the challenges illustrated in 721 

Figure 1. For example, the need for a multi-decadal time-series in order to understand and correctly 722 

separate effects of natural processes of response to disturbance regimes from anthropogenic drivers 723 

that remove (conversions) or modify ecosystems (Senf and Seidl 2021, Zhu et al. 2022). Therefore, 724 

as satellite technologies evolve, such as satellite-based radar/lidar and hyperspectral (Ustin and 725 

Middleton 2021), it may be several years before they can be effectively used for ecosystem 726 

condition assessment. A promising alternative is for new technologies to integrated with legacy 727 

time series to fill cloud gaps or sensor error in remotely sensed ecosystem characteristics (e.g., 728 

Myroniuk et al. 2023).  729 

Conclusions 730 

HCAS is unique among approaches that have been developed over recent decades to monitor 731 

ecosystem integrity using satellite remote sensing across whole regions and continents. It was 732 

specifically designed to address four challenges of satellite-based remote sensing: context 733 

dependency, alternative ecological states, seasonal dynamics and scarce reference data. The 734 
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methodology has evolved significantly since the proof of concept was first published by Harwood et 735 

al. (2016) and this evolution continues as new data sets and approaches are incorporated.  736 

HCAS outputs an index of ecosystem condition and the remotely sensed ecosystem 737 

characteristics are condition variables under the SEEA-EA ecosystem condition typology (Keith et 738 

al. 2020, United Nations et al. 2021). The conceptual framework is entirely consistent with the 739 

theoretical concepts outlined by Czúcz et al. (2021), wherein it would be feasible to reconfigure the 740 

HCAS workflow to additionally output individual remotely sensed indicators of ecosystem 741 

condition. Among the 43 headline biodiversity indicators under the Kunming-Montreal Global 742 

Biodiversity Framework (CBD 2022b), Indicator A.2: Extent of natural ecosystems is most relevant 743 

to ecosystem condition, because it can inform on thresholds for naturalness. The HCAS method is 744 

also suited for systematically monitoring and evaluating trends in ecosystem integrity, meeting all 745 

evaluation criteria outlined by Hansen et al. (2021).  746 

The HCAS method has been successfully applied to the entire continent of Australia and 747 

used in a wide range of research and policy applications. The three inputs are readily available 748 

globally and the two-stage model to effectively addresses four key challenges of monitoring 749 

ecosystem condition (i.e. integrity) from space. The method can be easily adapted and applied to 750 

other countries and globally, to complement on-ground assessments, land use and ecosystem type 751 

mapping, and as an input to biodiversity assessment. HCAS can help refine our understanding about 752 

the global status of habitats for biodiversity as an input to land use planning and landscape 753 

management strategies.  754 

 755 

 756 

 757 

 758 
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TABLES 1132 

Table 1. Summary statistics for the uncalibrated HCAS version 2.3 score in each of the areas shown 1133 

in Figure 5.  1134 

Dataset Minimum 
First 

quartile 
Median Mean 

Third 

quartile 
Maximum 

Relatively 

natural areas 

(inferred 

reference sites) 

0.00000 0.01461 0.01535 0.01506 0.01589 0.01900 

Highly modified 

areas (intensive 

land use) 

0.00001 0.00617 0.01049 0.00939 0.01284 0.01869 

 1135 

  1136 
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Table 2. Ecosystem condition trend: extent (hectares) and condition-weighted extent (in condition-1137 

hectares) in each ecosystem condition trend class by catchments, 2001-02 to 2018-19, for the 1138 

Flinders, Norman and Gilbert river catchments in Queensland (FNG). Source: adated from Table 1139 

‘FNG_HCAS23LCEX_EC_RCA_S02’ in Giljohann et al. (2023). Derived from HCAS version 2.3 1140 

(Harwood et al. 2023a). 1141 

Catchments 

and coastal 

Ecosystem 

condition trend 

class 

Extent (hectares) 

Average 

ecosystem 

condition index 

change per year 

(trend slope 

coefficient) 

Total change in 

condition-

weighted extent 

(condition-

hectares) 

Flinders 

river 

catchment 

area 

significant increase 

(> 0) 
186,968 0.0025 8,329 

non-significant (= 0) 9,847,448   

significant decrease 

(< 0) 
912,804 0.0035 57,862 

unclassified 3,743   

Gilbert river 

catchment 

area 

significant increase 

(> 0) 
137,023 0.0020 4,848 

non-significant (= 0) 4,070,130   

significant decrease 

(< 0) 
433,635 0.0032 25,015 

unclassified 274   

Norman 

river 

significant increase 

(> 0) 
98,761 0.0020 3,538 
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Catchments 

and coastal 

Ecosystem 

condition trend 

class 

Extent (hectares) 

Average 

ecosystem 

condition index 

change per year 

(trend slope 

coefficient) 

Total change in 

condition-

weighted extent 

(condition-

hectares) 

catchment 

area 

non-significant (= 0) 4,507,252   

significant decrease 

(< 0) 
437,078 0.0028 22,078 

unclassified 1,332   

Subtotal 

significant increase 

(> 0) 

422,752 0.0065 16,715 

non-significant (= 0) 18,424,830   

significant decrease 

(< 0) 

1,783,517 -0.0095 -104,955 

unclassified 5,349   

Flinders, Norman and Gilbert river 

catchments 
20,636,448 NA NA 
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Box 1. Evaluation criteria listed by Hansen et al. (2021) for systematically monitoring and 1144 

evaluating trends in ecosystem integrity. 1145 

1. A direct measure of a specific aspect of ecosystem structure, function, or composition. 1146 

2. Biome to global extent with spatial resolution sufficiently fine to allow for management 1147 

relevance and subnational assessment (≤1 km). 1148 

3. Temporal resolution to allow assessment at annual to 5-year periods. 1149 

4. Ability of the indicator to be aggregated from subnational to national to global without 1150 

introducing bias. 1151 

5. Known credibility through validation and peer review, data and metadata are publicly 1152 

available, adheres to open data standards. 1153 

6. Potential to be referenced to states characteristic of the climatic, geomorphic, and native 1154 

community ecosystem.  1155 

 1156 
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FIGURES 1158 

 1159 

 1160 

Figure 1. An illustration of three of the four main types of ecological application challenges 1161 

inherent to the use of satellite remote sensing for estimating ecosystem condition. Adapted from 1162 

Harwood et al. (2016).  1163 

  1164 
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 1165 

 1166 

Figure 2. Typology of approaches to mapping habitat condition across large spatial extents using 1167 

satellite-based remote sensing.  1168 

  1169 
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 1170 

 1171 

Figure 3. Habitat Condition Assessment System (HCAS) mechanics – an overall schematic of how 1172 

ecosystem condition is benchmarked using reference sites, showing the case where the test site 1173 

condition is closer to 1.0 or 0.0.  1174 

 1175 
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 1176 

Figure 4. Summary of HCAS model workflow structure. The workflow hinges on two main 1177 

processing stages (shown as steps 1 and 2). First, a multivariate regression model is developed 1178 

(labelled ‘Reference ecosystem modelling’) to predict ecosystem characteristics (using satellite-1179 

observed remotely sensed ecosystem characteristics) from a set of predictors (environmental 1180 

covariates such as climate, soil, landform and hydrology) for sites in reference condition (having 1181 

high levels of ecosystem integrity). The reference ecosystem model is used to predict ecosystem 1182 

characteristics at every site of interest. The second stage (labelled ‘condition benchmarking’) 1183 

calculates differences between predicted and observed ecosystem characteristics, and uses sites in 1184 

reference condition (this time as ‘benchmarks’) to derive the initial uncalibrated habitat condition 1185 

index, indicating similarity to reference conditions for every test site. Subsequent steps calibrate and 1186 

standardise the estimates to values between 0.0 and 1.0, and compares results with other land 1187 

information datasets to inform interpretation and use.   1188 
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 1189 

 1190 

Figure 5. Distribution of inferred high ecosystem integrity areas (i.e., reference sites) and inferred 1191 

highly modified areas (potentially removed ecosystems) used in HCAS version 2.3 benchmarking 1192 

and scaling algorithms. White areas are intermediate modified areas. Projection: Australian Albers 1193 

GDA 1994. 1194 

 1195 
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 1196 

Figure 6. Projection Pursuit Regression model fit in terms of observed versus predicted remote 1197 

sensing principal component Euclidean distances used in HCAS version 2.3. A random sample of 1198 

100,000 reference site-pairs (of the N×(N-1)/2 combinations, N = 101,686) are used for 1199 

computational tractability. Red line is a linear model fit of the data; black line is a smoothing fit of 1200 

the data; dashed grey line is the diagonal.  1201 

 1202 

 1203 
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 1204 

Figure 7. Piecewise linear rescaling coordinates used in HCAS version 2.3 to derive a calibrated 1205 

and standardised index ranging from 0.0 (removed) to 1.0 (reference condition). The two inflection 1206 

points are for the respective medians of uncalibrated scores in highly modified areas (left) versus 1207 

high ecosystem integrity areas (right); areas as mapped in Figure 5. 1208 
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 1210 

Figure 8. Calibrated HCAS version 2.3 for the base model (2001-2018). Data: Harwood et al. 1211 

(2023a). Projection: Australian Albers, GDA 1994.  1212 

 1213 

 1214 

 1215 
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 1217 

Figure 9. Type II regressions between HCAS version 2.3 habitat condition and expert condition 1218 

scores from eleven virtual transects. The ‘Intercept’ results are the estimated intercept using the 1219 

Type II regression (with confidence interval, CI, range); the ‘Slope’ results are the estimated slope 1220 

coefficient (with CI) – best when closest to 1.0; the ‘Angle’ result is the estimated angle of the fitted 1221 

line (best when closest to 45°); RMSOE is the “bespoke” orthogonal RMSE between the data points 1222 

and the Type II regression line (‘bespoke’ in the sense that it is not really a standard metric of 1223 

modelling error, but provides some insight into the “orthogonal” variability of the data points from 1224 

the regression line, i.e., in the spirit of the Type II analysis). 1225 

 1226 
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 1227 

Figure 10. Local comparison (Canberra region of Australia – see inset for location) showing the 1228 

inferred local pressurs effect (top-right) as the difference between HCAS version 2.3 habitat 1229 

condition (far-left) and ecosystem site condition (middle) for the 2001-2018 long term epoch. Data: 1230 

Harwood et al. (2023a). Projection: Australian Albers, GDA 1994.  1231 
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 1233 

 1234 

Figure 11. Change in ecosystem condition over 18 years by catchments, 2001-02 to 2018-19, for the 1235 

Flinders, Norman and Gilbert river catchments in Queensland (FNG). Source: Table 1236 

‘FNG_HCAS23LCEX_EC_RCA_S02’ in Giljohann et al. (2023). Derived from HCAS version 2.3 1237 

(Harwood et al. 2023a). 1238 

 1239 
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Supplemental Material A – common use terms with similar meaning to 1 
ecosystem condition or integrity  2 

 3 

This document provides supplemental material for the manuscript: Overcoming Key 4 
Challenges of Satellite-based Monitoring of Ecosystem Condition: A Continental-scale 5 
Example From Australia  6 

 7 

Table S1. Example terms in common use with a similar meaning or intent as for ecosystem 8 
condition or integrity, and that are generally applicable across terrestrial, freshwater and 9 
marine realms  10 

Term (source) Purpose Definition  Reference or 
baseline concept 

Condition, Ecological 
(Jakobsson et al. 2020, 
Jakobsson et al. 2021) 

Environmental 
Reporting 

The state and trends of 
structures and functions 
(incl. productivity) in an 
ecosystem; as 
characterised by key 
aspects of the 
biodiversity, structure, 
and functioning of the 
ecosystem. 

Intact ecosystems, 
understood as nature 
not significantly 
affected by human-
driven pressures in 
the industrial era, 
characterized by 
recent historical 
biodiversity and 
normal climates 
(1961–1990).  

Condition, Ecological 
(Stoddard et al. 2006, 
USEPA 2022) 

Environmental 
Reporting 

The state of ecological 
systems, which includes 
their physical, chemical, 
and biological 
characteristics and the 
processes and 
interactions that connect 
them. 

Intact ecosystems 
with respect to recent 
natural or semi-
natural biodiversity 
and ecosystem 
functioning. 

Condition, Ecosystem 
(Czúcz et al. 2021, 
United Nations et al. 
2021) 

Ecosystem 
accounting 

The quality of an 
ecosystem measured in 
terms of its abiotic and 
biotic characteristics. 

The condition against 
which past, present 
and future ecosystem 
condition is compared 
to in order to measure 
relative change over 
time. 

Condition, Ecosystem 
(Keith et al. 2020) 

Ecosystem 
accounting 

The quality of an 
ecosystem that may 
reflect multiple values, 
measured in terms of its 
abiotic and biotic 
characteristics across a 
range of temporal and 
spatial scales. 

The natural state of 
intact native 
ecosystems, in terms 
of ecosystem 
characteristics at their 
natural condition, 
allowing for dynamic 
ranges. 

Condition, Ecosystem 
(Rendon et al. 2019) 

Ecosystem 
services 

The overall quality of an 
ecosystem unit, in terms 
of its biological, physical 

An ecosystem unit at 
its maximum capacity 



Term (source) Purpose Definition  Reference or 
baseline concept 

and chemical 
characteristics 
underpinning its capacity 
to generate ecosystem 
services 

to generate ecosystem 
services.  

Condition, Habitat 
(Harwood et al. 2016) 

Biodiversity 
persistence 

A measure of the 
difference between two 
sets of dynamic 
ecological states: one 
resulting from the 
natural regime of 
disturbance and recovery 
processes; and the other 
consisting of modified 
states resulting from 
anthropogenic 
perturbations. 

The dynamic 
ecological states 
resulting from the 
natural regime of 
disturbance and 
recovery processes, 
and that vary 
continuously along 
environmental 
gradients.  

Condition, Vegetation 
(Gibbons and 
Freudenberger 2006, 
Gibbons et al. 2008) 

Native vegetation 
management 

Based primarily on 
structure and/or 
composition in which 
reference conditions 
(relatively unmodified 
sites) are often used as 
the benchmark for 
assessment 

Variation in native 
vegetation exhibiting 
relatively little 
evidence of 
modification by 
humans since 
European settlement 
(pre-industrial era in 
Australia) 

Effectiveness, Habitat 
(https://www.lawinsider.c
om/dictionary/habitat-
effectiveness) 

Species 
persistence 

The degree to which a 
habitat or its components 
fulfill specific habitat 
functions; the degree to 
which a species or 
population is able to 
continue using a habitat 
for a specific function. 

A maximum potential 
habitat function for a 
given individual or 
population of a 
species  

Health, Ecosystem 
(Andel and Aronson 
2006, Andel et al. 2012, 
Society for Ecological 
Restoration International 
Science and Policy 
Working Group 2004) 

Sustainability 
management  

The state or condition of 
an ecosystem in which 
its dynamic attributes are 
expressed within the 
normal ranges of activity 
relative to its ecological 
stage of development 

An ecological 
development stage 

Health, Ecosystem 
(Costanza R. 1992, 
Costanza Robert and 
Mageau 1999) 

Sustainability 
management 

An ecological system is 
healthy and free from 
‘distress syndrome’ if it 
is stable and sustainable 
– that is, if it is active 
and maintains its 
organization and 
autonomy over time and 
is resilient to stress; 
based on a system’s 
characteristic levels of 

A healthy system is 
one that possesses 
adequate resilience, 
vigour, and 
organization, to 
survive various small-
scale perturbations 



Term (source) Purpose Definition  Reference or 
baseline concept 

vigour, organization, and 
resilience.  

Health, Ecosystem 
(Lausch et al. 2018, 
Rapport et al. 1998) 

Sustainability 
management 

Vigorous, diverse 
systems that are 
characterized by a high 
resilience, that is, the 
ability to quickly return 
to an initial state 
following an external 
disturbance and thus to 
withstand negative 
impacts from external 
influences. 

An initial state prior 
to external 
disturbance 

Intactness, Biodiversity 
(Scholes and Biggs 2005) 
(Hudson et al. 2017, 
Newbold et al. 2016) 

Biodiversity 
persistence 

The proportion of the 
original number of 
species that remain and 
their abundance in any 
given area, despite 
human impacts. 

The number and 
diversity of species at 
near-undisturbed 
sites.  

integrity, Ecological 
(Mansourian 2005, 
Wurtzebach and Schultz 
2016) 

Forest landscape 
restoration 

To maintain the diversity 
and quality of 
ecosystems, and 
enhancing their capacity 
to adapt to change and 
provide for the needs of 
future generations. 

Capacity to maintain 
natural ecological and 
evolutionary 
processes  

Integrity, Ecological 
(McGarigal et al. 2018) 

Biodiversity 
persistence and 
ecosystem 
function  

The ability of an area to 
support native 
biodiversity and the 
ecosystem processes 
necessary to sustain that 
biodiversity over the 
long term; and 
accommodates the 
modification or 
adaptation of systems (in 
terms of biotic 
composition and 
structure) over time to 
changing environments.  

The ecological 
functions necessary to 
confer ecological 
integrity, using 
quantile scaling to 
rate sites relative to 
each other within a 
given region.  

Integrity, Ecological 
(Parrish et al. 2003) 

Protected area 
management 

The ability of an 
ecological system to 
support and maintain a 
community of organisms 
that has species 
composition, diversity, 
and functional 
organization comparable 
to those of natural 
habitats within a region.  

Dominant ecological 
characteristics (e.g., 
elements of 
composition, 
structure, function, 
and ecological 
processes) occur 
within their natural 
ranges of variation 
and can withstand and 
recover from most 
perturbations imposed 



Term (source) Purpose Definition  Reference or 
baseline concept 
by natural 
environmental 
dynamics or human 
disruptions. 

Integrity, Ecosystem 
(SER 2002, Society for 
Ecological Restoration 
International Science and 
Policy Working Group 
2004) 

Ecological 
restoration and 
management 

The state or condition of 
an ecosystem that 
displays the biodiversity 
characteristic of the 
reference, such as 
species composition and 
community structure, 
and is fully capable of 
sustaining normal 
ecosystem functioning 

The state of an 
ecosystem that is 
fully capable of 
sustaining normal 
ecosystem 
functioning 

Integrity, Ecosystem 
(United Nations et al. 
2021, WCS 2021) 

Ecosystem 
accounting 

The ecosystem’s 
capacity to maintain its 
characteristic 
composition, structure, 
functioning and self-
organisation over time 
within a natural range of 
variability 

Natural or historic 
range of variability in 
composition, structure 
and function 

Integrity, Habitat 
(Thompson 2018) 

Biodiversity 
persistence 

The capacity of a place 
to support indigenous 
species with the 
resources necessary to 
complete their life cycle. 

Resources necessary 
for indigenous species 
to complete life 
cycles.  

Integrity, Landscape 
(Perkl 2017) 

Landscape 
management 

A measure of the 
landscape’s naturalness, 
or its inverse, the level 
of human modification. 
(Related to the human 
footprint approach) 

The ‘standard’ or 
‘natural’ baseline of 
the landscape. 
(Related to ecological 
integrity.) 

Naturalness (Dengler et 
al. 2008, Machado 2004) 

Conservation 
value 

Naturalness, or its 
reciprocal concept, 
hemeroby, ranks 
communities by the 
strength of human 
influence and 
consequent alterations of 
species composition, 
structure, and ecological 
processes. (Related to 
wilderness.) 

Maximum state of 
naturalness wherein 
all ecological 
components and 
processes are present 
and natural (native 
and intact), without 
human influence.  

Naturalness, Ecological 
(Dussault 2016) 

Sustainability 
management 

The ecological normality 
allowing for the ability 
of a species to live in 
accordance with 
Callicott’s principle of 
harmony with nature. 
(Related to ecosystem 
health).  

The ecological 
normality of a region 
or place.  



Term (source) Purpose Definition  Reference or 
baseline concept 

Quality, Ecological 
(Shaoqiang et al. 2019) 

Regional 
biodiversity and 
ecosystem 
function 
monitoring 

The stability, 
adaptability and 
resilience of an 
ecosystem. It is the 
comprehensive sum of 
the characteristics of 
ecosystem elements 
(a.k.a. composition), 
structures and functions 
within a certain time and 
space, embodying the 
status, production 
capacity, structural and 
functional stability, 
adaptability and 
resilience of ecosystems.  

Threshold criteria 
related to ecosystem 
functions for 
regulating, 
supporting, and 
maintaining 
biodiversity  

Quality, Ecological (Rina 
et al. 2019) 

Monitoring the 
stability of 
dryland 
ecosystems for 
sustainable 
development 

The comprehensive 
characteristics of the 
structures and functions 
of the ecosystem within 
a certain spatial–
temporal range. 

Threshold criteria 

Quality, Ecosystem 
(Verones et al. 2020, 
Woods et al. 2018) 

Life cycle 
assessment 

The area of protection 
that accounts for impacts 
on the natural 
environment. The 
endpoint unit used here 
is potentially 
disappeared fraction of 
species (PDF). This 
metric accounts for a 
fraction of species 
richness that may be 
potentially lost due to an 
environmental 
mechanism. 

The current situation, 
relating the change 
either to a zero effect, 
a preferred state (e.g., 
environmental 
targets) or a 
prospective future 
state.  

Quality, Habitat (Hall et 
al. 1997) 

Species 
persistence 

The ability of the 
ecosystem to provide 
conditions appropriate 
for individual and 
population (wildlife) 
persistence. 

Ecosystem conditions 
appropriate for 
individual and 
population 
persistence. 

Quality, Habitat (Johnson 
2007, Zlinszky et al. 
2015) 

Biodiversity 
persistence 

The ability of the 
environment to provide 
conditions appropriate 
for individual and 
species population 
persistence. 

Environmental 
conditions 
appropriate for 
individual and species 
population 
persistence 

Quality, Vegetation 
(Parkes et al. 2003) 

Biodiversity 
persistence 

The degree to which the 
current vegetation differs 
from mature and 
apparently long-

Average 
characteristics of a 
mature and apparently 
long-undisturbed 



Term (source) Purpose Definition  Reference or 
baseline concept 

undisturbed stands of the 
same vegetation 
community. 

stand of the same 
vegetation 
community.  

Resilience, Ecosystem 
(Costanza Robert and 
Mageau 1999) 

Sustainability 
management 

Ability of a system to 
maintain its structure and 
pattern of behaviour in 
the presence of stress. (A 
component of ecosystem 
health.) 

