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Abstract 9 

Climate change is forcing societies to contend with increasingly fire-prone ecosystems. Yet, despite 10 
evidence of more extreme fire seasons, evidence is lacking globally for trends in wildfires with 11 
socially and economically disastrous effects. Using a systematic dataset, we analyse the distribution, 12 
trends, and climatic conditions connected with the most lethal and costly wildfire disasters from 1980-13 
2023. Disastrous wildfires occurred globally but were disproportionately concentrated in the 14 
Mediterranean and Temperate Conifer Forest biomes, and in populated regions that experience intense 15 
fire. The frequency of disastrous wildfires increased sharply from 2015, with 43% of the 200 most 16 
damaging events occurring in the last 10 years. Major disasters coincided with extreme climatic 17 
conditions, and such conditions significantly increased from 1980-2023, highlighting the urgent need 18 
to adapt to a more fire-prone world.  19 

Introduction 20 

Wildfire is a fundamental Earth system process that influences ecosystem dynamics, biogeochemical 21 
cycling, and socio-ecological systems (1, 2). Humans and our congeners have co-existed with fire for 22 
at least 400,000 years (1) and every continent except Antarctica has fire-adapted biomes (3). Despite 23 
this long coexistence with fire, anthropogenic climate change is now rapidly altering fire conditions 24 
around the world, presenting major challenges for inhabiting flammable landscapes (4, 5).  25 

Climate change has already caused fire weather to depart from its historical variability across ~20% of 26 
burnable land area globally (6). This change is largely driven by rising temperatures and increasing 27 
vapor pressure deficit (7, 8), leading to drier fuels (9), more extreme fire weather (10), and prolonged 28 
fire seasons (11). In some areas, these changes are compounded by high fuel loads stemming from a 29 
constellation of factors including long-term fire suppression, curtailment of Indigenous burning, 30 
spread of exotic species, and changes in land use and management (12). Consequently, fire activity is 31 
increasing in some regions, including the forests of western Canada (13), Australia (14), western 32 
United States (15), and high latitudes (16, 17), contributing to a doubling of energetically extreme 33 
fires over the last 10 years (17). Importantly, this change has occurred despite the global decline in 34 
area burned over the last two decades (mostly driven by fire regime changes in arid grasslands and 35 
tropical savannas (2, 18)). The societal effects of changing fire regimes are further compounded by 36 
human population growth and an expanding wildland-urban interface (19-22).  37 

Scientific papers and the media are pervaded by the notion that societally disastrous wildfires – those 38 
that cause major economic losses or deaths – are becoming increasingly common (23). Yet, prior 39 
analyses do not support this view, with analysis of a long-term global disaster database, Emergency 40 
Events Database (EM-DAT), reporting no temporal trends in the direct economic losses (1987-2014) 41 
and fatalities (1977-2014) caused by wildfires (23). The period since that analysis, however, has been 42 
punctuated by major fire disasters with disturbing regularity: in 2016, the Fort McMurray Fire caused 43 
US$4b damage, the costliest in Canadian history (24). In 2017, several major fires in California 44 
caused a combined ~US$15b in damages, the largest losses at the time (25). In 2018, the costliest fire 45 
in history, the Camp Fire (Paradise, California; US$16.5b (26)), killed 85 people, only to be eclipsed 46 
in 2023 by the Lahaina Fire (Hawaii) that caused 101 fatalities, the most lethal in modern US history. 47 



Major events have also occurred in Portugal (2017), eastern Australia (2019/2020), Algeria (2021), 48 
Greece (2018, 2021, and 2023), and Chile (2017, 2023, and 2024), with the most recent major event 49 
in Chile causing 135 fatalities (27). Thus, although fire conditions and regimes are clearly changing 50 
(2, 13-18, 28) and major events are seemingly mounting, there remains no systematic evidence of 51 
global changes in the frequency or magnitude of societally disastrous wildfires (23).  52 

Here, we analyse systematic records of wildfire disasters from 1980-2023 to identify geographic and 53 
temporal trends in wildfire disasters. To do this, we harmonised two systematic global disaster 54 
databases that report economic losses and fatalities associated with wildfires. NatCatSERVICE (29) is 55 
one of the world’s most comprehensive (but private) global disaster datasets compiled by Munich Re, 56 
a leading global reinsurance company. It follows a standardised methodology, with the dataset suitable 57 
for trend analysis from 1980 onwards (29). To complement NatCatSERVICE, we also incorporated 58 
the publicly available EM-DAT, compiled by the Centre for Research on the Epidemiology of 59 
Disasters (30). Using these data, we identified major disasters, defined here as events causing 10 or 60 
more fatalities (matching EM-DAT’s criteria) and the 200 largest economic losses as a percentage of a 61 
country’s gross domestic product (GDP) at the time, providing an economic measure that is 62 
comparable across economies. Using this novel dataset, we (1) quantify changes in the frequency and 63 
magnitude of major wildfire disasters, (2) characterise and model the geographic distribution of major 64 
wildfire disasters, and (3) identify the climatic conditions associated with wildfire disasters and 65 
evaluate whether such conditions have become more common due to climate change.  66 
 67 

Upward trend of disastrous wildfires 68 

Across multiple metrics, there was strong evidence that wildfire disasters are increasingly burdening 69 
societies around the world. Major economic losses caused by wildfire events increased by ~4.4-fold 70 
from 1980-2023 (p < 0.0001, Fig 1a). Of the 200 most damaging events, 43% occurred in the last 10 71 
years (Fig 1a). There was no evidence that the increasing trend is confined to a particular region 72 
(Table S2; Fig S5). 73 

Damage as a percentage of global GDP peaked in 2018 at 5.1 times higher than the 44-year average, 74 
totalling US$28.3 billion and 0.03% of global GDP (Fig 1d-e). The large increase in absolute damage 75 
costs was strongly driven by North America (Fig 1d) where prices are comparatively high. Total 76 
damage costs were strongly influenced by singular events (Fig S6), primarily in the western USA, 77 
typifying the skewed distributions characteristic of natural disasters (31). There have been 43 billion-78 
dollar events (2022 USD) since 1980, of which 51% occurred in the last 10 years (Fig 1c). Although 79 
this trend was similarly dominated by North America, billion-dollar events also occurred in Asia, 80 
Oceania (southern Australia and Indonesia), and Europe in the last decade (Fig 1c). 81 

