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Dear Editor, 11 

We are writing to discuss the article titled ‘Disentangling Archaic Introgression and Genomic Signatures 12 

of Selection at Human Immunity Genes,’ published by Urnikyte et al (2023). This study employed an ad-13 

hoc approach, first applying the machine learning tool, ArchIE (Durvasula and Sankararaman 2019), to 14 

detect introgression candidates, followed by the use of the iHS statistic (Voight et al. 2006) to identify 15 

candidates under positive selection. According to the authors, the HLA-C gene displays both introgression 16 

and positive selection signals, suggesting it as a candidate for adaptive introgression in Lithuanians. 17 

However, this approach is problematic due to the varying effectiveness of the methods employed (Zhang 18 

et al. 2023) and the confounding effects of introgression on methods used to detect selection (Racimo et 19 

al. 2015). More specifically, adaptive introgression can be confounded by balancing selection (Fijarczyk 20 

and Babik 2015), and the human leukocyte antigen (HLA) genes are well known examples for long-term 21 

balancing selection (Andrés et al. 2009; Gelabert et al. 2024). Considering this, we reanalyzed the 22 

Lithuanian genomic data using a recently developed machine learning approach, MaLAdapt (Zhang et al. 23 

2023), which is specifically designed to detect adaptive introgression through supervised learning. Our 24 

results suggest that the HLA genes are not candidates for adaptive introgression. 25 

We downloaded the Lithuanian genomes from Urnikyte et al. (2023), as well as the chromosome 6 26 

variants of the Altai Neanderthal (Prüfer et al. 2014) from http://cdna.eva.mpg.de/neandertal/Vindija/ and 27 

the chromosome 6 variants of modern humans identified by the 1000 Genomes Project (The 1000 28 

Genomes Project Consortium 2015) from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. 29 

Since the HLA genes are located on human chromosome 6, our analysis focused exclusively on this 30 
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chromosome. We used BEAGLE 5.4 (version: 06Aug24.a91) to phase and impute missing genotypes in 31 

these genomes, utilizing all European populations (CEU, FIN, GBR, IBS, TSI) from the 1000 Genomes 32 

Project as the reference panel. In BEAGLE 5.4 (Browning et al. 2018; Browning et al. 2021), we set the 33 

argument ne = 10,000 for effective population size, with other parameters left as default. Next, we 34 

extracted biallelic single nucleotide polymorphisms (SNPs) from the imputed data and merged them with 35 

biallelic SNPs from the YRI population in the 1000 Genomes Project, as the YRI population is considered 36 

a reference population that did not experience introgression (Huang et al. 2022). We applied MaLAdapt to 37 

extract various input features using sliding windows of 50,000 base pairs with a step size of 10,000 base 38 

pairs from this merged dataset. Finally, we used the pretrained model provided by MaLAdapt to predict 39 

the probability of adaptive introgression for each 50 kb window from these input features. We estimated 40 

the probability of adaptive introgression for each HLA gene by either averaging or taking the maximum 41 

of the probabilities from the 50 kb windows that overlap with the gene. Our results (Figure 1) show that 42 

the probabilities of adaptive introgression for the HLA genes fall within the middle range of the empirical 43 

distribution, which indicates that they are not outliers. Since adaptive introgression is rare and typically 44 

identified through outliers, these findings suggest that the HLA genes are not candidates for adaptive 45 

introgression. 46 

 47 

Figure 1. Distribution of adaptive introgression probabilities on chromosome 6 in Lithuanian 48 

genomes predicted by MaLAdapt using the pretrained model MaLAdapt_25_-sweep-all_model. A, 49 

the adaptive introgression probabilities for the HLA genes by taking the maximum of the probabilities 50 

from the 50 kb windows that overlap with the genes; B, the adaptive introgression probabilities for the 51 

HLA genes by averaging the probabilities from the 50 kb windows that overlap with the genes. The grey 52 

bars represent the distribution of adaptive introgression probabilities for all 50 kb windows across 53 

chromosome 6 in the Lithuanian genomes. The dashed lines indicate the adaptive introgression 54 

probabilities for the HLA genes. We downloaded the pretrained model from 55 
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https://drive.google.com/drive/folders/10r8e5WbhcgAIjC0DVmIe4saVYODRgFCO?usp=share_link on 56 

June 5, 2024, and used the ranges of the HLA genes as outlined in Table 1 of Urnikyte et al. (2023). The 57 

hg19 coordinates are as follows: HLA-G; HLA-H: 29798610–29897944; HLA-F: 29698426–29746527; 58 

HLA-A: 29898105–29947740; HLA-B; HLA-C: 31198205–31348022; HLA-DQA1; HLA-DQB1: 59 

32598042–32644388; HLA-DQA2; HLA-DQB2: 32698044–32748039; HLA-DOB: 32748045–32797488. 60 

We also applied the B1 statistic from BetaScan (Siewert and Voight 2017) to identify candidates for long-61 

term balancing selection on chromosome 6 in the Lithuanian genomes. For the scan, only SNPs with 62 

minor allele frequencies greater than 0.05 in the imputed data were used. SNPs located in regions defined 63 

by the RepeatMasker table, simple repeats table, and segmental duplication table from the UCSC Table 64 

Browser (hg19 coordinates, last accessed in October 2024) were removed. Additionally, SNPs with p-65 

values less than 10-3 from exact Hardy-Weinberg equilibrium tests in each population, performed using 66 

