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Abstract 23 

Setting camera traps along roads is often necessary for ecological research, yet these 24 

locations expose cameras to theft leading to substantial data losses. Measures to minimise this 25 

risk include placing cameras away from human settlements. However, the effects of this and 26 

other measures on camera-trap theft risk are yet to be quantified. Here, we assessed the 27 

impact of gates on roads, the frequency of vehicle and human foot traffic, distance to the 28 

nearest town, and reduced visibility, on the risk of camera-trap theft, using a four-year, 29 

geographically extensive camera-trapping study in Tasmania, Australia. The large dataset 30 

covered 564 camera sites operating for 316,372 days (average of 561 camera days per unit), 31 

with 112 cumulative thefts. We used Bayesian survival modelling to determine the factors 32 

that best explained theft risk. Our results showed a high initial vulnerability to theft that 33 

gradually reduced over time, with significant predictors of reduced theft risk being: (i) road 34 

sites with lower frequencies of vehicle traffic, (ii) greater distance from the nearest town, (iii) 35 

where movement was curtailed by the presence of a gate, and (iv) a temporal trend that likely 36 

reflects a selective culling of ‘high exposure’ sites and increased efforts to hide camera units. 37 

The frequency of human foot traffic surprisingly did not significantly elevate theft risk. Our 38 

study provides important insights into the factors contributing to a higher risk of camera-trap 39 

theft on roads and offers a robust analytical framework to identify these factors for 40 

application in diverse social and ecological contexts. 41 

 42 

 43 

 44 

 45 

 46 
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Introduction 47 

Camera traps (CTs) have become an increasingly effective tool in ecological research and for 48 

monitoring human activity for park management (Burton et al. 2015; Miller et al. 2017; 49 

Cardona et al. 2024). Their applications have included estimating wildlife abundance (e.g., 50 

Taylor et al. (2022)), population dynamics (e.g., Karanth et al. (2006)), and human and 51 

wildlife activity patterns (e.g., Miller et al. (2017)). While their use continues to increase, the 52 

risk of theft of such devices remains one of the major constraints on their effectiveness 53 

(Glover-Kapfer et al. 2019). Camera-trap theft can lead to  substantial costs, and result in 54 

significant loss of data, disruption of long-term studies, unequal sampling across study sites 55 

and seasons, bias in sampling protocols, and variation in sampling effort (Kukielka et al. 56 

2013; Paula et al. 2015; Pyšková et al. 2018; Meek et al. 2019).  57 

 58 

Researchers using CTs face the dual challenge of preventing data loss due to theft, while 59 

ensuring cameras are appropriately placed for optimal data collection (Cusack et al. 2015; 60 

Meek et al. 2019). The strategy used to determine camera locations, including their 61 

placement on or off roads, influences the detection probability of wildlife species and is 62 

crucial for obtaining unbiased estimates of species richness, abundance, activity, and 63 

subsequent monitoring (Cusack et al. 2015; Mann et al. 2015; Tanwar et al. 2021). While 64 

placing CTs at sites away from human presence, such as random forest sites and animal trails, 65 

reduces the risk of theft, setting them on man-made features, such as roads, is ideal for 66 

monitoring the activity of many species that prefer or are more readily detected on these 67 

features, such as carnivorous, cryptic, and introduced species (Cusack et al. 2015; Mann et al. 68 

2015; Iannarilli et al. 2021). Moreover, cameras set on roads can indirectly capture human 69 

activity, which can be important information for land management (Miller et al. 2017; 70 



4 
 

Cardona et al. 2024). Additionally, in regions difficult to access, these features are often the 71 

only feasible locations to deploy CTs (Meek et al. 2014). As a result, placing CTs on roads is 72 

crucial for enhancing our understanding of predator-prey dynamics, human-wildlife 73 

interactions, and visitor behaviour in protected areas. However, the ongoing risk of theft, 74 

often forces researchers into a trade-off that leads them to prioritise less-vulnerable but lower-75 

animal-activity locations off roads (e.g., Hossain et al. (2016)), impacting the study 76 

objectives and outcomes.  77 

 78 

As such, over the past decades, diverse strategies to protect CTs deployed on roads from theft 79 