The frequency of major fatality events causing 10 or more deaths (n = 85 events) increased by 3.1-82 
fold from 1980-2023 (p = 0.004; Fig 1b), during which the human population increased by 1.8-fold. 83 
This increase in major fatality events highlights the most urgent part of the disaster adaption pathway 84 
to address, wherein prioritizing improved communication and evacuation planning can facilitate 85 
protecting lives (32). Such preparedness activities focused on life safety, however, are also critical for 86 
saving property because firefighting resources can be redirected from search and rescue to structure 87 
protection (33). 88 

It is important to note that the effects analysed here represent only an index of the overall societal 89 
costs of wildfire because they do not include indirect losses or indirect fatalities. For example, the tens 90 
of thousands of fires that burned in Indonesia in 2015 were estimated to cause $1.2b in direct damage, 91 
but the World Bank estimated a much larger overall cost to the Indonesian economy of $19.9b 92 
(adjusted to 2022 USD; 34). Similarly, disaster datasets also likely underestimate wildfire fatalities, 93 
and do not delineate civilian from firefighter (i.e., line of duty) fatalities, which likely have different 94 
patterns. As noted by Doerr and Santín (23), wildfire causes fewer direct mortalities than earthquakes, 95 
floods, and storms. Nevertheless, there is likely a much larger underreporting problem for wildfire 96 



because the indirect effects of smoke often influence much broader regions and usually go 97 
unquantified (35). For instance, EM-DAT reported 19 direct deaths from the 2015 Indonesian fires, 98 
but the resulting smog that blanketed much of southeast Asia was implicated in as many as ~100,000 99 
additional premature deaths from respiratory problems (36) that are not present in such disaster 100 
databases.  101 
 102 

 103 

Figure 1. Increasing frequency and severity of wildfire disasters. In each panel, black lines show the 104 
5-year rolling average. (a) Temporal distribution of the 200 most damaging wildfire events, measured 105 
as a percentage of a country’s contemporaneous GDP. The blue line shows the fit of a GLM (± 95% 106 
CI). (b) Temporal trends in wildfire events that led to large losses of life, defined by EM-DAT as at 107 
least 10 fatalities, with the blue line showing the fit of a GLM (± 95% CI). (c) The annual frequency of 108 
billion-dollar events (2022 USD). (d) Total damage costs of wildfire disasters, calculated from all 109 
events (not just the top 200). (e) Total damage costs expressed as a percentage of global GDP, with 110 
the dashed line showing the 44-year mean. See Fig S5 for separate regional graphs of panel a, and 111 
Table S3 for model coefficients for a-c. 112 

 113 

Pyrogeography of major wildfire disasters  114 

Major wildfire disasters occurred globally, but they had distinct pyrogeographic patterns and biome 115 
specificity (Fig 2 and Fig 3). Disasters were heavily concentrated in the Mediterranean 116 
Forest/Woodland/Scrub Biome (Europe, southern South America, western USA, South Africa, and 117 
southern Australia) and the Temperate Conifer Forest Biome (mostly western North America), where 118 
disasters occurred 12.1 and 4.1 times more than expected based on the areas of those biomes, 119 
respectively (Fig 2). Relative to the population sizes of the biomes, the Temperate Conifer Forest 120 
Biome, Mediterranean Biome, and Boreal Forest Biome experienced 7.6, 6.8 and 8.2 times more 121 
disasters than expected based on their population sizes, respectively (Fig 2).  122 

 123 

 124 



 125 

Figure 2. Patterns in the distribution of major wildfire disasters relative to the areas and population 126 
sizes of the biomes. The ratio was calculated by dividing the percentage of all major disasters 127 
occurring in a biome (left numbers in each sub-plot) by the percentage of the global area or global 128 
population in each biome (right numbers in each sub-plot). Values >1 (dashed vertical line) indicate 129 
more disasters than expected based on the biome’s area or population size, and values less than one 130 
indicate lower than expected disaster rate. Biome population sizes in each year were based on the 131 
nearest available year (1990, 1995, 2000, 2005, 2015, 2020) using the Gridded Population of the 132 
World dataset, v3 and v4 (37).  133 

 134 

Building on these descriptive patterns (Fig 2), we constructed a disaster distribution model, analogous 135 
to a species distribution or habitat suitability model, to identify environmental relationships 136 
distinguishing disaster locations from background locations. The best-performing model contained 137 
effects of biome, geographic region, summed nighttime fire radiative power (ΣFRPnight), and human 138 
population density (out-of-sample AUCROC = 0.91; Table S5). Disasters were most likely to occur in 139 
Oceania (particularly Australia) and least likely in Africa, despite most fire occurring in Africa (Fig 140 
3b; Fig S3). Major disasters were concentrated in areas where relatively intense fires co-occur with 141 
areas populated by humans (Fig 3d), rather than where the most fire occurs (i.e., tropical savannahs of 142 
Africa and northern Australia; Fig S3). The best-supported model, which contained ΣFRPnight, 143 
performed substantially better than models containing other metrics of fire (ΣFRPday/night, day/night 144 
hotspot density, and night hotspot density; Table S5). This indicates that areas where intense fires burn 145 
overnight, as opposed to more benign human-driven day-only fires, typify locations where major 146 
disasters are most likely to occur.  147 



 148 

Figure 3. The distribution of major wildfire disasters. (a) The locations of 242 major wildfire 149 
disasters, defined as the 200 most economically damaging wildfires (relative to contemporaneous 150 
national GDP) and events that caused 10 or more fatalities (n = 85), with 43 jointly comprising major 151 
economic and major fatality events. Crosses show disaster locations overlayed on relative risk (or 152 
probability) predicted by a generalised additive model of disaster locations and background locations. 153 
(b-d) Effects plots show the model fit (± standard error), while holding other variables constant. In d, 154 
black crosses show disasters and grey dots show background points. See Table S4 for a breakdown of 155 
the number of events in the biomes of each region and Fig S3 for a map of the biomes. 156 

 157 

The climate signature of wildfire disasters 158 

Major wildfire disasters typically coincided with extreme fire weather and drought (Fig 4a-b), and 159 
such conditions increased in frequency and severity from 1979-2023 (Fig 4c and Fig 5). Extremes for 160 
fire weather index (FWImax), vapor pressure deficit (VPDmax), and drought severity (PDSImax; inverted 161 
Palmer Drought Severity Index) were each significantly higher during disasters compared to the same 162 
period in non-disaster years (Fig 4b). FWImax exhibited the largest difference, on average, at an 163 
estimated 1.61 standard deviations above the average FWImax for the Julian days of each disaster (one-164 
sample t-test; p < 0.001, t = 19.7; Fig 4b). Fire disasters often coincided with concurrent high fire 165 
weather, high vapor pressure deficit, and high long-term drought stress (Fig 4b). For example, 83% of 166 
disasters occurred while FWImax and VPDmax were both higher than the average time-matched 167 
extreme, and 77% of disasters occurred while both drought stress and fire weather were high (Fig 4b). 168 
Further, 50% of disasters had FWImax exceeding the 99.8th percentile of FWI (calculated over all 169 
days). 170 