A resilient ecosystem 
possesses adequate 
vigour, and 
organization, to 
survive various small-
scale perturbations 
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Supplemental Material B – A technical comparison of HCAS versions  1 

This document provides supplemental material for the manuscript: Overcoming Key Challenges of 2 
Satellite-based Monitoring of Ecosystem Condition: A Continental-scale Example From Australia  3 

 4 

From Supplemental Material A: common use terms with similar meaning to ecosystem condition 5 
or integrity 6 

• Table S1. Example terms in common use with a similar meaning or intent as for ecosystem 7 
condition or integrity, and that are generally applicable across terrestrial, freshwater and 8 
marine realms.  9 

 10 

Narrative summary of the comparisons  11 

Implementation of the Habitat Condition Assessment System (HCAS) methodology has evolved 12 
since the proof of concept (HCAS v1.0) was published by Harwood et al. (2016). Detailed technical 13 
documentation is provided in a series of reports associated with each successive version. A 14 
summary of major changes and enhancements is provided in Table S2.  15 

For details about HCAS v1.0 we refer readers to Donohue et al. (2013) and Harwood et al. (2016) 16 
and supplementary material provided with Harwood et al. (2016).  17 

For details about HCAS v2.0, see Williams et al. (2020); for HCAS v2.1, see Williams et al. 18 
(2021b); for HCAS v2.2, see Williams et al. (2023a); and for HCAS v2.3, see Williams et al. 19 
(2023b).  20 

HCAS v1.0 21 

The HCAS v1.0 was a proof of concept at 1 km grid resolution to develop and test an 22 
implementation based on the conceptual framework outlined in Donohue et al. (2013). The 23 
conceptual framework identified two types of reference sites – one set being the most intact sites 24 
with high levels of ecosystem integrity enduring in the landscape, and the other set being the most 25 
modified and removed ecosystems without capacity to provide supporting habitat for the original 26 
biodiversity to persist. The proof of concept, however, was pragmatically framed solely around the 27 
most intact sites of high ecosystem integrity, using the contemporary boundaries of Australia’s 28 
national reserve system to delineate those places.  29 

The generalised dissimilarity modelling (GDM) method was used to predict patterns of 30 
compositional turnover in Australia’s ecosystems based on remotely sensed characteristics 31 
(combinations of MODIS and AVHRR) to represent the reference state of the continent’s 32 
ecosystem distribution and diversity. The method used nine of 15 principal components of remotely 33 
sensed variables. A random sample of one million reference site-pairs for the GDM response 34 
variable were derived using ecological regions (Australia’s bioregions) as strata, weighted so that 35 
75% were between region site-pairs and the remainder within region. The GDM approach enforces 36 
monotonic relationships between the response variable and predictors (15 environmental covariates 37 
depicting long-term stable patterns of climate, soil and landform) so that ecological dissimilarity 38 
increases with environmental distance.  39 
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Any of the assumed high ecosystem integrity reference sites as delineated by the reserve system, 40 
after excluding property boundary potential edge effects, were available for selection as 41 
benchmarks. The GDM predictions provided a basis for selecting those reference sites to be used as 42 
benchmarks that are most ecologically similar to a test site. Manhattan distances between reference 43 
site pairs and test-reference site pairs for the observed and predicted sets of remotely sensed 44 
ecosystem characteristics, were used in the calculation of condition, as the average of the likelihood 45 
of the test site being in reference condition weighted by ecological similarity as defined by the 20 46 
selected test-reference predicted distances (for benchmarking condition). The output was scaled in 47 
the range 0 (removed) to 1 (intact) using the average from major urban centres to set the 0 end point 48 
and then linearly by the maximum value, but enforcing a value of 1 for all inferred reference sites 49 
(aligned with protected area boundaries) in the output.  50 

HCAS v2.0 51 

The HCAS v2.0 was developed at 250 m grid resolution as an experimental implementation to test 52 
the suitability of the method for operational use cases. The method built on and improved the 53 
HCAS v1.0 mechanics of Harwood et al. (2016). Reference sites were inferred to be the most intact 54 
regions where ecosystems persisted in their most natural state, including undeveloped lands as well 55 
as protected areas, using multiple lines of evidence. Remotely sensed ecosystem characteristics 56 
derived from two MODIS fractional cover products at 500 m and 250 m grid resolution and 57 
AVHRR at 1 km, oversampled to match the 250 m grid. Projection pursuit regression (PPR) models 58 
replaced GDM as the method for predicting the remotely sensed reference state (all principal 59 
components) of intact ecosystems based on a wider range of environmental covariates, without 60 
imposing monotonicity.  61 

Intact reference sites were randomly sampled across two strata representing largely intact or largely 62 
modified ecosystems weighted toward a much larger number of samples from modified regions. 63 
This sample was also used as benchmarks in the condition calculation. As for HCAS v1.0, two-sets 64 
of Manhattan distances (observed vs. predicted) were derived for each of reference-reference site 65 
pairs and test-reference site pairs. A half-Cauchy weighting on the similarity of test-reference site 66 
distances was introduced to the benchmarking calculation for estimating condition, and a 67 
geographic distance limit around each test site was introduced to guide appropriate selection of the 68 
final 20 reference sites to use as benchmarks. The output was linearly scaled by the maximum value 69 
to range between 0 (removed) and 1 (intact).  70 

HCAS v2.1 71 

The HCAS v2.1 was developed at 250 m grid resolution to improve upon HCAS v2.0 and provide a 72 
change assessment. The inferred reference sites from HCAS v2.0 were randomly sampled from 73 
within each of nearly 5000 ecological land units to derive c.100,000 subsamples to use as training 74 
data and the process repeated to derive c.200,000 samples to use as benchmarks. Remotely sensed 75 
ecosystem characteristics were derived from two MODIS fractional cover products at 500 m and 76 
250 m grid resolution, but imagery was first filtered to remove water and snow pixels.  77 

As for HCAS v2.0, PPR models were used to predict the remotely sensed reference state (all 78 
principal components) of intact ecosystems. The same basic method of estimating condition as for 79 
HCAS v2.0 was used, except a limited degrees of confidence (LDC) calculation was introduced to 80 
account for potential invalid reference sites in the test-benchmark site-pairs. LDC adds an additional 81 
weight to the single test-reference site-pair found to have the highest probability of being in 82 
reference condition.  83 
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A piecewise linear rescaling algorithm with two inflection points was introduced in the calibration 84 
step to simulate non-linearity between the output of the HCAS algorithm and expected values 85 
ranging from 0 to 1. Coordinates for the inflection points were determined using highly modified 86 
land use and relatively natural areas, respectively, and empirical data from global studies of 87 
biodiversity intactness in different land uses. A time series of condition was derived from the 88 
lineage of annual remote sensing variables using the same benchmarking and scaling algorithms by 89 
substituting the observed long-term with annual remote sensing PCs in the selection of benchmarks 90 
and test-benchmark comparisons. 91 

HCAS v2.2 92 

The HCAS v2.2 derives from HCAS v2.1 and varies only in minor updates to the reference sites 93 
and scaling algorithms. Data sources used in the multiple lines of evidence approach to inferring 94 
reference sites were updated to improve currency and extend sources of data used to exclude 95 
potentially modified areas. The stratified random subsampling of reference sites used as 96 
benchmarks (c. 200,000) was repeated and extended to include palustrine wetlands and salt lakes. 97 
The source data and method used to define coordinates for the two inflection points of the scaling 98 
algorithm was slightly revised. Annual epochs were derived as for HCAS v2.1.  99 

HCAS v2.3 100 

The HCAS v2.3 derives from HCAS v2.1 and builds upon the HCAS v2.2 improvements. The 101 
inferred reference sites were updated to include expert nominated inclusions and exclusions, and 102 
additional data on potentially modified areas used to exclude areas. The stratified random 103 
subsampling of reference sites used as benchmarks (c. 200,000) was repeated as for v2.2. The 104 
scaling algorithm followed the method developed for v2.2, except the revised set of inferred 105 
reference sites served as the extent of relatively natural areas. Annual epochs were derived as for 106 
HCAS v2.1. 107 

 108 
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 109 

Table S2. A technical summary comparing implementations of the Habitat Condition Assessment System (HCAS) methodology from proof of concept, 110 
HCAS v1.0, to operational, HCAS v2.3.  111 

Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

Primary 
purpose 

Proof of concept Experimental 
implementation for 
trialling in operational use 
cases 

Publishable 
implementation suitable 
for use in State of the 
Environment reporting 
and a time-series to show 
change 

Ecosystem accounting 
using annual time-series 

Ecosystem accounting 
using annual time-series 

Spatial 
resolution 

0.01 degree GDA94 
(approx. 1 x 1 km pixels) 

9 arc second GDA94 
(approx. 250 x 250 m 
pixels)  

9 arc second GDA94 
(approx. 250 x 250 m 
pixels)  

9 arc second GDA94 
(approx. 250 x 250 m 
pixels)  

9 arc second GDA94 
(approx. 250 x 250 m 
pixels)  

Reference sites 
- inferred 

The ‘core areas’ at 1 km2 
resolution of Australia’s 
nature-based protected 
areas as of 2010 
(DCCEEW 2023a) by 
eroding raster boundaries 
to remove edge effects 
(772,160 reference sites).   

Multiple lines of evidence 
(c.2012 to 2016) 
combining native 
vegetation clearing 
(Department of the 
Environment 2014), land 
use other than 
‘conservation and natural 
environments’ (ABARES 
2016a, b), road networks 
(Geoscape Australia 2020) 
and settlement patterns 
(ABS 2014) to exclude all 
potential modified 
locations, to identify sites 
mainly within protected 
areas as of 2016 
(DCCEEW 2023b) or 
relatively natural areas 

As for v2.0.  Updated multiple lines of 
evidence to exclude all 
potential modified 
locations combining latest 
data on: land use as of 
2015-16 (ABARES 2022); 
roads, railways, 
infrastructure and other 
human modified sites 
identified using Open 
Street Map (OSM) data, 
current to 20 April 2022 
(OpenStreetMap 
Contributors 2022, Ramm 
2022); and the 2022 
update of global-scale 
mining polygons dataset 
(Maus et al. 2020, Maus et 
al. 2022). Inferred sites 

As for v2.2 with 
inclusions and exclusions 
nominated by experts in 
each of two pilot regions 
(Flinders, Norman and 
Gilbert River catchments 
in Queensland and the 
Southwest Australian 
Wheatbelt). However, 
experts or inferred 
reference sites that 
overlapped with mapped 
infrastructure (as for v2.2) 
or mapped road networks 
(Geoscape Australia 2020) 
(as for v2.0) buffered by 
c.250m were removed 
(resulting in 38,773,526 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

(Department of the 
Environment 2014). The 
output was eroded by 
c.250 m to remove edge 
effects and ensure only 
‘core areas’ were included 
(37,046,447 reference 
sites of total 111,304,074 
test sites).  

mainly within protected 
areas as of June 2020 
(DAWE 2021) and 
subsequent additions to 
Indigenous Protected 
Areas (DCCEEW 2022a), 
and remnant native 
vegetation mapped in 
NVIS v6.0 extant major 
vegetation groups 
(DCCEEW 2023c). 
Outputs were eroded by 
c.250 m to remove edge 
effects (resulting in 
39,685,172 reference sites 
of total 110,936,913 test 
sites)  

reference sites of total 
110,936,913 test sites).  

Reference sites 
- training 
sample 

Stratified by IBRA 7.0 
regions (Australia’s 
ecoregions) (DCCEEW 
2023d), 1 million 
randomly sampled 
reference site-pairs made 
up of 25% within and 
75% between regions, 
utilising 425,156 
reference sites. 

Two strata derived from 
IBRA 7.0 regions 
(DCCEEW 2023d): (1) 
relatively intact with ≥ 
50% reference site 
coverage, and (2) 
relatively fragmented with 
< 50% reference site 
coverage. The training 
data was a random sample 
of 100,000 sites with 20 
times more drawn from 
relatively fragmented 
regions.   

4961 ecological land units 
with at least one reference 
site present defined based 
on IBRA 7.0 subregions 
(DCCEEW 2023e), and 
NVIS present major 
vegetation sub groups 
version 5.1 (DAWE 
2018a), excluding 
categories suggesting a 
water body, salt lake or 
modified vegetation type, 
resulting in a population 
of 35,485,829 reference 
sites. Up to 25 sites were 

As for v2.1.  As for v2.1. 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

randomly drawn from 
each stratum to derive a 
training sample of 101,686 
reference sites.  

Reference sites 
– 
benchmarking 
sample 

All 772,160 inferred 
reference sites, filtered by 
the condition algorithm to 
derive 20 reference site-
pairs for each test site of 
interest. 

Same as training sample.  As for training sample, 
except up to 55 sites were 
randomly drawn from 
each stratum to derive a 
benchmark sample of 
200,278 reference sites, 
wherein some sites may be 
the same as the training 
data due to limited 
options.   

As for v2.1 training 
sample except the 
benchmarking 
stratification used NVIS 
v6.0 pre-1750 extent of 
major native vegetation 
subgroups (DAWE 2020) 
with IBRA 7.0 subregions 
(DCCEEW 2023e), 
instead of the ‘present’ 
extent, resulting in 5579 
strata with at least one 
reference site. Up to 50 
sites were randomly 
sampled, and then 
combined with 28 expert 
identified reference sites 
from a previous ecosystem 
accounting case study 
(Harwood et al. 2021a, 
Harwood et al. 2021b), 
resulting in a total of 
208,856 reference sites as 
benchmarks.  

As for v2.2, repeated 
using the updated inferred 
reference sites, selecting 
up to 50 sites within the 
5481 strata containing at 
least one site, resulting in 
a total of 202,515 
reference sites as 
benchmarks. 

Environmental 
covariates 

15 predictors (5 climate, 8 
soil, 2 landform) as listed 
in Table 1 of Donohue et 
al. (2013). 

21 predictors (9 climate, 
10 soil, 1 landform, 1 
surface water) as listed in 

23 predictors (9 climate, 
11 soil, 2 landform, 1 
surface water) as listed in 
Table 7 of Williams et al. 

As for v2.1 As for v2.1 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

table 5 of Williams et al. 
(2020). 

(2021b). Same candidates 
as for v2.0, except a 
MODIS-derived, alpha-
NDVI water algorithm 
(Donohue et al. 2022) 
replaced the Water 
Observations from Space 
equivalent (Mueller et al. 
2016).   

Remote sensing 
variables 

The first 10 principal 
components (PCs) of 15 
variables from five 
products. The 11-year 
averages, 2001-2011, of 
annual means, maximums 
and standard deviations 
from monthly values for 
(1) bare ground and (2) 
brown (litter) fractional 
land cover data derived 
from the c.500 m MODIS 
Collection 5 
MCD43A4.005 product 
(Guerschman et al. 2009), 
plus 10-year averages, 
2001-2010, of annual 
means, maximums and 
standard deviations from 
monthly values of c.1 km 
AVHRR-derived (3) 
surface albedo (Donohue 
et al. 2008) and (4) 

All principal components 
of 6 variables from three 
products. The 16-year 
averages, 2001-2016, of 
annual mean and intra-
annual range (maximum 
minus minimum) of 
monthly values for (1) 
surface albedo (Donohue 
et al. 2008) from c.1 km 
AVHHRR and (2) 
persistent green fractional 
vegetation cover from 
c.250 m MODIS 
collection 5 MOD13Q1 
(Donohue et al. 2009), and 
annual mean and 
maximum of monthly 
values for (3) recurrent 
green fractional vegetation 
cover also from MODIS 
collection 5 MOD13Q1 
(Donohue et al. 2009).  

All principal components 
of 7 variables from four 
products, for which source 
imagery was filtered to 
remove surface water 
associated with dynamic 
water bodies and tidal 
coastlines, and seasonal 
snow cover. The 18-year 
averages, 2001-2018, of 
annual means and 
maximums from 16-day 
aggregated data for (1) 
bare ground and (2) brown 
(litter) fractional land 
cover data derived from 
the c.500 m MODIS 
Collection 6 MCD43A4 
product (Guerschman 
2019, Guerschman and 
Hill 2018), and (3) 
recurrent green fractional 
vegetation cover from 

As for v2.1 As for v2.1 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

persistent and (5) 
recurrent green fractional 
vegetation cover data 
(Donohue et al. 2009). 

c.250 m MODIS 
collection 6 MOD13Q1 
(Donohue et al. 2009), and 
only annual means for (4) 
persistent green fractional 
vegetation cover also from 
MODIS collection 6 
MOD13Q1 (Donohue et 
al. 2009). The lineage of 
annual remote sensing 
variables and their 
principal components 
were used as annual 
epochs.  

Reference 
ecosystem 
model 

(GDM) Generalized 
dissimilarity modelling 
(Ferrier S. et al. 2007) of 
compositional turnover 
using scaled Manhattan 
distances capped at 1.0 
(most different) of 10 
remote sensing PCs (each 
rescaled 0-1) for one 
million reference site-
pairs as the response 
variable, and 15 
environmental covariates 
as predictors (explained 
61.5% of model deviance, 
resulting in an r2 of 0.683 
and Spearman’s 
correlation of 0.823 for 

(PPR) Projection Pursuit 
Regression (Friedman and 
Stuetzle 1981) which 
simultaneously models the 
six PCs of remote sensing 
response variables as the 
sum of nonlinearly 
transformed linear 
combinations of the 21 
environmental predictor 
variables, for 100,000 
reference sites, resulting in 
an r2 of 0.762 (Spearman’s 
correlation = 0.865) for 
the observed vs. predicted 
Manhattan distances. Fit 
statistics based on a 
random subsample of 

(PPR) As for v2.0, but 
using 7 PCs of remote 
sensing response variables 
and 23 environmental 
predictor variables with 
101,686 reference sites, 
resulting in an r2 of 0.631 
(Spearman’s correlation = 
0.784), for the observed 
vs. predicted Manhattan 
distances, based on a 
random subsample of 
1,000 site-pairs.  

As for v2.1 As for v2.1 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

the observed vs. predicted 
Manhattan distances, 
based on a random 
subsample of 1,000 site-
pairs). Dissimilarity was 
converted to similarity.  

1,000 site-pairs. This 
method handles inter-
relationships between 
response variables.  

Condition 
algorithm 
(benchmarking) 

Two sets of Manhattan 
distances derived for each 
reference-reference and 
test-reference site-pairs 
from 425,156 reference 
sites as benchmarks and 
6.9 million test sites: (1) 
observed and (2) predicted 
using just the first nine 
remote sensing PCs 
(dropping the 10th). 
Condition is the average 
of the 20 test-reference 
site-pairs that minimised 
both distances, of an 
initial 100 site-pairs that 
minimised the predicted 
distance, weighted by the 
test-reference predicted 
distances.  

Two sets of Manhattan 
distances were derived for 
each reference-reference 
site-pair using the 
reference site training 
data: (1) observed and (2) 
predicted 6 remote sensing 
PCs. A two-dimensional 
frequency histogram of 
these observed versus 
predicted distances 
simulates a probability 
density surface of the 
ecosystem reference state, 
using a bin size of 0.025, 
normalised within each 
bin of the x- axis 
(predicted distances) and 
truncated to remove 
irrelevant large distances. 
For each of the 111 
million test sites, two sets 
of test-reference site 
distances are calculated 
using the sample of 
benchmark reference sites. 

As for HCAS v2.0, except 
the bin size for the 2D 
simulated probability 
density surface was 
reduced to 0.005 to 
improve granularity and 
counts were smoothed 
using bilinear 
interpolation (Moore 
neighbourhood at 0.005) 
to fill gaps and edge 
effects. Additionally, a 
limited degrees of 
confidence calculation 
(weight 0.5) was used to 
combine the highest 
performing test site with 
the weighted average 
across the final 20 
reference sites. This was 
introduced to account for 
uncertainty among the 
test-benchmark site-pairs.  

As for v2.1, except 
substituting with the v2.2 
updated benchmark 
reference sites. 

As for v2.1, except 
substituting with the v2.3 
updated benchmark 
reference sites. 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

These distances are 
plotted over the reference 
site frequency histogram 
to derive expected 
probabilities. Condition is 
the half-Cauchy decay 
(Shaw 1995) (on the 
predicted distance) 
weighted average of the 
cumulative probability 
density of 20 test-
benchmark site-pairs that 
minimise observed 
distance, of an initial 50 
site-pairs that minimise 
the predicted distance for 
reference sites within 200 
km circumference of a test 
site. 

Calibration 
model 

The average of the 
condition algorithm 
output for 6 major urban 
centres was used to set the 
minimum score (=0), and 
then linearly rescaling to 
derive a score ranging up 
to 1, but all reference sites 
were given an inferred 
value of 1.  

Linearly rescaled by the 
maximum value to derive 
a score ranging between 0 
and 1. 

A piecewise linear 
rescaling algorithm with 
two inflection points was 
used to simulate non-
linearity. The inflection 
points were defined by the 
average uncalibrated 
condition values 
coincident with mapping 
of intensive land use as of 
December 2018 
(ABARES 2019), and 
relatively natural areas as 

As for v2.1, except the 
inflection points were 
updated using a species-
area relationship (z = 
0.25) back-transformation 
of PREDICTS project 
coefficients (i.e. the 
proportion of native 
species in an intact 
landscape which are found 
in paired modified habitats 
of that type) (Hudson et al. 
2017) for land use classes 

As for v2.2, except the 
expert and inferred 
reference sites were used 
as the relatively natural 
areas and the area-
weighted average of the 
back-transformed 
PREDICTS project 
coefficients (Hudson et al. 
2017) were recalculated to 
match. Maximum values 
were not truncated. 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

of 2012 (Department of 
the Environment 2014), 
respectively. The 
corresponding condition 
scores were derived from 
(Chaudhary and Brooks 
2018) using the weighted 
average of all taxon 
average affinities for the 
corresponding land use 
(weighting based on areal 
proportion of 
corresponding land use in 
Australia). The near 
maximum and absolute 
minimum uncalibrated 
condition values were 
associated with scores of 1 
and 0 respectively. 
Maximum values were 
slightly truncated due to 
higher frequencies of 
reference-reference site-
pairs.  

aligned with highly 
modified or relatively 
natural areas. Areal 
proportions of 
corresponding Australian 
land uses derived from 
national-level land use 
mapping as of 2015–16 
(ABARES 2022). 
Disaggregation of the 
agricultural crop category 
was based on the Land 
Use Harmonisation 
version 2 dataset for 2015 
(LUH2 - Chini et al. 2020, 
Hurtt et al. 2020). 
Relatively natural areas 
were based on NVIS 
present major vegetation 
groups, version.6.0 
(DCCEEW 2023c) for 
which proportions of 
primary, secondary and 
rangeland vegetation were 
derived from the LUH2 
dataset for 2015, with a 
livestock density 
adjustment for Australian 
rangelands.  

Annual epochs NA NA Annual epochs of 
ecosystem condition were 
derived using the same 

As for v2.1, but applying 
v2.2 benchmarking and 
scaling adjustments.  

As for v2.1, but applying 
v2.3 benchmarking and 
scaling adjustments. 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

benchmarking process and 
scaling algorithm as the 
long term epoch by 
substituting the observed 
long-term with annual 
remote sensing PCs in 
test-benchmark 
comparisons. Some 
different reference sites 
used as benchmarks may 
be selected for each epoch.  

Uncertainty 
quantification 

NA Mapped training and 
benchmark data coverage 
as qualitative indicators of 
uncertainty due to 
reference site scarcity in 
some regions. 

As for v2.0, mapped 
benchmark data coverage 
as a qualitative indicator 
of uncertainty due to 
reference site scarcity in 
some regions. 

As for v2.1: updated the 
mapped benchmark data 
coverage as a qualitative 
indicator of uncertainty 
due to reference site 
scarcity in some regions. 

As for v2.1: updated 
mapped benchmark data 
coverage as a qualitative 
indicator of uncertainty 
due to reference site 
scarcity in some regions. 

Validation 
method 

Linear comparison with 
16,967 habitat hectares 
field assessments for the 
State of Victoria, filtered 
for 1km comparability.  

Type II linear regression 
comparison with expert 
site assessments from 11 
virtual transects, using 
Google Earth imagery, 
representing major 
Australian biomes and 
ecological gradients, each 
with 11 survey points at 
regular intervals; resulting 
in an r2 of 0.51, intercept 
0.03, slope 43.8°. 
Retrospective analysis by 
Williams et al. (2021b) 
using  expert site 

As for v2.0, Type II linear 
regression comparison 
with expert site 
assessments from 11 
virtual transects; resulting 
in an r2 of 0.63, intercept 
0.09, angle 42.3°. Plus two 
other Type II 
comparisons: (1) expert 
site assessments derived 
from the habitat condition 
assessment tool, HCAT 
(Pirzl Rebecca et al. 2018, 
White et al. 2023), using 
polygon centroids for 

Nil, expected to be same 
as v2.1. 

Developed a method for 
validating inferred 
reference sites using the 
Harmonised Australian 
Vegetation plot 
(HAVplot) dataset 
(Mokany et al., 2022), 
which is a compilation of 
field data from many 
studies across Australia 
(1900–2020). As for v2.1, 
Type II analysis using two 
independent sources of 
data, except HCAT expert 
site assessments (Pirzl 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

assessments derived from 
the habitat condition 
assessment tool (Pirzl 
Rebecca et al. 2018, White 
et al. 2023), resulting in an 
r2 of 0.19, intercept 0.25, 
angle 31.6°.  

assessments within 
specified spatial-temporal 
and certainty bounds; 
resulting in an r2 of 0.42, 
intercept 0.18, slope 36.1°. 
(2) An aggregation of c. 
17,000 field observations 
of habitat condition from 
four Australian states; 
resulting in an r2 of 0.17, 
intercept -0.47, angle 
64.8°. 

Rebecca et al. 2018, White 
et al. 2023) included all 
applicable sites, not just 
polygon centroids. 
Results: (1) virtual 
transects (r2 of 0.69, 
intercept -0.02, angle 
46.3°); (2) HCAT 
assessments (r2 of 0.67, 
intercept 0.13, slope 
39.3°).  

Evaluation 
methods 

Comparison with two 
categorical land 
modification datasets – 
binary natural areas 
(Department of the 
Environment 2014) and 
VAST v2 (Lesslie et al. 
2010). 

Visual comparative 
assessment using auxiliary 
data and a series of case 
studies to derive a 
schedule of limitations. 

As for v2.0, with 
additional case studies, 
visual comparisons to 
derive a schedule of 
limitations assessed for 
improvements over those 
listed under v2.0. Plus 
qualitative comparisons 
with categorical maps of 
land modification: the 
regional Landscape Health 
Stress Index (Morgan 
2001), VAST v2 (Lesslie 
et al. 2010) and NVIS 
present major vegetation 
groups version 5.1 
(DAWE 2018b); and two 
regional predictions of 
habitat condition: Victoria 
(Newell et al. 2006) and 

Nil, expected to be same 
as v2.1.  