have been proposed and attempted in the literature. These include physically securing CTs by 80 

mounting them on security posts or locking them to trees with braided steel cables and 81 

padlocks (Kelly et al. 2008; Meek et al. 2012a), as well as deterring and reducing their 82 

exposure to thieves by attaching warning messages (Clarin et al. 2014; Meek et al. 2019) and 83 

limiting the duration that CTs remain deployed in the field (e.g., Wegge et al. (2004); Glen et 84 

al. (2013)). Other strategies involve conducting surveys during times of the year or the day 85 

when human activity is less frequent at survey sites (e.g., early mornings or off-peak tourism 86 

seasons), positioning CTs far from human settlements (e.g., Rovero et al. (2009)), and 87 

camouflaging cameras with bark and leaves (e.g., Hossain et al. (2016); Zahoor et al. (2023)). 88 

While the effectiveness of measures such as using personal messages and security posts to 89 

minimise theft incidents has been tested (Meek et al. 2012a; Clarin et al. 2014), the effect of 90 

factors, such as the distance of the CT to human settlements, on the risk of camera-trap theft 91 

remains debated and has not yet been quantified rigorously.  92 

In this study, we analysed a pre-existing data set that includes many theft occurrences from a 93 

four-year wildlife monitoring project in diverse regions of Tasmania, Australia. Across the 94 
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four-year period, a cumulative total of 20% of CTs deployed on a mix of forestry, dirt and 95 

gravel roads were stolen (Figure. 1). Using these data, we aimed to investigate the extent to 96 

which the proximity of the CT to the nearest town, the frequency of vehicle and human foot 97 

traffic at the camera site, the presence of gates on roads, and the researchers’ growing 98 

expertise in hiding CTs from potential thieves (e.g., improving camouflage and prioritising 99 

infra-red flash cameras), influenced the risk of camera-trap theft. By doing so, our goal was 100 

to identify factors driving the risk of camera-trap theft and contribute to the development of 101 

targeted strategies that enhance the protection of CTs. 102 

  103 

Figure 1. Example of a site where a camera trap was stolen during the 4-year camera-trap 104 

monitoring project in Tasmania, Australia. 105 

Materials and Methods: 106 
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Camera trap dataset and number of stolen cameras 107 

We used data on camera trap (CT) theft occurrences sourced from the Dynamics of Eco-108 

evolutionary Patterns (D.E.E.P) group, University of Tasmania, remote wildlife monitoring 109 

program (Vaughan et al. 2022; Paton et al. 2024). The camera-trap network was distributed 110 

across the southeastern, central highlands, northwestern and western regions of Tasmania, 111 

Australia (Figure 2). These regions encompass a diversity of vegetation communities, 112 

including dry and wet sclerophyll forests, temperate rainforests, low heaths, shrublands, and 113 

open buttongrass moorlands, as well as a wide range of land uses such as parks and reserves, 114 

production forests (logging), and private lands. The study area is crisscrossed by highways 115 

and smaller roads, including numerous dirt or gravel roads commonly used during the day by 116 

vehicles and walkers, with nighttime human activity infrequent. These regions cover a broad 117 

gradient of development and varying levels of human activity.  118 
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119 

Figure 2. Map of the study area and the location of the camera trap sites. The different 120 

colours show whether the camera was stolen (red) or not stolen (grey). The insets show two 121 

examples of the camera-network deployments at finer spatial scales. 122 

 123 

The monitoring network involved 564 camera sites, using a standard model (Cuddeback X-124 

Change model 1279, which have a changeable flash unit), placed 100 m or greater apart and 125 

positioned on a mix of forestry, dirt and gravel roads. The network was operational for a total 126 

of 316,372 camera days (minimum estimation, as this does not include those service periods 127 

with thefts) between June 2018 to March 2022; 357 CTs were initially deployed in 2018 and 128 

an additional 207 CT sites rolled out over 2019 to 2021. The CTs were unbaited, mounted on 129 

trees on average 30 cm off the ground adjusted to target medium-large mammal species, and 130 
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equipped with either an infrared flash or white flash. Infra-red cameras were programmed 131 

with 30 s delay for both day and night, while white flash units operated with 30 s delay 132 