The frequency and severity of such “fire disaster weather” increased substantially during the period 171 
1979-2023. For example, the annual extreme value for the Julian days of each disaster showed a 172 
sustained migration from the lower-risk quadrant (bottom left) to the higher-risk quadrant (top right) 173 
of the bivariate relationships (Fig 4c). FWImax, VPDmax, and PDSImax were each significantly higher in 174 
the period 2001-2023 compared to 1979-2000 (p < 0.001 for all two-sample t-tests; Fig 4c). Similarly, 175 
the proportion of days (FWI, VPD) and months (PDSI) exceeding the local 99.8th percentile 176 
(calculated over all days, corresponding to median FWImax during the disasters) increased by 2.4-fold 177 
for FWI, 3.9-fold for VPD, and 7.3-fold for PDSI from 1979-2023 (Fig 5). These dual findings – that 178 
major wildfire disasters are tightly linked with extreme conditions (Fig 4b), and that climate change 179 
has substantially increased the frequency and severity of such “disaster weather” (Fig 4c, Fig 5) – 180 
suggest a considerable role of climate change in driving the increase of major wildfire disasters. 181 

  182 



 183 

Figure 4. Associations between major wildfire disasters and climatological conditions. For each 184 
disaster location, values were calculated by identifying the maximum value during the Julian days of 185 
each disaster in each year from 1979-2023. Values were z-score standardised by subtracting the mean 186 
and dividing by the standard deviation for the same Julian day ranges (for each location separately). 187 
(a) Globally, FWImax was almost always higher than the average extreme for the Julian days of the 188 
disasters. Points show FWImax of each fire disaster. (b) Disasters typically coincided with conditions 189 
that had high concurrent FWImax, VPDmax, and PDSI [× -1], relative to maximum values in the time-190 
matched periods of non-disaster years. Points show the anomaly during the disasters. Black diamonds 191 
show the means, and p-values indicate the significance of a one-sample t-test of whether the disaster 192 
anomalies differed from the mean value (i.e., zero). (c) Extreme days have become more anomalous 193 
from 1979-2023. Points show the mean extreme corresponding the Julian day period of each disaster 194 
(i.e., mean of 240 extreme values each year). Δ denotes the difference between mean values in 1979-195 
2000 compared to 2001-2023, and p indicates the significance of two-sample t-tests. 196 



 197 

 198 

Figure 5. Increasing frequency of extreme fire weather index, vapor pressure deficit, and Palmer 199 
drought stress index. Points show the percentage of days (FWI and VPD) and months (PDSI) in each 200 
year at the disaster locations that exceeded the 99.8th percentile value, calculated over all days from 201 
1979-2023 (which corresponds to median FWImax during the disasters). The blue line shows the fit of 202 
a generalized additive model.  203 

 204 

Discussion 205 

Our analysis of trends in wildfire disasters revealed a global-scale fire disaster crisis. Some regions 206 
are more prone to wildfire disasters because of their biogeography, most notably, the Mediterranean 207 
forest/woodland/scrub, temperate conifer forest, and boreal forest biomes. People living in those 208 
biomes experienced the highest per capita rates of disaster. This pattern aligns with other work 209 
showing that these three biomes are disproportionately exposed to energetically extreme wildfires, 210 
which have more than doubled in frequency over the last two decades globally (17, 38).  211 

Disasters coincided with conditions unusually conducive to extreme fire, and climate change is 212 
making such “disaster weather” more common (Fig 4c & 5). This finding fits with growing evidence 213 
that climate change is increasing fire weather (10, 11, 39), the number of days suitable for extreme 214 
daily fire growth (40), burned area in forests (13-17), coincidence of downslope winds and drought 215 
conditions (41, 42), and fire at night during which firefighters have typically been afforded respite 216 
(43, 44). Indeed, other work shows that climate change has increased the probability of extreme fire 217 
weather by 40% in regions of California that experienced extreme fire disasters in 2017 and 2018 218 
(45). While there was a strong climate signal in our analysis of the disaster data, other processes 219 
including increasing exposure caused by the expanding wildland-urban interface and agricultural land 220 
abandonment are implicated in the trend (20-22, 46, 47). Contextual differences necessitate finer-scale 221 
studies to reveal local-scale causes and illuminate opportunities for adaptation, such as building 222 
standards, fuel loads, forestry practices, and the role of fire behaviour in different vegetation types 223 
(48, 49). Radeloff et al. (20), for example, show that increases to burned area and the WUI have had 224 
similar-sized influences on the rising risk to houses in the USA, and this risk is most pronounced near 225 
grasslands and shrublands rather than forests.  226 

The exposure of regional communities in affluent countries is having significant global financial 227 
impacts. For instance, the “Camp Fire” which destroyed 18,804 structures in the regional community 228 
of Paradise, California, was the largest insured event of all natural perils in 2018 (50). Once 229 
considered a secondary peril of minor importance by global reinsurance companies (i.e., insurers of 230 
insurers), wildfire is now a serious concern and is even leading to the failure of significant financial 231 
markets. Major home insurers in California, for example, are refusing to renew insurance policies or 232 



issue new ones because of rising financial exposure to catastrophes (51) and because major losses 233 
have wiped out more than twice the aggregate profits of the previous two decades (52). While events 234 
in lower-income countries often receive less attention because they cause smaller absolute losses, our 235 
approach of relativising losses as a percentage of a country’s GDP means that trends in lower-income 236 
countries are importantly captured in the global trends. However, even despite normalising losses by 237 
GDP, it is possible that some bias remains, given probable differences among regions in ease of 238 
communication and coverage of disasters (53, 54). The map of disaster risk highlights some locations 239 
that may suffer non-negligible reporting biases, such as eastern China where modelled disaster risk is 240 
relatively high despite only a modest number of disasters having been reported (Fig 3a). 241 

