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Title 64 

Gaps in alien plant trait data and how to move forward 65 

Running title 66 

Global gaps in alien plant trait data 67 

Abstract 68 

Aim 69 

Functional traits help to understand the ecological processes underlying biological 70 

invasions. The extent to which trait data are available for alien plants at the global scale is 71 

unknown. In this study, we assess the availability of trait data and identify global gaps and 72 

biases 73 
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Global 75 

Time Period 76 

Present 77 
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Vascular plants 79 

Methods 80 

We used the GloNAF database to get a global list of plants naturalized outside their native 81 

range and their distributions. We combined data from the four largest trait databases: AusTraits, 82 

BIEN, GIFT, and TRY, on which we performed taxonomic and trait harmonization. We studied 83 

the availability of trait data. Then, based on the distribution data, we tested to what extent trait 84 

knowledge was driven by ecological and socioeconomic variables. 85 



 

 

Results 86 

We found that the species-by-trait matrix ( 2,764 traits for 14,539 species ) was only 1.5% 87 

complete, with most traits measured for very few species. Only ten traits were available for more 88 

than 50% of all alien plants. Four percent of the species lacked all trait data, while 27% of 89 

species had data for the three key plant traits: leaf mass per area, seed mass, and plant height. 90 

We observed a strong latitudinal gradient in trait knowledge, with tropical regions showing lower 91 

trait knowledge than higher latitudes, particularly in the Northern Hemisphere. Growth form, 92 

range size, and invasion status were the strongest predictors of trait knowledge, with 93 

widespread, invasive tree species being better recorded than other alien species. 94 

Main conclusions 95 

We identified large trait data gaps at a global scale for alien plants, which limits our ability to 96 

study functional invasion ecology at large spatial scales. These gaps are partly driven by 97 

uneven sampling and a lack of trait data integration across sources. We recommend prioritizing 98 

the most invasion-relevant traits and coordinating community efforts of plant and invasion 99 

scientists to sample them in a standardized way, which could help close these gaps. 100 

Keywords 101 

functional traits; naturalized plants; non-native plants; missing trait; raunkiaerian shortfall; 102 

trait database  103 



 

 

Introduction 104 

Biological invasions are an important component of global changes (Roy et al., 2024); we 105 

need a better understanding of their underlying ecological processes for effective management 106 

(Díaz et al., 2019; Roy et al., 2023). Plant invasions are known to cause many long lasting 107 

impacts on terrestrial and aquatic ecosystems, above- and belowground. Consequences 108 

include, e.g., severely changing ecosystem processes, leading to biotic homogenization of 109 

formerly distinct biotas, changing local abundance and species richness of outcompeted native 110 

biota (Pyšek et al., 2012; D’Antonio & Flory, 2017; Kumar Rai & Singh, 2020; Lázaro-Lobo et 111 

al., 2023; Dostál, 2024). Global invasion of plants led to approximately four percent of the global 112 

flora being established outside of its native range (van Kleunen et al., 2015), becoming alien 113 

(i.e., non-native, exotic) somewhere on this planet. Identifying plant traits promoting successful 114 

species introductions, establishment and dispersal is one of the major aims of plant invasion 115 

ecology (e.g., Pyšek et al., 2008; Drenovsky et al., 2012; Knapp & Kühn, 2012; van Kleunen et 116 

al., 2015; Gallien & Carboni, 2017). With the knowledge of species traits the management and 117 

prediction of population dynamics of established or future alien species can be much more 118 

effective. This includes biological invasions: for example, species that are able to self-fertilize 119 

are more likely to become naturalized than outcrossing species (Razanajatovo et al., 2016). 120 

Despite massive collaborative mobilization efforts, large trait data gaps remain for the 121 

global vascular plant flora (Kattge et al., 2020; Visscher et al., 2022). Recent efforts have 122 

identified and systematically described such gaps (Hortal et al., 2015; Cornwell et al., 2019; 123 