Visual comparisons as for 
v2.1, with further 
additions to the case 
studies to derive a 
schedule of limitations 
compared with v2.1; plus 
semi-quantitative 
comparisons of annual 
epochs averaged 2001-
2006 with VAST v2 
(Lesslie et al. 2010) using 
confusion matrices and 
concordance assessments 
(e.g. 87.5% for binary 
comparison of relatively 
natural and intensively 
utilised categories) and a 
Type II analysis for five 
comparable categories (r2 



14 

Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

New South Wales (Love 
et al. 2020).  

of 0.28, intercept -0.16, 
slope 50.6°).  

Extensions – 
derived from 
HCAS outputs 

NA NA Experimental annual 
(2001 to 2018), 5 and 10-
year epochs (overlapping 
by 5 years); National 
Connectivity Index v2.0 
(DCCEEW 2022b, 
Giljohann et al. 2022). 
Linear regression trend 
analysis applied to annual 
epochs.  

Incorporating the potential 
negative effects of local 
pressures using a distance-
weighted average of site 
condition within 2 km 
circumference of the test 
site, modelled as an 
exponential decline; then 
recombined with HCAS 
condition using a 
geometric average to 
derive ‘ecosystem site 
condition’ (Williams et al. 
2023a). Refined the linear 
trend analysis to account 
for temporal auto-
correlation effects 
(Lehmann et al. 2023) 
applied to annual epochs.  

Ecosystem site condition 
using the method as for 
v2.2. Combined expert 
(ecosystem state 
condition) and data driven 
(ecosystem site condition) 
assessments to derive 
‘ecosystem condition’. 
Applied the linear trend 
analysis to account for 
temporal auto-correlation 
effects (Lehmann et al. 
2023) to annual epochs. 
Aggregated continuous 
condition scores into 
categories aligned with the 
VAST narrative 
framework (Thackway 
and Lesslie 2006, 2008), 
informed by expert 
elicitation.  

Data 
publication  

Not published. Not published. Continental Australia 
(Harwood et al. 2021c); 
Gunbower-Koondrook-
Perricoota Forest (GKP) 
Icon Site (Harwood et al. 
2021b). 

Murray Darling Basin 
extent (Harwood et al. 
2023a). 

Continental Australia 
(Harwood et al. 2023b); 
Flinders, Norman and 
Gilbert River Catchments 
(Giljohann et al. 2023d); 
Western Australia 
Wheatbelt (Giljohann et 
al. 2023c). 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

Technical 
publications 

Donohue et al. (2013) and 
Harwood et al. (2016) 

Williams et al. (2020) and 
Lehmann et al. (2018) 

Williams et al. (2021b) 
and Lehmann et al. (2021) 

Williams et al. (2023a) 
and Lehmann et al. 
(2023). 

Williams et al. (2023b) 

Applications Experimental use in 
research applications 
(Forbes et al. 2021, 
Nowrouzi et al. 2019) 

Experimental integration 
into workflows depicting 
matters of national 
environmental 
significance managed by 
the Australia Government 
(unpublished). 
Demonstration use in 
habitat-based biodiversity 
assessments (Mokany et 
al. 2018). 

Further embedded into 
workflows depicting 
matters of national 
environmental 
significance managed by 
the Australia Government 
(unpublished). Australia 
State of the Environment 
reporting 2021 Land 
chapter (Williams 2023, 
Williams et al. 2021a). 
Australian Government 
Annual report 2021/22 
(DAWE 2022). 
Experimental ecosystem 
condition account for the 
GKP icon site (Harwood 
et al. 2021a). Input to 
landscape connectivity 
analysis (DCCEEW 
2022b, Giljohann et al. 
2022), and habitat-based 
biodiversity assessments 
(Mokany et al. 2021, 
Mokany et al. 2022). 
Demonstration application 
of the Bioclimatic 
Ecosystem Resilience 
Index (UN CBD indicator) 

Incorporated into 
ecosystem condition 
(Williams et al. 2023a) 
and biodiversity (Mokany 
et al. 2023) components of 
ecosystem accounts for 
the Murray-Darling Basin.  

Updates v2.1 in 
workflows depicting 
matters of national 
environmental 
significance managed by 
the Australian 
Government 
(unpublished). 
Incorporated into 
ecosystem condition 
(Williams et al. 2023b) 
and biodiversity 
components (Giljohann et 
al. 2023a, Giljohann et al. 
2023b) of ecosystem 
accounts for two pilot 
mixed use landscapes in 
north-east and south-west 
Australia. 
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Workflow 
component 

HCAS v1.0 HCAS v2.0  HCAS v2.1 HCAS v2.2 HCAS v2.3 

(Ferrier Simon et al. 2020, 
Harwood et al. 2022) for 
the Australian 
Government (2021 
unpublished)  

 112 



17 

Other contributors 113 

Table S3 lists contributors to HCAS development from v1.0 to v2.3, other than those listed as 114 

authors in this publication.  115 

Table S3. Other contributors to HCAS development (alphabetical by first name) 116 

Contributor and affiliation (at the time of the 
contribution) 

Role and HCAS version  

Dwaipayan Deb, Director, Australian 
Government Department of Climate Change, 
Energy, the Environment and Water 

Sponsored development of HCAS v2.4 
(Williams et al. 2023c), as an update of HCAS 
v2.3 (Williams et al. 2023b) 

Fiona Dickson, Assistant Director, Australian 
Government Department of Climate Change, 
Energy, the Environment and Water 

Advised alignment with government programs 
and sourced funding for HCAS v2.0 (Williams 
et al. 2020)  

Geoff R. Hosack, Research Scientist, CSIRO Contributed to design of expert elicitation of 
VAST condition scores in HCAS v2.3 (Williams 
et al. 2023b) 

Glenn Newnham, Research Scientist, CSIRO Contributed to development of HCAS v2.4 
(Williams et al. 2023c), as an update of HCAS 
v2.3 (Williams et al. 2023b) 

Graeme Newell, Research Scientist, Victoria 
State Government Arthur Rylah Institute 

Collaborated on development of pilot 
application HCAS v1.0 (Harwood et al. 2016) 

Helen T. Murphy, Research Scientist, CSIRO Contributed to development of expert elicited 
ecosystem state condition reported in (Williams 
et al. 2023b) 

Jenet Austin, Experimental Scientist, CSIRO Implementation of up-scaling method for 
aggregating environmental covariates (Gallant 
and Austin 2015) 

John Gallant, Research Scientist, CSIRO Developed the up-scaling method for 
aggregating environmental covariates (Gallant 
and Austin 2015) used in HCAS v2.1 (Williams 
et al. 2021b) 

Karel Mokany, Research Scientist, CSIRO Liaised with the HCAT project to acquire some 
of the data used in Section 4.3 of Williams et al. 
(2021b) 

Luke Pinner, Spatial Analyst, Australian 
Government Department of Climate Change, 
Energy, the Environment and Water 

Contributed to evaluation of HCAS reported in 
Sections 5.3-5.4, and analysis for applications in 
Section 12.3 of Williams et al. (2021b) 

Matt Bolton, Assistant Director, Australian 
Government Department of Climate Change, 
Energy, the Environment and Water 

Advised alignment of the HCAS concept (v1.0) 
with government programs (Donohue et al. 
2013) 

Matt Paget, Research Scientist, CSIRO Contributed to development of HCAS v2.4 
(Williams et al. 2023c), as an update of HCAS 
v2.3 (Williams et al. 2023b) 

Matt White, Research Scientist, Victoria State 
Government Arthur Rylah Institute  

Collaborated on development of pilot 
application HCAS v1.0 (Harwood et al. 2016) 
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Contributor and affiliation (at the time of the 
contribution) 

Role and HCAS version  

and contributed agency data used in Section 
3.9.4 in Williams et al. (2021b) 

Randal J. L. Storey, Spatial Analyst, Australian 
Government Department of Climate Change, 
Energy, the Environment and Water 

Contributed to some of the data underpinning 
inferred reference sites method reported in 
Section 4.2.2 of Williams et al. (2020) 

Rebecca K. Schmidt, Research Scientist, CSIRO Contributed to plain English communication of 
HCAS v2.1 (Williams et al. 2021b), and Leader 
of ecosystem accounting project funding 
Williams et al. (2023b) 

Robert Lesslie, Assistant Director, Australian 
Bureau of Agricultural and Resource Economics 
and Sciences   

Advised alignment of the HCAS concept (v1.0) 
with government programs (Donohue et al. 
2013) 

Sally Tetreault-Campbell, Experimental 
Scientist, CSIRO 

Supported management of ecosystem accounting 
project funding Williams et al. (2023b) 

Shuvo Bakar, Research Scientist, CSIRO Developed the experimental stratified optimal 
sampling method reported in Williams et al. 
(2021b) 

Suzanne M. Prober, Research Scientist, CSIRO Contributed to development of expert elicited 
ecosystem state condition reported in Williams 
et al. (2023b) 
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Introduction 55 

The Habitat Condition Assessment System (HCAS) methodology has evolved since the proof 56 
of concept (HCAS v1.0) was published by Harwood et al. (2016a). Implementation of HCAS 57 
v2.3 (Williams et al. 2023b) builds on methods used in developing HCAS v2.0 (Williams et 58 
al. 2020), HCAS v2.1 (Williams et al. 2021) and HCAS v2.2 (Williams et al. 2023a). 59 
Methods used in developing HCAS v2.3 are summarised here, drawing together relevant 60 
material from four technical reports, including example results.  61 

Supplemental Material B Table S2 summarises how methods evolved with successive HCAS 62 
versions up to version 2.3. HCAS v2.3 derives from the HCAS v2.1 base model and method. 63 
Revisions were made to the reference sites used as benchmarks and calibration algorithm. A 64 
method for validating the inferred reference sites was introduced and additional methods for 65 
evaluating the output condition score. An inferred local pressures index was introduced to 66 
derive ‘ecosystem site condition’ as a second-order output for use in ecosystem accounts. All 67 
else remained the same.  68 

Common inputs and processes used in HCAS v2.1, HCAS v2.2 and HCAS v2.3 are 69 
shortened here to ‘HCAS v2.1-3’.  70 

Glossary of technical terms  71 

Core technical terms introduced in describing the methods used in developing HCAS v2.1-3 72 
are provided in Box S1. A comprehensive glossary is provided in Williams et al. (2021).  73 

Box S1 Key terms and definitions used in the HCAS base model, epoch, trend and change 74 
framework 75 

HCAS base model – An implementation of the HCAS modelling framework that is technically 76 
complete in that both the statistical model and condition algorithm were developed using the 77 
same multi-decadal remote sensing assessment period. The base model provides the HCAS ‘best 78 
estimate of ecosystem condition’ for terrestrial native biodiversity continent-wide for a valid 79 
assessment period of at least 10 years. 80 
HCAS epoch – An epoch uses the same model components and parameters as the HCAS base 81 
model but applies those in the benchmarking algorithm to observed remotely sensed ecosystem 82 
characteristic variables summarised over a shorter period within the timeframe of the base 83 
model. The minimum duration is one year, and may be longer, depending on how the short-term 84 
epoch is generated from the source data for compatibility with the base models’ long-term epoch.  85 
A best estimate of condition results from an implementation of the HCAS base model using an 86 
assessment period of appropriate length (ideally multi-decadal).  87 
A derived estimate of condition results from applying the base model to a remote sensing epoch 88 
other than the base model epoch (usually within the assessment period of the base model).  89 
Reference sites are inferred locations representing ecosystems in reference condition with high 90 
integrity (i.e., least modified examples of their type) used as training and/or benchmark data. 91 
Proximity to reference is the method used to estimate condition, scaled from 0.0 to 1.0.  92 
HCAS condition trend is the linear or monotonic regression fit to observations across a time 93 
series of short-term epochs of ecosystem condition or derivatives and, ideally, encompasses at 94 
least 10 years.  95 
HCAS condition change is estimated as the difference between two epochs with different 96 
assessment periods of length, ideally, averaged over 10 years or more, or via a trend analysis. 97 
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Simplified workflow 98 

The HCAS workflow (Figure S1) was formulated to take both long- and short-term views by 99 
summarising the remote sensing characteristics of ecosystem dynamics from multiple 100 
decades of Earth observation imagery. Land cover products derived from satellite imagery for 101 
use in HCAS are selected to represent, as far as possible, the multiple features of an 102 
ecosystem’s composition, structure and function. Statistical summaries of the multi-decadal 103 
intra-annual and seasonal variability derived from these land products are inputs to the HCAS 104 
model.  105 

Context dependency is addressed by modelling and predicting the remote sensing signal 106 
observed for a representative set of reference sites (the natural state of an ecosystem with 107 
high levels of integrity) as a function of their abiotic environmental descriptors (e.g., climate, 108 
soils, landforms, surface water). Multiple reference sites are selected as similar ecosystem 109 
benchmarks for each site of interest to account for context dependency and for alternative 110 
expressions of an ecosystem in its reference state. HCAS ecosystem condition is measured as 111 
the weighted average of its proximity to the reference sites, and then scaled between 0.0 112 
(ecosystem integrity extinguished) to a maximum of 1.0 (ecosystem integrity in reference 113 
condition) using empirical data to inform the calibration.  114 

The HCAS method was specifically designed to also address a fourth challenge in monitoring 115 
ecosystem condition from space; that of inherently scarce reference site data, especially in 116 
transformed landscapes. HCAS uses a predictive framework—the reference ecosystem 117 
model—so that data gaps can be filled by statistical interpolation. This predictive framework 118 
is further leveraged in the benchmarking algorithm and by using multiple reference sites for 119 
estimating proximity to reference condition for each site of interest.  120 

Being founded on the use of remote sensing as the observatory for monitoring ecosystem 121 
condition, the HCAS approach is necessarily limited by the present ability of remote sensing 122 
products to fully inform the structure, function and composition of ecosystems. Therefore, the 123 
HCAS condition score is considered a partial estimate of ecosystem condition, when 124 
compared with on ground observations (e.g., BioCondition - Eyre et al. 2015).  125 

A novel feature of the HCAS framework is its adaptability to incorporate advances in satellite 126 
monitoring and analytic technologies (e.g., new or enhanced input data streams, a more 127 
dynamic modelling approach, integration with threat-based assessment products) as these 128 
become available. Therefore, each HCAS implementation is a new version that incrementally 129 
improves one or more components of the system by building on the science and technology 130 
learning of previous iterations, and back casts the time series.  131 



5 

 132 

Figure S1. Summary of HCAS model workflow structure.  133 
The workflow hinges on two main processing stages (shown as steps 1 and 2). In the first stage, a multivariate 134 
regression model is developed (labelled ‘Reference ecosystem modelling’) to predict ecosystem characteristics (using 135 
satellite-observed remotely sensed ecosystem characteristics) from a set of non-remote sensing based abiotic 136 
predictors (environmental covariates such as climate, soil, landform and surface water) for sites in reference 137 
condition (having high levels of ecosystem integrity). The reference ecosystem model is used to predict ecosystem 138 
characteristics at every site of interest. The second stage (labelled ‘condition benchmarking’) calculates differences 139 
between predicted and observed remotely sensed ecosystem characteristics at each site, and uses sites in reference 140 
condition (this time as ‘benchmarks’) to derive the initial uncalibrated habitat condition index, indicating the 141 
similarity to reference ecosystem characteristics for every test site. Subsequent steps calibrate and standardise 142 
estimates to values between 0.0 and 1.0, and compares results with other land information datasets to inform 143 
interpretation and use. Source: adapted from Figure 4 in Williams et al. (2021).  144 

  145 



6 

Detailed workflow 146 

A detailed summary of the workflow used in developing HCAS v2.1-3 is provided in Figure 147 
S2 and described in Box S2.  148 

Box S2. Plain English technical description of the HCAS v2.1-3 workflow (Figure S2) 149 

1. Take a set of long-term remote sensing variables, transform them into a ‘remote sensing 150 
space’ using a principal component analysis (PCA) to ensure comparable scaling for a 151 
proper calculation of Manhattan distances in the benchmarking stage. 152 

2. Model the observed remote sensing space as a function of environmental covariates, using 153 
Projection Pursuit Regression (PPR), for a training sample of observed reference sites. This 154 
results in a predicted reference vegetation signal derived by nonlinear transformation of the 155 
environmental space, which is directly comparable to the PCA-transformed observed remote 156 
sensing space. 157 

3. Calculate the Manhattan distance between each pair of reference sites, separately for the 158 
observed and predicted PCA-transformed remote sensing spaces. Plot the x-axis as the 159 
predicted distance 𝑑𝑑𝑝𝑝 and the y-xis as the observed distance 𝑑𝑑𝑜𝑜. Split the two distance axes 160 
into equal-sized bins Z and plot the frequency (density) of a given bin combination (i) of 161 
predicted 𝑑𝑑𝑝𝑝𝑖𝑖  and observed 𝑑𝑑𝑜𝑜𝑖𝑖  distances to represent the likelihood of combination of 162 
distances (𝑑𝑑𝑝𝑝,𝑑𝑑𝑜𝑜) for sites in reference condition. Use bilinear interpolation to compensate 163 
for under-sampling between bins, leading to a smoother surface. 164 

4. Normalise this smoothed surface within each bin (i) along the predicted distance axis, 𝑑𝑑𝑝𝑝𝑖𝑖 , to 165 
give the probability (𝑝𝑝ref) of any observed distance (𝑑𝑑𝑜𝑜) for a given predicted distance (𝑑𝑑𝑝𝑝), 166 
to derive the reference-distance density surface, Pref.  167 

5. To assess the condition at a test site, first select a set of reference sites that are 168 
geographically proximal to the test site, using a constant radius, R. For each test site – 169 
benchmark reference site combinations, calculate the predicted 𝑑𝑑𝑝𝑝𝑖𝑖  and observed 𝑑𝑑𝑜𝑜𝑖𝑖  distances 170 
from this test site to each reference site 𝑖𝑖 (site-pairs). 171 

6. Plot the position of the test-reference site pairs observed and predicted distance combinations 172 
(𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑜𝑜𝑖𝑖 ) on the reference-distance density surface and select a subset of these test and 173 
reference site-pairs as up to 𝑛𝑛𝑝𝑝 site-pairs with minimum predicted distance 𝑑𝑑𝑝𝑝𝑖𝑖 , representing 174 
the reference sites potentially most ecologically similar to the test site, potentially suitable as 175 
benchmarks.   176 

7. From the 𝑛𝑛𝑝𝑝 test- reference site-pairs on the reference-distance density surface, select a 177 
further subset of 𝑛𝑛ref site-pairs with maximum likelihood 𝑝𝑝ref

𝑖𝑖  within the bin 𝑍𝑍𝑖𝑖 defined by 178 
the predicted distance 𝑑𝑑𝑝𝑝𝑖𝑖 . The selected 𝑛𝑛ref test- reference site-pairs define the most relevant 179 
set of ‘benchmark’ reference sites for the test site.  180 

8. For each, now, test-benchmark site-pair 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛ref, extract the probability score pi from 181 
the reference-distance density surface. 182 

9. Calculate the uncalibrated condition score 𝐻𝐻𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿as a predicted distance 𝑑𝑑𝑝𝑝-weighted average 183 
(Half-Cauchy) of the probability scores pi, calculated for all 𝑛𝑛ref test-benchmark site pairs, 𝑖𝑖, 184 
using a limited degrees of confidence (LDC) algorithm to account for reference site 185 
uncertainty as suitable benchmarks.  186 

10. Calibrate the preliminary, uncalibrated condition score 𝐻𝐻𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿  using observations of condition 187 
or other inference, that range between 0.0 and 1.0 to produce the final condition output 𝐻𝐻𝑐𝑐. 188 
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 189 

Figure S2. Diagrammatic HCAS v2.1-3 workflow illustrating key concepts of the reference ecosystem modelling and benchmarking components. RS – remote sensing; 190 
ENV – environmental; PCA – Principal Component Analysis; PPR – Projection Pursuit Regression. The workflow is described in Box S2 (𝑯𝑯𝒄𝒄

∗ is the same as 𝑯𝑯𝒄𝒄
𝑳𝑳𝑳𝑳𝑳𝑳). Note: 191 

Lehmann et al. (2021) schematically described how the benchmarking algorithm works.  192 
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Reference sites 193 

The HCAS is sensitive to the correct location of reference sites. The accuracy of HCAS scores can 194 
be improved by excluding invalid reference sites and including valid reference sites that fill gaps 195 
(i.e., addressing errors of omission and commission among reference sites). Valid reference sites for 196 
the purpose of HCAS are locations where dynamic variants of the ecosystem reference state retain 197 
ecosystem integrity for the duration of the remote sensing epoch of interest. Invalid reference sites 198 
are those in which ecosystems have been modified or converted due to anthropogenic influences, 199 
including mixtures of reference and modified ecosystems at the resolution of grid cells (pixels) used 200 
in HCAS, and at any time during the period of the base model’s epoch (e.g., 2001–18 in the case of 201 
HCAS v2.3).   202 

Inferred reference sites 203 

Reference sites used in HCAS v2.3 largely derive from logical inference, supplemented by expert 204 
knowledge and field observations. In summary, the most up-to-date national datasets depicting 205 
remnant native vegetation extent (e.g., DCCEEW 2023) and protected areas (e.g., DAWE 2021, 206 
DCCEEW 2022) provide a starting point. Then datasets depicting pressures, such as land use (e.g., 207 
ABARES 2022), settlement and infrastructure networks (e.g., ABS 2023, Geoscape Australia 2020, 208 
OpenStreetMap Contributors 2022, Ramm 2022), and mining disturbance (e.g., Maus et al. 2020, 209 
Maus et al. 2022, Werner et al. 2020) are used to exclude all potentially modified locations. 210 
Potential mixtures of reference and modified sites are also removed. Expert nominated reference 211 
sites to include, or modified locations to remove, update the output unless there is clear evidence 212 
otherwise. 213 

Starting with the 250 m raster of spatially inferred reference sites from HCAS v2.0 (Williams et al. 214 
2020), which were also used in HCAS v2.1 (Williams et al. 2021), potential new reference sites 215 
were included from: 216 

• the recently gazetted Ngadju and Ngururrpa Indigenous Protected Areas (DCCEEW 2022) 217 

• additions to the national reserve system as of 2020 (DAWE 2021) 218 

• areas of remnant terrestrial native vegetation based on a reclassification of the present major 219 
vegetation groups provided in NVIS v6.0 (DCCEEW 2023) (see Table S3). 220 

Using the updated 250 m raster derived above, existing and potential new inferred reference sites 221 
and remnant native vegetation were retained where they overlapped with potential reference land 222 
uses from the 2015–16 update of the Land Use of Australia dataset (ABARES 2022) (Table S4). 223 
Existing inferred reference sites and remnant native vegetation were excluded where they 224 
overlapped any other land use types that suggested at least some degree of modification, except for 225 
parts of the national reserve system (including Indigenous Protected Areas) that overlapped with 226 
grazing native vegetation or production native forests land use types (Table S4). Local information 227 
about land use and management history is needed to make decisions about which parts of recently 228 
gazetted protected areas should be excluded from consideration as reference sites. In the absence of 229 
this local information, we assumed all recent additions to the national reserve system and 230 
Indigenous protected areas were in reference condition. Open water land cover types (e.g., lakes, 231 
estuaries) were excluded from consideration because remote sensing variables used in HCAS v2.1-3 232 
were not designed to detect condition of open water. Rivers were included because the majority are 233 
narrow linear features that may be surrounded by riparian vegetation and gallery forest that are 234 
often detectable remotely.  235 
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Potential reference sites were then excluded where they coincided with roads, railways, 236 
infrastructure and other human modified sites identified using Open Street Map (OSM) data, current 237 
to 20 April 2022 (OpenStreetMap Contributors 2022, Ramm 2022). OSM data were filtered to 238 
exclude natural features (Table S5). All retained features were first buffered by 200 m to ensure 239 
complete conversion to 250 m raster as modified land types. The 2022 update of the global-scale 240 
mining polygons dataset (Maus et al. 2020, Maus et al. 2022) was used to exclude mining sites not 241 
captured in the OSM data.  242 

As a final step, the extent of all inferred reference condition patches was reduced (eroded) by a 250 243 
m wide band (one grid cell wide). This was undertaken to remove cells where the remote sensing 244 
signal may include a mix of both reference and non-reference characteristics.  245 

The overall workflow is shown in Figure S3, and results shown in Figure S4. Retained original 246 
reference sites are among those that were also reference sites in the dataset developed by Williams 247 
et al. (2020). New remnant native vegetation are additional reference sites derived from the updated 248 
NVIS v6.0 extant major vegetation groups (DCCEEW 2023), largely due to the (now) inclusion of 249 
vegetated aquatic systems such as ephemeral lakes, floodplains and palustrine wetlands (previously 250 
excluded from HCAS v2.1 due to concerns about the ability of remote sensing variables to 251 
accurately detect dynamics associated with periodic flooding). New national reserves are additional 252 
reference sites derived from the national reserve system database as of June 2020 (DAWE 2021) 253 
and subsequent additions to the Indigenous Protected Areas (DCCEEW 2022). New exclusions as 254 
modified or removed native vegetation are not specifically shown, but would include locations that 255 
are no longer considered to be in reference condition due to contrary evidence provided by land use 256 
and infrastructure datasets.  257 

