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Abstract 22 

Aims 23 

Invasive alien plants can severely impact ecosystem diversity and function. While individual 24 

species’ effects are often studied, the interaction between multiple invasive species is less 25 

understood. This study examines how Asclepias syriaca and Solidago spp. (including 26 

Solidago gigantea and S. canadensis) influence taxonomic and functional diversity in sandy 27 

old-fields. The aims are to: (1) assess the individual and combined impacts of Asclepias and 28 

Solidago on resident plant diversity, and (2) determine whether interactions between these 29 

species alter their effects on the invaded community. 30 

Location 31 

Gödöllő Hills, Central Hungary. 32 

Methods 33 

I sampled 80 plots (2m × 2m) on sandy old-fields with varying levels of Asclepias and 34 

Solidago cover. Plant species cover was visually estimated, and trait data were obtained from 35 

databases. Species richness, community completeness, and community-weighted means 36 

(CWM) for plant traits, along with Rao functional diversity. Generalized linear and mixed 37 

models were used to evaluate the effect of invasive cover on resident diversity and traits, both 38 

with and without considering the invasives' traits in community indices. 39 

Results 40 

While Asclepias showed no significant effect, Solidago cover significantly reduced species 41 

richness and community completeness. When invasive species traits were excluded from the 42 

analysis, only the CWM and Rao diversity of the bud bank index were significantly related to 43 

Solidago cover. Including the invasives’ traits revealed that their trait values influenced 44 

community indices significantly. Asclepias and Solidago cover were negatively correlated, 45 

but did not alter each other’s effects. 46 

Conclusions 47 



 

 

Solidago has a stronger negative impact on resident species richness than Asclepias, which 48 

appears neutral. Trait-based mechanisms of reduced richness under Solidago dominance 49 

needs further study. The lack of interaction between these invaders suggests their individual 50 

impacts dominate over potential synergies or antagonisms. 51 
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Introduction 57 

Most alien plant invasions are known to reduce the diversity and functioning of the recipient 58 

communities (Livingstone et al. 2020). The effect of invasions are typically examined by 59 

seeking for correlation between the abundance of a focal alien species and a community-level 60 

index of diversity or ecological function (Barney et al. 2013, Bradley et al. 2019). Even 61 

though the colonization and the spread of multiple invasive species in the same community 62 

are relatively common, the interaction between their effects gained relatively little attention 63 

(but see Kuebbing et al. 2013, Tekiela & Barney 2017). Co-occurring invasive species may 64 

mitigate or facilitate each other’s effect on the recipient community, either directly or 65 

indirectly (Reeb & Kuebbing 2024). Multi-species invasions (also called co-invasions) may 66 

need a different management approach, too; for which deep understanding of the interaction 67 

between invasive species is essential (Brandt et al. 2023). 68 

The ‘invasion meltdown’ hypothesis (Simberloff & Von Holle 1999, Simberloff 2006) 69 

suggests that alien species facilitate the spread of other aliens in the invaded community, and 70 

their impact on the community or ecosystem thus accelerates. Braga et al. (2018) found a 71 

broad support for this hypothesis; however, the link with interspecific interactions was rarely 72 

justified. Kuebbing and Nuñez (2015) found neutral (additive) and negative (antagonistic) 73 

interaction between alien species the most common; on the contrary, several recent findings 74 

support synergistic effects between invasive species (Zenda et al. 2020, Zhang et al. 2020, Yu 75 

et al. 2023, Lone et al. 2024). The contradictory support for the type of interaction between 76 

the effects of alien species, as well as their variation in spatial scale, types of organism and 77 



 

 

ecosystem suggest that more case studies are necessary to find general rules (Ahmad et al. 78 

2025). 79 

The effects of invasive plants is highly context-dependent (Gonzalez-Moreno et al. 2014). 80 

Besides neglecting interactions between alien species, a caveat of examining them separately 81 

derives from the confounding effects of variation in site history, species pool and 82 

environmental background (Catford et al. 2021). Assessing how multiple invasive plants 83 

affect the same community offers an additional benefit by unifying the context of the study, 84 

thus fostering between-species comparisons. 85 

Grasslands on sandy soils are among the habitats most threatened by alien plant invasions in 86 

Europe (Axmanová et al. 2021). Disturbed habitats, including ruderal vegetation and old-87 

fields, are especially prone to colonization by alien plants (Pyšek et al. 2010). Along with 88 

large-scale changes in management driven by urbanization, the increasingly disturbed sandy 89 

areas have become hotspots for plant invasions worldwide (Chytrý et al. 2008, Lazaro-Lobo 90 

et al. 2020). In the Pannonian Ecoregion, several neophyte herbs contribute to the high level 91 

of invasion, including Asclepias syriaca, Solidago gigantea, S. canadensis, Ambrosia 92 

artemisiifolia, Erigeron canadensis and E. annuus (Botta-Dukát 2008, Botta-Dukát & Balogh 93 