Rudbeck et al., 2022; Maitner et al., 2023). For example, we observe a systematic lack of trait 124 

data for species occurring in less studied regions such as in the Tropics or Africa, while species 125 

in temperate regions have been studied more intensely (Hortal et al., 2015). Geographical 126 

accessibility is also known to drive data availability (Oliveira et al., 2016), which means that we 127 

have greater trait knowledge of accessible regions than less accessible ones. In addition, 128 



 

 

species in economically wealthier areas show greater occurrence data coverage than species in 129 

comparatively poorer areas (Meyer et al., 2016). 130 

To embrace context-dependency of traits in biological invasions (Catford et al., 2022; 131 

Milanović et al., 2025), traits should be considered in conjunctions to use them to manage alien 132 

species (Küster et al., 2008; Pyšek et al., 2020). Traits have been used to assess the risk of 133 

invasion of species, as well as the economic costs of invasion (Keller & Drake, 2009; Palma et 134 

al., 2021; Cuthbert et al., 2025). For example, species with more acquisitive strategies, with 135 

small seeds and high SLA, have been shown to be more invasive (Palma et al., 2021).  Thus, 136 

trait availability of alien species is key to using traits to explain idiosyncrasies associated with 137 

different invasion syndromes (Küster et al., 2008; Novoa et al., 2020) and across environmental 138 

gradients (Golivets et al., 2024). Although one of the holy grails of invasion ecology, there has 139 

been no universal set of functional traits identified as being significantly associated with 140 

successful plant invasions across different invasion stages, habitats, regions, climates, 141 

propagule pressure and residence time (Gioria et al., 2023). Traits and traits states associated 142 

with invasion success differ across studies and are always dependent on the availability of trait 143 

measures, which is limited as we show here. 144 

There is no assessment of the availability of trait data for alien plant species. To better 145 

understand potential biases or vice versa to identify collection priorities in trait data of alien 146 

plants, we need to identify the factors determining the trait knowledge of alien plants, spatially 147 

and taxonomically. Given the previous studies on biases in plant trait data (Cornwell et al., 148 

2019; Gallagher et al., 2020; Kattge et al., 2020; Maitner et al., 2023), we know that species 149 

with larger ranges have greater data availability than species with smaller ranges, because they 150 

are more likely to be sampled. In addition, we expect that species occurring in wealthier 151 

countries (in either their native or naturalized range) have more trait data present in databases, 152 

than species in poorer countries. We also expect invasive (i.e., species with ecological and/or 153 

economic negative impacts) species to have data available for more traits than naturalized 154 



 

 

species that were never recorded as invasive, because the impacts of invasiveness should 155 

incentivise trait research on invasive plants. 156 

Scientists rarely leverage multiple trait databases, which would likely improve trait coverage 157 

(Feng et al., 2022). This is because plant trait databases are often not directly interoperable and 158 

do not follow commonly defined standards. As a result, most trait studies do not use the full 159 

range of available trait data (Feng et al., 2022). The lack of shared trait definitions impedes the 160 

reuse of plant traits across databases (Garnier et al., 2017), while combination of traits coming 161 

from different databases requires care and specific expertise (Keller et al., 2023), but ensures a 162 

greater trait coverage and reduces the potential taxonomic and spatial biases (Maitner et al., 163 

2023). 164 

Here, we map and quantify the trait knowledge for alien plants at global scale, using the 165 

largest trait dataset for non-native species assembled to date, by combining four major plant 166 

trait databases. We then assess the main ecological and socioeconomic factors driving the data 167 

availability of plant traits.  168 



 

 

Methods 169 

Alien plants list 170 

We extracted a list of alien vascular plants from the Global Naturalized Alien Flora 171 

(GloNAF) database v.2.0 (van Kleunen et al., 2019) that is being continuously updated by the 172 

database creators (accessed 2024-05-30). We extracted the list of species in GloNAF that were 173 

labeled as “naturalized” or “invasive”. Our list of alien species comprised 16,044 taxonomic 174 

names of vascular plants before taxonomic harmonization. We also extracted the naturalized 175 

geographic distribution (at TDWG4 resolution level) of each taxon from the GloNAF database. 176 