 258 

Table S3. NVIS 6.0 Major Vegetation Groups (MVGs) classified as ‘remnant native vegetation’ in the remap 259 
column contributed to the update of inferred reference condition sites.  260 

MVG sort 
order 

MVG name Remap name 

1 Rainforests and Vine Thickets Remnant native vegetation 
2 Eucalypt Tall Open Forests Remnant native vegetation 
3 Eucalypt Open Forests Remnant native vegetation 
4 Eucalypt Low Open Forests Remnant native vegetation 
5 Eucalypt Woodlands Remnant native vegetation 
6 Acacia Forests and Woodlands Remnant native vegetation 
7 Callitris Forests and Woodlands Remnant native vegetation 
8 Casuarina Forests and Woodlands Remnant native vegetation 
9 Melaleuca Forests and Woodlands Remnant native vegetation 

10 Other Forests and Woodlands Remnant native vegetation 
11 Eucalypt Open Woodlands Remnant native vegetation 
12 Tropical Eucalypt Woodlands/Grasslands Remnant native vegetation 
13 Acacia Open Woodlands Remnant native vegetation 
14 Mallee Woodlands and Shrublands Remnant native vegetation 
15 Low Closed Forests and Tall Closed Shrublands Remnant native vegetation 
16 Acacia Shrublands Remnant native vegetation 
17 Other Shrublands Remnant native vegetation 
18 Heathlands Remnant native vegetation 
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MVG sort 
order 

MVG name Remap name 

19 Tussock Grasslands Remnant native vegetation 
20 Hummock Grasslands Remnant native vegetation 
21 Other Grasslands, Herblands, Sedgelands and Rushlands Remnant native vegetation 
22 Chenopod Shrublands, Samphire Shrublands and 

Forblands 
Remnant native vegetation 

23 Mangroves Remnant native vegetation 
24 Inland Aquatic - freshwater, salt lakes, lagoons Aquatic 
25 Cleared, non-native vegetation, buildings Cleared 
26 Unclassified native vegetation Modified 
27 Naturally bare - sand, rock, claypan, mudflat Remnant native vegetation 
28 Sea and estuaries SeaEstuaries 
29 Regrowth, modified native vegetation Regrowth 
30 Unclassified forest Modified 
31 Other Open Woodlands Remnant native vegetation 
32 Mallee Open Woodlands and Sparse Mallee Shrublands Remnant native vegetation 
99 Unknown/no data Unknown 

 261 

Table S4. Categories of the Australian Land Use and Management (ALUM) classification version 8 (ABARES 262 
2016) – a line of evidence for inferring reference condition.  263 

Land use type Secondary code Tertiary code 
(raster values) 

Potential reference 
condition 

Nature conservation  
Managed resource protection 
Other minimal use 
Grazing native vegetation 
Production native forests 
River 
Marsh/wetland 

1.1 
1.2 
1.3 
2.1 
2.2 
6.3 
6.5 

110–117 
120–125 
130–134 
210 
220–222 
630–631 
650–651, 654 

Reference 
Reference 
Reference 
Modified 
Modified 
Reference 
Reference 

 264 

Table S5. OpenStreetMap (OSM) data layers and filters (FCLASS and NAME) used to select relevant 265 
infrastructure categories (OpenStreetMap Contributors 2022, Ramm 2022).  266 
Names that include ‘_a’ indicate polygon format, data was otherwise in point or line format. OSM datasets ‘places’, ‘landuse’ 267 
and ‘natural’ were not used because these categories were provided by other datasets.  268 

OSM data Filename Filter: fclass  Filter: name 
Buildings gis_osm_buildings_a_free_1.shp all included NA 
Railways gis_osm_railways_free_1.shp all included NA 
Roads gis_osm_roads_free_1.shp all included NA 
Traffic gis_osm_traffic_a_free_1.shp  all included except waterfall NA 

gis_osm_traffic_free_1.shp all included except waterfall NA 
Transport gis_osm_transport_a_free_1.shp  all included NA 

gis_osm_transport_free_1.shp all included NA 
Worship gis_osm_pofw_a_free_1.shp all included NA 

gis_osm_pofw_free_1.shp all included NA 
Water gis_osm_water_a_free_1.shp dock, reservoir NA 

gis_osm_waterways_free_1.shp canal, drain NA 
Pois gis_osm_pois_a_free_1.shp all included except 

archaeological, attraction, 
viewpoint (these classes are 

NA 
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OSM data Filename Filter: fclass  Filter: name 
covered in 
gis_osm_pois_free_1.shp) 

gis_osm_pois_free_1.shp all except archaeological, 
attraction, viewpoint (filters 
below) 

NA 

Archaeological All that indicate human 
modified sites (e.g., 
Aboriginal art, shelters, 
abandoned copper mine, 
cottage, chinatown). 
Natural features omitted 
(e.g., tree, island, cave).  

Attraction All that indicate human 
modified sites. Natural 
features omitted (e.g., 
plants, animals).  

Viewpoint All that indicate human 
modified sites (including 
all instances of lookout, 
outlook, viewpoint, 
viewing platform, bird 
hide).  
Natural features omitted 
(e.g., plants, animals) 

 269 

 270 

 271 

 272 
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 273 

Figure S3. Schematic workflow of the multiple lines of evidence approach used to infer reference sites.  274 
Dotted lines indicate source input spatial datasets, bold lines indicate the final spatial layer of inferred reference sites.  275 
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 276 

Figure S4. Rapid update of inferred reference sites resulting from multiple lines of evidence summarised in 277 
Figure S3.  278 
Projection: geographic, GDA94. Retained original reference sites are those previously identified and published with the 279 
HCAS v2.1 data collection (Harwood et al. 2021).  280 

 281 

Expert nominated reference and non-reference sites 282 

Experts across two case study areas provided local knowledge about the location of reference sites 283 
based on field observations and, conversely, locations subsequently identified as modified. These 284 
data were used to update inferred modified sites to reference status and vice versa.  285 
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Expert knowledge was elicited as part of Ecosystem State and Transition Modelling workshops held 286 
in Townsville and Perth, Australia, during September 2022 (Prober et al. 2023, Richards et al. 2023) 287 
for the ‘Flinders, Norman and Gilbert River Catchments’ (FNG) and the ‘Western Australian 288 
Wheatbelt’ (WAW) regions, respectively. Experts were asked to propose sites they knew to be in 289 
reference condition. In the FNG case study, Queensland Herbarium experts provided condition 290 
assessments linked to spatial mapping of regional ecosystem types, and spatial polygons of areas 291 
known to be degraded (methods detailed below). In the WAW case study, experts provided point 292 
locations of field study sites and Bush Heritage Australia provided spatial mapping derived from 293 
on-ground condition assessments across five of their properties from which reference and non-294 
reference areas could be identified (methods detailed below).  295 

After updating the inferred reference sites database as identified by the experts, newly added sites 296 
that overlapped the buffered infrastructure mapping (Table S5) or buffered mapped road networks 297 
(Geoscape Australia 2020) as previously used in HCAS v2.0 (Williams et al. 2020), were removed 298 
(as shown in Figure S5).  299 

 300 

Figure S5. Location of 200 m buffered mapped infrastructure (Table S5) and transport networks (Geoscape 301 
Australia 2020) used to additionally screen and remove expert’s or inferred reference sites potentially classed as 302 
modified prior to use in developing HCAS v2.3.  303 
Blue outlined areas show the two case study regions: ‘Flinders, Norman and Gilbert River Catchments’ (FNG – top right) 304 
and the ‘Western Australian Wheatbelt’ (WAW – lower left). Projection: Australian Albers, GDA 1994. 305 

 306 
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Flinders, Norman and Gilbert River catchments in Queensland (FNG) 307 
The Queensland Herbarium provided an assessment of the condition status of remnant native 308 
ecosystems (i.e., regional ecosystems) across the FNG case study region (‘Reference’ or ‘Reference 309 
(with caveats)’) or not in reference condition (see Appendix C in Williams et al. 2023b). Regional 310 
ecosystems (REs) assessed to be in reference condition were extracted from version 12.2 of the 311 
2019 remnant REs for Queensland spatial data (Department of Environment and Science 2022). 312 
Each map unit provides the percentage occurrence for up to five REs. These percentages were 313 
summed for each map polygon to determine the coverage of reference condition ecosystems. Only 314 
map polygons composed entirely (100%) of either i) one or more ‘Reference’ condition RE types or 315 
ii) one or more ‘Reference (with caveats)’ condition RE types were retained. Polygons composed 316 
entirely of ‘Reference (with caveats)’ condition ecosystems were used to remove inferred reference 317 
sites coincident with potentially degraded areas.  318 

Conversely, REs assessed to be not in reference condition were extracted from version 12.2 of the 319 
2019 remnant regional ecosystems for Queensland spatial data (Department of Environment and 320 
Science 2022) (ie., blank fields in Appendix C in Williams et al. 2023b). All polygons composed of 321 
5% or more ‘not reference’ condition ecosystem types were retained as indicative of the presence of 322 
modified (i.e., not reference) REs.  323 

The resulting combination of inferred and expert-delimited reference sites for FNG is shown in 324 
Figure S6.  325 

 326 

Figure S6. Location of inferred reference sites identified for the Flinders, Norman and Gilbert river catchments 327 
in Queensland (FNG) showing expert nominated sites (red colour).  328 
FNG boundary shown in dark grey. Source: FNG_HCAS23_RC_INFERRED.tif, in the data collection (Giljohann et al. 2023, 329 
Williams et al. 2023c). Projection: Australian Albers, GDA 1994. 330 

 331 
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Western Australian Wheatbelt (WAW) 332 

Experts provided coordinates of field study sites known to be in reference condition. All but one 333 
site, which was located in Samphire vegetation, were already represented in the inferred reference 334 
sites database (Figure S7). In addition, Bush Heritage Australia (BHA) provided spatial mapping of 335 
vegetation condition assessed locally across their properties Yarraweyah, Monjebup (north and 336 
south), Chereninup, Beringa and Red Moort Reserve (denoted ‘target’ in the spatial data). Areas 337 
assessed to be in reference condition, and conversely, areas assessed to be not reference, were 338 
extracted from within the BHA property boundaries (Figure S7). The resulting combination of 339 
inferred and expert delimited reference sites for FNG is shown in Figure S8. 340 

 341 

 342 

Figure S7. Expert-identified reference and not reference sites identified for the Western Australian Wheatbelt 343 
(WAW). WAW boundary shown in dark grey.  344 
Zoom image shows the mapping of reference condition provided by Bush Heritage Australia (BHA) for their properties in 345 
the study area. Projection: Australian Albers, GDA 1994. 346 

 347 
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 348 

Figure S8. Location of inferred reference sites identified for the Western Australian Wheatbelt (WAW) showing 349 
expert nominated sites (red colour).  350 
FNG boundary shown in dark grey. Source: FNG_HCAS23_RC_INFERRED.tif, in the data collection (Giljohann et al. 2023, 351 
Williams et al. 2023c). Projection: Australian Albers, GDA 1994. 352 

 353 

National extent of HCAS v2.3 inferred reference sites 354 

The national extent of inferred reference sites, totalling 38,773,526 pixels (250m resolution), 355 
developed for use in deriving HCAS v2.3 is shown in Figure S9, which is around 35% of all pixels.  356 

 357 
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 358 

Figure S9. National extent of inferred reference sites developed for use as benchmarks in deriving HCAS v2.3 359 
(before sub-sampling).  360 
Blue outlined areas show the two case study regions: ‘Flinders, Norman and Gilbert River Catchments’ (FNG – top right) 361 
and the ‘Western Australian Wheatbelt’ (WAW – lower left). Projection: Australian Albers GDA 1994. 362 

 363 

Validating the inferred reference sites data 364 

Given the central role of reference sites in HCAS it is important to know whether the multiple lines 365 
of evidence approach, supplemented with data from experts, can identify sites that are actually in 366 
reference condition. To this end, we explored two approaches to validating HCAS reference sites 367 
using the Harmonised Australian Vegetation plot (HAVplot) dataset (Mokany et al., 2022): i) 368 
comparison of frequency distribution plots (histograms) and ii) a presence-only statistical model 369 
created using the MaxEnt algorithm (Phillips 2022). 370 

The HAVplot dataset (Mokany et al., 2022) includes 219,552 sites from field-based floristic 371 
vegetation surveys undertaken between 1900 and 2020 across Australia. Plot areas range from 1m2 372 
to 4,000,000 m2 (median = 400 m2). Plot location is given as a point coordinate (latitude and 373 
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longitude). We used only the most recent survey data at each plot location, comprising 206,472 sites 374 
(99% were ≥1970, 88% were ≥1990 and 62% were ≥2000). We used data on the proportion of 375 
species that are native in each plot as an indicator of habitat quality. Native species proportions 376 
approaching 100 percent were assumed to have a higher likelihood of occupying habitat that is 377 
close to reference condition.  378 

As we were only interested in validating HCAS inferred reference sites (i.e., not whether some may 379 
be modified), we compared the subset of HAVplot sites coinciding spatially with HCAS inferred 380 
reference sites to all HAVplot sites. First, the HAVplot data subset (n = 206,472) was filtered to 381 
retain only the most recent survey (by year) within each 250 m grid cell coinciding with the HCAS 382 
analysis mask, irrespective of whether they coincided with inferred reference sites or not (n = 383 
163,870). The subset of sites that also intersected the HCAS v2.3 inferred reference site spatial data 384 
were identified (n = 15,747).  385 

In this way, two datasets were created from the filtered vegetation survey data: i) ‘all HAVplot’ 386 
‘background’ sites (i.e., n = 163,870) and ii) the subset of ‘all HAVplot’ sites coinciding with 387 
HCAS inferred reference areas (i.e., n = 15,747). Around 10% of HAVplot data were found to 388 
coincide with inferred reference sites. The HAVplot data cover a wide range of survey years. The 389 
50th and 75th quantiles of survey year for the background dataset (i) are, respectively, 1999 and 390 
2008, and in the subset that also coincide with HCAS inferred reference areas (ii) are 1998 and 391 
2005, respectively. It is not known if some of these sites are no longer in reference condition.  392 

Comparison of frequency distribution plots 393 

Histogram were used to visually assess whether the distribution of HCAS inferred reference sites is 394 
biased towards sites with a higher proportion of native species (i.e., higher likelihood of being in 395 
reference condition), and to compare the distribution of sites across the two datasets. 396 

Histograms revealed that both of the HAVplot data subsets are strongly biased towards sites with a 397 
high proportion of native species (Figure S10). The subset of HAVplot data coinciding with HCAS 398 
inferred reference sites (orange bars) contains proportionally fewer lower quality sites (proportion 399 
of native species), but proportionally more higher quality sites than the ‘all sites’ HAVplot dataset 400 
(grey bars) (Figure S10).  401 

 402 

 403 

Figure S10. Proportion of background HAVplot sites (grey bars, n = 163,870) or proportion of those HAVplot 404 
sites that also coincide with HCAS inferred reference sites (orange bars; n = 15,747) by proportion of species that 405 
are native.  406 
Histogram bins are ~0.02 wide.  407 

 408 
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Figure S11 shows that there is a larger proportion of presumed relatively natural vegetation survey 409 
sites (as determined by HAVplot proportion of native species approaching 100%) in the set of 410 
HAVplot data coinciding with HCAS inferred reference sites than in the ‘all sites’ HAVplot data 411 
subset. This indicates that the HAVplot data that coincide with HCAS inferred reference sites (i) are 412 
not simply a random sample of the ‘all sites’ HAVplot dataset (ii) but are biased towards sites 413 
containing a greater proportion of native species. If the HAVplot data coinciding with HCAS 414 
inferred reference sites were a random sample, the bars in Figure S11 would be equal across the 415 
histogram bins.  416 

The HAVplot data that coincide with HCAS inferred reference sites has a higher frequency of 417 
native species proportions approaching 100% than the background HAVplot data, thereby 418 
qualitatively validating the multiple lines of evidence approach used to infer reference sites.  419 

 420 

 421 

Figure S11. The subset of HAVplot sites that coincide with HCAS inferred reference sites (n = 163,870) as a 422 
proportion of background HAVplot sites (n = 163,870) for each of the 50 ‘proportion native species’ bins.  423 
Histogram bins are ~0.02 wide.  424 

 425 

MaxEnt model of reference site occurrence 426 
MaxEnt (Phillips 2022) was used to derive a quantitative measure. HAVplot data coinciding with 427 
inferred reference sites provided the presence response variable (=1), and HAVplot background 428 
data (=0), to inform occurrence rates, which MaxEnt uses to characterise the environment (Phillips 429 
et al. 2006). The ‘proportion of species that are native’ was the sole predictor in the model. Models 430 
were fitted with either linear or a combination of linear and quadratic features, using spatial cross-431 
validation with 5-folds. Folds were randomly allocated to 15 spatial blocks using the R package 432 
blockCV (Valavi et al. 2019) (Figure S12). 433 

Model validation results are presented for each fold, and as the average and standard deviation 434 
across folds. Three statistics were used to evaluate model performance (see explanations below): the 435 
Area under the ROC curve (AUC), which measures the model's ability to discriminate the 436 
environment at withheld occurrence sites from those in the full set of background samples (training 437 
and validation); the continuous Boyce index (CBI); and the Akaike Information Criterion corrected 438 
for small sample sizes (AICc), which provides information on model quality given the data. The 439 
average model prediction is plotted using a clog-log transformation, which is considered to 440 
approximate occurrence probability (with assumptions) bounded by 0 and 1 (Phillips et al. 2017).  441 
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Models and statistics were implemented in R v4.2.1 (R Core Team 2022) using the ecological niche 442 
modelling and evaluation package ENMeval v2.0.3 (Kass et al. 2021) that calls MaxEnt from the 443 
maxnet package v0.1.4 (Phillips 2022). 444 

 445 

 446 

Figure S12. Spatial blocks for the two datasets used in the maxent model: HAVplot coinciding with HCAS 447 
inferred reference sites (left) and background HAVplot sites (right).  448 

 449 

Area under the Receiver-Operator Characteristic (ROC) curve 450 

The Area Under the ROC Curve (AUC) is a commonly used threshold-independent measure of 451 
predictive accuracy based on the ranking of locations. Originally developed for binary classified 452 
data (e.g., presence/absence), when applied to presence-only models, AUC is interpreted as the 453 
probability that a randomly chosen presence point is ranked higher than a randomly chosen 454 
background point (Merow et al. 2013). High AUC values indicate the model can distinguish 455 
between presences and background points. However, as the MaxEnt background sample also 456 
contains the presence points, and as there is no reason to expect all non-reference HAVplot sites to 457 
be poor quality (i.e., have a low proportion of native species) AUC is unlikely to be informative of 458 
the pattern we aim to detect. 459 

The continuous Boyce index 460 

The continuous Boyce index (CBI) is a presence-only and threshold-independent evaluator for 461 
species distribution models (Hirzel et al. 2006). It has been suggested to be the most appropriate 462 
way to evaluate predictions from presence-only models like MaxEnt (Di Cola et al. 2017, Hirzel et 463 
al. 2006). The Boyce index measures how much model predictions differ from a random 464 
distribution of the observed presences (Boyce et al. 2002) (i.e., the trend in the proportion of 465 
presences across classes of the predictions) and the CBI applies the Boyce index within a moving 466 
window across prediction gradient. It is considered the quantitative equivalent of the graphical 467 
presence-only calibration (POC) plot (Phillips and Elith 2010). The CBI is analogous to a Spearman 468 
correlation and varies between –1 and +1. Positive values indicate a model in which predictions are 469 
consistent with the distribution of presences in the evaluation data set, values close to zero mean 470 
that the model is not different from a random model, and negative values indicate counter 471 
predictions. 472 
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Another statistic 473 

Another metric recently advocated for evaluating presence-only models is the area under the 474 
Precision-Recall Gain curve (AUC-PRG) (Sofaer et al. 2019, Valavi et al. 2022). In contrast to 475 
AUC (ROC) this metric specifically focuses on the accurate prediction of presences, not whether 476 
absences are correctly predicted; making it potentially more relevant for ecological cases where the 477 
costs of distinct error types are different (such as species distribution models in conservation 478 
prioritisation). However, as the AUC-PRG includes the number of false positives in its calculation 479 
(e.g., presumed relatively natural HAVplot vegetation survey sites that are not HCAS reference 480 
sites) it is not a useful metric for this situation and will not be considered further. 481 

Results 482 

The MaxEnt models revealed a strong association between HAVplot within HCAS inferred 483 
reference sites and habitat quality (i.e., higher proportion of species that are native). The probability 484 
(relative likelihood) of a HAVplot site also being a reference site increased from approximately 485 
10% when half the species in a plot were native (proportion native = 0.5) to a maximum of 486 
approximately 70% when almost all the species in a plot were native (proportion >= 0.95) (Figure 487 
3). Evaluation statistics were similar for the models containing linear or linear and quadratic 488 
features (Table S6). Both models had equal, albeit poor discrimination as measured by AUC 489 
(average AUC = 0.63). However, model predictions were strongly consistent with the distribution 490 
of the HAVplot evaluation data (average CBI = 0.88–0.89) with very strong agreement for three of 491 
the five cross-validation folds (CBI >=0.9). Using quadratic features in the model provided a better 492 
fit to the data (difference in AICc = 22). 493 

 494 

Table S6. Statistics for the MaxEnt models fit with linear features or with linear and quadratic features.  495 

 496 

Model features Fold 
AUC (standard 
deviation of the 

mean) 

CBI standard 
deviation of the 

mean) 
AICC 

Linear 

1 0.60 0.90  

2 0.67 0.94  

3 0.66 0.93  

4 0.58 0.78  

5 0.65 0.84  
Average 0.63 (0.04) 0.88 (0.07) 38573 

Linear and 
Quadratic 

1 0.60 0.90  

2 0.67 0.96  

3 0.66 0.95  

4 0.58 0.74  

5 0.65 0.87  
Average 0.63 (0.04) 0.89 (0.09) 38551 
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 497 

Figure S13. Modelled probability of a HAVplot site being also a HCAS v2.3 inferred reference site as a function 498 
of the HAVplot habitat quality predictor – proportion of native species.  499 
Predictions are the average across the five folds from the model using both linear and quadratic features.  500 

 501 

Summary of findings and caveats – validating inferred reference sites  502 

Overall, the validation exercise supports the multiple lines of evidence approach to inferring 503 
reference sites for use in HCAS. The subset of HAVplot sites that also coincide with HCAS v2.3 504 
inferred reference sites are encouragingly biased towards sites containing a higher proportion of 505 
native species (i.e., presumed relatively natural with higher ecosystem integrity). The MaxEnt 506 
models predicted that the relative likelihood of a HAVplot site being a HCAS inferred reference site 507 
increased with higher proportions of native species, with presence-only CBI statistic indicating 508 
strong model performance.  509 

As was expected, given the large number of background (i.e., assumed non-reference) sites with 510 
high proportions of native species the models had poor discrimination as measured by AUC. For 511 
this validation exercise, AUC was not expected to perform well because it is calculated using both 512 
the prediction of occurrences and background. We expected there to be higher proportions of native 513 
species at vegetation survey sites that were not coincident with HCAS inferred reference areas 514 
(background data). This outcome was not of importance for our approach to validation.   515 

However, there are important caveats to note.  516 

1. The number of HAVplot sites that coincide with HCAS inferred reference sites represent 517 
only a very small fraction of all available HCAS reference sites (15,747/39,685,172). It is 518 
feasible that these HAVplot sites might not be a very representative sample of HCAS 519 
reference sites, and so drawing conclusions about the entire set of reference sites is not 520 
possible without first comparing sample structures.  521 

2. We used proportion of species that are native in the HAVplot data as an indicator of 522 
likelihood in reference condition (i.e., presumed relatively natural). The implicit assumption 523 
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is that higher proportions of native species are positively correlated with high levels of 524 
ecosystem integrity. However, this may not be accurate as the measure is just one variable 525 
considered important for the estimation of condition (i.e., variables should encompass 526 
structure, function and composition characteristics of ecosystems).   527 

3. HCAS v2.3 and HAVplot datasets do not address the same spatial footprint. Plot area in the 528 
HAVplot dataset ranges from 1 m2 to 4,000,000 m2 (median = 400 m2) and plot boundaries 529 
are unknown (represented by a single point) and so do not necessarily align with the 250 m 530 
grids of the HCAS v2.3 reference layer. Further, the larger plot sizes are likely to be area-531 
aggregated lists of native species only from a number of surveys rather than actual 532 
vegetation survey plots. In future analyses, a filter for plot size or other descriptor indicating 533 
the original method used to obtain the data should be included.  534 