2008), while further arrivals have been expanding recently, e.g. Gaillardia aristata (Süle et al. 94 

2023), Sporobolus cryptandrus (Kröel-Dulay et al. 2024), S. neglectus (Király 2016). 95 

Although, extensive cross-species comparisons estimated impacts of some of the above 96 

species on the diversity of the invaded communities (Hejda et al. 2009, Hejda & De Bello 97 

2013, Fenesi et al. 2023), their combined effect has never been considered explicitly. 98 

Asclepias syriaca and Solidago spp. frequently colonize sandy old-fields and become 99 

dominant. Earlier studies found a negative effect of Solidago on the recipient community 100 

(Botta-Dukát & Dancza 2008, Pal et al. 2015), while there is no consensus about the effects of 101 

Asclepias (Kelemen et al. 2016, Szitár et al. 2018, Bakacsy 2019, Fenesi et al. 2023). Szitár et 102 

al. (2018) proposed even facilitative effects of Asclepias on grasses of water-stressed 103 

ecosystems. 104 

Despite Asclepias and Solidago spp. are not close relatives phylogenetically, and they prefer 105 

slightly different habitats, their invasions on sandy old-fields might be viewed as similar 106 

phenomena: the colonisation by a functionally distinct, tall, perennial forb with effective 107 

below-ground clonal spreading (see below in more detail). Based on this functional similarity 108 

and the competitive exclusion hypothesis (Meszéna et al. 2006, Wang et al. 2019a), in the 109 

case of co-invasion, one might expect Asclepias and Solidago be competing with each other, 110 



 

 

thus indirectly facilitating the other species of the community; that is, their interaction effect 111 

should be negative (antagonistic). 112 

In this study, I test how the diversity and trait composition of the recipient community are 113 

affected by the invasion of Asclepias syriaca, Solidago gigantea and S. canadensis (treated 114 

together as Solidago) on sandy old-fields in Central Hungary. My aims are (1) to examine the 115 

effect of Asclepias and Solidago on taxonomical and functional diversity of the same recipient 116 

communities, and (2) to test if they modify each other’s effect. 117 

 118 

Materials and Methods 119 

Study area 120 

The study was conducted in the Gödöllő Hills region of Central Hungary (Fig. 1) on sandy 121 

soils with moderate clay content (Pásztor et al. 2015, DoSoReMI.hu 2025). The climate is 122 

temperate, with mean annual temperature of 10–10.5 °C and 550–600 mm precipitation 123 

(Hungarian Meteorological Service 2024). The landscape is shaped by sand dunes and 124 

depressions, supporting subcontinental forest steppe vegetation, a mosaic of dry grasslands, 125 

open forests, and wetland patches (Zólyomi 1989). The most characteristic habitats are open 126 

and closed sand grasslands on dune tops and slopes, with dominant grasses such as Festuca 127 

vaginata, Stipa borysthenica, and Koeleria glauca, while less extreme sites support Festuca 128 

rupicola, F. pseudovina, and Poa angustifolia. Long-term human activity has fragmented the 129 

landscape, and recent urbanization near Budapest has intensified this trend, resulting in a 130 

mosaic of industrial zones, croplands, residential areas, and alien tree plantations (Robinia 131 

pseudacacia, Populus, Pinus spp.). 132 

Four dry grassland sites were selected, sized 1100–4500 m² and ≤1.4 km apart, on flat sand 133 

ridges once cultivated but abandoned by 2002. They now support uncharacteristic 134 

successional vegetation, with the dominance of native grassland species (Poa angustifolia, 135 

Stipa borysthenica, Teucrium chamaedrys, Carex stenophylla) and alien species (Asclepias 136 

syriaca, Solidago gigantea). Mowing occurs irregularly, no more than once per year. 137 

Site selection criteria included: (1) presence and varying density of A. syriaca and S. 138 

gigantea; (2) frequent co-occurrence of both at 2×2 m scale; (3) similar environmental and 139 

land-use history; (4) comparable species pools; and (5) absence of management or access 140 



 

 

constraints. Site 1 lies in a saddle between ridges, while sites 2–4 are on ridge plateaus. 141 