during the day and one min at night. CTs were serviced every 4-6 months to download 133 

images, replace batteries, remove vegetation obstructing the field of view. In cases where a 134 

camera was stolen, a new CT was deployed at a new site, typically >250m from the stolen 135 

camera’s location.  136 

 137 

All CTs were camouflaged with vegetation upon their deployment. However, after 138 

researchers experienced thefts of CTs deployed during the first year (2018), they intensified 139 

their camouflage techniques in subsequent years to better conceal the CTs from view. This 140 

enhanced approach included carefully selecting sites with natural vegetation cover, 141 

conducting thorough visual inspections from various points before finalising the setup, and 142 

regularly replacing the vegetation used for camouflage during the following service checks. 143 

 Across the four-year period a total of 112 CTs, or 20% of all those deployed, were eventually 144 

stolen (although the lifetime of a given camera at a site varied considerably): 14 cameras in 145 

2018, 38 in 2019, 30 in 2020, 23 in 2021, and seven in 2022 (Figure 2). While the year a CT 146 

was stolen was known, the exact date remained unknown, as researchers only discovered a 147 

unit was missing during servicing visits meaning a CT could have been stolen at any point 148 

since the last service check.  Since the exact date a CT was stolen was unknown, we chose to 149 

use a Bayesian survival analysis, to investigate the impact of the various predictors on the 150 

risk of camera-trap theft. This allowed us to include general interval-censored data under the 151 

proportional hazards model and thereby account for uncertainties surrounding the exact 152 

moment of camera-trap theft (see Section Bayesian Survival analysis of camera-trap theft for 153 

details). 154 
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 155 

Statistical analysis 156 

Model covariates - Predictors of theft. 157 

We tested survival models using five predictors: distance to the nearest town, gates on roads, 158 

the frequency of vehicle and human foot traffic at the site, and the researchers’ growing 159 

expertise in hiding cameras from potential thieves, as detailed below: 160 

 161 

a) The distance from each CT site to the nearest town with permanent residents (Appendix 162 

S1: Table S1) was calculated as the Great Circle Distance, in kilometres, using Google Earth 163 

satellite images. To account for variance heterogeneity, this distance was normalised by 164 

subtracting the mean and dividing by the standard deviation (SD) prior to analysis. The 165 

presence of a gate on the roads (e.g., forestry gates, National Park gates, and residential gates) 166 

was defined as a binary covariate where 0 = no gate, and 1 = presence of a gate.  167 

 168 

b) The frequency of vehicle and human foot traffic at the CT site was expressed as an index 169 

of relative activity (RA). This index was estimated for each CT site by calculating the number 170 

of images of ‘vehicles’ (e.g., all-terrain vehicles, motorbikes, bicycles, forestry vehicles, and 171 

two-wheel drives) and/or  ‘humans on-foot’ (e.g., hikers, joggers, or people with dogs) 172 

divided by the number of active trap days at that station (George et al. 2006). We added one 173 

to this RA to allow the inclusion of zero values (sites with only vehicle or human-foot traffic) 174 

and because the researchers at a minimum had visited the sites, and then log-transformed this 175 

value before analysis to account for heterogeneity of variances: log (RA + 1). The 176 

categorisation into ‘vehicle’ or ‘human on-foot' of the large dataset of images was done using 177 
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the freely available object detection software MegaDetector (Beery et al. 2019; Brook et al. 178 

2023). We were not able to calculate the index of RA for CTs stolen within the first four-six 179 

months of their deployment which was before their first service check (n=42 cameras), as no 180 

data was ever retrieved from these cameras before being stolen. Since using these missing 181 

values or excluding these cameras from the subsequent analysis could have impacted the 182 

conclusions drawn from the model selection (Donders et al. 2006; Nakagawa et al. 2011) or 183 

result in reduced estimation precision or statistical power (Nakagawa et al. 2011), especially 184 

because they were likely to be highly vulnerable sites, we imputed the missing values. As the 185 

data was Missing Not At Random—since the missing variable (number of images of vehicles 186 

and/or humans on-foot) was directly tied to the dependent variable (being stolen) (Nakagawa 187 

et al. 2011)—we imputed the missing data by generating random values based on a Gaussian 188 

probability distribution. The mean was defined as the RA of the closest CT located at least 2 189 

km away, and the standard deviation was set at 10% of the confidence interval. Two cameras 190 

did not have a CT at least 2km away and were therefore excluded from the subsequent 191 

analysis. 192 

 193 

c) The predictor ‘deployment expertise’ was included to account for potential biases arising 194 

from adaptive changes to the deployment strategies used by the researchers to reduce the 195 

visibility of CTs. We categorised this predictor into ‘initial deployment’ referring to the first 196 