4. HCAS v2.3 and HAVplot datasets are not temporally aligned. The remote sensing data 535 
underpinning HCAS v2.3 spans the years 2001 to 2018, whereas HAVplot surveys range 536 
from 1900 to 2020. This could result in a mismatch between the remote sensing signal and 537 
the on-ground vegetation assessment. However, it is assumed that contemporary inferred 538 
reference sites were continually in high ecosystem integrity decades earlier than the earliest 539 
date of the remote sensing epoch in 2001. Therefore, spanning earlier survey dates is 540 
reasonable.  541 

5. The subset of HAVplot survey sites used for validation were the most recent within a 250m 542 
grid cell, which is the resolution of the remote sensing data used in HCAS. Therefore, earlier 543 
HAVplot survey sites that may indicate mixtures of native versus introduced plant species or 544 
reinforce naturalness were not reflected in the comparisons. In future validation exercises, a 545 
more complete history of vegetation surveys could be used, for example by including 546 
covariates such as survey date or year, plot size and survey method in the analysis, for 547 
example.   548 

 549 

Sub-sampling reference sites  550 

The multiple lines of evidence approach resulted in proportionally larger number of reference sites 551 
in the more remote and central regions of arid Australia, where extensive areas are relatively 552 
undeveloped or form part of Australia’s network of protected areas. The subsample of reference 553 
condition sites to use as training data or benchmarks needed to minimise bias toward the arid 554 
regions and characterise, as far as possible, the reference state diversity of Australian ecosystems.  555 

Training sites are used in the reference ecosystem model, and benchmarks are used subsequently in 556 
the condition algorithm using proximity to reference state. The HCAS v2.3 applied the HCAS v2.1 557 
reference ecosystem model, and so the training sites are the same as those derived for use in HCAS 558 
v2.1. The HCAS v2.3 benchmarks were derived using the updated multiple lines of evidence 559 
approach described above.  560 

 561 

Training data (HCAS v2.1-3) 562 

The inferred reference sites used were initially derived using an earlier multiple lines of evidence 563 
approach for use with HCAS v2.0 (Williams et al. 2020). Those inferred reference sites accounted 564 
for 28.8% (35,485,829 0.0025-degree grid cells) of continental Australia (i.e., 71.2% of lands were 565 
considered modified to some degree or aquatic and excluded from consideration). 566 
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An ecological land classification was derived by spatially intersecting the ‘present’ mapped extent 567 
of Australia’s 85 major vegetation subgroups (MVS) version 5.1 (DAWE 2018) with the 411 568 
bioregional subregions version 7.0 (Department of the Environment 2014) to derive a stratification 569 
comprising 7039 discrete regions. This classification was rasterised to match the 9-arcsecond digital 570 
elevation model for Australia (Hutchinson et al. 2008). Several MVS categories that suggest the 571 
land unit is a waterbody or a modified vegetation type were excluded from consideration:  572 

• ‘Salt lakes and lagoons’ 573 
• ‘Freshwater, dams, lakes, lagoons or aquatic plants’ 574 
• ‘Regrowth or modified forests and woodlands’ 575 
• ‘Regrowth or modified shrublands’ 576 
• ‘Regrowth or modified graminoids’ 577 
• ‘Regrowth or modified chenopod shrublands, samphire or forblands’ 578 
• ‘Unclassified forest’ 579 
• ‘Cleared, non-native vegetation, buildings’ 580 
• ‘Unknown/no data’.  581 

This had the effect of further excluding reference that may otherwise have been included using the 582 
multiple lines of evidence described in Williams et al. (2020). The resulting ecological land 583 
classification comprises 4961 discrete types of which 4952 included at least one inferred reference 584 
site. Of these land units, 18% had 10 or fewer reference sites and 45% had 100 or fewer. To 585 
approximate equal representation of 4952 units (strata) in the training dataset, we randomly drew up 586 
to 25 reference site samples from each, to achieve around 100,000 samples for the projection 587 
pursuit regression (PPR) model. Approximately 26% (1312) of the ecological land units provided 588 
24 or fewer reference sites, resulting in 101,686 reference sites for use as training data. This 589 
approach systematically sampled environmental diversity, approximated by 4961 ecological units.  590 

 591 

Figure S14. Reference site sampling within 4961 ecological land units, showing number of units with sampling 592 
below the target level of 25.  593 
There are 9 units for which zero reference sites were available to be sampled. The orange line shows the cumulative count of 594 
units (26% have < 25 reference sites available to be sampled). 595 

 596 
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Benchmark data (HCAS v2.3) 597 

A national benchmark dataset of 202,515 expert identified and inferred reference sites was derived 598 
by taking a random-stratified sample of up to 50 sites per strata, without replacement (Figure S15). 599 
Strata were spatially defined by the historic extent (pre-1750 mapping) of major native vegetation 600 
subgroups (pre-1750 NVIS version 6.0 - DAWE 2020) within bioregional subregions (IBRA 601 
version 7.0 - Department of the Environment 2014), as shown in Figure S16.  602 

The frequency distribution of sampled reference sites within the 5481 strata containing at least one 603 
site is shown in Figure S17. Of these, 36% of strata (1988 in total) had less than 50 reference sites 604 
available for selection, resulting in all available reference sites being selected in those cases. 605 

 606 

 607 

Figure S15. Spatial pattern of 202,515 sites sampled from 5481 ecological strata.  608 
Blue outlined areas show the two case study regions: ‘Flinders, Norman and Gilbert River Catchments’ (FNG – top right) 609 
and the ‘Western Australian Wheatbelt’ (WAW – lower left). Projection: Australian Albers GDA 1994. 610 

 611 
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 612 

Figure S16. Spatial pattern of 7296 ecological land units defined by combining IBRA subregions version 7.0 with 613 
pre-1750 NVIS major vegetation groups version 6.0, of which c. 5481 strata contained at least one inferred 614 
reference site, derived for use as benchmarks in HCAS v2.3. Projection: Australian Albers GDA 1994.  615 

 616 

 617 

Figure S17. Frequency distribution of reference site sample sizes within ecological land units (strata).  618 
Up to 50 samples could be randomly selected from each of the 5481 strata units (36% of strata had <50 reference sites 619 
available for selection). Note, there are 1815 ecological land units with 0 reference sites.  620 

 621 
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Environmental covariates (HCAS v2.1-3) 622 

Long-term variation in climate, soils, landforms and surface hydrology, interacting with disturbance 623 
regimes such as fire and other extreme events, are key environmental determinants of the 624 
distribution of Australia’s terrestrial ecosystems. The conceptual model of drivers of natural 625 
vegetation growth, development and distribution, summarised by Guisan and Zimmermann (2000), 626 
provides a suitable basis for determining which environmental covariates to compile for 627 
biodiversity modelling (Williams et al. 2012).  628 

The primary data sources are 30-year average (1976-2005) monthly climate variables derived using 629 
ANUCLIM version 6.1 (Xu and Hutchinson 2011, 2013) and the 0.0025 degree digital elevation 630 
model for Australia (Hutchinson et al. 2008) summarised into a series of statistics to represent long-631 
term annual averages, extremes, and seasonality (Harwood et al. 2016b). This is complemented by 632 
data from the soil and land grid for Australia (Grundy et al. 2015, Viscarra Rossel R. A. et al. 633 
2015). The 3-arcsecond gridded soil and terrain variables, were aggregated to 0.0025 degrees, 634 
taking into account soil depth limits (Gallant et al. 2018).  635 

A MODIS-derived alpha-NDVI water algorithm was developed by Donohue et al. (2022) to 636 
identify inundation areas between 2001 and 2018—denoted NDVI_nfloods—as an environmental 637 
input and to mask values from the remote sensing variables when and where surface water was 638 
detected (see section on ‘remote sensing variables’ below). This algorithm was implemented for 639 
HCAS using the 500 m, 8-day MOD09A1 (Collection 6) reflectance data (Vermote 2015). Alpha-640 
NDVI water grids were then aggregated from 8 to 16-day time-steps, and resampled (over-sampled) 641 
to 250 m resolution using GDALWARP with bilinear interpolation.  642 

This resulted in an initial set of 54 environmental covariates, listed in Appendix D of Williams et al. 643 
(2020), of which 36 were considered suitable for use. An exploratory data analysis protocol, 644 
developed by Lehmann et al. (2018), was applied to these data to identify potential errors and 645 
resolve issues related to multicollinearity among related environmental covariates. This included 646 
examining pairwise correlations and choosing one of a highly correlated pair to take forward, 647 
guided by previous experience with the same data and variance inflation factors. Twenty-nine 648 
environmental covariates were selected as candidates for the projection pursuit regression variable 649 
selection and model fitting process (Table S7).  650 

Table S7. The 36 abiotic environmental covariates (9-second gridded) considered for use in HCAS v2.1.  651 
* denotes the 29 candidate variables tested for inclusion in the project pursuit regression (PPR) model, 7 other variables were 652 
excluded during the exploratory data analysis. † denotes variables included in the PPR model. 653 

Label Description Units Classification Source 

EAAS* Budyko method mean annual 
atmospheric water balance  mm Moisture (Harwood et al. 

2016b) 

ADI Aridity index - monthly minimum 
(precipitation/evaporation) index Moisture (Harwood et al. 

2016b) 

ADX Aridity index - monthly maximum 
(precipitation/evaporation) Index Moisture (Harwood et al. 

2016b) 

ADM Aridity index - monthly mean 
(precipitation/evaporation) index Moisture (Harwood et al. 

2016b) 

WDI* Precipitation deficit, monthly 
minimum (precipitation – mm Moisture (Harwood et al. 

2016b) 
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Label Description Units Classification Source 
evaporation with topographic 
adjustment) 

WDX*† 
Precipitation deficit, monthly 
maximum (precipitation – 
evaporation with topographic 
adjustment) 

mm Moisture (Harwood et al. 
2016b) 

WDA 
Precipitation deficit, annual total 
(precipitation – evaporation with 
topographic adjustment) 

mm Moisture (Harwood et al. 
2016b) 

PTI*† Precipitation - monthly minimum mm Precipitation (Harwood et al. 
2016b) 

PTX Precipitation - monthly maximum mm Precipitation (Harwood et al. 
2016b) 

PTA*† Precipitation - annual total mm Precipitation (Harwood et al. 
2016b) 

EPI*† Evaporation - monthly minimum 
with topographic adjustment mm Evaporation (Harwood et al. 

2016b) 

EPX* Evaporation - monthly maximum 
with topographic adjustment mm Evaporation (Harwood et al. 

2016b) 

EPA Evaporation - annual total with 
topographic adjustment mm Evaporation (Harwood et al. 

2016b) 

PTS1* Precipitation seasonality - summer 
or winter dominated (inverse ratios) index Precipitation (Harwood et al. 

2016b) 

PTS2* Precipitation seasonality - spring or 
autumn dominated (inverse ratios) index Precipitation (Harwood et al. 

2016b) 

TNI* Minimum temperature - monthly 
minimum °C Temperature (Harwood et al. 

2016b) 

TNX*† Minimum temperature - monthly 
maximum °C Temperature (Harwood et al. 

2016b) 

TNM Minimum temperature - monthly 
mean °C Temperature (Harwood et al. 

2016b) 

TXI*† 
Maximum temperature - monthly 
minimum with topographic 
adjustment 

°C Temperature (Harwood et al. 
2016b) 

TXX*† 
Maximum temperature - monthly 
maximum with topographic 
adjustment 

°C Temperature (Harwood et al. 
2016b) 

TXM Maximum temperature - monthly 
mean with topographic adjustment °C Temperature (Harwood et al. 

2016b) 

TRI*† 
Diurnal range temperature - monthly 
minimum with topographic 
adjustment 

°C Temperature (Harwood et al. 
2016b) 

TRX*† 
Diurnal range temperature - monthly 
maximum with topographic 
adjustment 

°C Temperature (Harwood et al. 
2016b) 

TRA Diurnal range temperature - monthly 
maximum-minimum °C Temperature (Harwood et al. 

2016b) 

NDVI_nfloods*† Number of years inundation detected 
(2001-2018) using the MODIS- Years/18 Landform (Donohue et al. 

2022) 
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Label Description Units Classification Source 
derived alpha-NDVI water 
algorithm  

TWI3S*† Topographic wetness index 
(aggregated from 3-second version) Index Landform (Gallant and 

Austin 2012c) 

ELEVFR300*† 
Elevation focal range within 300m 
moving window (aggregated from 3-
second version) 

m Landform (Gallant and 
Austin 2012b) 

ELEVFR1000 
Elevation focal range within 1000m 
moving window (aggregated from 3-
second version) 

m Landform (Gallant and 
Austin 2012a) 

BDW*†  

Bulk Density of the whole soil 
(including coarse fragments) in mass 
per unit volume by a method 
equivalent to the core method 
(spatially aggregated from 3-second 
version) 

g/cm3 Soil 
(Viscarra Rossel 
Raphael et al. 
2014j) 

SOC*† 

Organic Carbon as mass fraction by 
weight in the less than 2 mm soil 
material as determined by dry 
combustion at 900°C (aggregated 
from 3-second version)  

% Soil 
(Viscarra Rossel 
Raphael et al. 
2014i) 

CLY*†  

Clay content (2 μm mass fraction of 
the less than 2 mm soil material 
determined using the pipette 
method) (aggregated from 3-second 
version) 

% Soil 
(Viscarra Rossel 
Raphael et al. 
2014h) 

SLT*†  

Silt (2 - 200 μm mass fraction of the 
less than 2 mm soil material 
determined using the pipette 
method) (aggregated from 3-second 
version) 

% Soil 
(Viscarra Rossel 
Raphael et al. 
2014f) 

SND  

Sand (200 μm - 2 mm mass fraction 
of the less than 2 mm soil material 
determined using the pipette 
method) (aggregated from 3-second 
version) 

% Soil 
(Viscarra Rossel 
Raphael et al. 
2014k) 

PHC*†  
pH of 1:5 soil/0.01 m calcium 
chloride extract (aggregated from 3-
second version) 

- Soil 
(Viscarra Rossel 
Raphael et al. 
2014e) 

AWC*†  
Available water capacity computed 
for each of the specified depth 
increments (aggregated from 3-
second version) 

% Soil 
(Viscarra Rossel 
Raphael et al. 
2014d) 

NTO*†  Total Nitrogen (aggregated from 3-
second version) % Soil 

(Viscarra Rossel 
Raphael et al. 
2014c) 

PTO*†  Total Phosphorus (aggregated from 
3-second version) % Soil 

(Viscarra Rossel 
Raphael et al. 
2014g) 

ECE*†  
Effective Cation Exchange Capacity 
extracted using barium chloride 
(BaCl2) plus exchangeable H + Al 
(aggregated from 3-second version) 

meq/100g Soil 
(Viscarra Rossel 
Raphael et al. 
2014a) 
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Label Description Units Classification Source 

DER*†  
Depth of Regolith - The regolith is 
the in situ and transported material 
overlying unweathered bedrock 
(aggregated from 3-second version) 

m Soil (Wilford et al. 
2015) 

DES*†  
Depth of soil profile (A & B 
horizons) (aggregated from 3-second 
version) 

m Soil 
(Viscarra Rossel 
Raphael et al. 
2014b) 

 654 

Remote sensing variables (HCAS v2.1-3) 655 

Seven remote sensing variables were derived as summaries of four MODIS Collection 6 vegetation 656 
products using satellite imagery generated between 1st January 2001 and 31st December 2018. These 657 
variables derive from four remote sensing products: persistent and recurrent green foliage fractions 658 
developed using the method of Donohue et al. (2009); and bare ground and litter cover fractions 659 
developed using the method of Guerschman and Hill (Guerschman 2019, Guerschman and Hill 660 
2018). All variables have possible values between 0 and 1 as units of ground cover proportion. The 661 
persistent green cover fraction is mainly derived from perennial plant species (e.g., non-deciduous 662 
shrubs and trees) and the recurrent fraction is derived from annual species (e.g., grass and herbage, 663 
deciduous shrubs and trees). The litter fraction comprises non-photosynthesising plant material and 664 
the bare ground fraction is the ground not covered by litter or green foliage.  665 

Persistent and recurrent green foliage fractions derive from the MODIS 16-day, 250 m NDVI data 666 
product (Collection 6), MOD13Q1 (Didan 2015). The original MODIS sinusoidal tiles were 667 
reprojected to geographics and compiled into a continental image using GDALWARP (Warmerdam 668 
et al. 2021). This was done using nearest neighbour resampling. The internal MODIS pixel 669 
reliability flag was used to remove any NDVI values deemed to be of low quality (that is, a 670 
reliability score of 2 or above). Following Roderick et al. (1999), total fractional cover (F) was 671 
derived by rescaling NDVI (V) between the bare ground value (Vn) and the full cover value (Vx) 672 
using equation 1.  673 
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The full cover value was determined by identifying the maximum NDVI value for each pixel 674 
through the entire 2001-2018 period. The 95th percentile of these maximum values was set to be Vx. 675 
The bare ground value was determined by first identifying the minimum NDVI value for each pixel 676 
through the entire 2001-2018 period. To remove speckle in this minimum dataset, it was smoothed 677 
using a boxcar average with a width of 3 pixels. According to Montandon and Small (2008), real 678 
bare ground NDVI values can range between 0.05 and 0.40. Hence, all Vn values less than 0.05 679 
were set to 0.05. However, inspection of the minimum NDVI grid across Australia showed that 680 
minimum NDVI values of 0.40 only occurred in places that have reasonably high woody foliage 681 
cover (and hence this value couldn’t reasonably be expected to represent a pure bare ground signal). 682 
Hence, the upper soil NDVI value for Australia was identified as the largest value in the minimum 683 
NDVI grid from locations outside of woodlands and forests, as defined by NVIS present Major 684 
Vegetation Groups version 5.1 (DAWE 2018). This gave an upper limit to Vn of 0.225 and all 685 
values above this were set to 0.225. Total fractional green cover was split into its persistent and 686 
recurrent components using the method of Donohue et al. (2009). This effectively runs a low-pass 687 
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filter through each pixel’s 18-year timeseries, setting this to the persistent component. The 688 
difference between total and persistent becomes the recurrent component.  689 

For both persistent/recurrent green foliage fractions and bare ground/litter cover fractions, data 690 
depicting surface water, snow cover and ‘sea’ (the latter in the coastal-land corridor) were used to 691 
mask pixels. This had the effect of removing these values from 8-day or 16-day time series resulting 692 
in some pixels having fewer samples when calculating the summary variables. The existing 693 
snow/ice QA flags of 4096 or 32768 present within the quality control attribute of the 8-day 694 
MOD09A1 500 m reflectance data (Vermote 2015), and any cloud above 1500 m elevation (cloud 695 
cover flag QA = 1024), were used to mask snow cover. The alpha-NDVI water algorithm (Donohue 696 
et al. 2022) was used to identify inundation zones in the 500 m, 8-day MOD09A1 reflectance data 697 
(Vermote 2015), and to mask surface water. The surface water and snow cover masks were 698 
aggregated to 16-days and resampled (over-sampled) to 250 m using GDALWARP 699 
(https://gdal.org/programs/gdalwarp.html#gdalwarp) with bilinear interpolation.  700 

Each time-series cover fraction product was summarised using two statistics. The long-term average 701 
value was calculated from the annual means of the 16-day (or 8-day) values across the whole 18-702 
year period. The average intra-annual maximum was calculated as the overall average of the 703 
maximum value recorded in each of the 18 years. The intra-annual maximum statistic was chosen 704 
because it is highly correlated with the intra-annual range whereas the minimum statistic is not. The 705 
mean and maximum statistics so derived for the persistent green foliage fraction were found to be 706 
99% correlated, and therefore only the long-term average statistic was carried forward. Seven 707 
remote sensing variables were thus derived to characterise ecosystems (Table S8).  708 

 709 

Table S8. Remote sensing time-series products (2001-2018) and summary variables used in HCAS v2.1-3. 710 

Variable Description Summary 
metrics 

Original spatial 
resolution 

Source 

Persistent green 
cover fraction 

The fraction of ground 
covered by green foliage 
of persistent (~perennial) 
species 

Long-term 
average 

250 m Donohue et al. 
(2009) 

Recurrent green 
cover fraction 

The fraction of ground 
covered by green foliage 
of recurrent (~annual) 
species 

Long-term 
average 
Average intra-
annual maximum 

250 m Donohue et al. 
(2009) 

Litter cover 
fraction 

The fraction of ground 
covered in non-
photosynthesising plant 
material (litter) 

Long-term 
average 
Average intra-
annual maximum 

500 m  (Guerschman 
2019, 
Guerschman and 
Hill 2018) 

Bare ground 
fraction 

The fraction of ground not 
covered in green foliage or 
plant litter 

Long-term 
average 
Average intra-
annual maximum 

500 m (Guerschman 
2019, 
Guerschman and 
Hill 2018) 

 711 

Principal components of remote sensing variables (HCAS v2.1-3) 712 

The HCAS benchmarking algorithm requires remote sensing variables of comparable scaling to 713 
ensure dimension consistency in calculating the Manhattan distances used in measuring ecosystem 714 
condition as the proximity to reference. The principal components (PCs) of all seven remote sensing 715 
variables were therefore derived using a principal components analysis (PCA). Since the units of all 716 
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variables are proportions in the range 0-1 (Table S9), they were mean-centred but not range-717 
standardised prior to running the PCA.  718 

The PCA results are shown in Figure S18 and eigenvectors in Table S10. The first PC is dominated 719 
by the two bare cover fraction variables with the largest eigenvector values (maximum and mean ~ -720 
0.58 each). The second PC is dominated by maximum litter and mean persistent green cover 721 
fractions and the third PC is dominated by maximum recurrent fraction. The mean recurrent fraction 722 
dominates the seventh and final PC in the series (-0.91 eigenvector value). 723 

The order of the PCs reflects their numerical magnitudes (see Table S11), and therefore their 724 
relative influence in the Manhattan distance calculation of the condition algorithm, after first 725 
dividing by the scaling factor of 1000. The first two PCs carry much more weight than the latter 5 726 
PCs (represented by the scree curve in Figure S18). The purpose of the PCA is not to reduce input 727 
dimensions. All PCs were used in the Manhattan distance calculation. 728 

 729 

Table S9. Summary grid statistics for the seven remote sensing variables used in HCAS v2.1-3  730 
Units are fractional cover (0-1) scaled by 1000 as integer data.  731 

Label Variable Minimum Maximum Mean Standard 
deviation 

Mean_per Long-term average persistent green cover 
fraction 0 930 117.14 134.23 

Mean_rec Long-term average recurrent cover fraction 0 420 81.46 62.03 

Max_rec Average intra-annual maximum recurrent 
cover fraction 0 866 207.18 158.52 

Mean_ltt Long-term average litter cover fraction 0 1000 424.34 100.71 

Max_litt Average intra-annual maximum litter cover 
fraction 0 1000 572.54 129.96 

Mean_bare Long-term average bare ground fraction  0 1000 339.15 182.49 

Max_bare Average intra-annual maximum bare ground 
fraction 0 1000 470.88 188.53 

 732 



 

34 

 733 

Figure S18. Scree plot for the seven principal components showing the variation captured in each 734 

 735 

Table S10. Eigenvectors for the principal components of the seven remote sensing variables  736 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Average intra-annual 
maximum bare ground 
fraction 

-0.5797052 -0.2485049 0.2457619 0.4641782 0.0112112 0.5617683 -0.1030418 

Long-term average bare 
ground fraction -0.5833303 -0.1144457 0.1556429 0.0271099 -0.2652325 -0.7421303 -0.0237185 

Average intra-annual 
maximum litter cover 
fraction 

0.2700794 -0.5292743 -0.1656900 0.5404358 0.4591000 -0.3140426 0.1341872 

Long-term average litter 
cover fraction 0.1395264 -0.3841712 -0.5287682 0.0944034 -0.6897477 0.0964259 -0.2436947 

Long-term average 
persistent cover fraction 0.2443486 0.5906739 0.1405578 0.6851888 -0.2766536 -0.1266414 -0.0978908 

Average intra-annual 
maximum recurrent cover 
fraction 

0.3824232 -0.3703122 0.7207694 -0.0710623 -0.3618178 0.0265347 0.2458592 

Long-term average 
recurrent cover fraction 0.1590705 -0.1067798 0.2627970 -0.0910344 0.1885521 -0.0948476 -0.9172770 

 737 

Table S11. Summary statistics for the seven remote sensing principal components. 738 
Input variables were in units of fractional cover (0-1) scaled by 1000 as integers.  739 
Data were rescaled prior to calculation of Manhattan distances.  740 

Principal 
component Minimum Maximum Mean Standard 

deviation 

PC1 -10130.07 802.11 -0.02 307.91 

PC2 -646.57 1061.88 0.00 171.93 

PC3 -736.05 833.34 0.00 113.29 

PC4 -656.13 765.52 0.00 62.88 

PC65 -294.44 426.37 -0.03 24.39 

PC6 -246.22 474.96 0.00 21.55 

PC7 -180.62 163.02 -0.01 10.69 
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 741 