Elevation differences reach up to 14 m. 142 

Aerial imagery shows all sites were cultivated in 1970. Site 1 was re-vegetated by 1990, 143 

ploughed again in 1992, and abandoned by 2002, when all four sites showed regenerating 144 

vegetation and expanding alien clones. Since then, sites remained largely unmanaged, except 145 

for occasional mowing likely motivated by legal requirements rather than forage use. Thus, all 146 

are 22–32-year-old, irregularly mown successional grasslands, with Site 1 adjacent to more 147 

natural sand grasslands and supporting a richer native flora. More information on the sites is 148 

available in the Appendices S1 and S2. 149 

Focal alien species 150 

The focal species are Asclepias syriaca (Asclepiadaceae), Solidago gigantea and S. 151 

canadensis (Asteraceae), and the latter two are considered together as Solidago due to their 152 

high morphological and functional similarity. Asclepias and Solidago share several traits that 153 

make them effective in spreading and competing with the species of the recipient 154 

communities. They are perennial herbs usually exceeding 1 m height. They develop a rich and 155 

hardy rhizome system that is highly efficient in clonal reproduction, uptake of water and 156 

nutrients, and regeneration after above-ground damage (Bagi 2008, Botta-Dukát & Dancza 157 

2008). However, Asclepias has longer rhizomes with more distantly spaced above-ground 158 

shoots, thus its clones are sparser (Bagi 2008), usually not reaching higher cover than 50%, 159 

while the dense colonies of Solidago species can approach even 90%. All these species’ leaf 160 

and root extracts have allelopathic effect. Their generative reproduction is also efficient due to 161 

flowers attractive to many pollinator groups and the large quantity of wind-dispersed fruit 162 

(Szigeti et al. 2020, Moroń et al. 2021). Asclepias blooms from June to August, Solidago from 163 

July to October. They are native to North America. Their large-scale invasion in Hungary 164 

started in the late 19th and the early 20th century (Bagi 2008, Botta-Dukát & Dancza 2008). By 165 

the end of the 20th century, Asclepias was documented as the most widespread invasive 166 

species on sandy areas of Hungary (Bagi 2008, Botta-Dukát 2008). Since then, observational 167 

data suggest that its spread continued on non-sandy soils, while recently spontaneous die-168 

backs are experienced on the driest, formerly occupied, sandy habitats. Solidago spp. 169 

generally prefer wetter soils; however, they are also threatening dry grasslands if their deep 170 

root system is able to reach the ground water level. Their invasion were initiated from the 171 

more humid parts of the country but now they are common elsewhere in Hungary. 172 



 

 

Vegetation sampling and trait data 173 

In each site 20 plots of 2m×2m area were sampled between June and August 2022. Plots were 174 

located with the purpose of representing the range of cover values the focal invasive species 175 

reach, including patches where the two species co-occur or co-dominate. Hence, the study 176 

design applies a gradient approach instead of a ‘control vs. treatment’ view: a broadest 177 

possible range of potential values of the explanatory variables are sampled with the 178 

assumptions that higher cover of an invasive species affects the recipient community stronger. 179 

During the selection of sample plots, I tried to reduce spatial autocorrelation by avoiding plots 180 

with similar abundance composition (i.e. dominance by Asclepias, Solidago or other species) 181 

in close vicinity. In each plot the percentage covers of all vascular plant species as related to 182 

the plot area as 100% were visually estimated. The minimal summed cover of invasive 183 

species per plot was 0.01, the maximum was 93%. Species-specific cover tendencies and 184 

averages per site are available in the Appendix S1. Plant trait data for total height, specific 185 

leaf area, and seed mass were obtained from the PADAPT (Sonkoly et al. 2023), TRY (Kattge 186 

et al. 2020), LEDA (Kleyer et al. 2008), CLO-PLA (Klimešová et al. 2017), and Gyalus et al. 187 

(2022). These traits, as parts of the so-called leaf-height-seed (LHS) scheme, are considered a 188 

robust representation of major plant strategies (Westoby 1998, Laughlin et al. 2010). In 189 

addition, bud bank and clonality traits were involved according to Johansson et al. (2011) and 190 

E.-Vojtkó et al. (2016). Bud bank and clonality are similarly important dimensions of plant 191 

strategies, especially in avoiding and in regeneration after disturbance (Klimešová et al. 192 

2016). As most grasslands and old-fields in the study area are maintained by humans or 193 

grazing animals, plant adaptation to disturbance regimes is key in shaping their vegetation, 194 

hence expectedly relevant here, too. The bud bank score is the rank sum of above-ground and 195 

below-ground bud bank scores, while the clonality score is the rank sum of lateral spread and 196 

the number of offsprings per parent in the CLO-PLA database. For Hierochloe repens trait 197 

data was scarcely available, thus the measurements of its close relative, Hierochloe odorata 198 

were used instead. There were data gaps also for the recently discovered endemic Festuca 199 

pseudovaginata, for which I used the average values of the functionally similar F. vaginata, 200 

F. pseudovina and F. rupicola. 201 

In this study, I call ‘resident’ all species in the sample excluding Asclepias syriaca, Solidago 202 

gigantea and S. canadensis. 203 

Community indices 204 



 

 

To evaluate invasion effects, the following community indices were calculated for each plot: 205 

- Species richness; 206 

- Rao’s quadratic entropy (RaoQ) for each trait and all traits combined, using modified 207 