CTs deployed by researchers during the year 2018, and ‘informed deployment’ referring to 197 

CTs deployed in subsequent years (from 2019 to 2022). In 2018, both the rates and causes of 198 

camera-trap theft in these regions of Tasmania were unknown by the researchers, and 199 

avoiding theft of such devices was not considered a high priority. However, during the 200 

subsequent years (from 2019 to 2022), given the large number of stolen CTs during 2018, 201 

researchers increasingly focused on implementing strategies to reduce the visibility of CTs by 202 
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potential thieves. These strategies included selectively culling sites that were highly exposed 203 

and easily discovered by thieves, based on previous incidents of camera-trap theft at those 204 

sites; greater emphasis on improving the camouflage of CTs; and the situational prioritisation 205 

of CTs with infra-red rather than white-bulb flash.  206 

All the predictors had a Pearson's cross-correlation coefficient r < 0.7.  207 

 208 

Bayesian Survival analysis of camera-trap theft 209 

All analyses were done using R version 4.2.2  (R Core Team 2020). To investigate the impact 210 

of the various predictors on the risk of camera-trap theft we used survival analysis within a 211 

Bayesian framework using the package ‘rstanarm’ (Brilleman et al. 2020). We chose to 212 

use Bayesian survival analysis (parametric) because our study incorporates interval-censored 213 

data as the exact date a CT was stolen is unknown, but it falls within a known interval—214 

between two consecutive CT service sessions. Although the Cox proportional hazards model 215 

has been the most widely used semiparametric regression model in the survival literature, its 216 

partial likelihood method is not applicable for interval-censored data under this model (Lin et 217 

al. 2015; Brilleman et al. 2020). As such, a Bayesian approach offers an efficient approach 218 

for analysing interval-censored data under the proportional hazards model, and properly 219 

accounts for uncertainties surrounding the exact time of camera-trap theft. This model 220 

characterised the censored data as a series of intervals [Li, Ri] for each subject i, where Li and 221 

Ri denote the left and right end of the interval within which the theft of a CT was known to 222 

have occurred (Pan et al. 2020), specifically between two consecutive service sessions of the 223 

CT. For CTs that were not stolen and were removed on a known date, both L and R were set 224 

equal, thus representing the exact number of days the camera remained in the field until its 225 

removal.  226 
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 227 

Covariate analysis with model comparison 228 

To check the appropriateness and robustness of the Bayesian survival analysis, we first 229 

identified and selected the parametric model that best fit our data. To do this, we compared 14 230 

different models, each comprising a saturated survival model paired with various parametric 231 

baseline hazard functions (Weibull, exponential, basis spline and monotone spline, that latter 232 

two with different degrees of freedom). To assess how well the assumptions of the best-fitting 233 

parametric model aligned with the actual data and identify potential discrepancies, we 234 

compared that model’s predicted survival function using the Posterior_survfit method for 235 

‘stansurv’ objects, against Kaplan Meier survival curve estimates using R package ‘survival’ 236 

(Therneau 2020).  We visualised results from the Kaplan Meier survival curve estimates 237 

using the R package ‘survminer’ (Kassambara et al. 2021). Given that the Kaplan-Meier 238 

method is only suited for right-censored data, we calculate the median number of days within 239 

each time interval and used it an estimate of the censored days (approximate days in the field 240 

before the CT was stolen).  241 

 242 

Once we selected the best fitting parametric form of the hazard function on the saturated 243 

model, we used it to fit and compare all possible simpler linear combinations of the five 244 

predictors, resulting in 32 candidate models. For the best-fitting model, we estimated the 245 

posterior distribution of the model parameters using a Bayesian estimation via Markov Chain 246 