Spatial mask for input data 742 

The remote sensing variables used in HCAS v2.1-3 were designed to characterise only terrestrial 743 
environments. Therefore, all inputs (environmental and remote sensing variables, reference sites) 744 
were masked to ensure consistent removal of semi-permanent or permanent water bodies – treated 745 
as ‘no data’ cells. An aggregated water presence threshold of >80% was derived from the 25 m 746 
annual Landsat water observations from space (WOFS) dataset (Mueller et al. 2016), summarised 747 
as the frequency over the period 2001-2014 (Geoscience Australia 2015), then majority resampled 748 
to match the geographic 0.0025 degree grid and datum adopted for HCAS (GDA 94). This dataset 749 
was used to mask all input data, and as the extent layer for all spatial processing operations. The 750 
base grid derives from the 9-arcsecond digital elevation model (Hutchinson et al. 2008). 751 

Predicting reference ecosystem characteristics (HCAS v2.1-3) 752 

Projection pursuit regression was used to model the fit of the seven remote sensing PC response 753 
variables to the 29 candidate environmental covariates using the training data sample of 101,686 754 
reference sites. Standard steps of PPR model selection and candidate covariates testing were applied 755 
on the basis of a prediction error metric (10-fold cross-validation residual sum of squares). The k-756 
fold cross-validation helped determine which smoothing algorithm performs best in general and, 757 
therefore, which value of the smoothing parameter leads to the best overall model as a function of 758 
the number of PPR terms, as explained in Lehmann et al. (2018).  759 

Covariate selection was performed in a forward, backward and bidirectional manner, for a total of 760 
250 tested models, each starting from a random set of candidate environmental covariates. Of the 23 761 
environmental predictors included in the best performing PPR model, nine were climate variables, 762 
two were terrain features, one surface water, and 11 soil attributes (Table S12 lists their ranked 763 
importance). The best overall PPR model (Table S13) was used to predict the seven remote sensing 764 
PCs as a function of the 23 environmental predictors to characterise the ecosystem reference state 765 
for each land pixel in the analysis mask for the Australian continent. Appendix G in Williams et al. 766 
(2021) shows the pattern of residuals and mapped outputs for each PC.  767 

The resulting frequency distribution between observed versus predicted distances for a random 768 
sample of 100,000 reference site pairs is shown in Figure S19. When calculating predicted 769 
distances, the noise component of the model results in an overall bias factor with non-zero mean, 770 
causing the offset parallel to the 45 degree line. This offset is simply a mathematical by-product 771 
from the formula used to calculate distances. Each remote sensing PC variable is modelled to match 772 
the observed PC values, but has some additive noise as a result of the modelling process. That is: 773 
PCvar = f(ENVvars) + ε, where ε is the noise component (assumed zero-mean Gaussian). When 774 
calculating distances (Euclidean or Manhattan), the formula uses the square (or absolute value) of 775 
PCvar. On the basis of this, it can be shown that when PCvar is modelled as above, the noise 776 
component (ε) will result in a bias term that, as a result, leads to the offset in the distance plot.  777 

Conceptually, some of the noise component, ε, likely can be attributed to specific processes such 778 
alternative ecological states and seasonal variation for the same environment, as well as inherent 779 
error in reference site assignments and error in other inputs. Overall, we expect more variability in 780 
observed remote sensing PCs due to natural ecosystem dynamics, such as alternate ecological states 781 
and seasonal dynamics, than can be represented by predicted PCs from environmental covariates 782 
that represent a long-term steady state.  783 
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Table S12. The 23 selected abiotic environmental covariates included in the PPR model. 784 
Covariates (predictors) are ordered by relative importance based on cumulative (absolute) sum of loadings (% loadings).  785 

Label Description and units 
Ranked 
relative 

importance 

TXI Maximum temperature – monthly minimum with topographic adjustment 
(°C) 

1 

EPI Potential evaporation – monthly minimum with topographic adjustment 
(mm) 

2 

TNX Minimum temperature – monthly maximum with topographic adjustment 
(°C) 

3 

TXX Maximum temperature – monthly maximum with topographic adjustment 
(°C) 

4 

PTA Precipitation – annual total (mm) 5 

SOC Organic Carbon as mass fraction by weight in the less than 2 mm soil 
material as determined by dry combustion at 900°C (%) 

6 

WDX Precipitation deficit, monthly maximum (precipitation – evaporation with 
topographic adjustment) (mm) 

7 

TRX Diurnal range temperature – monthly maximum with topographic 
adjustment (°C) 

8 

PTI Precipitation – monthly minimum (mm) 9 

PHC pH of 1:5 soil/0.01 m calcium chloride extract (index) 10 

BDW Bulk Density of the whole soil (including coarse fragments) in mass per 
unit volume by a method equivalent to the core method (g/cm3) 

11 

TRI Diurnal range temperature – monthly minimum with topographic 
adjustment (°C) 

12 

NTO Total Nitrogen (%) 13 

DES Depth of soil profile (A & B horizons) (m) 14 

SLT Silt (2 – 200 μm mass fraction of the less than 2 mm soil material 
determined using the pipette method) (%) 

15 

ECE Effective Cation Exchange Capacity extracted using barium chloride 
(BaCl2) plus exchangeable H + Al (meq/100g) 

16 

ELEVFR3
00 Elevation focal range within 300m moving window (m) 17 

NDVI_nflo
ods 

Number of years detected inundation for the period 2001-2018 (years) 
using the MODIS-derived alpha-NDVI water algorithm 

18 

CLY Clay content (2 μm mass fraction of the less than 2 mm soil material 
determined using the pipette method) (%) 

19 

PTO Total Phosphorus (%) 20 

DER Depth of Regolith – The regolith is the in situ and transported material 
overlying unweathered bedrock (m) 

21 

AWC Available water capacity computed for each of the specified depth 
increments (%) 

22 

TWI3S Topographic wetness index (index) 23 

 786 
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Table S13. Summary fit statistics for the seven remote sensing PCs observed versus PPR predicted values.  787 

Principal component R-squared Pearson’s correlation coefficient 
1 0.837 0.915 

2 0.839 0.916 

3 0.291 0.540 

4 0.372 0.610 

5 0.173 0.418 

6 0.123 0.351 

7 0.160 0.400 

Overall 0.631 0.784 

 788 

 789 

Figure S19. PPR model fit in terms of observed versus predicted remote sensing principal component Euclidean 790 
distances for HCAS v2.1-3.  791 
A random sample of 100,000 reference site-pairs (of the N×(N-1)/2 combinations, N = 101,686) are used for computational 792 
tractability. Red line is a linear model fit of the data; black line is a smoothing fit of the data; dashed grey line is the diagonal. 793 
X and Y axis units are in multiples of 1000 corresponding with the integer rescaling of the input remote sensing variables.  794 

 795 

Estimating ecosystem condition 796 

A founding principle of HCAS is that we expect considerable variation in the remote sensing 797 
characteristics of natural ecosystems in reference condition within the same abiotic environments, 798 
due to alternative ecological states, seasonal dynamics and various stages of recovery following 799 
natural disturbances and site history. However, it is challenging to comprehensively represent all 800 
possible reference dynamics because physical observations in time and space are limited. Due to 801 
this natural variability, reference sites within any given abiotic environment can support quite 802 
different natural ecosystems despite similar abiotic environments; and, conversely, ecosystems in 803 
different abiotic environments can share similar remote sensing signatures. For example, closed 804 
canopy vegetation can look quite consistent regardless of canopy height, and so forests and closed 805 
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heathlands share many of the same remotely sensed ecosystem characteristics. Further, at 250 m 806 
grid resolution, sharp discontinuities in ecosystem structure, function, and composition may be 807 
mixed within a single pixel. The HCAS modelling framework is designed to tackle both types of 808 
inherent variation and limited reference data by using distance-comparison measures in selecting 809 
benchmarks and estimating condition. The approach taken doesn’t require every site of interest to 810 
have benchmark reference sites in an equivalent abiotic environment.  811 

Ecosystem condition is estimated as the proximity to reference condition using Manhattan distances 812 
derived from reference-reference and test-reference site-pairs. The expected condition is established 813 
using a database of reference-reference site pairs, and then condition is estimated using the position 814 
of test-reference site-pairs on the database of reference-reference site pairs (see Lehmann et al. 815 
(2021) for a schematic description of how the benchmarking algorithm works). 816 

For the expected condition surface, two sets of Manhattan distances are derived for each reference-817 
reference site-pair using the training data attributed with values of the seven 1) observed and 2) 818 
predicted remote sensing PCs. The PCs were first rescaled to their proper dimensions by dividing 819 
by 1000. A two-dimensional frequency histogram of these observed (do, y-axis) versus predicted 820 
(dp, x-axis) distances simulates a probability density surface of the ecosystem reference state. A 821 
convenient bin size, Z, is selected to approximate a 600 x 600 matrix depending on the distance 822 
range (e.g., 0.005 in the case of HCAS v2.1-3) within which the frequency of site-pairs is 823 
summarised as counts (i.e., likelihoods of being in reference condition). The counts within the 824 
reference-distance density surface are normalised within each bin of the x-axis (dp, predicted 825 
distances), then smoothed using bilinear interpolation (Moore neighbourhood at 0.005) to fill gaps 826 
due to scarce data, and finally truncated to remove irrelevant large distances (dp, do) to approximate 827 
a 400 x 400 matrix. The expected condition values provided by the reference-distance density 828 
surface (pref) are here termed ‘probabilities’ but are not true probabilities in the statistical sense; 829 
they are normalised frequency counts as a density surface.  830 

To estimate condition for each test site (approx. 111 million in HCAS v2.1-3), two sets of test-831 
reference Manhattan distances are first calculated using the sample of reference sites for testing as 832 
benchmarks (Bref) attributed with values of the seven 1) observed and 2) predicted remote sensing 833 
PCs, after rescaling to their proper dimensions. These observed (do, y-axis) and predicted (dp, x-834 
axis) distances are plotted over the reference-distance density surface (described above) to derive 835 
expected probabilities. The next step involves determining which and how many reference sites are 836 
relevant to use as benchmarks for each test site. A nested set of parameters guided these decisions. 837 
These parameters are: 1) the maximum geographic radius (R, km) around each test site used to 838 
search for relevant reference sites, 2) within that radius, the maximum number of reference sites 839 
(np) closest in distance to the test site based on test-reference predicted distances (dp, x-axis), 3) the 840 
maximum number of reference sites (nref) closest in distance to the test site, of previously selected 841 
np, based on test-reference observed distances (do, y-axis) with highest reference probability density 842 
values (pref) to use as benchmarks (henceforth test-benchmarks comparisons), 4) a half-Cauchy 843 
distance-decay function (Shaw 1995) using the median Manhattan distance (𝝀𝝀) to down-weight 844 
selected nref with increasing test-benchmark predicted distances (dp, x-axis), and 5) the confidence 845 
parameter, ω, used in a limited degree of confidence calculation (LDC) with the maximum 846 
probability value, Pmax, of the selected nref, to deal with potential uncertainty in reference site 847 
validity as suitable benchmarks. Global parameter values were determined following exhaustive, 848 
iterative exploration of different settings, reported in Section 6.6 of Williams et al. (2020) and 849 
Section 3.7.4 in Williams et al. (2021). 850 
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The above parameters were applied as shown in Equations 2 and 3, and as listed in Table S14. To 851 
summarise (see also Box S2), 50 benchmarks (np) within 200 km radius (R) of each test site are 852 
initially selected on the basis of their predicted distance to the test site (dp, x-axis) being minimised 853 
(i.e., likelihood of being of the same ecosystem type to address context dependency), from which 20 854 
benchmarks reference sites (nref) are selected that maximise the likelihood of actually being a 855 
reference site based on their position on the reference-distance density surface (pref). Condition of 856 
the test site is then calculated as the predicted distance half-Cauchy decay (𝝀𝝀 = median of dp) 857 
weighted average of the 20 test-benchmark (nref) probabilities (pi) of being in reference condition 858 
using a half-weight (ω = 0.5) LDC algorithm uncertainty (Figure S20). The sample size of 20 859 
benchmarks represents a trade-off between context dependency and the need to account for multiple 860 
expressions of an ecosystem reference state (i.e., the challenge of alternative ecological states and 861 
seasonal dynamics). The output probabilities of being in reference condition have a numerical range 862 
influenced by the bin size of the reference distance density surface, and needs to be calibrated 863 
between 0.0 (lowest – ecosystem integrity extinguished) and 1.0 (highest – ecosystem integrity in 864 
reference condition). 865 
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 866 

Table S14. Equation notations and definitions used in HCAS v2.1-3 benchmarking algorithm 867 

Parameter 
notation 

Parameter 
value Definition  

𝒅𝒅𝒑𝒑 NA 
The predicted Manhattan distance between all pairs of reference sites Bref (c. 200,000) 
used to construct the reference-distance density surface (and subsequently also calculated 
for relevant benchmark reference-test site comparisons). 

𝒅𝒅𝒐𝒐 NA 
The observed Manhattan distance between all pairs of reference sites Bref (c. 200,000) used 
to construct the reference-distance density surface (and subsequently also calculated for 
relevant benchmark reference-test site comparisons). 

𝑩𝑩ref NA 
The set (representative sample) of reference sites (c. 200,000) as dynamic benchmarks; 
used in the calculation of the condition metric for a test site (benchmarking, using a subset 
of 𝐵𝐵ref). 

𝒁𝒁 0.005 The distance bin size used in the reference-distance density surface applied equally to the 
x-axis and y-axis to derive the reference-distance density surface. 

i NA 
Denotes an individual benchmark (reference) site used for the calculation of the condition 
metric at a test site, 𝑖𝑖 = 1, … ,𝑛𝑛ref. The (predicted and observed) distances between a 
reference site and test site are denoted 𝑑𝑑𝑝𝑝𝑖𝑖  and 𝑑𝑑𝑜𝑜𝑖𝑖 . 

𝒑𝒑ref NA 
The reference-distance density surface in which the x-axis is defined by predicted distance 
𝑑𝑑𝑝𝑝 and the y-axis is defined by observed distance 𝑑𝑑𝑜𝑜 between pairs of reference sites; 
normalised within bins of the predicted distance 𝑑𝑑𝑝𝑝 axis. 

𝒏𝒏𝒑𝒑 50 
The initial most analogous reference sites (smallest predicted distance 𝑑𝑑𝑝𝑝) within a 
geographic radius R (km), selected on the basis of their predicted distance 𝑑𝑑𝑝𝑝 to the test 
site. 

𝑹𝑹 200 A constant geographical search radius (km) from the test site within which reference sites 
are selected for assessment as benchmarks.  
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Parameter 
notation 

Parameter 
value Definition  

𝒏𝒏ref 20 
The final set of most analogous reference sites (benchmarks) selected (from the initial 𝑛𝑛𝑝𝑝 
reference sites) as the subset with highest probability values on the reference-distance 
density surface, 𝑝𝑝ref, and used to benchmark the condition of the test site. 

𝒘𝒘 NA 
The weights (relative contribution) of each of the benchmark-to-test site probabilities to 
the calculation of the (uncalibrated) condition of the test site, calculated based on a half-
Cauchy decay (Shaw 1995) with the median predicted distance, dp, from the reference-
distance density surface, 𝑝𝑝ref. 

ω 0.5 The confidence parameter (0.5) used in the Limited Degree of Confidence (LDC) 
calculation applied with 𝒑𝒑max. 

 𝝀𝝀 2.0 
The median Manhattan distance on the predicted distance 𝑑𝑑𝑝𝑝 axis used in the half-Cauchy 
decay calculation of weights (𝒘𝒘) applied to test-reference site comparisons determining 
contributions in calculating proximity to reference.  

𝒑𝒑 NA The pairwise benchmark-to-test site comparison probability, calculated for each of 𝑛𝑛ref 
(20) benchmark site comparisons with a single test site. 

𝒑𝒑max NA 
The maximum probability value from the reference-distance density surface, 𝑝𝑝ref, achieved 
among the 𝑛𝑛ref pairwise benchmark-to-test site comparisons; this value is given half the 
weight in the LDC calculation of the condition metric for the test site. 

𝑯𝑯𝒄𝒄
𝑳𝑳𝑳𝑳𝑳𝑳 NA 

The initial uncalibrated condition score of the test site being in reference condition, 
representing the (half-Cauchy) weighted mean of the normalised probabilities calculated 
on the basis of 𝑛𝑛ref  benchmark-to-test site comparisons, and incorporating a Limited 
Degree of Confidence (LDC) calculation.  

 868 

 869 

Figure S20. Uncalibrated HCAS v2.1-3 for the base model (2001-2018). Projection: Australian Albers, GDA 870 
1994.  871 

 872 
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Similarity index for reference sites used as benchmarks in HCAS v2.3 873 

A relative index of certainty (as opposed to uncertainty) was derived for each site of interest (250 m 874 
raster pixel) that integrates how ‘nearby’ and how relevant were the 20 reference sites used as 875 
benchmarks to estimate HCAS ecosystem condition. For each test site, the much larger sample of 876 
reference sites were distilled into a final set of 20 benchmark sites predicted to be the most 877 
ecologically relevant to the test site and therefore of similar ecosystem type. Their relative 878 
similarity to the test site informs their weighting as individual contributions to the empirical 879 
benchmark used in calculating the test sites’ condition.  880 

The contribution of the probability that the test site is in reference condition (calculated from the 881 
probability density surface for each reference site comparison) is weighted by a half-Cauchy 882 
distribution (median dp = 2). The sum of these weightings represents the cumulative environmental 883 
similarity of all reference sites used in the calculation of the (unscaled) condition probability index 884 
for each test site. As such, this is a measure of confidence in the final selected set of test-benchmark 885 
comparisons, since higher weight is given to more similar sites (lower dp). This summed weighting 886 
from the base model was recorded for each test site and is best interpreted as a relative rather than 887 
an absolute measure. Given the very long tail of the summed weightings’ output distribution, for all 888 
locations continent-wide, the natural logarithm of the resulting dataset was used to increase 889 
resolution at lower summed weightings (Figure 21). This measure shows regions where the model 890 
is most limited by reference sites, using the current sample structure. 891 

  892 

Figure 21. HCAS v2.3 test-benchmark similarity index (scaled as certainty).  893 
The ESRI legend stretch ‘histogram equalise’ is used, which spreads values across the histogram equally to emphasise 894 
heterogeneity. This analysis shows the sum of environmentally similar weightings for 20 reference sites used in the HCAS 895 
v2.3 condition calculation for each site of interest. The output is rescaled by the natural logarithm of values. Lower values 896 
imply benchmark reference sites are less similar to the site of interest. Projection: Australian Albers, GDA 1994. 897 

 898 
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Calibrating ecosystem condition (scaling, 0-1) 899 

Calibration requires independent data to inform scaling of the initial HCAS output between 0.0 and 900 
1.0. Previewing the uncalibrated index (Figure S20) compared with land use mapping (Figure S22), 901 
it is clear that condition values are higher than expected in areas of intensive land use (e.g., dryland 902 
cropping). Scaling should result in lower condition scores in intensive land use areas, relative to 903 
natural areas (e.g., nature conservation and managed resource protection). The approach to scaling 904 
also needs to be conceptually consistent with use of the data as an input to habitat-based 905 
biodiversity assessments. For that purpose, each location (i.e., 250 x 250 m pixels in HCAS v2.1-3) 906 
represents the effective proportion of habitat available to biodiversity as if it were in reference 907 
condition; where a condition score of 0.10 in a 250 x 250 m area is treated as equivalent to 25 x 25 908 
m habitat in reference condition, on average (e.g., see application by Mokany et al. 2022). In this 909 
context, HCAS condition scores can be viewed as an ‘area’ axis of the species-area relationship 910 
(i.e., x-axis). The species-area relationship (SAR) then describes how, as area of (assumed) 911 
contiguous, intact habitat increases to a maximum (i.e., all locations are in reference condition), the 912 
number of species that can persist in that type of habitat increases (Rosenzweig 1995). We therefore 913 
consider the role of the species-area relationship, along with other lines of evidence such as meta-914 
analyses of species compositional responses to disturbance (e.g., Chaudhary and Brooks 2018, 915 
Hudson et al. 2017, Newbold et al. 2012), in our approach to HCAS calibration. 916 

 917 

 918 

Figure S22. National level land use of Australia for 2015–16 (ABARES 2022), summarised into 18 classes.  919 

 920 
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PREDICTS database 921 

We used the global meta-analysis by Hudson et al. (2017) for consistency with use of that data in 922 
global habitat-based biodiversity assessments (Ferrier et al. 2020, Hoskins et al. 2020). The 923 
PREDICTS global database (Hudson et al. 2017) summarises observations of native species 924 
numbers found at a location in a modified ecosystem state (due to anthropogenic land use) 925 
compared with similar locations in a reference state (i.e., primary vegetation), from a wide range of 926 
field experimental and observational studies in different ecosystems (Purvis et al. 2018). The data 927 
has been standardised as proportions of native species occurring in a particular land use type 928 
(relative to the original set of high integrity ecosystems). Hoskins et al. (2020) used PREDICTS 929 
data to rescale globally harmonised land use (Hurtt et al. 2011) and derived a global condition index 930 
based on proportion of native species in reference condition, compared with number of native 931 
species in each land use class, for various taxonomic groups (noting that different native species 932 
may occur in land use and reference). 933 

The PREDICTS project aims to quantify effects of land use on species richness (De Palma et al. 934 
2021, Purvis et al. 2018). Summaries of this data as proportion of native species relative to 935 
reference by land use class can be extracted from the PREDICTS database for each of 12 globally 936 
harmonised land use classes version 2 (LUH2: Chini et al. 2020, Hurtt et al. 2020). LUH2 data 937 
underpin the Shared Socio-Economic Pathways (SSPs) used in global integrated biodiversity 938 
modelling and climate change modelling impact analyses (Popp et al. 2017).   939 

Species-level composition data are only one of many ecosystem attributes commonly observed as 940 
indicators of condition (Parkes et al. 2003) and, alone, do not address many important habitat 941 
specific measures considered significant for assessing condition for biodiversity. Despite these 942 
limitations, species compositional outputs from the PREDICTS database have been used as a proxy 943 
of habitat quality for biodiversity (Ferrier et al. 2020, Hoskins et al. 2020). For this purpose, we first 944 
back-transform the PREDICTS coefficients using the species-area relationship (SAR) with z-value 945 
of 0.25 to approximate the scaling of a condition score (Table S15). A z-value of 0.25, as shown in 946 
Figure S23, ensures consistency with global applications of PREDICTS data (Ferrier et al. 2020, 947 
Hoskins et al. 2020) as a generic measure for biodiversity at the site level.  948 

The higher than expected SAR-transformed PREDICTS coefficients associated with urban land 949 
uses (0.69 in Table S15) could reflect global variability in urban and peri-urban environments that 950 
support retention of, or attract, some native biodiversity. The PREDICTS project team are 951 
continuing to aggregate source data and revise their analysis, including greater granularity and 952 
alignment with global and regional land use mapping. Therefore, scaling parameters for HCAS may 953 
be updated in line with revisions to PREDICTS project’s outputs.   954 

 955 
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 956 

Figure S23. Schematic showing how habitat (ecosystem) condition relates to the proportion of native species (p) 957 
raised to the power of 1/z (p1/z) for two typical z values (0.25, 0.4), founded on the species-area relationship (here, 958 
inverted).  959 

 960 

Table S15. Species-area relationship back-transformation of PREDICTS coefficients (i.e., proportion of native 961 
species in an intact landscape which are found in paired modified habitats of that type) (Hudson et al. 2017) to 962 
derive a PREDICTS condition score for each of the 12 land use types (transformed using a z-value of 0.25).  963 
Condition scores marked with * were converted into spatially continuous surfaces based on the age of secondary vegetation 964 
and grazing density. Land use classes derive from the Global Harmonised Land Use version 2 dataset for 2015 (LUH2) (Chini 965 
et al. 2020, Chini et al. 2021a, Chini et al. 2021b, Hurtt et al. 2020). 966 

Id Global land use class (LUH2) PREDICTS 
coefficient 

Condition score  
(z = 0.25) 

1 Primary vegetation 1.00 1.00 
2 Secondary mature vegetation 0.91 0.70* 
3 secondary intermediate vegetation 0.79 0.38* 
4 secondary young vegetation 0.76 0.33* 
5 Rangelands 0.74 0.30* 
6 C3 perennial crop 0.69 0.23 
7 C4 perennial crop 0.69 0.23 
8 Urban 0.69 0.22 
9 Pasture 0.57 0.10* 
10 C3 annual crop 0.53 0.08 
11 C4 annual crop 0.53 0.08 
12 C3 nitrogen-fixing crop 0.51 0.07 