Gower distances (De Bello et al. 2021); 208 

- Community-weighted means (CWM) for each trait. 209 

Because these indices are influenced by species pool properties (Kraft et al., 2011, Bennett et 210 

al. 2016), I calculated additional metrics to control for these effects: 211 

- Community completeness, representing local richness relative to site-level species 212 

pool size (Pärtel et al. 2013) 213 

- Standardized effect sizes (SES) of RaoQ and CWMs, obtained via randomization. 214 

Abundance values within each plot were permuted across all species recorded at the 215 

respective site, preserving species richness and abundance distribution. Observed 216 

values of community indices were compared against null distributions obtained from 217 

randomizations, and the results were probit-transformed to generate standardized 218 

effect sizes (Botta-Dukát 2018). 219 

Community indices were calculated in two ways: 220 

1) Excluding the focal invasives, focusing on changes within the resident species of the 221 

community, thus reflecting community assembly mechanisms under invasion pressure. 222 

2) Including focal invasives, reflecting shifts in ecosystem properties in driven by 223 

invasion. 224 

Statistical analysis 225 

Generalized linear models (GLMs) and generalized linear mixed models (GLMMs) were 226 

fitted to assess relationships between focal alien cover and community indices. Site was 227 

included as a random effect in GLMMs (random intercept only). Four competing predictor 228 

structures were tested: 229 

1. ASC: Asclepias cover only 230 

2. SOL: Solidago cover only 231 

3. SUM: Combined Asclepias + Solidago cover 232 

4. INT: Additive and interactive effects of both invaders 233 



 

 

The SUM model tested whether total invasive abundance, rather than species identity, was the 234 

key driver. The INT model tested for interactions (sensu Duncan & Kefford 2021) interpreted 235 

as synergistic or antagonistic effects. 236 

GLMMs were used when the site as random factor improved the model fit significantly; 237 

otherwise, GLMs were preferred for simplicity and power. For each response variable, both 238 

model types were fitted, and the model with the lower Akaike Information Criterion (AIC) 239 

value was kept as a final model. Significant effects of model terms were tested using Wald 240 

tests. In the INT model, only the interaction term was interpreted to avoid redundancy with 241 

ASC and SOL models. 242 

Response distributions were Poisson (for species richness) or Gaussian (for other indices). 243 

Holm’s method (Holm 1979) was used to adjust p-values for multiple testing. 244 

Finally, Pearson correlation between Asclepias and Solidago cover values was calculated as a 245 

basic measure of their co-occurrence. 246 

All calculations were done using the R software environment using the gawdis (de Bello et al. 247 

2021), vegan (Oksanen et al. 2022), glmmTMB (Brooks et al. 2017), fundiversity (Grenié & 248 

Gruson 2024) packages. A detailed description of data analysis methods is available in 249 

Appendix S3. I declare having used ChatGPT (OpenAI, 2024) to assist with language 250 

improvement, formatting, and R programming. The final content was reviewed and edited by 251 

the author. 252 

Results 253 

Asclepias and Solidago showed a negative linear correlation (r= -0.3198, p=0.0038; Fig. 2). 254 

When Asclepias and Solidago were not considered during the calculation of community 255 

indices, significant relationships were found only in five models (Table 1). Species richness 256 

was negatively related with the SOL model (GLMM, z=-4.240, p=0.001; Fig. 3) and the SUM 257 

model (GLMM, z=-3.583, p=0.016; Fig. 3). SOL had a negative effect on community 258 

completeness (GLM, z=-4.784, p<0.001; Fig. 4), and a positive effect on the CWM of bud 259 

bank (GLM, z=3.345, p=0.041; Fig. 5). 260 

When I included Asclepias and Solidago into the calculation of community indices, species 261 

richness had no significant predictor (Table 2). Community completeness decreased with the 262 

SOL model (GLM, z=-3.736, p=0.007). CWM of plant height increased with SOL (GLMM, 263 

z=8.211, p<0.001) and SUM (GLM, z=11.377, p<0.001) models. CWM of seed mass 264 



 

 

increased with the ASC (GLM, z=5.383, p<0.001) but decreased in response to the SOL 265 

model (GLMM, z=-6.23, p<0.001). CWM of bud bank score had a positive response to SOL 266 

(GLMM, z=12.597, p<0.001) and SUM (GLMM, z=10.034, p<0.001) models, while CWM of 267 

clonal score decreased with them (SOL: GLMM, z=-6.272, p<0.001; SUM: GLMM, z=-268 

6.693, p<0.001). Rao diversity of seed mass increased with the ASC (GLM, z=4.413, 269 

p<0.001) but decreased with the SOL model (GLMM, z=-4.745, p<0.001). Rao diversity of 270 

the bud bank index increased with the SOL (GLMM, z=7.048, p<0.001) and SUM (GLMM, 271 

z=5.114, p<0.001) models. The INT model had no significant effect in any tests. 272 