Monte Carlo (MCMC). Variables with 95% credible intervals (CI) not overlapping with 0 247 

were considered to have strong evidence for effects on camera-trap theft. If the 95% CI did 248 

not overlap with 0 and the limits were negative, we could be 95% confident that the mean of 249 

the intervention group would on average, lie within negative values and present a lower mean 250 
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compared to the comparison group. Predictions were visualised using the posterior_survfit 251 

function, which provides survival probability estimates along with their lower (10%) and 252 

upper (90%) credible intervals for every possible combination of predictor values at each 253 

time point. Predictions were made considering the upper (0.95%) and lower (0.05%) quantile 254 

values for continuous covariates and both levels for the categorical (binary) covariates.  255 

 256 

For each model we used sufficient iterations to ensure convergence (typically ~ 2,000 257 

iterations) (van de Schoot et al. 2021). To establish chain convergence, we used the R-hat 258 

diagnostic (R-hat <1.01). Model selection was done using leave-one-out (LOO) cross 259 

validation, which assesses the predictive performance of models in a Bayesian setting by 260 

estimating the information-theoretic, relative expected Kullback-Leibler discrepancy (Yates 261 

et al. 2023). The best model was selected based on the expected log predictive density values 262 

(scores) and expert knowledge. 263 

 264 

Results 265 

Parametric form of the hazard function. 266 

The Weibull model was the best fitting parametric form of the hazard function for our data set 267 

followed by the Basis spline model with the highest degree of freedom as internal knots (six 268 

degrees of freedom) (Appendix S1: Figure S1). The Weibull model slightly over-estimated 269 

the Kaplan-Meier estimates during the initial period of 0 to 900 days and slightly 270 

underestimated them in the later period from 900 to 1436 days.  The second-best-fitting 271 

model implied a higher degree of flexibility closely approaching to the Kaplan-Meier curve. 272 

However, this flexibility may lead to overfitting the current dataset which could reduce the 273 

model’s predictive accuracy on new data (Figure 3).  274 
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 275 

The Weibull curve modelling the predicted risk of camera trap (CT) theft was characterised 276 

by a shape parameter less than 1 (k = 0.4), suggesting theft rates of CTs were higher shortly 277 

after their deployment, with this rate thereafter decreasing over time (Figure 3).   278 

 279 

280 

Figure 3. Predicted survival probability of camera traps over time using the best fitted 281 

parametric form of the hazard function; Weibull survival model (posterior median and 95% 282 

uncertainty limits), the second best fitting parametric form; B-spline survival model with 6 283 

degrees of freedom (df) (posterior median and 95% uncertainty limits), and the non-284 

parametric Kaplan-Meir hazard estimate. 285 

 286 

Covariate analysis with model comparison using the Weibull hazard function. 287 
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The model containing the predictors ‘deployment expertise’, ‘distance to town’, ‘vehicle 288 

relative activity’ (RA) and ‘gate presence’ had the best predictive performance on the survival 289 

of CTs (Figure 4). This suggested that human on-foot RA was not as important as the other 290 

four covariates in explaining the variance in camera-trap theft in our context. The simpler 291 

models, each of which pool estimates for at least one of the covariates, performed poorly 292 

relative to the best-performing models (Figure 4, Appendix S1: Table S2). 293 

 294 

295 

Figure 4. Estimates of model performance using approximate leave-one-out cross-validation. 296 

The scores ΔLOOi = LOOi − LOOmin are the differences of the loo estimates of 297 

models i = 1, …, 32 and that of lowest LOO value. The error bars depict one-standard error 298 

of the ΔLOOi estimates. G = Gate presence, DT = Distance to town, DE = Deployment 299 

expertise, H = Human on-foot relative activity, V = vehicle relative activity. 300 

 301 



16 
 

All predictors included in the best-fitting model showed strong evidence for their impact on 302 

CT survival probability, as their parameter posterior estimates and 95% Bayesian credible 303 

intervals did not overlap with 0 (Figure 5). Distance to town and deployment expertise had 304 

the lowest posterior estimates. Increasing distance to town and gate presence lead to a 305 

decrease in the hazard function by approximately 25.9% and a 59.3% respectively. 306 