Taxonomic harmonization 177 

We gathered trait data from four different plant trait databases: AusTraits (Falster et al., 178 

2021), BIEN (Enquist et al., 2016), GIFT (Weigelt et al., 2020), and TRY (Kattge et al., 2020). 179 

We used these databases because they represent the largest and most accessible trait 180 

databases for plants globally (Feng et al., 2022). 181 

As the different databases used different taxonomic backbones to standardize species 182 

names, we performed a full taxonomic harmonization workflow (Grenié et al., 2022). For the four 183 

trait databases as well as GloNAF, we referred to the raw available names with authors and 184 

subspecific epithets if available (i.e., the name from the original source). We leveraged the 185 

speed and reliability of the Taxonomic Name Resolution Service (TNRS, v. 5.1 Boyle et al., 186 

2021, 2013) with its R package TNRS v.0.3.6 (Maitner, 2024) to match all of these names 187 

against the World Checklist of Vascular Plants (Govaerts R (ed.), 2023). We set TNRS to only 188 

return the best match. To merge all datasets, we only retained the accepted binomial names for 189 

all species. In the end, we had 14,073 matched species names between GloNAF and all trait 190 

databases (see Supplementary Information 1 and Figure S1). 191 



 

 

Trait data 192 

For each trait database, we counted the number of measured traits for each species. Some 193 

traits may have more than one observation. We, however, decided to be the least conservative 194 

for our analyses: we considered as “measured” a trait that was at least measured once across 195 

all databases. We did so as any single measured trait gives greater alien species trait 196 

knowledge than no observation. We didn’t consider the geographical provenance of our data, 197 

though available for all of AusTraits and BIEN data, because it is only available for 42% of TRY 198 

data (Kattge et al., 2020), and isn’t easily tractable in GIFT as the trait measurements are 199 

coming from floras. 200 

AusTraits. We extracted all traits available for species referenced in GloNAF from AusTraits 201 

version 6.0 (Falster et al., 2021). We obtained data for 33,494 taxa (including infraspecific ones) 202 

and 497 traits. 203 

BIEN. We queried all traits available in BIEN through the BIEN R package (Maitner et al., 204 

2018). We used BIEN version 4.2.6 (released 2022-08-09, Enquist et al., 2016). We obtained 205 

data for 109,394 species and 52 traits. 206 

GIFT. We used the GIFT database (Weigelt et al., 2020) as it offers complimentary traits 207 

from global databases and notably contains the growth form for most plant species. We used 208 

GIFT version 3.1, including both public and private records through the GIFT R package 209 

(Denelle et al., 2023). We obtained data for 287,229 species and 106 traits. 210 

TRY. We queried all publicly available traits in TRY v6.0 (Kattge et al., 2020). We obtained 211 

data for 301,799 species and 2,460 traits. 212 

A list of all of the used original data sources is found in Appendix 1. 213 

Aligning common trait definitions. We created a single species-by-trait matrix from all trait 214 

databases after harmonizing the traits across them (see details in Supplementary Information 215 

S2), to make correspondence tables for all possible pairwise database combinations we 216 

leveraged the Australian Plant Trait Dictionary (APD) v2.0.0 (Wenk et al., 2024), which provides 217 



 

 

trait correspondence between AusTraits and all three other databases we used. 218 

Final trait dataset. We created three distinct trait datasets based on how stringent we were 219 

to consider traits similar in their definition across our correspondence tables. In the first option 220 

(“full” trait network), we considered all traits that were exactly matching, close, or related as 221 

being the same. The second option (“close” trait network) considered only traits that were 222 

exactly or closely matching. The final option, the most stringent one (“exact” trait network), 223 

considered two traits the same only if they were exactly matching. For example, in our network 224 

Austraits “Leaf lamina mass per area” trait (APD:0011231), was considered exactly matching 225 

