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ABSTRACT 191 words 5 

Mixed-species aggregations at fixed resources often demonstrate complex social structure and 6 

behaviors. However, these systems are underappreciated in behavioral ecology, ultimately limiting 7 

our understanding of population and community processes. Here we observed 13 species of 8 

parrots, macaws, and parakeets in foraging assemblages at exposed cliffs in southeast Perú. For 9 

each species, we developed a multivariate index of group impact by accumulating 9 separate 10 

metrics of abundance, chronology, functions, and interactions. This index appreciates species that 11 

join aggregations in large numbers, participate early, serve in functional roles, interact with others, 12 

and are socially dominant. We used Random Forest (“RF”) algorithms to build nonlinear multiple 13 

regressions to assess and rank the influence of a suite of taxonomic and morphometric factors on 14 

this index. The RF models (R2 = 0.96) indicate parrots with smaller brains (controlled for body size) 15 

have the highest impact scores, with several potential underlying mechanisms. We further 16 

document a distinct sequence of group participation where subordinate species serve as pioneers 17 

that initiate group assembly and foraging, while dominant species serve as sentinels, foraging after 18 

subordinates. This result suggests that sequenced tradeoffs and reciprocal altruism may be 19 

important in these mixed-species groups. 20 

 21 

LAY SUMMARY 65 words 22 

Birds demonstrate complex forms of social organization, especially in mixed-species groups. In 23 

Amazonian parrots, we show subordinate species were key for assembling groups and initiating 24 

foraging, while dominant species served as sentinels and foraged later. We developed an index that 25 

accumulated various species impacts to group aggregations and used machine learning to reveal 26 

that small brained and dispersal limited species had the most group impact. 27 

 28 

INTRODUCTION 502 words 29 

Animal social groups take many forms across taxa and ecosystems, playing key roles in shaping 30 

ecological communities (Doody et al., 2013; Ehrlich and Ehrlich, 1973; Holldobler and Wilson, 31 

2009; Van Schaik, 1983). Group associations are widespread because they offer clear advantages: 32 

improved foraging success, reduced risk of predation, and fitness through kin selection (Krebs and 33 

Davies, 1993). Most animal societies are therefore monospecific, shaped by shared evolutionary 34 

histories, morphologies, and behaviors. However, structured mixed-species groups are also 35 

common (Goodale et al., 2017), especially among birds (e.g., Barnard and Thompson, 1985; 36 

Chapman et al., 1989; Darling, 1938; Morse, 1970), and are particularly prevalent in tropical forests 37 

(e.g., Hart and Freed, 2003; Munn and Terborgh, 1979; Thiollay, 1999). 38 

Mixed-species bird flocks are typically classified by their dominant food resource or 39 

physical niche. Flocks that forage cooperatively within a stable home range, for instance, are 40 

labeled “mixed-species flocks” (sensu stricto), in contrast to those that track army ant swarms 41 

(Eciton burchellii) or congregate at localized resources like fruiting trees (Daily and Ehrlich, 1994; 42 
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Mangini et al., 2023; Powell, 1985; Terborgh et al., 1990). Forest strata further differentiate flock 43 

types. Understory flocks differ in microhabitat and species composition from canopy flocks, even 44 

though both may be territorial and organized around nuclear, sentinel, and leading species (Munn 45 

and Terborgh, 1979). Indeed, these social structures often coexist within the same forest, operating 46 

independently (Terborgh et al., 1990). Such niche-based classifications, however, may obscure the 47 

emergent properties and broader ecological roles of these assemblages (Carlson et al., 2023). 48 

Compared to other forest birds, mixed groups of parrots (e.g., Chapman et al., 1989; Gilardi 49 

and Munn, 1998) are poorly understood, presenting an opportunity to describe their social 50 

dynamics. Conveniently, parrot flocks are often conspicuous and frequently aggregate at 51 

geographically fixed food resources, making them relatively easy to observe. In Perú, for example, 52 

large numbers of parrots, macaws, and parakeets gather daily at exposed cliff banks to forage on 53 

clay. Here, prior studies have documented their composition, seasonal patterns, and the 54 

physiological motivations for geophagy (Brightsmith and Muñoz-Najar, 2004; Brightsmith and 55 

Villalobos, 2011; Gilardi et al., 1999; Gilardi and Munn, 1998). Yet key aspects of their collective 56 

behavior remain largely unexplored. These include their abundance, communication, 57 

synchronization, hierarchy, and functional roles (e.g., Carlson et al., 2023; Clutton-Brock et al., 58 