Ballooning expenditure on fire suppression has not prevented the rising occurrence of wildfire 242 
disasters (55). While there is a lack of global data on fire suppression expenditure (56), inflation-243 
adjusted US federal expenditure on fire suppression increased by ~3.6-fold from 1985-2022, peaking 244 
at $4.4B USD in 2021 (Fig S7). This expenditure is limiting (or masking) the fire crisis, but not 245 
offsetting it. Critical counterfactuals to consider are what would the trends have been in the absence of 246 
such investment or if suppression funds had been proactively spent on mitigation? And how will 247 
trends change as climate change outpaces and overwhelms current firefighting capacity, such as 248 
occurred in Canada in 2023 (57)? Destruction of entire towns or suburbs in recent disasters, including 249 
Santa Olga, Chile (2017) (48), Paradise, California, USA (2018) (58), and Lytton, British Columbia, 250 
Canada (2021) (13), provide glimpses into those counterfactuals. Investment in suppression capacity 251 
is essential, but overuse of fire suppression in the absence of proactive fire mitigation has produced 252 
the ‘fire paradox’ (59) by encouraging development in fire-prone settings and making fires burn more 253 
intensely when they do burn (60). This is akin to the ‘safe development paradox’ in flood and 254 
hurricane protection, whereby making dangerous areas safe for human habitation in the short-run 255 
increases potential for catastrophe in the long-run (4, 61).  256 

Many of the costliest disasters (e.g., Camp Fire, Lahaina Fire) began as wildfires but transitioned into 257 
urban conflagrations via building-to-building transmission. Calkin et al. (62) frame these fire disasters 258 
as a problem of urban environments encroaching on wildlands, leading to urban conflagrations that 259 
propagate via building-to-building transmission. This feature highlights the importance of strategies 260 
that reduce transmission, including retrofitting existing structures, using stringent fire-sensitive design 261 
and materials in new builds, establishing defendable space, and removing nearby fuel in the home 262 
ignition zone (58, 63-65). In the US, there have also been substantial calls for managed retreat from 263 
living in the WUI as an adaptive response to increasing wildfire disasters, but this neglects both the 264 
long history of Indigenous peoples co-existing with fire in such regions (66) and the potential for 265 
exacerbating housing shortages that already negatively impact socially vulnerable populations in high-266 
cost regions like California (53, 67). Many of the wildfire disasters in our analysis occurred in areas 267 
that have been urbanised for centuries to millennia (e.g., Rhodes, Greece; Cape Town, South Africa), 268 
suggesting that wildfire adaptation is a more viable strategy than avoidance.  269 

Fire is an inevitable natural process essential for the health of fire-adapted ecosystems, and society 270 
must adapt to sustainably inhabit landscapes that are becoming increasingly fire prone (4, 23). This 271 
requires managing ecosystems so that fire does not become uncontrollably intense. The path forward 272 
must draw on and welcome the ancient wisdom and skills of Indigenous cultural burning (68). For 273 
example, Australian Indigenous people skilfully cultivated low-intensity fire regimes for millennia, 274 
but European invasion disrupted these regimes, leading to a thickening of shrubby understory in 275 
southeast Australian forests (69). Management of wildland fuels through targeted prescribed burning 276 
intends to reduce the intensity of fire; for example, low-intensity fire in California was shown to 277 
reduce risk of subsequent high-intensity wildfires by 64% for at least 6 years after fire (70). But 278 
reintroducing fire to vegetation with high fuel loads is not always straightforward. In such situations, 279 
approaches like mechanical thinning followed by intentional fire provide a potential pathway to 280 
reinstating low-intensity fire regimes (71-74). Mitigation pathways must also address strategies to 281 



reduce fatalities by increasing evacuation effectiveness and developing plans that account for socially 282 
vulnerable populations, who are the most likely be killed in wildfires (53). Like all fuel management 283 
strategies, best approaches will depend heavily on ecological context (4). To quell the emerging fire 284 
disaster crisis and adapt to an increasingly fire-prone climate, we must urgently test, embrace, deploy, 285 
and incentivize the diversity of available mitigation options at scales ranging from the wildland to the 286 
home ignition zone (5).  287 

 288 
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Supplementary Material 538 

Methods:  539 

Data 540 

(i) Disaster data 541 

We compiled a dataset of wildfire disasters primarily by integrating the two most comprehensive 542 
global databases on the direct economic losses and fatalities associated with disasters: 543 
NatCatSERVICE (1980-2017) and Emergency Events Database (EM-DAT; 1980-2023). 544 
NatCatSERVICE is compiled by the global reinsurer, Munich Re, who are experts in damage 545 
estimation. This dataset is not publicly available and was provided to us under restricted use. While 546 
systematic data collection began in 1974, Munich Re state that only data from 1980 onwards is 547 
suitable for systematic analysis (29, 75). In addition to fatalities and damages (USD), 548 
NatCatSERVICE categorises direct economic damages onto 0-6 scale based on a country’s cost of 549 
living using World Bank income groups, with class 2 corresponding to “moderate” (for details, see 550 
29). We did not have access to NatCatSERVICE from 2019 onwards; for 2019 onwards, we 551 
additionally used AON’s annual reports of catastrophe events (50, 76-79), which collate information 552 
on natural catastrophes in a systematic way comparable to NatCatSERVICE.   553 

Since its creation in 1988, EM-DAT has provided a publicly available record of disasters compiled 554 
from systematic evaluation of sources from UN agencies, non-governmental organizations, 555 
reinsurance companies, research institutes, and press agencies (30, 80). It focuses on major societal 556 
disasters, with at least one of the following thresholds required for inclusion in the dataset: (i) 10 557 
fatalities, (ii) 100 affected people, (iii) a declaration of state of emergency, or (iv) a call for 558 
international assistance (30).  559 

Given all disaster databases suffer from some degree of bias, missing information (e.g., missing 560 
damage estimates), absent events (especially small ones), and disparities in damage estimates (54, 81), 561 
there was a need to harmonise the datasets into a single dataset (see Fig S1 for workflow and Fig S2 562 
for dataset comparison). Because EM-DAT is publicly available, frequently updated, and is intended 563 
for scientific use, we used it as the base dataset and modified it when NatCatSERVICE:  564 

(i) provided information on significant disaster events (disaster class ≥ 2) that were not 565 
included in EM-DAT, in which case we added these events. 566 

(ii) indicated significant discrepancies between direct losses, in which case we searched 567 
reports from government agencies, non-governmental organisations, and news agencies, 568 
and/or contacted both dataset managers to seek clarification. 569 

(iii) disaggregated events into finer-scale components, in which case we used the finest spatial 570 
disaggregation available.  571 