Conversely, an increase in one unit of the log-transformed vehicle RA and initial deployment 307 

showed evidence of increasing the hazard function by approximately 200.4% and 49.2% 308 

respectively.  309 

310 

Figure 5. Parameter posterior estimates of predictors included in the best-fitting model (see 311 

Figure 4). Horizontal lines indicate 95% Bayesian credible intervals on camera survival 312 

probability; the intervals do not overlap with 0 (vertical red line) indicating a strong effect on 313 

camera-trap theft. 314 

 315 



17 
 

The predictions of our best model showed that informed deployment, the presence of a gate 316 

on the road, a decrease in vehicle RA (lowest 5% quantile = 0.049 images of vehicles per 317 

total trap days), and greater distance from the nearest town (highest 95% quantile = 32 km) 318 

significantly increased the survival probability of CTs (Figure 6). These CTs were predicted 319 

to last 205 times longer without being stolen compared to cameras situated in the worst 320 

circumstance: closer to the nearest town (lowest 5% quantile = 5km), on roads without a gate, 321 

higher vehicle RA (highest 95% quantile = 0.980 images of vehicles per total trap days), and 322 

initially deployed (Figure 6). 323 

 324 

325 

Figure 6. Predicted survival probability of camera traps over time (posterior median and 95% 326 

uncertainty limits) under the best- (red) and worst-case (blue) combinations of parameter 327 

values. LVRA = lowest vehicle relative activity (5% quantile = 0.049 vehicle images of 328 

vehicles per total trap days), HVRA = highest vehicle relative activity (95% quantile = 0.980 329 

of vehicles per total trap days), FT = Furthest distance from the nearest town (95% quantile = 330 

32 km), NT = nearest distance to the nearest town (5% quantile = 5 km), GP = gate on road 331 

present, GA = gate on road absent, INFD = informed deployment, INID = initial deployment. 332 
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Discussion 333 

In this study, we assessed the impact of a range of factors related to camera trap (CT) 334 

placement on the risk of theft of CTs deployed on roads. Interestingly, we found that the 335 

frequency of human foot traffic was not a significant factor in camera-trap theft prevention. 336 

However, a decrease in the frequency of vehicle traffic, the presence of gates on roads, longer 337 

distances to towns, and increasing experience at hiding cameras all showed evidence of 338 

significantly decreasing camera-trap theft risk.  339 

 340 

Although the exact motivations behind why people steal CTs remains unclear, it is likely that 341 

individuals engaging in illegal activities would steal CTs to avoid being identified, and sites 342 

with these characteristics in our study were less frequented by such individuals. Gated roads 343 

clearly have limited vehicle access, and this will reduce the likelihood of illicit activity such 344 

as illegal forest extraction and hunting, as vehicles facilitate rapid ingress and egress from 345 

sites, and the transportation of tools (e.g., chainsaws, axes and hunting gear), and recovery of 346 

materials associated with such activities (e.g., wood and carcasses) (Clements et al. 2014; 347 

Woods 2019). In contrast, individuals on foot are generally more likely involved in 348 

recreational activities like walking dogs, hiking and jogging.  This is consistent with our 349 

results, which showed that while the frequency of vehicle traffic was a significant predictor of 350 

camera-trap theft, the frequency of human foot traffic was not.  351 

 352 

Secondly, locked gates might foster a perception of increased risk among potential offenders 353 

of getting caught or facing consequences, as demonstrated in urban settings like alleys 354 

(Sidebottom et al. 2018). This perception could deter unauthorised individuals, such as 355 

motorbikes that can bypass gates, from using these roads for illegal activities. However, the 356 
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effectiveness of gates in creating a fear of prosecution in remote areas depends on whether 357 

managers have the resources to monitor and enforce laws in the area (Abdu 2023). Therefore, 358 

in areas lacking adequate monitoring against crime, the presence of a gate on the road might 359 

no longer be a strong determinant of the risk of camera-trap theft. Additionally, the frequency 360 

of vehicles like motorbikes and bicycles might impact this risk differently compared to other 361 

vehicles that cannot bypass gates, such as large four-wheel drives. Advances in machine-362 

learning models for identifying different types of vehicles in CT images, like MegaDetector 363 