1999; Farine, 2022; Raihani, 2021; Trivers, 1971). 59 

Through a collaboration among an indigenous community, an ecotourism enterprise, and a 60 

university (Brightsmith et al., 2008; Stronza and Durham, 2008), we monitored mixed-species 61 

parrot groups along the Tambopata river in southeastern Perú. We characterized flock 62 

composition, and documented cooperative behaviors, species roles, and antagonistic 63 

interactions.  We refined existing quantitative methods by developing a multivariate index that 64 

summarizes social behavior, and we applied machine learning to assess how this index relates to a 65 

suite of taxonomic and morphometric traits. As a result, this study advances our understanding of 66 

parrot sociality, generates new methods for quantifying group impact, identifies potential 67 

underlying drivers of social behavior, and offers new insight into cooperation and altruism in mixed-68 

species assemblages. 69 

 70 

METHODS 1774 words 71 

Field Site & Observations 72 

The Tambopata Research Center (“TRC”, -13.136358°, -69.609541°) is in the Tambopata province 73 

of the department of Madre de Dios in southeast Perú. Moist tropical broadleaf lowland forests 74 

consisting of terra firme, várzea, and bamboo characterize the region (Erwin, 1984; Foster et al., 75 

1994). TRC lies within the 2,800 km2 Tambopata National Reserve (IUCN category VI), immediately 76 

adjacent the Tambopata River and the 11,000 km2 Bahuaja-Sonene National Park (IUCN category 77 

II). These protected areas have various access and resource extraction controls (Asner and 78 

Tupayachi, 2017; Kirkby et al., 2010). Along the Tambopata river, 750 m south of TRC, the study site 79 

is a 10m tall × 100m wide cliff of exposed clay. Locally it is known as the “collpa” (variously spelled 80 

as colpa or ccollpa). 81 

During the dry season June–October 1999, we observed parrot activity (INRENA permit no. 82 

53-99-9-INRENA-DGANPFS-DANP) in a camouflaged observation blind ~25m from the collpa base 83 

(Fig. 1). All counts and behavioral observations used binoculars (8×32, Leica, Trinovid BA), spotting 84 

scopes (15-40× zoom eyepiece, Bushnell, Spacemaster) and video cameras (Hi8 with 10× zoom, 85 

Sony, CCD-v801). At 30 minutes before morning twilight (defined as “civil dawn”, data from: 86 

https://www.timeanddate.com/), we recorded the first audible parrot calls while hiking to the 87 

https://www.timeanddate.com/
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observation blind. At this time, up to 16 species of Psittacidae parrots gather in the forest canopy 88 

above the collpa. From the blind, we recorded the time and composition of the first pioneer group 89 

that ritualistically flies above the collpa (locally called the “dance” cohort) searching for a place to 90 

land and forage. When this group landed, the dawn assemblage began.  91 

At 5-minute intervals, an observer counted individual birds of each species on the collpa, 92 

until the dawn group ended (defined as when < 2 species remained). In addition to counts, a 93 

separate observer continuously recorded flock disturbances, sentinel alarms, and agonistic 94 

interactions. While birds typically clustered in single species groups (e.g., Fig. 1b-d), species also 95 

interacted, sometimes agonistically. When one bird displaced another on the collpa (through gape 96 

lunges, bites, wing beats, body pushing (Marcuk et al., 2020; Serpell, 1982), or by dropping debris) 97 

we recorded the winning and losing species. We also recorded flushes, defined as when > 50% of 98 

foraging or perched birds abruptly dispersed. When possible, we noted the cause (an obvious 99 

visual or audio cue) that immediately preceded the flush in the area where it occurred. For flushes 100 

preceded by alarm calls, we recorded the sentinel species making the alarm call (Fig. 1e).  101 

We reviewed 40 hours of video to both confirm these observations and obtain additional 102 

data. While the dawn collpa activity required 2 observers, ≥ 1 remained until 16:00, recording the 103 

irregular collpa activity that occurred throughout the day. This monitoring protocol preceded and 104 

was only partially followed by subsequent studies (Brightsmith and Muñoz-Najar, 2004; Brightsmith 105 

and Villalobos, 2011). 106 

 107 

Summarizing Group Activity 108 

Following ecological footprint studies (Halpern et al., 2015; Halpern et al., 2012; Van Houtan et al., 109 

2010), we synthesized observed bird activity using a multivariate index that accumulates each 110 

species’ impact on group aggregations. We used the formula:  111 

𝑀 =∑∑𝑝𝑖𝑛
−1

𝑛

𝑖=1

𝑛

𝑗=1

 112 

[Eqn. 1] 113 

Where i represents 9 derived metrics, grouped into j categories—abundance, chronological 114 

sequence, functional roles, and interspecific interactions (see Table 1). This approach builds on 115 

previous indices of flocking propensity in birds that were based solely on presence/absence 116 

records (e.g., Jullien and Thiollay, 1998; Van Houtan et al., 2006), and incorporates metrics 117 

explicitly recommended in a recent review of mixed-species aggregations (Carlson et al., 2023). 118 

The resulting index, M, combines a fuller suite of separate participation and behavioral data that 119 

together capture the cumulative footprint of each species on the group dynamics. 120 