 273 

Discussion 274 

Contrasting effects of Asclepias and Solidago on species richness and community 275 

completeness 276 

I found contrasting relationship between the two invasive species and plot-level richness of 277 

resident species. This is in agreement with most earlier studies presenting a negative effect of 278 

invasive Solidago species (Ledger et al. 2015, Pal et al. 2015, Wang et al. 2021a), and also 279 

supports those claiming no negative effect of Asclepias on resident species richness (Szitár et 280 

al. 2014, 2018, Kelemen et al. 2016; but see Fenesi et al. 2023). Moreover, plot-level species 281 

richness relative to species pool size, i.e. community completeness, of resident species also 282 

decreased with Solidago cover. In case of models fitted on species richness, GLMM models 283 

proved to be more parsimonious, while when the response variable was community 284 

completeness, GLM acquired lower AIC values. GLMMs include the site as random factor to 285 

account for site-specific patterns of species richness, while community completeness relates 286 

observed plot-level species richness to the number of species at the site unobserved in specific 287 

plots. Hence, controlling for site-specific effects seems to be a straightforward tool in the 288 

modelling of species richness as a function of invasive cover (Bennett et al. 2016). This can 289 

be done either by using random factors in the model, or by choosing a measure of richness 290 

standardized by the species pool of the site. The importance of site-specificity is a sign of 291 

idiosyncrasy, a common barrier in invasion research (Elliott-Graves 2016). Local sites vary in 292 

species pool due to differences in environmental background and history (Cornell & Harrison 293 

2014). However, species pool determines the community-level response to invasion; 294 

therefore, site-specificity must be controlled when searching for generalities in biological 295 

invasions (Bennett et al. 2016). 296 



 

 

Earlier studies mostly found unclear (Kelemen et al. 2016), or sometimes even positive effect 297 

(Szitár et al. 2018) of Asclepias dominance on species richness. Although, its establishment 298 

on the scarcely vegetated sandy grasslands or old-fields is conspicuous even from a distance 299 

due to its prominent height and biomass, Asclepias rarely reaches a cover over 50% at the 300 

scale of the sample plots. The looser spacing of above-ground stems is due to the longer 301 

rhizomes typically produced on less favourable habitats (Bagi 2008, Follak et al. 2021), and 302 

this dominance may not be enough to outcompete resident species. Moreover, a low or 303 

moderate cover of Asclepias may even buffer the effect of drought, a major stress factor on 304 

open, sandy habitats. The nurse effect was already documented by Szitár et al. (2018) in the 305 

establishment of natural dominant grasses of sandy grasslands. The effect of Solidago and 306 

Asclepias covers summed (that is, SUM models) were weaker than Solidago alone but 307 

stronger than Asclepias, also pointing at their contrasting behaviour. 308 

Trait responses of resident species to invasion 309 

The decreased local richness in the resident community with increasing dominance of 310 

Solidago is commonly attributed to its competitive ability (Pal et al. 2015). However, 311 

competition may act through different mechanisms that are scarcely explored yet in the 312 

context of Solidago invasion (but see Wang et al. 2018, 2019b, 2021b). Regarding Asclepias, 313 

Kelemen et al. (2016) reported trait-level response of resident plants to Asclepias cover 314 

despite no relationship with total species richness, while Fenesi et al. (2023) found decreasing 315 

species richness and increasing Rao diversity among the rest of the community with 316 

increasing Asclepias cover. Surprisingly, I found limited evidence of trait responses to 317 

invasion. When Asclepias and Solidago were excluded from the calculation of CWM and Rao 318 

diversity, the only significant response to any model was the increasing CWM of bud bank to 319 

Solidago cover and to the summed cover of both invasive species. The bud bank is essential 320 

for plant regeneration and individual-level persistence (Klimešová & Klimeš 2007), which 321 

suggests that these ecological functions are important for resident plants to survive on 322 

grasslands invaded by Solidago. Fig. 4 showed that with low Solidago cover, the SES of bud 323 

bank score ranged close to zero, while it increased significantly with Solidago cover. This and 324 

the relationship with species richness and completeness suggest that species with more 325 

developed bud bank are more likely to co-exist with Solidago. Re-sprouting ability is a key 326 

trait under biomass removal (Latzel et al. 2008, Herben et al. 2017), thus mowing of the sites 327 

may also modulate the effect of traits in community assembly; even if the sampling plot size 328 

and the dominance of invaders vary on a finer scale than on which mowing is carried out 329 



 

 