All damage costs were converted from US dollars in the year of the disaster to 2022 US dollars using 572 
the consumer price index recorded in EM-DAT. Despite converting to a common price, the null 573 
expectation should be that more recent years will have larger damage costs because the economy is 574 
larger in real terms (partly due to population growth). Furthermore, damage in US dollars does not 575 
account for differences in prices among countries. Thus, to account for different economic scales 576 
across countries, we converted economic losses from nominal values (US dollars in disaster year) to 577 
losses as a percentage of a country's GDP for the same year. This method standardizes the economic 578 
impact relative to the sizes and prices of each economy, providing a comparable measure of the extent 579 
to which an economy can absorb the disaster losses. For GDP, we used estimated national GDP from 580 
the World Bank 581 
(https://databank.worldbank.org/reports.aspx?source=2&series=NY.GDP.MKTP.CD&country), and 582 
imputed values for country-years with missing data (6%).  583 



After calculating relative disaster costs (% of GDP), we used the 200 most economically damaging 584 
events and those that caused 10 or more fatalities for further analysis. While this threshold of 200 585 
events is somewhat arbitrary, it provides a tractable and substantial georeferenced dataset of the most 586 
disastrous events since 1980. Importantly, it provides a means of comparing the relative magnitude 587 
and frequency of major disasters through time and among economies with different currencies and 588 
prices. Doing so has the benefit of focusing on major events that would suffer minimal reporting bias 589 
through time, which is an important consideration given the increasing ease of communication 590 
following the advent of the internet. Combining these major economic and major fatality disasters 591 
resulted in a dataset of 242 major wildfire disasters; of these, 43 were joint major economic and 592 
fatality events, 157 were major economic events only, and 42 were major fatality events only.  593 

 594 

Figure S1. Workflow of harmonising global disaster datasets. Main steps involved in harmonising 595 
and analysing major wildfire disasters. 596 
 597 

 598 

 599 

 600 

Figure S2. Comparing global 601 
disaster datasets. (a-b) Time series 602 
of the total losses and number of 603 
major fatality events (>= 10 604 
fatalities) recorded by the datasets. 605 
Lines in b show the fits of 606 
generalised linear models. (c-d) 607 
Comparison of the total loss 608 
estimates and number of major 609 
fatality events, with each point 610 
representing one year. The dashed 611 
line shows a 1:1 line, while the blue 612 
line shows a linear regression.  613 

 614 



(ii) Geolocating the major disaster events 615 

EM-DAT does not contain spatial coordinates, only locality names. NatCatSERVICE records point 616 
coordinates along with a detailed description of the affected locations and sometimes wildfire names. 617 
The spatial matching process therefore required additional research using news and government 618 
agency reports to identify specific locations affected by the disasters.  619 

Where possible, we attempted to match the major disasters with polygon(s) of the area burned by the 620 
relevant fires. To do this, we used a combination of satellite-derived products, specifically the globally 621 
available fire perimeter dataset, Fire Event Delineation (FIRED; 82), as well as national fire perimeter 622 
datasets for the USA (Monitoring Trends in Burn Severity; 83), Canada (National Burned Area 623 
Composite; 84), and Australia (Historical Bushfire Boundaries; 85). If matching an event to fire 624 
polygons was not possible (e.g., occurred prior to geospatial fire perimeter datasets), we used point 625 
coordinates for those disasters. Notably, this spatial matching process involved two common types of 626 
wildfire disaster: events involving one or a small number of fires, and diffuse, broad-scale events 627 
involving many concurrent fires, such as the tens of thousands of small fires that burned in Indonesia 628 
in 2015, culminating in a major humanitarian disaster. For diffuse events, it is difficult to determine 629 
which fires caused economic damage and fatalities, and their widespread nature is often a key feature 630 
that overwhelms fire-fighting capacity. In these cases, we included all fires in the reported region 631 
within the relevant date range. The spatial point or polygon matching was possible for 240 of 242 632 
disasters in the final dataset. 633 

 634 

Statistical analysis 635 

(i) Temporal trends of wildfire disasters 636 

We constructed and analysed temporal trends in five metrics that characterise various dimensions of 637 
wildfire disasters (Table S1): (1) frequency of economic disasters, (2) frequency of major fatality 638 
events, (3) total annual damage costs, (4) total damage costs as a percentage of global GDP, and (5) 639 
frequency of billion-dollar events. We present fits of statistical models as well as 5-year moving 640 
averages, and interpret model coefficients and p-values as continuous rather than binary measures of 641 
evidence (recommended by 86).  642 

First, we analysed the annual count of major disaster events using the 200 most damaging events, 643 
calculated as a share of GDP as described in the previous section (model 1a, Table S1). We fitted this 644 
model using a generalised linear model (GLM) with negative binomial distribution, with the annual 645 
global count of disasters modelled in response to year (1980-2023). To further investigate whether 646 
trends differed regionally, we fitted a GLM with each geographic region’s count of disasters modelled 647 
in response to a region × year interaction (model 1b, Table S1). We tested the importance of the 648 
interaction using AIC by comparing the interactive model with a simpler model with additive effects 649 
of region and year. 650 

Second, we modelled the annual count of major fatality events, defined as wildfire events leading to at 651 
least 10 fatalities (model 2, Table S1). This represents a relatively high threshold for wildfire disasters, 652 
but it corresponds with EM-DAT’s threshold, providing a standardised metric to evaluate changes in 653 
the frequency of major fatality events. Further, it is likely that events of this threshold would suffer 654 
minimal reporting bias, as they are unambiguously disastrous wildfires that are likely to be reported 655 
on widely.  656 

Third, we analysed total annual damage costs (2022 USD) from all disasters in the harmonised dataset 657 
(not just the top 200; model 3, Table S1).  658 



Fourth, we analysed changes in total annual damage costs as a percentage of time-matched global 659 
GDP (model 4, Table S1). Because temporal trends in both of these metrics were strongly non-linear 660 
(Fig 1d-e), we report changes in the 5-year moving average rather than fit a statistical model.  661 

Fifth, we used a GLM with negative binomial distribution to model the frequency of billion-dollar 662 
events (in 2022 USD) in response to a linear effect of year.  663 