Here, pi is the quantity of each individual metric, rescaled from 0-100, where n-1 ensures 121 

equal weighting among categories. As a result, the maximum sum for each j category (i.e., the inner 122 

summation loop) is 100, and the maximum M index value for each species is 400 (i.e., the outer 123 

summation loop). As we are interested in the dynamics of mixed-species groups, all indices are 124 

calculated from observations of > 1 species. Additionally, due to the correlation between dawn and 125 

flock formation (e.g., Fig. 2, R2 = 0.77, p < 0.0001) we rescaled all observation times to the elapsed 126 

time since civil dawn. Otherwise, observations from unadjusted time reports seasonal artifacts. 127 
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To account for group composition, we described species abundance both by individuals 128 

and by aggregate biomass. For individuals, we assumed counted birds remained for the duration of 129 

each 5-minute survey interval and convert this to an hourly rate. We summed the individuals in 130 

each discrete 5-minute window for all days and divide the total observation days. Given the broad 131 

range in bird sizes (0.07-1.2 kg), we separately multiplied the previous metric by species body mass 132 

(Brightsmith and Villalobos, 2011). To account for the sequence of species participation and how 133 

that influences group formation and maintenance, we calculated chronology across the full day 134 

and then within the dawn aggregations. The full-day chronology is the time of the peak biomass 135 

abundance for each species across all monitored daytime hours. Constrained to 0-2 hours after 136 

dawn, the morning flock chronology is the maximum value of a locally weighted regression 137 

(Cleveland and Devlin, 1988) fit to the abundance data against time.  138 

To quantify functional roles for each species to the groups, we derived two metrics. The first 139 

tabulated the raw occurrences across the study period when each species participated in the 140 

dawn pioneer cohort. The second counted the times each species was an alarming sentinel. Due to 141 

the complexity of interspecific interactions, we developed 3 metrics to describe them. To account 142 

for social status, displacement rate was the number of wins divided by the total agonistic 143 

interactions observed for each species. Species interaction rate was the number of agonistic 144 

interactions divided by its individual abundance. Interaction breadth was the total number of 145 

species for which each species had agonistic interactions. Across measurement scales—metric, 146 

category, index)—M represents a single cumulative footprint derived from independent, relevant 147 

factors for these mixed-species groups. 148 

 149 

  150 

 151 

Table 1. Metrics composing the group impact index. Flock monitoring revealed 9 metrics of 152 

abundance, chronological sequence, functional roles, and agonistic interactions that impacted 153 

group formation, anti-predator vigilance, and social status. See Methods and Figs. 2-5 for more 154 

details.  155 

 156 

We used non-parametric bootstrapping to generate a series for M with the above formula. 157 

For each species, we calculated Eq. [1] by randomly sampling the full set of i metrics n×n times (9 158 

recursive samples for each 9 metrics) with replacement. We divide the result by n and replicate the 159 

process 2000 times. Each individual replicate is the average of Eq. [1] when repeated n times, 160 
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where each calculation of M is performed on a random sample (with replacement) of the complete 161 

set of 9 independent metrics. The resulting series is a statistically robust and cumulative 162 

accounting of species’ impact to the group, where the weighting of each metric is randomized 163 

through resampling. 164 

 165 

Species Level Covariates 166 

We assembled a suite of potential model covariates from external morphometrics, flight 167 

aerodynamics, cognitive, and taxonomic features. 168 

The ornithology collections of 8 institutions provided access to parrot specimens. These 169 

included the Carnegie Museum of Natural History, Museum of Comparative Zoology (Harvard 170 

University), University of Kansas Biodiversity Institute, Universidad Nacional Mayor de San Marcos 171 

(Perú), Florida Museum of Natural History (University of Florida), Burke Museum of Natural History 172 

and Culture, Bernice Pauahi Bishop Museum, and the Museum of Vertebrate Zoology (University of 173 

California). From study skins and spread wings, wing rules measured the wing chord (closed wing 174 

length, Lw) and the span from the carpal joint to the first secondary feather’s tip (S1) of each wing. 175 

Digital calipers recorded the straight culmen and lower mandible lengths. Body mass (Brightsmith 176 

and Villalobos, 2011) and brain volume (Schuck-Paim et al., 2008) are from published studies. 177 

Lacking the brain volume of Brotogeris cyanoptera, we averaged the values of 6 congeners. To 178 

visualize their forms, we imaged the spread wings and bills of focal species or their congeners on 179 

standardized grids. Schodde et al. (2013) gave tribe, genus, and species classifications. 180 

We used the wing and bill measurements to calculate relevant metrics. The hand-wing 181 

index (“HWI”) is correlated with dispersal ability (Claramunt et al., 2012; Claramunt and Wright, 182 

2017) which is an important trait in Amazonian forest birds (Van Houtan et al., 2007). HWI equals 183 

100*((Lw-S1)/Lw). Total wing area is a key aerodynamic metric (Gagné et al., 2018b; Pennycuick, 184 

2008), summarized by an index (“TWAI”) that equals 3S1Lw (Claramunt and Wright, 2017). Wing load 185 

is standard gravity × body mass × TWAI-1 (Pennycuick, 2008). Bill lengths are correlated with social 186 

dominance (Daily and Ehrlich, 1994; Marcuk et al., 2020; Serpell, 1982) and we summed both 187 

measurements. To describe cognitive aptitude we corrected brain volume for body size (Mace et 188 

al., 1981), taking the residuals from best fit power model of the two series (Krebs and Davies, 189 