(sites are mown uniformly).  Nevertheless, bud bank can be correlated to reproductive traits or 330 

some specific forms of vegetative growth, that I did not involve in the analysis, but might play 331 

proximal role in competition.  332 

Together with the above significant relationships, the overall effect of Solidago on the trait 333 

composition and diversity of the resident species insufficiently explains why species richness 334 

and community completeness decrease with Solidago cover. I suggest two non-exclusive 335 

hypotheses on the reasons behind the weak explanatory power of trait-based models on 336 

community response to Solidago invasion. According to a deterministic explanation, 337 

decreasing richness/completeness is driven by a trait-based mechanism but not involving the 338 

traits I considered in this study. I selected traits that are most commonly included in studies 339 

dealing with community assembly. Among them, height is known as an important competitive 340 

trait for plants (Klimešová et al. 2008, Violle et al. 2009), including Pannonian sand 341 

grasslands (Lhotsky et al. 2016). Plant height of native species also responded to the invasion 342 

of S. canadensis according to Wang et al. (2021b). High SLA is also considered a successful 343 

strategy for plants of the recipient community to thrive under the invasion of alien species 344 

(Kelemen et al. 2016, Loiola et al. 2018, Wang et al. 2021b). Of course, the availability of 345 

measurements also played a role in selecting traits (Sonkoly et al. 2023). Other traits could 346 

respond more specifically to Solidago invasion, e.g. root traits related to nutrient uptake 347 

(Garbowski et al. 2020) or relationships with soil biota (Liao et al. 2015). This is reasonable, 348 

because Solidago invasion causes fundamental changes in soil properties and biota (Zhang et 349 

al. 2009, Wang et al. 2018b). Unfortunately, such trait data are not available in sufficient 350 

coverage for the Pannonian flora. According to a stochastic explanation, species resisting 351 

Solidago invasion do not obey any regularity; they are assembled randomly from the habitat-352 

specific species pool. Such a pattern could be expected, if Solidago outcompetes all species 353 

with similar efficiency; therefore, increased Solidago cover simply reduces the area of the plot 354 

suitable for existence of any other vascular plant. Higher Solidago cover allows fewer 355 

individuals of other species to grow in the plot, and under stochastic assembly, these 356 

individuals will represent fewer species. This mechanism can be reinforced by the stage of 357 

succession on the study sites. The sites are mainly in the phases of early colonization after a 358 

major disturbance (e.g. after ploughing), when random processes have a strong impact on 359 

community assembly of sandy old-fields on fine spatial scales (Török et al. 2018, Halassy et 360 

al. 2019, Csecserits et al. 2021). That is, community assembly might be stochastic on the sites 361 

anyway, not just as a response to Solidago invasion. In case of more natural or mid-362 



 

 

successional grasslands, the community response to invasion might show a tighter link with 363 

changes in trait composition or diversity (Kelemen et al. 2016, Bakacsy 2019). 364 

Invasions altering community functionality – the mass ratio hypothesis 365 

When I considered Asclepias and Solidago during the calculation of plot-level CWM and 366 

RaoQ, I found much more significant effects. One may argue this is trivial, since the covers of 367 

Asclepias and Solidago contributed to both the predictors and the dependent variables of the 368 

models thus involving circularity. However, the randomization procedure embodied the same 369 

level of circularity; therefore, its effect was partialled out from the SES values of the raw 370 

impact measures. Instead, I argue that the higher number of significant relationships is due to 371 

that both species bear rare trait syndromes within the species pool; thus, their increased 372 

contribution in a community affect both the mean trait value and the variation around it. 373 

These relationships can be explained by the mass ratio hypothesis (Grime 1998). 374 

One manifestation of the mass ratio hypothesis is the increased plant height CWM and RaoQ 375 

with the SOL and SUM models, but only when the focal species were included in the 376 

calculation. Solidago and Asclepias are among the tallest plants on sandy grasslands, and their 377 

increasing contribution to the total cover of the communities naturally increases the CWM of 378 

plant height. The Rao diversity of plant height also increases with increasing cover of tall 379 

plants, if shorter plants are not excluded selectively. 380 

Seed mass showed a strikingly different response to Asclepias and Solidago cover. While 381 

CWM and RaoQ of seed mass increased with Asclepias cover, they decreased with Solidago 382 

cover. The mass ratio hypothesis offers a parsimonious explanation here, too. Asclepias seeds 383 

are among the heaviest ones in the species pool (SES = +1.44), while Solidago seeds are 384 

moderately light (S. gigantea: SES = -0.694, S. canadensis: SES = -0.739). Hence, increased 385 

cover of Asclepias increases the mean seed mass of the community, and also the variation 386 

around it, if light-seeded species are not filtered out. In contrast, the dominance of light-387 

seeded Solidago naturally decreases the CWM of seed mass due to its increased contribution 388 

in the community. 389 

Interspecific relationship between Asclepias and Solidago 390 

Asclepias and Solidago covers were negatively correlated. This is not surprising as they share 391 

several resource acquisitive traits (height, extensive belowground organs, leaves distributed 392 

evenly along the stem, similar leaf types, slightly shifted but overlapping phenology; Bagi 393 