Table S1. Summary of approaches used to analyse temporal change in different metrics of wildfire 664 
disasters.  665 

model# response variable structure type 

1a economic disasters globally (annual count)  ~ year GLM 

1b economic disasters in each region (annual count) 
 ~ year × region 

GLM 
 ~ year + region 

2 major fatality events (annual count)  ~ year GLM 

3 total annual damage costs (2022 USD)  ~ year moving average 

4 total annual damage costs (% of global GDP)  ~ year moving average 

5 billion-dollar events (annual count)  ~ year GLM 
 666 

(ii) Geographic distribution of major disasters 667 

To broadly summarise the geographic distribution of major disasters, we calculated the ratio of 668 
disasters occurring in the Earth’s biomes relative to the area and population size of each biome (87). 669 
We calculated the ratio by dividing the percentage of disasters occurring in each biome (87) by (i) the 670 
percentage of Earth’s land covered by each biome (excluding snow/ice covered biomes, such as 671 
Antarctica), and (ii) the percentage of the global population living in each biome based on the nearest 672 
year available (1990, 1995, 2000, 2005, 2015, 2020; Gridded Population of the World v3 and v4 (37)). 673 
Ratios above 1 indicate that disasters occurred at a higher rate than expected based on the biome areas 674 
or population sizes. 675 

Next, to statistically investigate the pyrogeographic distribution of major disasters, we constructed 676 
statistical models that distinguished disaster locations from background locations. Using background 677 
locations to characterise the available domain in which disasters could occur is the same approach 678 
commonly used to model species distributions from presence-only data (88, 89), and provides the 679 
analogous prediction of the locations in which fire disasters are most likely to occur. To adequately 680 
characterise available environmental space, Barbet-Massin et al. (89) recommend distributing at least 681 
10,000 background points. We therefore randomly distributed 100 background locations for every 682 
major disaster, totalling 24,000 background locations. Background points were randomly distributed 683 
over the entire Earth (except Antarctica). As recommended (36), we fitted the model with background 684 
locations down-weighted, such that the sum of disaster weights equalled the sum of available location 685 
weights (i.e., disasters had weights of 1 and background locations had weights of 1/100). Disaster and 686 
background locations were labelled with 7 explanatory variables (Fig S3):  687 

(1) population density (people/km2) of each 0.25° cell using version 4.11 of the Gridded 688 
Population of the World dataset (37). We used the year 2000 as the approximate mid-point of 689 
the study. 690 

(2-3) summed fire radiative power using day and night hotspots (ΣFRP) and summed fire 691 
radiative power using night hotspots only (ΣFRPnight). We calculated these using MODIS 692 
active fire records (MCD14ML product), which include the locations of observed fires at a 693 
spatial resolution of 1 km (90, 91). Each hotspot is accompanied by a measure of fire 694 
radiative power (MW), which has been widely used as a proxy of fire intensity. We excluded 695 
low-confidence observations (i.e., confidence < 30; 92), and calculated summed FRP 696 



(MW/km2) at a spatial resolution of 0.25° for each year from 2003-2023, of which we then 697 
calculated the cell-wise mean.  698 

(4-5) hotspot density (using day and night hotpots), and nighttime hotspot density (using night 699 
hotspots only). We calculated these by summing the number of MODIS hotspots occurring in 700 
each 0.25° cell for each year from 2003-2023, and then dividing by the area (km2) of the cell.   701 

(6) geographic region, following continent designations used by the United Nations 702 
geoscheme (93) e.g., Russia is described as part of eastern Europe even though it spans both 703 
northern Asia and eastern Europe (Fig S3). Since our focus of the analysis was societally 704 
disastrous wildfires, we considered the UN definition a reasonable practical choice because 705 
much of Russia is culturally more like Europe than Asia.  706 

(7) biome, using the Earth’s 14 terrestrial biomes (Fig S3) delineated by Dinerstein et al. (87). 707 

Continuous variables (fire variables and population density) were log-transformed before being used 708 
in a generalised additive model (GAM), fitted with binomial distribution using the mgcv package 709 
v1.8-42 (94) in R v4.3.0 (95). GAMs are like generalised linear models (GLM) except they allow 710 
flexible fitting of non-linear relationships if supported by the data (94). The model algorithm penalises 711 
parameter complexity, automatically selecting the optimal degree of smoothing supported by the data. 712 
We constructed a series of competing GAMs involving different combinations of the above variables 713 
(see Table S5 for full model set). The most complex model took the form: 714 

Disaster ∼ ti(logFire, logPop) + ti(logFire) + ti(logPop) + biome + region 715 

where logFire refers to one of the four abovementioned fire variables, ti(logFire, logPop) is a tensor 716 
product interaction between log-transformed fire variable and log-transformed population; ti(logFire) 717 
and ti(logPop) are the main effects of those variables, and biome and region are categorical effects.  718 

We evaluated the performance of the different models using k-fold cross-validation with 10 folds. 719 
Model performance was evaluated based on the average model ranks using four criteria: (i) Akaike’s 720 
information criterion (AIC); (ii) mean area under the receiver operating characteristic curve (AUCROC) 721 
calculated on the withheld folds of data; (iii) the true skill score, which incorporates sensitivity and 722 
specificity (96), calculated using the withheld folds of data; and (iv) deviance explained.  723 



 724 

Figure S3. Explanatory variables used in the analysis of the distribution of wildfire disasters. 725 
Biomes follow the delineation by Dinerstein et al. (87), the shapefile of which was downloaded from 726 
https://ecoregions.appspot.com/. Geographic regions follow the continent definitions used by United 727 
Nations geoscheme (93), whereby Russia is described as part of eastern Europe even though it spans 728 
both northern Asia and eastern Europe. Fire metrics were calculated based on MODIS active fire 729 
“hotspots” from 2003-2023. 730 

  731 



(iii) Climatic correlates of wildfire disasters 732 

We analysed the association between major wildfire disasters and three key interrelated climatological 733 
measures: fire weather index (FWI), measuring the potential for fire spread; vapor pressure deficit 734 
(VPD), indicating the air’s short-term capacity to dry fuels; and Palmer drought severity index (PDSI 735 
[inverted by multiplying by -1]), reflecting longer-term drought stress. Data were derived from ERA-736 
5, a modern reanalysis at a 0.25-degree horizontal resolution (97) that have been widely used in global 737 
climate and fire weather studies. Daily FWI from the Canadian Forest Fire Danger Rating System is 738 
sourced from ERA-5, integrating the influence of longer-term fuel drying and short-term fire weather 739 
conditions (98). Daily VPD is calculated from hourly temperature and dewpoint temperature from 740 
ERA-5. Lastly, monthly PDSI is calculated following the water balance approach of (99) from ERA-5 741 
precipitation as well as reference evapotranspiration derived from the Penman-Monteith formula 742 
(100).  743 