1993).  190 

 191 

Model Features and Computing libraries 192 

In line with previous ecological studies (Becker et al., 2019; Becker et al., 2020; Gagné et al., 193 

2018a; Gagné et al., 2018b; Nicholson et al., 2023; Nicholson et al., 2024), we used Random Forest 194 

(“RF”) algorithms to build nonlinear multiple regressions to predict M. RF models are a machine 195 

learning tool with several advantages to linear least squares regression. RF models (i) are scalable 196 

to large datasets that include categorical and continuous data, (ii) accommodate both nonlinearity 197 

and heteroscedasticity, (iii) present ensemble conclusions of decision trees made from 198 

randomized subsets of predictor and response data, and (iv) facilitate visualizations of multiple 199 

predictors on the model outcomes (Breiman, 2001). 200 

We trained an RF through resampling the dataset with 10-fold cross validation, set the 201 

number of model trees (ntree = 2000) and by tuning the number of available parameters at node 202 

splitting (mtry) for optimal performance. K-fold cross validation evaluated the model by splitting the 203 

data into k equally-sized sets; fitting it on the k-1 sets and testing it on the remaining hold-out 204 
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(Gareth et al., 2013). This routine looped for each k set, then summarized model performance by 205 

calculating the ensemble average R2 across all k tests (we repeated the entire process 5 times). We 206 

initially tuned and ran an RF using all available covariates (n = 10), but as many variables were 207 

correlated, we retuned and ran an RF using only 5 inputs without performance loss. These inputs 208 

are tribe, brain size, cumulative bill straight length, HWI, and wing load.  209 

The R statistical language (RCoreTeam, 2022) performed all analyses in macOS Sequoia 210 

15.4.1 run on an 8-core M1 chip. The ‘dplyr’ and ‘tidyr’ libraries facilitated data wrangling and 211 

sampling (Wickham et al., 2023). The ‘caret’ and ‘randomForest’ libraries (Kuhn et al., 2020; Liaw 212 

and Wiener, 2002) trained, tuned, and fit RF regressions. The ‘doParallel’ library reduced 213 

computation times (Weston and Calaway, 2022). The ‘pdp’ library generated partial dependence 214 

data (Greenwell, 2017). A third-party repository (GitHub, bit.ly/3qW45Md) contains data and code. 215 

 216 

RESULTS 1022 words  217 

We documented 16 species of Neotropical parrots (subfamily Arinae) on the TRC collpa: 6 218 

macaws, 5 parrots, 3 parakeets, and 2 parrotlets. The macaws included the red-and-green (Ara 219 

chloroptera, “RGMA”), blue-and-yellow (Ara ararauna, “BYMA”), scarlet (Ara macao, “SCMA”), 220 

chestnut-fronted (Ara severus, “CFMA”), and red-bellied (Orthopsittaca manilatus, “RBMA”). The 221 

parrots are the mealy amazon (Amazona farinosa, “MEPA”), yellow-crowned amazon (Amazona 222 

ochrocephala, “YCPA”), blue-headed (Pionus menstruus, “BHPA”), white-bellied (Pionites 223 

leucogaster, “WBPA”), and orange-cheeked (Pyrilia barrabandi, “OCPA”). The parakeets are the 224 

white-eyed (Psittacara leucophthalmus, “WEPA”), dusky-headed (Aratinga weddellii, “DHPA”), and 225 

cobalt-winged (B. cyanoptera, “CWPA”). We observed dusky-billed (Forpus modestus) and 226 

Amazonian (Nannopsiottaca dacchileae) parrotlets at the collpa but only in monospecific flocks 227 

after dawn. One additional macaw—blue headed (Primolius couloni)—was more furtive and 228 

occasionally seen perched in the trees above the feeding flocks. We consider neither F. modestus, 229 

N. dacchileae, nor P. couloni further. With the available technology (see Methods), the small 230 

macaws—RBMA and CFMA—evaded distinction while foraging and we lumped their observations 231 

as “GRMA.” We further analyze 11 species and 1 species complex (GRMA). 232 

Above and on the collpa, we observed various groupings and activities (Fig. 1). The most 233 

pronounced activity occurred in aggregations immediately after dawn (Fig. 1b). Smaller—234 

predominantly single species (Fig. 1c-d)—groups occurred sporadically throughout the day. All 235 

species foraging on the collpa also perched in the vegetation above it (Fig. 1e), where some would 236 

sound alarms (Fig. 1f). Though up to 9 nine species and nearly 350 birds could be seen foraging on 237 

the collpa at one time, dawn flocks typically attained a maximum richness of 6 species, peak 238 

abundance of 200 birds and peak activity 10-20 min. after flocks initially formed (Fig 1g-h). Dawn 239 

flocks followed a consistent sequence of events and behavior: sunrise, audible calls, pioneer 240 

cohort dance, pioneer cohort lands, birds continuously arriving and leaving the foraging group, and 241 

the group ending (Fig. 2). Though dawn flocks might last > 80 min., the median duration was 53 min. 242 