 

 

2008, Botta-Dukát & Dancza 2008) suggesting interspecific competition when getting in 394 

close contact. The negative correlation between any pair of species reaching high cover 395 

percentage is also a mathematical constraint due to limited space. Notably, I detected no 396 

significant interaction effect of Solidago and Asclepias cover; that is, the invasion of the two 397 

species affect the recipient community independently (i.e., additively) as they do not change 398 

each other’s effect. More specifically, Solidago is a strong competitor acting negatively on 399 

species richness and completeness of the community of resident species, and also on 400 

Asclepias. In contrast, Asclepias seems largely indifferent towards other species. 401 

Broader implications for interpretation and management 402 

There is a methodological difference between this study and the predecessors detecting 403 

eventual relationship between Asclepias or Solidago dominance and trait composition or 404 

diversity of native species in the recipient community. I used a permutation method in which 405 

random communities were assembled for each site from the site-level species pool in many 406 

repeats to generate null distributions of CWM and RaoQ (Götzenberger et al. 2016, Botta-407 

Dukát & Czúcz 2016), and then the observed values were transformed to standardized effect 408 

sizes. These SES values were used as dependent variables in the models instead of the raw 409 

index values. It is a rather ‘strict’ approach in the sense that structural biases in the data set 410 

due to plot-level or site-level species richness, site-level species pool, as well as the 411 

abundance distribution within plots are controlled. Earlier studies did not apply such 412 

permutation techniques to reduce these potential sources of bias but used raw CWM or 413 

functional diversity values as dependent variables without randomizations. As in similar cases 414 

(e.g. Kraft et al. 2011), some of the earlier conclusions might lose support, if validated against 415 

stricter null hypotheses. 416 

Fenesi et al. (2023) recently emphasized difficulties in finding general patterns in the 417 

relationship of community indices and invasive cover. Similarly, one must be careful when 418 

extrapolating the relationships (or the lack of them) found here outside the studied system: the 419 

Pannonian disturbed sandy old-fields. The species pool of this vegetation type is strongly 420 

filtered: it comprises species tolerating drought attributable to warm summers and low water 421 

retention capacity of the soil. Moreover, early successional and disturbance tolerant species 422 

are also overrepresented in the species pool compared to the entire Hungarian flora due to the 423 

history of the sites (Csecserits et al. 2021). It is possible that among such harsh conditions, the 424 

species pool is already strongly filtered leaving little room for invasive species to further 425 

reduce diversity. Bearing in mind the possible facilitative effects of invasive plants on sandy 426 



 

 

grasslands (Szitár et al. 2018), the more articulate examination of the relationship between 427 

community indices and invasive cover is necessary, including possible non-linear and density-428 

dependent effects (Fenesi et al. 2023). Besides the shape of the impact function, site history 429 

and the effects of species pool complicates generalization. 430 

Managing co-invasions may need a different perspective from single-species invasions 431 

(Brandt et al. 2023). However, in the case of Asclepias and Solidago, the interaction effect is 432 

not validated. Moreover, similar methods proved to be useful measures against the invasion of 433 

both species, e.g. long-term mowing and herbicide application (see Bakacsy & Bagi 2020, 434 

Berki et al. 2023 for Asclepias, and Nagy et al. 2022, Perera et al. 2022, Świerszcz et al. 2024 435 

for Solidago); therefore, no differentiation in management seems necessary on co-invaded 436 

stands. 437 

 438 

Conclusions 439 

While Solidago reduces plot-level species richness and community completeness of resident 440 

species, Asclepias has no significant effect on these properties. I found generally weak 441 

evidence of Asclepias syriaca and Solidago spp. affecting the trait composition and diversity 442 

of the accompanying resident species. However, in accordance with the mass ratio hypothesis, 443 

increased cover of invasive species proportionately contributes and changes the community-444 

level trait properties. I found no evidence of Asclepias and Solidago changing each other’s 445 

effect. 446 

 447 

Data availability 448 

The community data and the trait data table will be uploaded to the Dryad repository upon 449 

acceptance of the manuscript. 450 
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Figure 1. The map of the study sites 737 

 738 



 

 

 739 

Figure 2. Correlation of Asclepias cover and Solidago cover. The solid line is fitted with a 740 

major axis linear regression. Dashed lines show the 2.5%-97.5% confidence interval. The 741 

Pearson’s correlation coefficient is r=-0.3198 (p=0.0038). 742 
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Figure 3. Relationship of species richness with Asclepias (A; ASC model), Solidago (B; SOL 747 

model) and Asclepias + Solidago (C; SUM model) cover percentage. For significant 748 

relationships (Wald test, p<0.05), trend lines are fitted for each site, based on a GLMM with 749 

site as random factor. 750 
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Figure 4. Relationship of community completeness with Asclepias (A; ASC model), Solidago 753 