 967 

HCAS scaling algorithm 968 

A piecewise linear rescaling algorithm with two inflection points was used to simulate non-linearity 969 
and derive a calibrated HCAS index between 0.0 and 1.0 (Figure S24). The x-axis coordinates were 970 
defined by median uncalibrated condition values in areas of intensive land use (i.e., highly 971 
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modified, Table S16) as of 2015–16 (ABARES 2022), and mapping of inferred reference sites as 972 
indicative of relatively natural areas (Figure S25). The y-axis coordinates for condition scores were 973 
derived from the species-area relationship (SAR, z = 0.25) back-transformation of PREDICTS 974 
project coefficients (Hudson et al. 2017) for 2015 global harmonised land use classes (LUH2 - 975 
Chini et al. 2020, Hurtt et al. 2020) that aligned with mapping of highly modified or relatively 976 
natural areas for Australia. The area-weighted average of SAR-transformed PREDICTS scores in 977 
highly modified land areas summed to 0.1001 (Table S16), and for relatively natural areas this was 978 
0.944 (Table S17). 979 

In relatively natural areas, establishing the land use area-weighting for each PREDICTS condition 980 
score was more challenging (Table S17). The predominant secondary level land use classes for 981 
Australia (ABARES 2016) within relatively natural areas are ‘Grazing native vegetation’, ‘Other 982 
minimal use’, ‘Managed resource protection’, and ‘Nature conservation’. These provide a poor 983 
match with the three relatively natural global land use (LUH2) classes of Primary vegetation, 984 
Secondary vegetation (mature, intermediate, young) and Rangelands (Chini et al. 2020, Hurtt et al. 985 
2020). We therefore used proportions of these LUH2 classes within inferred reference sites dataset 986 
(relatively natural areas) to weight the PREDICTS condition scores. 987 

For rangelands, it was necessary to account for global bias toward more intensive grazing in 988 
PREDICTS biodiversity composition coefficients for that land use class, because locations of those 989 
source data are skewed towards higher grazing densities worldwide. PREDICTS coefficients would 990 
therefore overestimate the level of degradation within Australian rangelands, as shown by mapping 991 
of Australian rangeland condition in Newbold et al. (2016). To correct for this global bias, for an 992 
application to Australia, the Gridded Livestock of the World dataset (Gilbert et al. 2018) was used 993 
to calculate ruminant-only grazing pressure following the Tropical Livestock Units (TLU) 994 
methodology of Njuki et al. (2011), applied at 1-km resolution. Ruminants were choosen because 995 
these are most prominant among introduced grazing livestock in Australia and most non-ruminant 996 
grazing species are native to Australia (e.g., excepting introduced species such as feral horses and 997 
rabbits). By fitting a trendline to the PREDICTS conditon scores (SAR-transformed coefficients) as 998 
a function of ruminant TLU index for all PREDICTS metanalysis locations in the LUH2 rangelands 999 
land use class available from the database, a 1 km resolution spatially-continuous global raster 1000 
surface of condition scores for rangelands in 2015 was derived. The adjusted SAR-transformed 1001 
PREDICTS condition score was then summarised as a proportion-weighted average within the 1002 
rangeland land use extent for 2015 (from the LUH2 database), delimited to the extent of relatively 1003 
natural areas defined within Australia (Table S17). Note that Australian rangelands include a 1004 
proportion of primary as well as mature secondary vegetation. Therefore this adjustment results in 1005 
higher average condition scores than the original PREDICTS data for rangelands shown in Table 1006 
S15. 1007 

For the ‘Secondary vegetation’ land use class, the PREDICTS database provides a range of 1008 
coefficients for young, intermediate and mature secondary vegetation. Spatial mapping and 1009 
definitions of secondary vegetation ages from the 25 km by 25 km pixel resolution of the LUH2 1010 
dataset, for classes used by the PREDICTS analysis, were combined with age-specific SAR-1011 
transformed, PREDICTS-derived condition scores (from Table S15: young, intermediate, mature) 1012 
to generate a spatially continuous raster surface of condition scores for the year, 2015. The 1013 
condition score for secondary vegetation was then summarised as a proportion-weighted average, 1014 
delimited to the extent of relatively natural areas (Table S17). In this way the mean PREDICTS 1015 
condition scores shown in Table S17 were revised for consistency with Australian land uses, and 1016 
differ from the original global scores in Table S15.   1017 
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The median uncalibrated HCAS v2.3 score for high ecosystem integrity areas (i.e., inferred 1018 
reference sites) was found to be 0.01535, and for highly modified areas, this was 0.01049 (Table 1019 
S18, Figure S24). Uncalibrated data were therefore rescaled to derive an index between 0.0 and 1.0, 1020 
as shown in Figure S26. The resulting site-level condition score can be further adjusted to account 1021 
for local neighbourhood pressures (e.g., to derive ecosystem site condition – see method detailed 1022 
below), and as an input to a general connectivity analysis incorporating the effects of landscape 1023 
fragmentation (e.g., Drielsma et al. 2022, Giljohann et al. 2022).  1024 

 1025 

Figure S24. Piecewise linear rescaling coordinates used in HCAS v2.3 to derive an index ranging from 0.0 to 1.0.  1026 

 1027 

 1028 

Figure S25. Spatial pattern of relatively natural areas from inferred high ecosystem integrity areas (i.e., 1029 
reference sites) and inferred highly modified areas as of 2015–16 (ABARES 2022) used in the HCAS v2.3 1030 
updated scaling algorithm.  1031 
Intermediate areas are shown in white. Projection: Australian Albers GDA 1994. 1032 

 1033 



 

47 

Table S16. Using PREDICTS project data to derive condition coordinates for intensive land use areas of 1034 
Australia.  1035 
Global Land Use Harmonisation version 2 (LUH2) (Chini et al. 2020, Hurtt et al. 2020) classes assumed to align with highly 1036 
modified areas of Australia. PREDICTS biodiversity composition coefficients converted to condition scores (derived from 1037 
Table S15). Grouping of Australian secondary land uses (ABARES 2016) into three types aligned with the Hudson et al. 1038 
(2017) global meta-analyses of land use intensity impacts on biodiversity. Areal percentage of Australian land use (of those 1039 
listed) derived from national-level land use mapping as of 2015–16 (ABARES 2022). Disaggregation of the agricultural crop 1040 
category (total 60%) was based on the area proportions of the Land Use Harmonisation version 2 dataset for 2015 (LUH2 - 1041 
Chini et al. 2020, Hurtt et al. 2020). Area-weighted condition scores are multiples of the mean PREDICTS condition scores by 1042 
areal proportion of intensive land uses for each category, summing to 0.1001.  1043 

LUH2 intensive 
land use 
grouping 

Mean predicts 
condition score 

(z=0.25) 

Percentage 
(%) of 

intensive land 
use types in 
Australia 

Australian land use and 
management classification 

(ALUM) 
(secondary) 

Area 
weighted 
condition 

score 

Pasture 0.102 31.00 
3.2 Grazing modified pastures; 
4.2 Grazing irrigated modified 
pastures 

0.032 

Agriculture  
(C3 and C4 
perennial 

crops) 

0.233 1.05 
3.3 Cropping; 3.4 Perennial 
horticulture; 3.5 Seasonal 
horticulture; 4.0 Production 
from irrigated agriculture and 
plantations; 4.3 Irrigated 
cropping; 4.4 Irrigated 
perennial horticulture 4.5 
Irrigated seasonal horticulture; 
4.6 Irrigated land in transition; 
5.1 Intensive horticulture; 5.2 
Intensive animal production 

0.002 

Agriculture  
(C3 and C4 

annual crops) 
0.080 53.30 0.042 

Agriculture (C3 
nitrogen fixing 

crops) 
0.066 5.70 0.004 

Urban 0.22 9.00 

5.0 Intensive uses; 5.3 
Manufacturing and industrial; 
5.4 Residential and farm 
infrastructure; 5.5 Services; 5.6 
Utilities; 5.7 Transport and 
communication; 5.8 Mining; 
5.9 Waste treatment and 
disposal 

0.02 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 
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Table S17. Using the PREDICTS project data to derive the condition coordinate for relatively natural areas of 1050 
Australia, as defined by the extent of inferred reference sites.  1051 
Global Land Use Harmonisation version 2 (LUH2) (Chini et al. 2020, Hurtt et al. 2020) classes in 2015 assumed to align with 1052 
relatively natural areas of Australia from NVIS version.6.0 (DCCEEW 2023). PREDICTS biodiversity composition 1053 
coefficients converted to condition scores (derived from Table S15) with rangelands and primary vegetation adjustments for 1054 
Australian land types. Areal percentage of LUH2 categories were determined within the extent of inferred reference sites and 1055 
used to average the mean predicts score, with spatial adjustments for age of secondary vegetation and grazing density. Area-1056 
weighted PREDICTS condition scores are multiples of the mean PREDICTS condition scores by areal proportion of 1057 
extensive land uses for each category, summing to 0.944. 1058 

LUH2 
extensive land 
use grouping 

Adjusted mean 
predicts 

condition score 
(z=0.25) 

Percentage 
(%) of 
extensive land 
use types in 
Australia 

Global harmonised land use 
version 2 (LUH2) categories 

Area weighted 
condition 

score 

Primary 
Vegetation 

1.000 75.79% Primary Vegetation 0.7579 

Rangelands 0.784 21.53% Rangelands 0.1688 
Secondary 
Vegetation 

0.646 2.67% Mature Secondary Vegetation; 
Intermediate Secondary 
Vegetation; Young Secondary 
Vegetation 

0.0173 

 1059 

Table S18. Summary statistics for the uncalibrated HCAS v2.3 score in each of the areas shown in Figure S25.  1060 

Dataset Minimum First quarter Median Mean Third 
quarter Maximum 

Relatively 
natural areas 
(inferred 
reference sites) 

0.00000 0.01461 0.01535 0.01506 0.01589 0.01900 

Highly modified 
areas (intensive 
land use) 

0.00001 0.00617 0.01049 0.00939 0.01284 0.01869 

 1061 
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 1062 

Figure S26. Calibrated HCAS v2.3 for the base model (2001-2018).  1063 
Projection: Australian Albers, GDA 1994.  1064 

 1065 

Annual epochs of ecosystem condition 1066 

Annual epochs of ecosystem condition, from 2001 to 2018, were derived using the same 1067 
benchmarking process and scaling algorithm as the long term epoch for the HCAS base model by 1068 
substituting observed long-term with annual remote sensing PCs in test-benchmark comparisons. 1069 
Annual epochs of remote sensing variables (listed in Table S19) formed part of the lineage used in 1070 
deriving the long-term epochs. The PCs of these annual remote sensing variables were derived by 1071 
first converting to their proper scaling by dividing by 1000, then standardised by subtracting the 1072 
grid mean and dividing by the standard deviation so that all variables have the same mean (=0) and 1073 
variance (=1), before running the principal components analysis.  1074 

 1075 

 1076 

 1077 
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Table S19. Annual remote sensing summary variables used in HCAS v2.1-3. 1078 

Variable Description Summary 
metrics 

Original spatial 
resolution 

Source 

Persistent green 
cover fraction 

The fraction of 
ground covered by 
green foliage of 
persistent 
(~perennial) 
species 

Annual average 250 m Donohue et al. 
(2009) 

Recurrent green 
cover fraction 

The fraction of 
ground covered by 
green foliage of 
recurrent 
(~annual) species 

Annual average 
Annual maximum 

250 m Donohue et al. 
(2009) 

Litter cover 
fraction 

The fraction of 
ground covered in 
non-
photosynthesising 
plant material 
(litter) 

Annual average 
Annual maximum 

500 m  (Guerschman 
2019, 
Guerschman and 
Hill 2018) 

Bare ground 
fraction 

The fraction of 
ground not 
covered in green 
foliage or plant 
litter 

Annual average 
Annual maximum 

500 m (Guerschman 
2019, 
Guerschman and 
Hill 2018) 

 1079 

Deriving ecosystem site condition  1080 

Calibrated HCAS condition scores, ranging from 0.0 (habitat removed) to 1.0 (habitat intact), 1081 
represent a partial measure of condition due to limitations in available remote sensing products to 1082 
characterise all facets of ecosystem structure, function and composition, including beneath closed 1083 
canopies, relevant to habitat quality assessment. As a satellite-based site-level estimate, the HCAS 1084 
output also does not account for local edge effects of fragmentation that negatively influence site 1085 
quality due to surrounding land uses, especially in highly modified, fragmented landscapes. The site 1086 
condition in these fragmented landscapes is expected to be lower compared with sites within larger 1087 
or more contiguous areas of habitat, such as relatively natural landscapes.   1088 

Here we distinguish two types of landscape context analysis applicable to condition assessment: 1) 1089 
impacts of the surrounding landscape on condition of the site, and 2) contributions that condition of 1090 
the site make to overall effectiveness of a landscape through connected habitat for biodiversity. The 1091 
first represents the landscape context component of a condition assessment, and the second is a 1092 
component of a subsequent biodiversity assessment; for example related to how metapopulations 1093 
connect and interact at different spatial and temporal scales (Drielsma et al. 2022). Therefore, we 1094 
developed a method to incorporate local landscape contexts related to fragmentation and edge 1095 
effects into an overall measure of ecosystem condition at the site level using HCAS as an input 1096 
dataset, to enhance its local applicability and reduce bias due to gaps in ecosystem quality 1097 
characterisation.  1098 

As a proxy for the general effect of local pressures, we used a local neighbourhood proximity 1099 
algorithm which gives a rapidly diminishing influence on site condition with distance. The approach 1100 
is similar to that used to model human impacts on forest integrity (Grantham et al., 2020) or to 1101 
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model connectivity of habitat for biodiversity persistence applied locally (Drielsma et al. 2007, 1102 
Drielsma et al. 2022).  1103 

Specifically, the inferred cumulative impact of multiple diffuse pressures (p) on site condition was 1104 
modelled as an exponential decline with distance from the site of interest (represented by cells 1105 
within a raster grid), truncated at 2 km, expressed mathematically as follows: 1106 

 1107 

 𝑝𝑝𝑖𝑖,𝑗𝑗 = �
exp�−𝜆𝜆𝑑𝑑𝑖𝑖,𝑗𝑗�, 𝑑𝑑𝑖𝑖,𝑗𝑗 ≤ 2km

0, 𝑑𝑑𝑖𝑖,𝑗𝑗 > 2km
� (4) 

 1108 

Where λ is the exponential decay constant and d is the Euclidean distance (m) between raster grid 1109 
cells i and j. We set λ equal to 1/250 m, which is broadly consistent with previous studies (e.g., 1110 
Alignier and Deconchat 2013, Grantham et al. 2020, Laurance 1991) and results in pressures 1111 
declining 50% within 250 m and approaching zero by 1500 m (as approximated in Figure S27). 1112 

 1113 

 1114 

Figure S27. Exponential decay function for the 250 m distance parameter over which local neighbourhood 1115 
pressure effects are inferred.  1116 

 1117 

The total impact of inferred pressures (P) on site condition of raster grid cell i from all n cells 1118 
within 2 km range (with j=1…n) is calculated as a distance-weighted average: 1119 

 1120 

 𝑃𝑃𝑖𝑖 = ∑ 𝐶𝐶𝑗𝑗𝑝𝑝𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1 ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗𝑛𝑛

𝑗𝑗=1� . (5) 

 1121 

Where C is the site condition of raster grid cell j (from HCAS), which is weighted by p, the distance 1122 
function (from Equation 1).  1123 
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Since Pi is a weighted average of landscape context condition, it is measured in units of condition 1124 
with values between 0.0 and 1.0, consistent with Ci, and is negatively correlated with pressures 1125 
exerted by the surrounding local neighbourhood.  1126 

As can be seen from equation 3 above, a site of interest with a low Ci in a surrounding landscape of 1127 
higher condition (Cj) can potentially result in Pi > Ci. The inferred local pressures analysis aims to 1128 
describe negative impacts of local neighbourhoods through processes that reduce the condition of a 1129 
site of interest, as opposed to positive effects for constituent biodiversity of connectedness with 1130 
quality habitat. Consequently the effects of Pi on Ci were limited to negative impacts by limiting Pi 1131 
as follows:  1132 

 1133 

 𝑃𝑃𝑖𝑖𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖 , 𝑃𝑃𝑖𝑖 > 𝐶𝐶𝑖𝑖

�   (6) 

 1134 

The same parameters were used to derive inferred local pressure outputs for both HCAS v2.3 long 1135 
term and annual epochs.  1136 

Then the ecosystem site condition index (SCI) is derived from the original HCAS condition index 1137 
and inferred local pressures index as the geometric mean with equal weights as follows: 1138 

 1139 

 𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖 =  �𝐶𝐶𝑖𝑖𝑃𝑃𝑖𝑖.   (7) 

 1140 

The resulting adjusted index of ecosystem site condition (e.g., Figure S28) represents the 1141 
contribution that a given site (grid cell) makes to effective area of habitat remaining within any 1142 
given spatial reporting unit, expressed as a proportion of the contribution made by a site in 1143 
reference condition.  1144 

 1145 
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 1146 

Figure S28. Example of the national extent of an ecosystem site condition subindex derived by combining the 1147 
HCAS v2.3 base model sub-subindex (2001-2018) and its local pressures sub-subindex.  1148 
This represents the best overall estimate of ecosystem site condition based on the long-term remote sensing epoch, 2001 to 1149 
2018. Projection: Australian Albers, GDA 1994.  1150 

 1151 

Evaluating ecosystem condition 1152 

Both qualitative and quantitative approaches were used to evaluate performance of HCAS output. 1153 
Direct validation requires independent field observations of site condition, which are not 1154 
consistently available across the Australian continent. While some land management agencies in 1155 
Australia have implemented field protocols for estimating habitat/ecosystem condition; for 1156 
example, the State of Queensland - (Eyre et al. 2017, Eyre et al. 2015), the State of Victoria - (DSE 1157 
2004, Parkes et al. 2003), Tasmania - (Michaels 2006, Michaels et al. 2020), South Australia - 1158 
(DNR and NVC 2020), New South Wales - (DPIE 2020, Oliver et al. 2021); these are customised 1159 
for local regulation of native vegetation clearing and have not been harmonised for consistent 1160 
National use. While national field assessment methods have been scoped (McCallum et al. 2023), 1161 
these are yet to be widely implemented. Therefore, a multiple lines of evidence approach was used 1162 
to evaluate how well HCAS outputs compare with expectations.  1163 

 1164 
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Expert elicitation 1165 

Validation of calibrated HCAS v2.3 long-term base model dataset was performed using two 1166 
independent sources of ecosystem condition data derived through expert elicitation: 1) virtual 1167 
transects and 2) site condition assessments (White et al. 2023). Analyses were performed using a 1168 
Major Axis Type II regression (Legendre and Legendre 2012) which assumes both response and 1169 
predictor variables are random and measured with error (Carroll et al. 2006, Schennach 2016). This 1170 
method was selected because all variables are expressed in the same physical units (ecosystem 1171 
condition, dimensionless), and so error variances can reasonably be assumed approximately equal. 1172 

 1173 

Virtual transects method 1174 
Nine ecologists with extensive field experience in specific regions visually assessed condition at 11 1175 
evenly spaced points along one or two of 11 pre-defined virtual transects using Google Earth 1176 
imagery. The transects traversed large swathes of the Australian continent (Figure. S29, Table S20).  1177 

Transect locations were chosen iteratively. They were initially located to cover a representative 1178 
sample of ecosystem types and major land uses across Australia. Then, in consultation with experts, 1179 
transects were relocated (or added) to best cover regions they were most familiar with. Start and 1180 
finish points of each transect were chosen subjectively. A straight line between these points was 1181 
divided into 10 equal parts, giving a total of 11 survey points along each transect. At each point, the 1182 
centre of the closest 250 x 250 m grid cell was identified. A circle of 125 m radius was placed 1183 
around that cell centre whose perimeter was tangential to the cell edges (Figure 38). Hence, each 1184 
survey location consisted of an area of just under 5 ha each, for compatibility with the HCAS spatial 1185 
reference and grid size. 1186 

This activity was approved by the CSIRO Social Science and Human Research Ethics Committee 1187 
(original clearance: 025/18; data reuse clearance 048/21 and 196/23).  1188 

 1189 

 1190 

Figure. S29 Map of the 11 virtual transects established for the rapid expert assessment of ecosystem condition  1191 
Each transect is described in Table 8. The background shows elevation (0 – 2220 m) from Gallant et al. (2011) 1192 

 1193 
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Table S20. Descriptions of the 11 transects established for the rapid expert assessment of ecosystem condition. 1194 
Transect names and numbers correspond to those in Figure. S29 1195 

No Name Start Finish Represents 
1 CooHay Centre of Hay Farmland north-

west of Cooma 
Multiple land uses through former 
Grassy Woodland 

2 MelAlp Melbourne CBD Alpine plateau in 
Alpine National 
Park 

An elevational and land use gradient 
through forests, woodlands and 
grasslands 

3 CraStM Cradle Mountain 
Lodge 

Coastal forest near 
St Marys 

Spans designated wilderness areas, 
intensive agriculture and native 
forestry 

4 BouByr Farmland north-
west of Bourke 

Peri-urban area 
outside Byron Bay 

Strong climatic gradient from semi-
arid to sub-tropical; includes irrigated 
agriculture 

5 DarTen Suburb of 
Darwin 

Tennant Creek Strong rainfall gradient through 
tropical savannas 

6 OodPen Oodnadatta Plantations near 
Penola 

Arid to Mediterranean climate 
gradient, including intensive 
agriculture 

7  PerKal Perth CBD Grazing land 
south of 
Kalgoorlie 

City-urban-cropping-grazing gradient 
along a rainfall gradient 

8 IsaTow Mt Isa Townsville Multiple land uses and a rainfall 
gradient, crosses the Mitchell 
Grasslands 

9 CroBam Farmland east of 
Croydon 

Savanna south of 
Bamaga 

Spans Cape York Peninsula 

10 HunDor Forest in Yengo 
National Park 

Forest near 
Dorrigo National 
Park 

Coastal forests, intersects national 
parks, production forests and cleared 
farmland 

11 ChaChi Warrego River at 
Charleville 

Farmland east of 
Chinchilla 

A rainfall gradient through the 
Brigalow Belt 

 1196 
a) 

 

b) 

 

Figure S30. Example of a polygon at a survey location along a virtual transect. This is shown (a) in relation to the 1197 
underlying HCAS grid cell alignment and (b) on a Google Earth image.  1198 
The grid in plot a) is unprojected (that is, the x and y coordinates are simple longitude and latitude coordinates) 1199 
and so the 250 x 250 m polygon appears as a circle. The image in plot b) is projected (Plate Carree projection) 1200 
and so the same polygon appears as an ellipsoid. The image on b) is what the experts view when undertaking the 1201 
survey. 1202 

 1203 
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Experts had access to Google Earth Pro for conducting the virtual transect surveys. Each expert was 1204 
sent an information pack that included the consent form, participant information and instructions, a 1205 
recording spreadsheet and a Google Earth kml file. This kml file contained ellipsoids of their 1206 
particular transect. Opening the kml takes each expert directly to the transect location. No 1207 
contextual information was included other than underlying high-resolution satellite imagery within 1208 
Google Earth to ensure experts relied only on their personal knowledge or insight about each site. 1209 
The imagery currency was unknown, as made available for Australia by Google Earth in early 1210 
2018. 1211 

Brief guidance was given on how to define condition, as follows.  1212 

• Condition was to be scored between 0.0 (lowest) and 1.0 (highest).  1213 

• A ‘0.0’ condition score would only apply to vegetation that had been so altered or removed 1214 
that it could no longer support its original indigenous biodiversity.  1215 

• A ‘1.0’ condition score would represent vegetation considered to be in an ‘intact’ state and 1216 
able to support a full complement of indigenous biodiversity that would normally persist 1217 
there. 1218 

The instruction for each expert was to make and record their best estimate of condition within each 1219 
ellipsoid, representing an average for the 2001-2016 period. Then, if there had been any substantial 1220 
changes in condition since 2001, experts were asked to record when, to the best of their knowledge, 1221 
this occurred and the condition prior to change. Finally, experts were asked to record how confident 1222 
they were with each estimate, ranging from 1 (“I’m really just guessing – I don’t know the area”) to 1223 
5 (“I know this area and its ecology very well”). A column was provided for them to add any notes 1224 
they wished to include.  1225 