(Fig. 2b). The dance cohort was typically brief (median = 3 min.) and was tightly fixed to the timing of 243 

dawn (Fig. d-e). Over 99 days, researchers observed 583 daylight hours biased toward dawn, with a 244 

cumulative 749 observer hours spread over 79 discrete days (Fig. 2f-g).  245 

Species demonstrated distinct chronologies of activity, with most (8 of 12) preferring dawn 246 

flocks (Fig. 3a). Assessed by total and peak abundance (Fig. 3a-b), 2 species (BYMA, SCMA) 247 

regularly joined both dawn and day groups, while 2 others preferred day groupings (RGMA, CWPA). 248 

Whether ranked by biomass or individuals, BHPA and MEPA are the most abundant species 249 
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recorded (Fig. 3c-d). We observed 50 BHPA and 30 MEPA individual birds hr-1 in each dawn group. 250 

Most species (n = 8), however, have ≤ 5 birds hr-1 in the dawn flocks. Within the dawn groups, 251 

species also demonstrated distinct chronology preferences (Fig. 4). Though congeners, YCPA is the 252 

first species to arrive, and MEPA is second to last (Fig. 4a-b). The 3 earliest arriving species 253 

comprise the only pioneers who lead dance sorties (Fig. 4c). This included both small macaws 254 

(CFMA, RBMA) that while easily differentiated in flight, were not distinguished by their dorsal 255 

plumage while foraging. 256 

Flushes were common in dawn groups (mean = 15.5 day-1), though most (999/1200, 83.3%) 257 

were not attributed to a direct cause (Fig. 5a). For flushes that were, 163 (13.6%) were 258 

anthropogenic and 38 (3.2%) natural causes. The leading known cause was tourist boats and 259 

tourists viewing parrots from conspicuous trails above the collpa (Fig. 5b). The leading known 260 

natural flush cause was birds of prey (Falco deiroleucus and Astur bicolor attempted depredations 261 

of OCPA, WEPA, and DHPA). Flushes preceded by sentinel alarms (n = 187) were unevenly 262 

distributed across 10 species (Fig. 5c). Four of the most common sentinels were late foragers in 263 

dawn groups (Fig. 4a). Interspecific interactions revealed their prevalence and hierarchical status 264 

(Fig. 5d-e). BYMA, YCPA, and GRMA frequently interacted with many species, while SCMA, CWPA, 265 

and RGMA frequently interacted with few species (Fig. 5d). Status largely reflects body size (Fig. 266 

5e). The largest species, RGMA, was uniquely dominant, winning > 50% of all interactions. The 267 

smallest species, CWPA, was always subordinate with 0 wins. 268 

The cumulative impact index, M, reflects individual metrics of abundance (Figs. 3), 269 

chronology (Figs 3-4), functional roles (Figs. 4-5), and interactions (Fig. 5). This cumulative footprint 270 

appreciates species (e.g., BHPA, MEPA) that have high abundance, participate early in dawn flocks, 271 

perform group-serving functions, and interact frequently with many other species while winning 272 

most interspecific interactions. Conversely, M relegates species (CWPA, WBPA) that do not 273 

express these traits. A non-parametric bootstrap routine created 2000 M values for each species  274 

retaining the rankings of the raw scores from Eqn [1] while randomly resampling them (Fig. 6a-b).  275 

Museum specimens and published data reveal a range of morphometric indices relevant 276 

for status, flight, and cognition (Fig. 7). Large macaws have the largest bills (Fig. 7c), small macaws 277 

and parakeets have the greatest dispersal ability (Fig. 7d), and the amazons have the highest wing 278 

loads (Fig. 7e). The fitted power model of brain size to body mass has an exponent of 0.70 279 

[remarkably consistent with fitted relationships in birds (Krebs and Davies, 1993)], revealing 280 

differences among  congeners and species (Fig. 7f).  281 

The morphometric and taxonomic variables display a variety of pair-wise relationships to M 282 

(Fig. 8). M increases as brain size (adjusted for body mass) decreases (Fig. 8a). Aerodynamic 283 

metrics have inconsistent relationships (Fig. 8b,e), bill size has a mid-domain peak (Fig. 8c) while 284 

the Androglossini tribe is above Arini (Fig. 8d). The trained, tuned, and optimized RF model 285 

performs well (R2 = 0.959), ranking brain size ahead of HWI, bill length, wing load, and tribe (Fig. 8f). 286 

Model performance was insensitive both to removing correlated predictors and resampling 287 

procedures (see Methods). Partial dependence plots display bivariate influences on model 288 

predictions, y^ (Fig. 8g-j). The confluence of small brains, small HWIs, high wing loads and medium 289 

bills predict high sociality (Fig. 8g-h). Tribe has a negligible influence (Fig. 8j).  290 

 291 

DISCUSSION 1342 words 292 

Here we developed novel means to accumulate various traits of group aggregations and model 293 

their drivers with machine learning. Our main result is deriving a multivariate index, M, and 294 
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documenting its relationship to brain size. Fig. 8f shows that brain size is the strongest predictor of 295 