(B; SOL model) and Asclepias + Solidago (C; SUM model) cover percentage. Points of 754 

different colours indicate different study sites. For significant relationships (Wald test, 755 

p<0.05), a trend line is fitted based on a GLM with plots from all sites pooled.  756 
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 760 

Figure 5. Relationship of standardized effect size (SES) of the community-weighted mean 761 

(CWM) of the bud bank index with Asclepias (A; ASC model), Solidago (B; SOL model) and 762 

Asclepias + Solidago (C; SUM model) cover percentage. Trait values of Asclepias and 763 

Solidago are not considered in the calculation of bud bank index. Points of different colours 764 

indicate different study sites. For significant relationships (Wald test, p<0.05), a trend line is 765 

fitted based on a GLM with plots from all sites pooled. 766 
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Table 1. Wald test results of models and model terms (columns) related to community indices 770 

as response variables (rows). The occurrence and trait values of Asclepias syriaca and 771 

Solidago ssp. are not considered in the calculation of CWM- and RaoQ-based the response 772 

variables. Bold numbers indicate significant effect. Italics indicate GLMM, normal font 773 

indicate GLM. CWM = community-weighted mean, SLA = specific leaf area, RaoQ = Rao’s 774 

functional diversity. 775 

 
ASC SOL SUM INT 

 
z p z p z p z p 

species richness 1.583 M 1 -4.240 M 0.001 -3.583 M 0.016 -0.901M 1 

community 

completeness 

1.744 1 -4.784 <0.001 -3.723 0.01 -1.007 1 

CWM-height 0.906 1 0.710 1 1.226 1 -0.208 1 

CWM-SLA -0.841 M 1 -0.817 M 1 -1.282 M 1 0.338 M 1 

CWM-seedmass -1.89 M 1 -0.820 M 1 -1.855 M 1 0.882 M 1 

CWM-buds -0.388 1 3.345 0.041 3.217 0.063 -1.789 1 

CWM-clonal -0.62 M 1 -1.049 M 1 -1.419 M 1 -0.306 M 1 

RaoQ-all traits -0.725 M 1 -0.533 M 1 -0.934 M 1 -0.318 M 1 

RaoQ-height -0.898 M 1 -1.844 M 1 -2.418 M 0.687 -0.045 M 1 

RaoQ-SLA 1.088 1 -1.158 M 1 -0.776 M 1 -0.812 M 1 

RaoQ-seedmass -1.611 M 1 0.143 M 1 -0.677 M 1 0.364 M 1 

RaoQ-buds -0.744 M 1 2.826 M 0.217 2.525 M 0.521 -1.507 M 1 

RaoQ-clonal 0.053 M 1 -0.334 M 1 -0.32 M 1 -1.124 M 1 
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Table 2. Wald test results of models and model terms (columns) related to community indices 778 

as response variables (rows). The occurrence and trait values of Asclepias syriaca and 779 

Solidago ssp. are considered in the calculation of CWM- and RaoQ-based response variables. 780 

Bold numbers indicate significant effects. GLMM models are indicated as “M” next to the 781 

respective z-values, other models are GLMs. CWM = community-weighted mean, SLA = 782 

specific leaf area, RaoQ = Rao’s functional diversity. 783 

 
ASC SOL SUM INT 

 
z p z p z p z p 

species richness 1.042 M 1 -3.039 M 0.093 -2.613 M 0.314 -0.488M 1 

community 

completeness 

1.586 1 -3.736 0.007 -2.857 0.158 -0.493 1 

CWM-height 1.872 1 8.211 M <0.001 11.377 <0.001 0.375 1 

CWM-SLA -0.306 M 1 2.429 M 0.515 2.329 M 0.656 -0.983 M 1 

CWM-seedmass 5.383 <0.001 -6.23 M <0.001 -2.97 M 0.113 1.368 M 1 

CWM-buds -1.498 1 12.597 M <0.001 10.034 M <0.001 -0.792 M 1 

CWM-clonal -0.008 M 1 -6.272 M <0.001 -6.693 M <0.001 -0.589 M 1 

RaoQ-all traits -0.714 1 -0.937 1 -1.36 1 -0.917 1 

RaoQ-height 0.183 M 1 0.141 M 1 0.244 M 1 -1.567 M 1 

RaoQ-SLA 0.728 1 -1.167 M 1 -1.131 M 1 -1.591 M 1 

RaoQ-seedmass 4.413 <0.001 -4.745 M <0.001 -2.024 1 1.873 M 1 

RaoQ-buds -2.654 M 0.286 7.048 M <0.001 5.114 M <0.001 -0.725 M 1 

RaoQ-clonal -1.024 1 -1.013 1 -1.612 1 -0.337 1 
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