PLINK 1.9 (Chang et al. 2015), were excluded. As per Siewert and Voight (2017), only SNPs with folded 67 

allele frequencies greater than 0.15 were used as cores for calculating the B1 scores. All other parameters 68 

in BetaScan were kept at their default values. Our results show a peak in B1 scores within the HLA genes, 69 

particularly in HLA-B; HLA-C (highest B1 score of 36.350388), HLA-DQA1; HLA-DQB1 (highest B1 70 

score of 71.446036), and HLA-DQA2; HLA-DQB2 (highest B1 score of 43.007245), suggesting they are 71 

candidates for long-term balancing selection. This is consistent with previous studies (DeGiorgio et al. 72 

2014; Bitarello et al. 2018) and was also noted by Urnikyte et al. (2023). 73 

 74 

Figure 2. Manhattan plot of B1 scores on chromosome 6 in Lithuanian genomes. The red horizontal 75 

line (B1 = 71.572528) represents the top 0.05%, and the blue horizontal line (B1 = 30.589559) represents 76 

the top 1%. This plot was created using the qqman package (Turner 2018). 77 

https://drive.google.com/drive/folders/10r8e5WbhcgAIjC0DVmIe4saVYODRgFCO?usp=share_link
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It remains controversial whether the HLA genes are under balancing selection or if they experienced 78 

adaptive introgression from archaic humans (Ding et al. 2014; Yasukochi and Ohashi 2017). Recently 79 

developed machine learning-based methods for detecting adaptive introgression, such as genomatnn and 80 

MaLAdapt, have not reported signals of adaptive introgression in the HLA genes using populations from 81 

the 1000 Genomes Project (Gower et al. 2021; Zhang et al. 2023). However, the HLA regions have been 82 

consistently identified as candidates for balancing selection in both modern and ancient human 83 

populations across various recent studies employing different approaches (Siewert and Voight 2017; 84 

Bitarello et al. 2018; Gelabert et al. 2024). Moreover, a recent method, based on the ancestral 85 

recombination graph, strongly supports balancing selection in the HLA regions with trans-species 86 

polymorphism (Deng et al. 2024). Considering that polymorphisms maintained by balancing selection are 87 

typically shared across populations or species (Hedrick 2007; Bitarello et al. 2023), it is likely that the 88 

HLA genes in Lithuanian genomes are maintained by balancing selection shared among various human 89 

populations. Although a study by Abi-Rached et al. (2011) suggested that the HLA-B locus was under 90 

adaptive introgression, they used a simulator that assumed neutrality at this locus, even though the 91 

classical class I HLA loci are well-known examples of balancing selection (Yasukochi and Ohashi 2017). 92 

We would like to point out a similar issue with the machine learning tool, ArchIE, used by Urnikyte et al. 93 

(2023), which relies on the ms simulator based on the Wright–Fisher neutral model (Hudson 2002) to 94 

generate training data. Since ms cannot simulate data under natural selection, this raises concerns about 95 

how ArchIE performs when analyzing data that includes natural selection. Simulation misspecification 96 

can impact the performance of supervised learning tools (Mo and Siepel 2023). Therefore, it is critical to 97 

document the specific demographic model used for generating the simulated data, which was not reported 98 

in Urnikyte et al. (2023). If Urnikyte et al. (2023) used the demographic model hard-coded in ArchIE, an 99 

additional issue arises: the ArchIE code trains on data simulated from a four-population model, whereas a 100 

three-population model was reported (Huang 2024). This discrepancy may also affect the performance of 101 

ArchIE. Furthermore, a recent study (Ray et al. 2024) highlighted the importance of balancing the training 102 

data to achieve results similar to those originally reported by ArchIE, as introgression is rare and only a 103 

small proportion of the training data contains introgressed fragments. It remains unclear whether Urnikyte 104 

et al. (2023) balanced their training data—ensuring a similar amount of non-introgressed and introgressed 105 

fragments—before applying ArchIE to detect archaic introgressed fragments in Lithuanian genomes. 106 

Hence, it is important to thoroughly document the details when applying machine learning approaches 107 

(Walsh et al. 2021), as factors like data preprocessing, training data, and hyperparameters can 108 

significantly impact the final performance of these models. Using version control tools with code hosting 109 

platforms like GitHub, model hosting platforms like Hugging Face, and reproducible workflow 110 
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management systems like Snakemake (Mölder et al. 2021) helps document the details and ensures that 111 

computational steps can be easily reproduced or modified by others (Huang 2024). 112 

As interest in applying machine learning, particularly deep learning, to population genetics and 113 

evolutionary biology continues to grow (Huang et al. 2024), it is crucial for researchers to understand the 114 

underlying principles. For instance, since ArchIE is trained using simulated data that does not account for 115 

natural selection, its performance on data with natural selection should be carefully examined when 116 

applied in such contexts. Additionally, it is essential to develop robust machine learning applications that 117 

allow users to easily comprehend and adapt them to their own data (Huang 2024). One limitation of our 118 

study is that we used the pretrained model provided by MaLAdapt, which was trained on a specific 119 

human demographic model (Zhang et al. 2023). Currently, retraining MaLAdapt for a specific dataset is 120 

challenging due to its implementation. Reduced performance of MaLAdapt has been observed in other 121 

species (Romieu et al. 2024), likely due to demographic model misspecification. However, since the 122 

pretrained model was trained on a human population setting that includes Eurasians, to which the 123 

Lithuanians belongs, we expect the reduction in moder performance in our analysis to be minimal. 124 
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