M, outperforming all factors. This suggests parrot species with smaller brains have the most 296 

impact on structuring groups, perhaps as they stand to gain the most from the aggregations. As 297 

observed in other animal social groups, such cooperation might increase foraging opportunities, 298 

foraging efficiency, and antipredator vigilance (Ehrlich and Ehrlich, 1973; Krebs and Davies, 1993; 299 

Moynihan, 1962; Powell, 1985; Terborgh, 1990)—presumably increasing benefits and reducing 300 

risks to survival and fitness (Krebs and Davies, 1993). An alternative explanation for this result 301 

derives from expensive tissue theory. As seen in mammals, frogs, and birds (Aiello and Wheeler, 302 

1995; Isler and van Schaik, 2006; Liao et al., 2016), this suggests species with larger brains possess 303 

a comparative reduction in other metabolically demanding tissues, such as the gut. Small-brained 304 

parrots may therefore have higher M scores as they may be predisposed to benefit most from 305 

geophagy itself. Small-brained parrots may have correspondingly larger digestive tracts and are, 306 

therefore, most able to process clays and extract their nutrients. This is currently speculative; 307 

however, it merits further examination in this context and in mammal aggregations at mineral licks 308 

(Griffiths et al., 2020; Griffiths et al., 2023). 309 

The combination of observed pioneer, sentinel, and status data suggest reciprocal altruism 310 

functions between species. Foraging on the exposed collpa poses measurable risk, as birds perch 311 

conspicuously in open areas with their vision often restricted in cliff recesses (Fig. 1a,f). Bird 312 

assemblages as a result are hyper-vigilant, frequently alarming and flushing to safety (Fig. 5a). Here 313 

an interesting tradeoff and separation of roles emerges. The 3 most vigilant sentinels (Fig. 5c: 314 

MEPA, SCMA, BYMA) are the most antagonistic, dominant (Fig. 5d-e), and among the later species 315 

in the dawn flock sequence (Fig. 4a-b). Pioneer species seldom serve as sentinels and the 316 

commonest sentinels are never in the leading dance cohort (Fig. 4c). As a result, sentinel species 317 

guard before feeding, sounding alarms from perches in vegetation above the collpa. When it is their 318 

turn to feed, sentinels land on the collpa where they often displace the feeding positions of pioneer 319 

species who previously established foraging perches. Sentinels continue to sound alarms from the 320 

collpa and from perches above it. Though most single-species social groups have pioneer and 321 

sentinel roles (Clutton-Brock et al., 1999), here the roles are split between species. Other mixed-322 

species groups also split such roles between species, but in those groups the roles occur while all 323 

species forage simultaneously (Hart and Freed, 2003; Moynihan, 1962; Munn and Terborgh, 1979; 324 

Powell, 1985; Terborgh et al., 1990; Van Houtan et al., 2006). In these parrot assemblages, the 325 

roles appear characteristically sequenced in time. Dominant, highly interactive sentinels like MEPA 326 

might delay foraging by > 20 min. or more after subordinate pioneers like BHPA. 327 

Congeners that shared many morphological traits also had distinct behaviors. The only 328 

Amazon parrots, MEPA and YCPA, have highly similar body, bill, wing, and brain metrics (Fig. 7). 329 

Ultimately, these are the top 2 ranked species in the sociality index, but they arrive there via 330 

different means (Fig. 6). YCPA is a core species in the pioneer cohorts where MEPA is a late arriving 331 

species in the dawn flock and the most common sentinel (Fig. 4, 5c). Our observations suggest 332 

their participation in foraging assemblages is almost mutually exclusive. Furthermore, the 3 large 333 

Ara macaws also have similar morphometrics (Fig. 7), are key sentinels (Fig. 5c) and are dominant 334 

over other species (Fig. 5e). However, RGMA rarely join dawn flocks, where BYMA and SCMA prefer 335 

them (Fig. 3a). Interestingly, BYMA has a noticeably smaller brain than either RGMA or SCMA which 336 

may motivate its higher M score (Fig. 6, 7f). Differences in the social behaviors among closely 337 

related congeners in such mixed-species groups deserve more attention.  338 

Future inquiries will improve on the present analysis. In all respects, ultra-high-definition 339 

digital imagery and video will advance the efficiency, ability, and precision of monitoring. This will 340 
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help identify cryptic (e.g., GRMA) and uncommon (N. dacchileae, P. couloni) species, resolve the 341 

attribution of flock threats and sentinel alarms (Fig. 5bc), reveal additional fine-scale interactions 342 

between species (Fig. 5d-e), and describe additional behaviors and hierarchies within species 343 