We quantified fire weather and drought anomalies coinciding with the disasters relative to conditions 744 
for the same period of other years from 1979-2023. To do this, we identified the Julian day periods of 745 
each disaster’s wildfire (± 1 day) (“fire period” in Fig S4, step 1a). For FWI and VPD, we identified 746 
the most extreme day within the Julian day fire period each year, which we refer to as FWImax and 747 
VPDmax (Fig S4, step 1a-b). For monthly PDSI, we used the month of ignition in the disaster year and 748 
compared it to the same month in non-disaster years.  749 

For each disaster location separately, all values were then transformed to standard deviations (i.e., z-750 
score standardisation) by subtracting the mean and dividing by the standard deviation (Fig S4, step 751 
1c), providing a standardised measure of the departure from the average time-matched extreme. We 752 
visualised relationships using bivariate scatter and density plots, and quantified compound extremes 753 
by calculating the percentage of disasters occurring in each quadrant of the bivariate relationships. We 754 
used a one-sample t-test to quantify whether the mean anomaly of the 240 disasters differed from the 755 
average (i.e., zero) time-matched extreme. 756 

To evaluate how these climatological variables have changed at the disaster locations during the 757 
period 1979-2023, we used the 240 values each year (one for each disaster location) to calculate each 758 
year’s mean anomaly. We then split the study period into two near-equal periods (1979-2000 and 759 
2001-2023) and used a two-sample t-test to evaluate whether the time-matched extremes differed 760 
between the periods. To further characterise changes in climatic conditions at the disaster locations, 761 
we additionally transformed the full time series (1979-2023) of FWI, VPD, and PDSI to percentiles 762 
for each disaster location. We then calculated the proportion of days each year ≥99.8th percentile 763 
(which was the median FWImax value during the fire disasters). We modelled the temporal trends in 764 
these metrics using a generalised additive model with gamma distribution.  765 

 766 



 767 

Figure S4. Depiction of the main steps involved in analysing the climatological conditions 768 
associated with the major wildfire disasters. Step 1: For each disaster and year, we selected the most 769 
extreme FWI and VPD values within the Julian day period corresponding with the fire (the “fire 770 
period”), indicated by the red line and dot. For the monthly PDSI, we selected the value in the 771 
ignition month (in all years). These values were then standardized by subtracting the mean and 772 
dividing the by standard deviation (separately for each site), providing a standardised measure of the 773 
extreme value anomaly relative to typical seasonal extremes. Step 2: to evaluate compound extremes, 774 
we created bivariate scatter and density plots of the anomalies of each disaster and tested whether 775 
values differed significantly from the average time-matched extreme (i.e., zero). Step 3: to evaluate 776 
how these climatological variables have changed during the period 1979-2023, we calculated the 777 
mean of the “fire period” extreme values for each year (resulting in one average anomaly per year) 778 
and tested for differences between the periods 1979-2000 and 2001-2023. 779 

 780 

 781 

 782 

  783 



 784 

Fig S5. Trends of major economic wildfire disasters among the geographic regions. Major 785 
economic disasters were defined as the 200 most damaging wildfires relative to contemporaneous 786 
national GDP.  The solid line and confidence band shows the fit and 95% CI of the best-performing 787 
generalised linear model (AICcweight = 0.95), which did not contain a region by year interaction. The 788 
dashed line shows the fit of the second-best GLM (AICcweight = 0.05), which contained a region by 789 
year interaction (Table S2). 790 

 791 
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 799 

Fig S6. The skewed distribution of economic losses caused by the top 200 most damaging 800 
wildfire disasters. A relatively small number of disasters cause the majority of economic losses. 801 
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 814 

Fig S7. United States federal expenditure on wildfire suppression. We downloaded nominal 815 
expenditure (dashed line) from the National Interagency Fire Center (https://www.nifc.gov/fire-816 
information/statistics/suppression-costs), and converted values to 2022 US dollars (solid line) using 817 
the consumer price index. The five-year average increased by 3.5-fold between the periods 1985-1989 818 
($0.92 billion) and 2018-2022 ($3.26 billion), 819 
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Table S2. Model selection table for competing generalized linear models of the trend in major 821 
economic disasters among the geographic regions. Model fitting began by comparing the most 822 
complex (i.e., interactive) model fit with the negative binomial and poisson distributions. The poisson 823 
distribution best fit the data (AICc weight = 0.76). Thus, models in this table were all fitted using the 824 
poisson distribution. See Fig S5 for the fitted trends of the top two models. 825 

intercept region year region × year df logLik AICc ΔAICc weight 

-55.91 + 0.027  7 -235.6 485.7 0 0.95 

-6.73 + 0.003 + 11 -232.9 491.9 5.7 0.05 

-54.76  0.027  1 -249.9 503.9 18.2 0 

-0.8 +   6 -247.2 506.9 21.5 0 

0.04    0 -261.4 524.8 39.0 0 
 826 

 827 

 828 

Table S3. Coefficients from generalized linear models of trends in wildfire disasters. Models are 829 
numbered according to the description in table S1. 830 

Model Variable Estimate Std Error z value Pr(>|z|) 
Deviance 
explained 

1a. Major economic disasters 39.4% 

 intercept -67.7 12.7 -5.34 9.23e-08  
 year 0.0345 0.00631 5.47 4.60e-08  
       
1b. Major economic disasters by region 22% 

 intercept -55.9 11.7 -4.79 1.64e-06  
 year 0.03 0.00581 4.73 2.24e-06  
 regionAsia 0.751 0.33 2.27 0.023  
 regionEurope 1.22 0.308 3.97 7.2e-05  
 regionNorth America 1.12 0.312 3.6 0.0003  
 regionOceania 0.983 0.326 2.74 0.006  
 regionSouth America 0.345 0.364 0.947 0.343  
       
2. Major fatality events     14.7% 

 intercept -52.5 18.3 -2.87 0.00415  
 year 0.0265 0.00913 2.91 0.00367  
       
5. Billion-dollar events 28.7% 

 intercept -105.4 27.3 -3.86 0.0001  
  year 0.052 0.013 3.87 0.0001   
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Table S4. Summary of the distribution of major disasters by region and biome. Table shows the 832 
number of major economic and fatality disasters occurring in the biomes of each region.  833 
 834 