TRY SLA trait with petiole excluded (TRY:3115), closely matching with TRY SLA trait with 226 

petiole, midrib and rachis excluded (TRY:3086), and related to two other TRY SLA traits where 227 

petiole included (TRY:3116) and where it is undefined if petiole was or not included (TRY:3117). 228 

In the “full” network, all these traits would be lumped together, while in the “close” network the 229 

trait from AusTraits would be connected to TRY:3115 and TRY:3086, in the more stringent 230 

“exact” network, only TRY:3115 would be connected to the leaf lamina mass per area trait from 231 

AusTraits. We provide the “full” network in the data supplements. 232 

We performed our analyses with all three versions of the trait networks but present only the 233 

“full” option hereafter as the results were quantitatively and qualitatively similar across all 234 

versions. Our trait name network initially contained 3,351 unique trait names across databases 235 

and 804 links between exact, close, and related matches of traits. Using our correspondence 236 

tables, considering the “full” trait network, we obtained 2,764 unique traits. In the end, in the 237 

“full” trait network, our combined trait dataset contained 14,063 species (after taxonomic 238 

harmonization) and 2,250 observed traits as 514 traits were never observed across our set of 239 

target species.  240 

Trait combinations 241 

Because one can’t measure all traits for all species to fully describe phenotypes, 242 

https://w3id.org/APD/traits/trait_0011231


 

 

researchers identified generic trait combinations reflecting major ecological trade-offs to 243 

compare as many species as possible (Westoby, 1998; Díaz et al., 2016; Bergmann et al., 244 

2020). We focused on three ecological trait trade-offs: the Leaf-Height-Seed Mass (Westoby, 245 

1998), the global spectrum of plant form and function (Díaz et al., 2016; aboveground spectrum 246 

traits hereafter), and the root economics space (Bergmann et al., 2020). See Supplementary 247 

Information S3 for list of traits and extended justification. 248 

Modeling trait knowledge 249 

We tested to what extent the determinants of other shortfalls of biodiversity (Hortal et al., 250 

2015; Rudbeck et al., 2022) correlated with the number of measured traits per species (our 251 

response variable). We extracted for each GloNAF region of alien plant species occurrence 252 

several predictors provided in the GIFT database: the average gross domestic product per 253 

capita (GDPpc) from 2015 (Kummu et al., 2018), the mean access time from major cities (Weiss 254 

et al., 2018), and the Human Influence Index (WCS & CIESIN, 2005), which aggregates and 255 

averages disparate sources of anthropogenization (density of roads, density of population, land-256 

use, etc.) per region. We computed the average of all predictor variables across the entire range 257 

for each species. For GDPpc, because we hypothesized that species occurring in wealthier 258 

countries in their non-native range and/or their native range would have more traits measured, 259 

we computed two GDPpc, one across the native range of the species, the other across its non-260 

native range. As species with larger ranges are more likely to have more traits measured, 261 

especially larger native ranges, we considered separately the number of regions where a 262 

species is native and the number of regions where it is non-native. We assumed that species 263 

occurring in more diverse habitats have a higher chance of being sampled, as they are more 264 

likely of occurring in a well sampled environment, we thus counted the number of biomes a 265 

species occurs in from Dinerstein et al. (2017). We also included the simplified growth form of 266 

the species (tree, shrub, herb, or other) extracted from GIFT as a predictor variable, available 267 



 

 

for all species. 268 

Final data subset. We only kept species for which all predictors were known for at least 269 

80% of the regions they occur in as naturalized species. This led to a total of 13,253 species 270 

being included in the analyses presented here. 271 

Statistical Model. Our response variable was the number of traits measured per species out 272 

of our theoretical maximum of 2,764 traits; we thus performed a negative binomial generalized 273 

linear model that we fit using the glm.nb() function in the MASS package (Venables & Ripley, 274 

2002). We used the nine above-mentioned predictor variables: species growth form, species 275 

total range size, species non-native range size, the number of biomes a species occurs in, the 276 

average Human Influence Index across its entire range, the standard deviation of Human 277 