(Camerlenghi et al., 2022; Papageorgiou et al., 2019). Improved monitoring technology may also 344 

document the patterns, syntax, and significance of parrot vocalizations in such gatherings. New 345 

estimations of total bird wing area (Fu, 2022) may further characterize flight performance, but 346 

require wingspans which are not measured from folded-wing study skins. Capture, marking, and 347 

biotelemetry would yield unprecedented insights into individual movement and habitat use, but 348 

present significant logistical challenges. [Photographic identification of individuals is a potential 349 

non-invasive, alternative technique (Núñez-López et al., 2021).] In combination with biotelemetry 350 

and monitoring, feather ‘omics using either bulk or compound-specific stable isotope analysis 351 

(Gagné et al., 2018b; Van Houtan et al., 2024) would provide important diagnostic data on diet and 352 

trophic status. Lastly, as they tend to range widely and more frequently encounter human hazards 353 

(Laurance et al., 2011; Van Houtan et al., 2007; Woodroffe and Ginsberg, 1998), obligate social 354 

species may become more prone to local extinction. Future attention to the relationship between 355 

cumulative indices of social impact (like M) and population status in social parrots, especially 356 

outside of protected areas, is important. 357 

As unsupervised statistical procedures have the potential of spurious correlations and 358 

overfitting (Gareth et al., 2013), our final model reduced the number of variables, averaged results 359 

from a large number of trees, and deployed cross-validation. The resulting RF avoids bias and is 360 

curated to the smallest set of taxonomic and morphometric predictors with directly relevant 361 

mechanisms. Bill size was the only unadjusted variable for body size as it is a leading predictor of 362 

parrot aggression (Marcuk et al., 2020; Serpell, 1982). We optimized model performance by tuning 363 

the mtry hyperparameter from a possible range of values of 1:5. Factor rankings were insensitive to 364 

this tuning, but larger mtry values skewed how factors ranked. Though our analysis is a trait-based 365 

approach (Debastiani et al., 2021), it is constrained within the subfamily Arinae. Within this taxon, it 366 

remains possible that the data are phylogenetically structured (Felsenstein, 1985). While this does 367 

not violate decision-tree-based model assumptions [as it does for linear least squares regressions 368 

(Bielby et al., 2010)], we took several measures to identify potential artifacts. First, out of 10 369 

predictors, species and genus were the 2 poorest performing predictors in our initial RF model 370 

(14% and 2% relative ΔMSE, respectively). Second, in our final RF, the only remaining taxonomic 371 

variable again performed poorest (tribe: 3% relative ΔMSE, Fig. 8f). Third, most of the remaining 372 

predictors (brain size, HWI, wing load) in the final model were corrected for the broad taxonomic 373 

influence of body size. Finally, we ran 2 post hoc RFs with the data split by tribe. In each single-tribe 374 

RF, brain size was ranked highly (Arini: 100% relative ΔMSE, Androglossini: 94% relative ΔMSE). 375 

This study provides a comprehensive framework for describing the abundance and 376 

behavior of species in mixed assemblages, and provides further evidence that birds are a 377 

compelling taxon for studying animal collectives (Farine, 2022; Gonzalez, 2019). We observed 378 

distinct patterns of the abundance and chronology of flock participation for 13 parrot species (Figs. 379 

1-4). Beyond basic membership, species displayed canonical functions as pioneer and sentinel 380 

species (Figs. 4-5). Agonistic interactions (Fig. 5) revealed a dominance hierarchy, with several 381 

pioneer species being subordinate and sentinels being dominant: partitioning and delaying the 382 

predictably sequenced foraging of sentinels. Our multivariate index of sociality derived from these 383 

data was best explained by brain size (Figs. 6-8), providing a basis for future studies to examine 384 

further the physiological benefits of geophagy and the potential roles of cognition, gut processing, 385 

flight performance, or other species traits, as well as any broader relationship between relative 386 

brain size and social behavior in mixed-species groups.  387 
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Figure 1. Parrot assemblages feeding on clay cliffs in Tambopata, Perú. (a) A ~100m wide transect 544 

of exposed dirt revealing stratigraphic clay layers below várzea forest. Labelled cliff regions correspond to 545 

figure panels, with the Tambopata river and observer blind (denoted by *) in the foreground. (b) Mixed-546 

species aggregation that gathers near dawn, here contains 6 species: mealy amazon (A. farinosa), blue-547 

headed parrot (P. menstruus), orange-cheeked parrot (P. barrabandi), chestnut-fronted macaw (A. severus), 548 

blue-and-yellow macaw (A. ararauna), and scarlet macaw (A. macao). (c) Cobalt-winged parakeets (B. 549 

cyanoptera) and (d) red-and-green macaws (A. chloroptera) forage throughout the day, often in single 550 

species groups. (e) Mealy amazons perched in a nearby tree serving as sentinels, sounding alarm calls to 551 

warn other birds of threats. (f) Bill markings on exposed cliff surface reveal mineral-rich clays. (g-h) Raw data 552 

(circles) and summaries (boxplots) of abundance and species richness of birds foraging in dawn groups (n = 553 

79). Thick line is a locally weighted regression, points are slightly jittered. Though foraging bouts may last over 554 

80 minutes, peak abundance and richness occurs 10 and 20-25 minutes, respectively, after groups begin 555 

foraging. Images (c-e) provided by E. Hummel and used with permission. All other images from authors. 556 