BIOME Europe North 
America 

Asia South 
America 

Africa Oceania Total 

Mediterranean Forests, Woodlands & Scrub 34 13 9 5 5 11 77 

Temperate Broadleaf & Mixed Forests 19 3 10 6 0 17 55 

Temperate Conifer Forests 1 24 4 0 2 0 31 

Tropical & Subtropical Grasslands, Savannas & Shrublands 0 1 1 6 11 2 21 

Tropical & Subtropical Moist Broadleaf Forests 0 1 14 0 2 1 18 

Temperate Grasslands, Savannas & Shrublands 6 3 5 2 0 1 17 

Boreal Forests/Taiga 7 5 0 0 0 0 12 

Montane Grasslands & Shrublands 0 0 0 0 2 1 3 

Flooded Grasslands & Savannas 1 0 0 1 0 0 2 

Tropical & Subtropical Dry Broadleaf Forests 0 2 0 0 0 0 2 

Deserts & Xeric Shrublands 0 0 1 0 0 0 1 

Tropical & Subtropical Coniferous Forests 0 1 0 0 0 0 1 

Total 68 53 44 20 22 33 240 

835 



Table S5. Comparisons of competing generalised additive models (GAM) of the distribution of major wildfire 
disasters relative to background locations. Models were fitted using the binomial distribution. Models were fitted 
using k-fold cross-validation with 10 folds and evaluated based on the average model ranks using four criteria: 
Akaike’s information criterion (AIC); mean area under the receiver operating characteristic curve (AUCROC) using the 
fold of data withheld from model fitting in each iteration; and the true skill score using the withheld fold of data. 
Model description in the table follows syntax of the mgcv package in R, whereby “s(x)” indicates a smooth non-linear 
function of x, “ti(x,z)” indicates a tensor product interaction between x and z (in which case main effects are separated 
using “ti(x)” and “ti(z)”).  

model Average 
rank 

ΔAIC mean 
test AUC 

mean 
deviance 
explained 

True skill 
score 

s(ΣFRPnight) + s(log_pop) + biome + region 2.25 3.99 (5) 0.91 (1) 0.49 (2) 0.66 (1) 

ti(ΣFRPnight, log_pop) + ti(ΣFRPnight) + ti(log_pop) + biome + region 2.75 3.73 (4) 0.91 (2) 0.5 (1) 0.65 (4) 

s(log_pop) + s(ΣFRPnight) + biome 3 0.68 (2) 0.9 (3) 0.47 (5) 0.66 (2) 

s(log_pop) + s(ΣFRPnight) + region 5 0 (1) 0.9 (6) 0.43 (10) 0.65 (3) 

ti(log_hs_night_density, log_pop) + ti(log_hs_night_density) + ti(log_pop) + biome + region 5.5 6.95 (7) 0.9 (5) 0.49 (3) 0.63 (7) 

s(log_hs_night_density) + s(log_pop) + biome + region 6 7.96 (8) 0.9 (4) 0.48 (4) 0.63 (8) 

s(log_pop) + s(log_hs_night_density) + biome 6.5 4.38 (6) 0.9 (7) 0.46 (7) 0.64 (6) 

ti(ΣFRP, log_pop) + ti(ΣFRP) + ti(log_pop) + biome + region 8.25 14.23 (13) 0.9 (9) 0.47 (6) 0.64 (5) 

s(ΣFRP) + s(log_pop) + biome + region 10 15.92 (15) 0.9 (8) 0.46 (8) 0.63 (9) 

s(log_pop) + s(ΣFRP) + biome 10.75 13.7 (12) 0.89 (10) 0.43 (11) 0.62 (10) 

s(log_pop) + s(log_hs_night_density) + region 12.5 8 (9) 0.89 (11) 0.4 (19) 0.62 (11) 

ti(log_hs_density, log_pop) + ti(log_hs_density) + ti(log_pop) + biome + region 13.5 19.32 (19) 0.89 (12) 0.44 (9) 0.6 (14) 

s(log_pop) + s(ΣFRPnight) 13.75 3.73 (3) 0.89 (14) 0.38 (21) 0.59 (17) 

s(log_hs_density) + s(log_pop) + biome + region 14.25 19.5 (20) 0.89 (13) 0.43 (12) 0.61 (12) 

biome + s(ΣFRPnight) 15 12.15 (11) 0.88 (16) 0.42 (14) 0.58 (19) 

s(ΣFRPnight) + biome + region 15.5 18.12 (18) 0.88 (15) 0.43 (13) 0.6 (16) 

biome + s(log_hs_night_density) 16.25 15.19 (14) 0.88 (20) 0.41 (16) 0.6 (15) 

s(log_pop) + s(ΣFRP) + region 17.75 17.65 (16) 0.88 (17) 0.37 (25) 0.61 (13) 

s(log_hs_night_density) + biome + region 18.25 21.28 (22) 0.88 (18) 0.42 (15) 0.58 (18) 

s(log_pop) + s(log_hs_density) + biome 18.25 18.03 (17) 0.88 (19) 0.4 (17) 0.57 (20) 

s(log_pop) + s(log_hs_night_density) 20.5 12 (10) 0.87 (23) 0.34 (27) 0.56 (22) 

s(ΣFRP) + biome + region 21.75 25.84 (24) 0.87 (21) 0.4 (18) 0.56 (24) 

biome + s(ΣFRP) 23 21.37 (23) 0.87 (22) 0.39 (20) 0.53 (27) 

s(log_pop) + s(ΣFRP) 25.25 20.98 (21) 0.84 (29) 0.3 (30) 0.57 (21) 

s(log_pop) + biome + region 25.25 30.27 (28) 0.86 (24) 0.38 (23) 0.54 (26) 

s(log_pop) + s(log_hs_density) + region 26 26.63 (26) 0.85 (27) 0.32 (28) 0.56 (23) 

s(log_hs_density) + biome + region 26 30.52 (29) 0.86 (25) 0.38 (22) 0.53 (28) 

s(log_pop) + biome 26.5 27.72 (27) 0.85 (28) 0.35 (26) 0.55 (25) 

biome + s(log_hs_density) 26.75 25.85 (25) 0.86 (26) 0.37 (24) 0.5 (32) 

biome + region 30.5 45.9 (34) 0.84 (30) 0.32 (29) 0.51 (29) 

region + s(ΣFRPnight) 30.75 34.45 (31) 0.83 (31) 0.28 (31) 0.5 (30) 

s(log_pop) + region 31.75 42.62 (32) 0.82 (32) 0.26 (32) 0.5 (31) 

s(log_pop) + s(log_hs_density) 32.5 33.65 (30) 0.81 (34) 0.25 (33) 0.48 (33) 

region + s(log_hs_night_density) 33.5 44.11 (33) 0.81 (33) 0.23 (34) 0.48 (34) 

region + s(ΣFRP) 35 46.95 (35) 0.79 (35) 0.22 (35) 0.44 (35) 

region + s(log_hs_density) 36 57.97 (36) 0.76 (36) 0.19 (36) 0.39 (36) 

 