(Beery et al. 2019), could help future studies examine the impacts of specific types of 364 

vehicles on camera-trap theft on roads with and without a gate. 365 

 366 

Proximity to the nearest town likely attracts more individuals engaged in illegal activities, 367 

such as vandals and opportunistic thieves, as these roads require less effort and time to reach. 368 

Previous studies have found that forests and farms near towns experience higher instances of 369 

illegal forest extraction, vandalism, unauthorised trespassing, and illegal hunting (Barclay et 370 

al. 2011; Mackenzie et al. 2013). However, crime and illegal activity in these areas are not 371 

solely determined by their proximity to towns but also by the socioeconomic status, 372 

educational levels, and social dynamics of nearby communities, as well as the ecology of the 373 

area, such as resource availability and canopy cover (Gerben J. N. Bruinsma 2007; Troy et al. 374 

2012; Mackenzie et al. 2013; Abdu 2023). Therefore, in areas with, for example, stronger 375 

community social cohesion, roads near towns might have low or no levels of illegal activity, 376 

potentially leading to no correlation between distance to town and camera-trap theft risk, as 377 

suggested in previous studies (Meek et al. 2019).   378 

 379 
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As researchers work within and become familiar with the broad risks associated with a given 380 

operational region, they inevitably improved the measures used to hide CTs from potential 381 

thieves. Our results showed that this significantly reduced camera-trap theft risk, likely 382 

because better-hidden CTs were harder for potential thieves to detect, and because the most 383 

vulnerable sites were quickly plundered and thereafter abandoned. These findings emphasise 384 

the importance of using strategies such as enhance camouflage and prioritising infra-red flash 385 

to mask CTs and minimise their visibility to people. However, the separate impact of 386 

camouflaging CTs and using infra-red flash on camera-trap theft risk warrants further 387 

investigation. A future study could include a controlled experiment comparing the effects of 388 

camouflaged and non-camouflaged CTs on the risk of camera-trap theft using dummy units. 389 

Another study could involve collaborating with researchers who deployed both infra-red and 390 

white flash CTs on roads with consistent nighttime human activity and experienced theft. 391 

Moreover, there are unfortunately trade-offs in these choices. While infra-red flashes are less 392 

noticeable to people during nighttime, they produce monochrome images, compared to the 393 

bright and coloured images of white-flash cameras (Meek et al. 2012b). Infra-red flash 394 

images also reduce the detection and identifiability of certain small mammals, as well as 395 

species that rely on pelage colour as an identifying characteristic (Meek et al. 2015; Burns et 396 

al. 2018). Another risk – data quality trade-off involves site obscuration: if not arranged 397 

correctly, the vegetation used for camouflaging CTs can obstruct the cameras field-of-view, 398 

leading to poor image quality, empty frames, or misleading clutter that resembles animals 399 

(Moll et al. 2020). 400 

 401 

 402 

 403 
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Conclusion 404 

The evidence from this study suggests that placing CTs on roads with a gate, at greater 405 

distance from the nearest town, and with lower frequencies of vehicle traffic, as well as 406 

implementing proactive efforts to hide CTs, reduces theft risk. It is interesting to note that 407 

human foot traffic did not significantly elevate this risk in our context, suggesting that the 408 

influence of the frequency of human activity on the risk of CT theft depends on the type of 409 

activity. To our knowledge, these effects have not been rigorously quantified before, but 410 

further data are needed from other social and ecological contexts. Our study offers a robust 411 

analytical framework for identifying and testing the factors influencing CT theft risk with 412 

application in diverse social and ecological contexts. Moreover, these results indicate that to 413 

enhance security of CTs deployed on roads, efforts must go towards multiple anti-theft 414 

measures, including strategic placement based on the social and ecological landscape and 415 

proactive efforts to hide cameras. If resources are limited or the context of the study area 416 

restricts the implementation of some strategies, implementing even a single strategy can still 417 

help to reduce CT theft. Nevertheless, we suggest that the implementation of these strategies 418 

should be accompanied by careful consideration of the potential trade-offs they might have 419 

for data quality and sampling regimes.  420 
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