Figure 2. Dawn parrot assemblages have a characteristic behavioral sequence. (a) Raw 557 

observations (circles) and loess models (lines) document the sequence of dawn, first vocalization, 558 

multispecies pioneer cohort that circles the cliff face before landing (“dance”), first group landing, 559 

and the end of group foraging. Density plots show the median duration of (b) morning groups is 53 560 

minutes and (c) dance flights is 3 minutes. The (d) median time elapsed from dawn to the dance is 561 

35 minutes, and (e) a linear model of dawn hour to dance hour shows their correlation. Over a span 562 

of 99 days, observers monitored the clay cliff (f) from dawn until late afternoon, observing 583 563 

daylight hours, with (g) 783 observer hours over 79 discrete days.  564 

Figure 3. Observed species abundance of dawn and day mixed-species parrot groups. (a-b) 565 

Corrected for effort, species abundances map their chronology and peak occurrence. Uncommon 566 

in dawn groups, (b) cobalt-winged parakeets (CWPA) and red-and-green macaws (RGMA) 567 

preferentially forage ~ 7-9 hours after dawn. As the entire species set represents a range of sizes, 568 

we express total abundance in (c) biomass, and (d) number of individuals. Mealy amazon (MEPA) 569 

and blue-headed parrot (BHPA) top both lists. Panels in (a) are sorted chronologically by maximum 570 

species abundance, vertical grey lines border the 2 hours after dawn. Filled-circle color symbology 571 

retained in (b-d). Due to the technological difficulty of distinguishing small macaws on the cliff, 572 

“GRMA” combines red-bellied macaw (O. manilatus) and chestnut-fronted macaw (A. severus) 573 

observations. See Methods for all species codes. 574 

Figure 4. Species sequence and pioneers in the dawn assemblages. When considering dawn 575 

groups alone, species show distinct early, middle, and late arrival patterns. For each species in (a), 576 

grey line is a loess model of abundance, whose (b) maximum value defines sequence differences. 577 

Though both are congeners and dawn-focused species, the yellow-crowned amazon is the first to 578 

arrive while the mealy amazon is last. (c) Observed pioneer species from dance cohorts are first to 579 

land and therefore establish the dawn assemblage. Both small macaw species are pioneers. 580 

Relative time is rescaled from the raw elapsed time from formation to end.  581 

Figure 5. Flushes, sentinel alarms, and species interactions. (a) Groups abruptly flushing is 582 

common and has (b) various causes. All anthropogenic known causes are ecotourism related: 583 

boats ferrying guests to view the dawn flocks, exposed tourists on the trails above the cliff, and 584 

unconcealed tourists on the observation beaches facing the collpa below. Flush events are often 585 

preceded by alarm calls from sentinel birds perched in canopy trees. (c) Though 10 species served 586 

as sentinels, the most vigilant species (MEPA, SCMA) arrive late to forage in dawn flocks (Fig. 4ab). 587 

We observed 1,268 agonistic interactions between species, where an individual from one species 588 
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displaces the foraging perch of another. Grey lines in (d) are the median values of each axis, 589 

defining four quadrants of interactions: (I) frequent interactions with many species, (II) few with 590 

many species, (III) frequent with few species, and (IV) few with few species (see Methods). (e) 591 

Large-bodied macaws and amazons are dominant. Vertical grey line is the 50% displacement (win) 592 

rate, circle size is the number of interactions, error bar is standard error.  593 

Figure 6. Multivariate index, M, derives and ranks species social impact. (a) Using Eqn. [1], M 594 

accumulates values from 9 distinct observations (each rescaled to 0-100) across four independent 595 

categories to synthesize a species impact on group assemblages. (b) Nonparametric bootstrapping 596 

generated a series of M values through random sampling with replacement (see Methods). This 597 

results in a statistically robust, cumulative footprint of derived from independent metrics of social 598 

impact.  599 

Figure 7. Relevant morphological metrics comprise potential predictors of group impact. 600 

Silhouette tracings of species (a) bills and (b) wings demonstrate morphometric patterns. (c) 601 

Aggregate culmen and mandible lengths increase with dominance (see Fig. 5e), (d) hand wing 602 

indices predict dispersal ability (Claramunt and Wright, 2017), and (e) wing loads affect flight 603 

efficiency. Listed grey values in (c-d) are sample medians. (f) Residuals from best fit of the power 604 

model of brain volume to body mass (Krebs and Davies, 1993) compare brain sizes. 605 

Figure 8. Small brain size and small hand wing indices drive M. (a-e) Raw pairwise comparisons 606 

of M against five covariates show broad pre-model variable relationships. (a-d) Trends are loess 607 

regressions; boxplots describe species indices from Fig. 6b. (f) Pre-trained and optimized RF 608 

models indicate brain size and hand wing index are the primary model drivers (R2 = 0.96), bar colors 609 

correspond to (a-e) symbology. (g-j) Partial dependency plots display RF outputs, highlighting 610 

variable interaction in modeled predictions of M (y^), and the persistent importance of brain size.  611 
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