 1226 

Site condition assessments method 1227 
Among known challenges of using remote sensing for assessing ecosystem condition is the paucity, 1228 
limited spatial coverage and inconsistency of field observations (i.e., in situ) for training the 1229 
interpretation of remote sensing images. With insufficient spatial coverage of field ecosystem 1230 
condition assessments, it is possible to misinterpret remote sensing data—for example, by 1231 
mistaking a highly modified habitat for a natural habitat in reference condition. The expert site 1232 
assessments methodology applied using the Habitat Condition Assessment Tool (HCAT) (Brenton 1233 
et al. 2018) was designed to test a process of systematically gathering ecological expert knowledge 1234 
to inform training, calibration, and validation of HCAS workflow components, among other uses.  1235 

Twenty-one experts contributed 314 site condition assessments via HCAT, which included a 1236 
method for expert cross-calibration enabling results to be rescaled (White et al. 2023). Expert site 1237 
assessments covered a range of ecosystems and geographies (Figure S31). The majority (66%) of 1238 
these contributed sites were given condition scores above 0.5 (Figure S32).  1239 

This activity was approved by the CSIRO Social Science and Human Research Ethics Committee 1240 
(original clearance: 004/17; data reuse clearance 007/21 and 196/23).  1241 
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 1242 
Figure S31. Geographic distribution of 314 sites, across 21 experts, for which site condition assessments were 1243 
provided through the HCAT expert elicitation process 1244 
Source: White et al. (2023). 1245 
 1246 
 1247 

 1248 
Figure S32. Frequency distribution of original (A) and rescaled (B) condition scores provided by experts for 314 1249 
site condition assessments contributed by experts via HCAT 1250 
Source: White et al. (2023). 1251 
 1252 

Two types of information were elicited from experts via HCAT: 1) calibration image assessments 1253 
and 2) site condition assessments (see data collection: White et al. 2019). Experts were first asked to 1254 
provide an ecological condition score for a set of calibration images suited to their geographic and 1255 
vegetation class expertise, of ecosystems in a range of condition states. These were photographs of 1256 
different types of ecosystems in various reference and modified condition states for which the 1257 
location was known so that the image could be broadly grouped by vegetation type and geographic 1258 

B)A)
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region (see image data collection: Warnick et al. 2019). Experts provided scores to quantify 1259 
ecosystem condition (naturalness) of those sites on a scale between 1.0 (a site in its most natural 1260 
form) and 0.0 (a completely transformed site). Participants were guided to consider ecological 1261 
condition as the capacity of an area to support the plants and animals that would exist at that 1262 
location in a natural state. Each calibration image was scored by multiple experts with similar (self-1263 
nominated) regional expertise and a rescaling analysis was completed to quantify the tendency for 1264 
positive or negative personal biases of each contributor.  1265 

Experts were then asked to consider specific sites that they knew well and provide condition scores 1266 
for those. They could also detail which disturbance factors had influenced their score. Their scores 1267 
were rescaled according to calibration parameters derived by analysing the calibration image 1268 
assessments to enable site assessments from multiple contributors to be compiled into a single 1269 
coherent dataset (White et al. 2023).  1270 

Calibration image collection of Australian ecosystems (Warnick et al. 2019) comprised 777 images 1271 
of ecosystems in various condition states from a range of sources (private and public), of which 77 1272 
were deployed during the pilot, returning 278 calibration image scores. During a 10-week campaign 1273 
(September to November 2018), 314 site condition assessments were contributed by 21 expert 1274 
participants. The calibration and rescaling method, which adjusted the experts’ scores against a 1275 
consensus or collective opinion defined by a general linear model, successfully dampened 1276 
individual scoring biases (Figure S32).  1277 

All 314 expert site assessments were selected for comparison with the HCAS v2.3 data. Polygons 1278 
were converted to a 100m grid, then centroids were exported to a point file resulting in 143,831 1279 
sites for the Type II analysis. The HCAS v2.3 data resolution was 250m resulting in some 1280 
duplication, but this was even across all comparisons.  1281 

 1282 

Type II analysis 1283 
With a Type II regression approach, a perfect (even if noisy) correlation between two variables 1284 
being analysed can be expected to yield a fitted line close to the 1-to-1 line (something that cannot 1285 
be expected with ordinary least squares regression, OLS). This in turn translates to a slope of 1.0 1286 
with 0.0 intercept, and a slope angle of 45°. Also, the standard RMSE metric (which, in OLS, 1287 
measures deviations from data points from the fitted line vertically; that is, parallel to the response 1288 
variable’s axis) becomes meaningless with a Type II regression – here, none of the variables were 1289 
assumed to be a response to another, considered as a predictor variable. Instead, a similar measure 1290 
of dispersion can be achieved by measuring average residual error (distance) perpendicular to the 1291 
fitted Type II line, a metric which we labelled Root Mean Square Orthogonal Error (RMSOE), for 1292 
which lower values are preferred. 1293 

The Major Axis Type-II regression demonstrated reasonable agreement between the HCAS v2.3 1294 
base model data (2001−18) and each set of expert’s condition scores (Figure S33). Agreement was 1295 
higher when using the virtual transect method, possibly because that approach was developed 1296 
specifically for validating HCAS scores using remote sensing imagery for the assessment. The 1297 
HCAT expert site assessments method relied upon direct field experience and was intended to 1298 
provide data for a range of potential applications. The experts scores contributed through the virtual 1299 
transects approach, however, could not be cross-calibrated because a mechanism to do this was not 1300 
part of that method. Future application of virtual transects would ideally involve more than one 1301 
expert scoring sites for each transect.  1302 

 1303 



 

59 

 1304 

Figure S33. Type II regressions between HCAS v2.3 ecosystem condition and expert condition scores from 1305 
virtual transects (left) and rescaled HCAT expert site condition ‘best’ scores (right) 1306 
The ‘Intercept’ results are the estimated intercept using the Type II regression (with confidence interval, CI, range); the 1307 
‘Slope’ results are the estimated slope coefficient (with CI) – best when closest to 1.0; the ‘Angle’ result is the estimated angle 1308 
of the fitted line (best when closest to 45°); RMSE and R-squared are the standard metrics from a normal linear regression 1309 
(i.e., not a Type II regression); and RMSOE is the “bespoke” orthogonal RMSE between the data points and the Type II 1310 
regression line (‘bespoke’ in the sense that it is not really a standard metric of modelling error, but provides some insight into 1311 
the “orthogonal” variability of the data points from the regression line, i.e., in the spirit of the Type II analysis). 1312 

 1313 

Existing maps of ecosystem modification levels 1314 

The calibrated HCAS version 2.3 scores were also compared with categorical mapping of native 1315 
vegetation modification levels derived from a wide range of land use and land cover datasets for 1316 
Australia (Lesslie et al. 2010) consistent with the Vegetation Assets, States and Transitions (VAST) 1317 
narrative framework (Thackway and Lesslie 2006, 2008). Continuous HCAS scores were assigned 1318 
discrete VAST classes on the basis of elicited expert’s condition scores to enable a comparison of 1319 
ordered categories. Concordance between two datasets was then qualitatively assessed using a 1320 
confusion matrix. The experts condition scores were also assigned to VAST spatial data categories 1321 
to generate an ordinal dataset used in a Type II comparison with HCAS continuous data to show the 1322 
nature of the relationship. The VAST narrative framework is useful in this context because it 1323 
enables broad categories of HCAS condition scores to be related to vegetation modification levels 1324 
for interpretative and communication purposes.  1325 

The classification terminology originally developed by Thackway and Lesslie (2006) provides a 1326 
values-neutral framework for general communication and reporting on vegetation condition 1327 
(summarised in Table S21), which facilitates inclusion and discussion with diverse stakeholders 1328 
having different world views and perspectives about the environment. 1329 
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Table S21. The six categories of the vegetation assets, states and transitions (VAST) narrative framework 1330 
(Thackway and Lesslie 2006, 2008) and the description of current regenerative capacity (one of several 1331 
diagnostic criteria).  1332 

VAST category VAST description of current regenerative capacity 
Class 0: Residual Bare Natural regenerative capacity unmodified— ephemerals and lower plants 
Class I: Residual Natural regenerative capacity unmodified 

Class II: Modified Natural regeneration tolerates or endures under past and or current land 
management practices 

Class III: Transformed 
Natural regenerative capacity limited or at risk under past and or current land 
use or land management practices. Rehabilitation and restoration possible 
through modified land management practice 

Class IV: Replaced - 
Adventive 

Regeneration of native vegetation community has been suppressed by ongoing 
disturbances of the natural regenerative capacity; limited potential for 
restoration 

Class V: Replaced - 
Managed 

Regeneration of native vegetation community lost or suppressed by intensive 
land management; limited potential for restoration 

Class VI: Removed Native vegetation community removed 
 1333 

Expert elicitation of condition scores for VAST vegetation modification levels 1334 

Twenty-six experts with field ecology survey and mapping expertise contributed condition scores 1335 
for each of the VAST categories summarised in Table S21. Most also provided comments to 1336 
explain their choices or reflections on the narrative framework descriptions, which was an optional 1337 
part of the survey.  1338 

This activity was approved by the CSIRO Social Science and Human Research Ethics Committee 1339 
(original clearance: 115/22; data reuse clearance 197/23 and 199/23).  1340 

Experts were asked to assign ecosystem condition scores as follows:  1341 

• an overall condition score for each VAST ecosystem category between 0 and 1 1342 

• a plausible upper and lower bound for their condition score 1343 

• their confidence (between 50 and 100%) that the interval described captures the true value 1344 
of condition for that VAST ecosystem category. 1345 

Specific questions were provided in an Excel workbook with tables for each VAST category. Each 1346 
table included the category description, diagnostic and examples as originally published by 1347 
Thackway and Lesslie (2006). A registration page in the workbook asked participants to provide a 1348 
survey code so that results could be anonymised but identifiable by the participant, and instructions 1349 
on how to complete the survey. An introduction page outlined the method. A glossary defined the 1350 
terms ‘site condition’ and ‘landscape context’ so that participants understood that their scores 1351 
should only relate to site condition. Participants were also provided with a copy of the journal 1352 
article for background.  1353 

In a follow up online workshop the aggregated results were presented, and experts invited to refine 1354 
their scores, if they wished. One respondent revised their estimates in the second round. 1355 

Following consistency checks, scores for two respondents were not included in the final analysis 1356 
due to an apparent misunderstanding of the exercise. Additionally, individual best estimates falling 1357 
outside lower and upper bounds were excluded before pooling. The median statistic was used for 1358 
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pooled estimates (Table S22 and Figure S34) because it represents the typical response by experts 1359 
and is preferentially used when data are skewed by outliers.  1360 

Table S22. Pooled estimates of experts’ ecosystem condition scores for each VAST category, summarised as the 1361 
median for the best, lower and upper bounds.  1362 

Vast category Best median Lower median Upper median Number of 
respondents 

Residual bare 0.75 0.50 1.00 24 

Residual 0.88 0.75 1.00 24 

Modified 0.60 0.40 0.80 23 

Transformed 0.40 0.28 0.60 24 

Replaced-
Adventive 0.25 0.10 0.40 24 

Replaced 0.15 0.05 0.30 23 

Removed 0.05 0.00 0.10 23 

 1363 

 1364 

Figure S34. Pooled estimates of experts’ ecosystem condition scores for each VAST category summarised as the 1365 
median for the best, lower and upper bounds.  1366 
Respondents with best estimates falling outside the bounds did not contribute to the pooled estimates.  1367 

 1368 

An unexpected result of the pooled expert estimates was the generally much lower scores given to 1369 
the ‘Residual-bare’ category compared with the ‘Residual’ category (Table S22 and Figure S34). In 1370 
the VAST framework (Thackway and Lesslie 2006, 2008), these two categories are considered 1371 
equivalent reference condition levels, and differ only in the type of ecosystem. Naturally bare areas 1372 
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are defined as “Areas where native vegetation does not naturally persist and recently naturally 1373 
disturbed areas where native vegetation has been entirely removed. (i.e., open to primary 1374 
succession)”. Examples given included “Bare mud; rock; river and beach sand, salt and freshwater 1375 
lakes, rockslides and lava flows”. Comments against responses from experts indicated that some 1376 
considered climate variability and other pressures to be a factor in the occurrence of ‘Residual-bare’ 1377 
natural areas and so condition scores below reference were frequently reported. The term ‘bare’ was 1378 
often equated with disturbance-related degradation processes rather than a natural phenomenon. 1379 
Some experts also referred to bare areas as not having much ‘value’, as a reason for their scores, 1380 
and this may have further influenced lower scores than expected for these reference ecosystems. 1381 
Variation in expert’s perceptions is further demonstrated by greater variability in individual 1382 
estimates associated with ‘Residual-bare’ compared with other classes (Table S22 and Figure S34). 1383 
Because of this confusion, ‘Residual-bare’ was dropped as a category for our purposes. We 1384 
therefore use expert scores for ‘Residual’ as indicative of scores expected for ‘Residual-bare’.  1385 

Pooled medians of the expert’s best estimate scores for ecosystem condition based on six VAST 1386 
classes were used to fit a curve for the relationship between 0 and 1 (as above, excluding ‘Residual-1387 
bare’ which was assumed equivalent to ‘Residual’ category for this purpose) (see Figure S35). The 1388 
0 and 1 condition extremes are halfway between VAST classes because the latter represent medians 1389 
of experts best estimate for that class. The mid-points between scores along the fitted line were used 1390 
to set class boundaries, and rounded (up or down) to the nearest 0.05 (Table S21) for discretising 1391 
the ecosystem condition index. These class ranges are well within median aggregated upper and 1392 
lower bounds based on individual expert’s condition scores (Figure S34).  1393 

 1394 

Figure S35. Curve fitted to median of expert’s pooled best estimates of condition scores (n = 23 for modified, 1395 
replaced, removed; n = 24 for residual, transformed, replaced-adventive) interpreted for the VAST narrative 1396 
framework (Thackway and Lesslie 2006, 2008).  1397 

 1398 

 1399 
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Table S23. Discretisation of ecosystem condition into six ordinal categories aligned with the Vegetation Assets, 1400 
States and Transitions (VAST) narrative framework (Thackway and Lesslie 2006, 2008), as informed by 1401 
ecological experts (note that the ‘Residual-bare’ class is here equates with the ‘Residual’ class).  1402 

VAST category Lower bound Upper bound Rounded lower Rounded upper 

1. Residual 0.73 1.00 0.75 1.00 

2. Modified 0.51 0.73 0.50 0.75 

3. Transformed 0.34 0.51 0.35 0.50 

4. Replaced-
adventive 

0.18 0.34 0.20 0.35 

5. Replaced (-
managed) 

0.08 0.18 0.10 0.20 

6. Removed 0.00 0.08 0.00 0.10 

 1403 

Concordance analysis 1404 

The ‘rounded’ version of expert-informed VAST class condition scores in Table S23 was used to 1405 
reclass the continuous ecosystem condition index. The reclassification was applied to the ecosystem 1406 
site condition index output of the HCAS v2.3 base model (2001−18) and each of the annual epochs 1407 
between 2001 and 2018 (data collection: Harwood et al. 2023). To approximate the temporal range 1408 
of the VAST version 2 spatial data (1995-2006: Lesslie et al. 2010), the average of six HCAS 2.3 1409 
annual epochs of ecosystem site condition in the overlapping temporal range, 2001 to 2006, were 1410 
used for comparison (Figure S36). Five categories were in common between the two datasets: 1411 
residual-bare and residual classes were grouped as ‘residual’, and replaced-adventive and replaced-1412 
managed were grouped as ‘replaced’.  1413 

Overall concordance between five common categories was 42% indicating moderate agreement 1414 
(Table S24) and, when collapsed to two classes depicting relatively natural versus intensively 1415 
modified areas, overall concordance was 87% indicating high agreement (Table S25).  1416 

 1417 
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 1418 

Figure S36. National VAST comparisons using cross-walked legend colours for the 5 common groupings.  1419 
The VAST version 2 spatial dataset has grouped the two ‘Replaced’ classes (left) (Lesslie et al. 2010), whereas the expert-1420 
informed VAST classification of HCAS v2.3-derived ecosystem site condition (2001-2006 average of epochs) has grouped the 1421 
two ‘Residual’ classes (right). Note: ‘Bare’ in the VAST narrative framework is a special case of the ‘Residual’ class.  1422 

 1423 

Table S24. Five-class concordance assessment summary table (unbiased estimates) comparing the VAST version 1424 
2 spatial dataset and the HCAS v2.3 ecosystem site condition subindex averaged over 7 annual epochs, 2001 to 1425 
2006, for continental Australia (based on data in Table S26).  1426 
The user’s concordance is based on the proportion of HCAS and VAST pixels that are classified the same relative to the total 1427 
number of HCAS pixels in that class (i.e., how consistent the classified HCAS data are compared with the VAST data and 1428 
therefore the likelihood of concordance). Producer’s concordance is the proportion of HCAS and VAST pixels classified the 1429 
same relative to the total number of VAST pixels in that class (i.e., predicting how well new VAST-classified HCAS data 1430 
would compare with the existing VAST spatial data). The standard error and 95% confidence intervals (CI) are for HCAS 1431 
compared with VAST, frequency is number of 0.0025 degree data pixels.  1432 

Class  
(HCAS v2.3) 

Standard 
error 

(frequency) 

+/- 95% ci 
(frequency) 

% users 
concordance 

(HCAS vs 
VAST) 

% producers 
concordance 

(VAST vs 
HCAS) 

% overall 
concordance 

Residual 4,886 9,577 65.14 58.44 42.04 

Modified 4,122 8,080 22.00 31.56 

Transformed 4,025 7,888 27.56 13.02 

Replaced 2,770 5,429 35.10 33.19 

Removed 374 733 1.18 67.06 

 1433 

 1434 

 1435 
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Table S25. Two-class concordance assessment summary table (unbiased estimates) comparing the VAST version 1436 
2 spatial dataset and the HCAS v2.3 ecosystem site condition subindex (averaged over 7 annual epochs, 2001 to 1437 
2006), for continental Australia (based on data in Table S27).  1438 
The user’s concordance is based on the proportion of HCAS and VAST pixels that are classified the same relative to the total 1439 
number of HCAS pixels in that class (i.e., how consistent the classified HCAS data are compared with the VAST data and 1440 
therefore the likelihood of concordance). Producer’s concordance is the proportion of HCAS and VAST pixels classified the 1441 
same relative to the total number of VAST pixels in that class (i.e., predicting how well new VAST-classified HCAS data 1442 
would compare with the existing VAST spatial data). 1443 

Class  
(HCAS v2.3) 

% users concordance  
(HCAS vs VAST) 

% producers concordance  
(VAST vs HCAS) 

% overall 
concordance 

Relatively natural 96.31% 25.73% 87.47 

Intensively utilised 47.83% 74.27% 

 1444 

For the concordance analysis, the VAST version 2 spatial dataset (Lesslie et al. 2010) was 1445 
resampled from the original 0.01 degree grid to 0.0025 degrees to match the HCAS v2.3 ecosystem 1446 
site condition data. Non data pixels in either dataset were excluded from consideration. The 5-class 1447 
and binary confusion matrices are shown in Table S26 and Table S27. The corresponding 1448 
concordance assessments (Table S24 and Table S25) applied the recommendations by Olofsson et 1449 
al. (2013) for making better use of accuracy data in land change studies (see also NASA 2018a, 1450 
NASA 2018b). Comparisons are reported as concordance assessments because neither dataset 1451 
represents 'truth’ for an accuracy assessment.  1452 

For interpretation, we use the Landis and Koch (1977) scale of observer agreement: a value greater 1453 
than 0.80 (i.e., 80%) represents strong agreement; a value between 0.40 and 0.80 (i.e., 40–80%) 1454 
represents moderate agreement; and a value below 0.40 (i.e., 40%) represents poor agreement. 1455 

Both user’s (HCAS vs VAST) and producer’s (VAST vs HCAS) concordances for the residual 1456 
class are greater than 50% (Table S24). The HCAS v2.3 ecosystem site condition subindex shows 1457 
some substantial areas of ‘Residual’ which correspond with VAST ‘Modified’ or ‘Transformed’ 1458 
land types, and the VAST dataset shows some ‘Residual’ which correspond with ‘Transformed’ in 1459 
the ecosystem site condition subindex. Overall the ‘Removed’ category is much more extensive in 1460 
the HCAS v2.3 ecosystem site condition dataset, than in the spatial VAST dataset, whereas the 1461 
‘Replaced’ and ‘Transformed’ categories are much more extensive in the spatial VAST dataset than 1462 
in the ecosystem site condition dataset.  1463 

 1464 
 1465 
 1466 
 1467 
 1468 
 1469 
 1470 
 1471 
 1472 
 1473 
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Table S26. Confusion matrix percentages comparing VAST version 2 spatial dataset and HCAS v2.3 ecosystem 1474 
site condition (ESC) subindex averaged over 7 annual epochs, 2001 to 2006, in 5 categories, for continental 1475 
Australia.  1476 
The two replaced categories in the VAST classification of the ESC subindex were grouped, for consistency with that grouping 1477 
in the VAST version 2 spatial dataset (Lesslie et al. 2010). Data are percentages of the total number of 0.0025 degree data 1478 
pixels used in the analysis. Numbers for totals and diagonals are shown in Bold.   1479 

HCAS v2.3 
ESC categories 

VAST version 2 categories 
Residual Modified Transformed Replaced Removed Row total 

Residual 29.64 9.28 6.00 0.58 0.00 45.50 

Modified 14.98 6.08 5.27 1.29 0.01 27.63 

Transformed 3.20 1.92 2.38 1.13 0.01 8.64 

Replaced 2.36 1.63 3.11 3.85 0.03 10.98 

Removed 0.54 0.35 1.51 4.75 0.09 7.25 

Column total 50.72 19.26 18.28 11.61 0.13 100.00 

 1480 

Table S27. Confusion matrix percentages comparing VAST version 2 spatial dataset and HCAS v2.3 ecosystem 1481 
site condition (ESC) subindex averaged over 7 annual epochs, 2001 to 2006, in 2 categories: relatively natural 1482 
(Residual, Modified, Transformed) versus intensively utilised (Replaced, Removed), for continental Australia.  1483 
Data are percentages of the total number of 0.0025 degree data pixels used in the analysis. Numbers for totals and diagonals 1484 
are shown in Bold. 1485 

HCAS v2.3 ESC 
categories 

VAST version 2 categories 

Relatively natural Intensively utilised Row total 

Relatively natural 78.75 3.02 81.77 

Intensively utilised 9.51 8.72 18.23 

Column total 88.26 11.74 100.00 

 1486 

 1487 

Type II analysis 1488 
The best median of expert’s scores from Table S22 were used to convert VAST spatial data categories to 1489 
an ordinal dataset for type II comparison with HCAS continuous data (Figure S37). The results 1490 
suggest HCAS increasingly under-estimates condition below around 0.75 compared with expert’s 1491 
scores expressed through the VAST spatial data, and slightly over-estimates condition of the 1492 
reference state (i.e., VAST ‘residual’ class).  1493 

 1494 
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 1495 

Figure S37. Type II regression between expert-derived spatial VAST median condition scores, 1995-2006 (x-axis) 1496 
and HCAS v2.3 ecosystem site condition scores averaged over the seven annual epochs, 2001 to 2006 (y-axis).  1497 
The ‘Intercept’ results are the estimated intercept using the Type II regression (with confidence interval, CI, range); the 1498 
‘Slope’ results are the estimated slope coefficient (with CI) – best when closest to 1.0; the ‘Angle’ result is the estimated angle 1499 
of the fitted line (best when closest to 45°); RMSE and R-squared are the standard metrics from a normal linear regression 1500 
(i.e., not a Type II regression); and RMSOE is the “bespoke” orthogonal RMSE between the data points and the Type II 1501 
regression line (‘bespoke’ in the sense that it is not really a standard metric of modelling error, but provides some insight into 1502 
the “orthogonal” variability of the data points from the regression line, i.e., in the spirit of the Type II analysis). 1503 

 1504 

Visual assessments 1505 

A series of visualisation case studies were used to compare HCAS output against expectations of an 1506 
ability to discriminate ecosystem condition where natural processes prevail, compared with known 1507 
modified lands using national mapping of land use and land cover. These case studies focussed on 1508 
areas of exotic species plantation forestry, inland regions of lateral water inflow and salt lakes, 1509 
landscape dynamics associated with surface water and snow country, unique features in rugged 1510 
landscapes, rapid development in urban areas, and surface mines – resource extraction. Details are 1511 
presented in Williams et al. (2023b).  1512 

The remaining limitations relate mainly to: (i) incomplete characterisation of ecosystem structure, 1513 
function, and composition based on the set of remote sensing input variables; (ii) an incomplete 1514 
characterisation of landscape features in environmental covariates—especially those related to 1515 
landscape heterogeneity and landscape water; and (iii) a need to further improve structure and 1516 
quality of training and benchmark data used to represent locations with reference condition.  1517 

Many of the 65 recommendations by Williams et al. (2021) for improving the HCAS remain valid. 1518 
Several of these have been addressed through incremental improvements up to HCAS v2.3.  1519 
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