Influence Index across its entire range, the average GDP per capita across its native range, the 278 

average GDP per capita across its non-native range, and the average accessibility across its 279 

entire range. All predictor variables were centered to 0 mean and scaled to 1 standard deviation 280 

prior to the analysis. All predictors showed low multicollinearity with variance inflation factors all 281 

< 5. The checks using the check_model() function of the performance package (Lüdecke et 282 

al., 2021) showed normal residuals and no evidence for overdispersion nor zero-inflation. We 283 

used Nagelkerke’s pseudo-R-square for GLMs through the r2_nagelkerke() function from the 284 

performance package. 285 

Phylogenetic model. Because our trait knowledge model was species based we wanted to 286 

test the effect of adding phylogenetic correction to the model. We fitted a Poisson phylogenetic 287 

regression model, based on the same predictors as our non-phylogenetic model, using the 288 

phyloglm() function in the phylolm package (Ho & Ane, 2014). We provided a phylogenetic 289 

tree of all of our non-native species, assembled through the rtrees package (Li, 2023) using a 290 

reference global plant phylogeny (Smith & Brown, 2018). 291 

All data extraction and analyses were done using R 4.2.2 (R Core Team, 2022).  292 



 

 

Results 293 

A sparse species × traits matrix 294 

We obtained a species-traits table containing observations for 14,063 alien vascular plant 295 

species (out of 14,539 known at global scale) and 2,250 different traits (out of 2,764) (Figure 296 

1A). This gives a theoretical maximum of 40,185,796 possible species by trait combinations, 297 

while our observed matrix only contained 622,513 (1.5%) of them. Narrowing on the 200 most 298 

frequently measured traits (Figure 1B) gives 2,907,800 combinations of which 504,234 (17.3%) 299 

are observed. 300 

We listed 25 most frequently measured traits. More than 90% of alien plant species had 301 

data available for each of the following three traits: growth form, woodiness, and life history 302 

(Figure 1C). Close to 75% of the alien species had two other traits measured at least once: 303 

plant height, which is fundamental to understanding the ecology of species; and leaf type, 304 

distinguishing between a broad leaf or a needle. Five other traits were available for more than 305 

half of the species: leaf compoundness (compound or simple leaf), dispersal syndrome 306 

(anemochorous, etc.), seed mass, photosynthetic pathway (C3, C4, or other), and flowering 307 

phenology. The remaining 15 traits are available for less than half of the species. Most of those 308 

traits describe fundamental ecological characteristics , nitrogen fixation, fruit type, leaflet 309 

number per leaf, leaf length, leaf phenology, species tolerance to frost, leaf phyllotaxis, leaf 310 

width, pollination syndrome, fruit length, plant sex type, flower color, leaf mass per area, leaf 311 

area, seed germination rate. Among the 25 most frequently measured traits, the different 312 

databases had various unique contributions (Figure S2). For plant growth form (available for 313 

13,991 species), TRY covered 13,622 species, and 3,309 species were found in common in all 314 

four databases; but GIFT was the greatest provider of unique species-trait observations 315 

unavailable in other databases (290 species out of 13,991). The contribution of AusTraits for 316 

plant growth form, though smaller, mostly brought unique observations (39 species unobserved 317 



 

 

in other databases). Species-traits observations in BIEN were generally also available in TRY, 318 

but BIEN had some unique contributions for certain traits, for example for pollination syndrome 319 

(114 species uniquely in BIEN versus 559 in AusTraits, 948 in GIFT, and 985in TRY for a total 320 

of 5,487 species). These contributions only consider unique species-trait combinations across 321 

databases and do not consider the availability of different trait measurements for the same 322 

species. 323 



 

 

 324 



 

 

Figure 1. (A) Species-by-trait matrix for alien vascular plants of the 200 most measured traits. 325 

Each pixel represents the measurement of one trait for one species. Traits are ordered on the x-326 

axis from most to least measured. Species are ordered in columns ordered from most to least 327 

measured (bottom to top). The color of the pixel shows whether the trait was ever measured for 328 

this species (dark gray) or never (white). (B) shows the same figure with all 2,250 measured 329 

traits. (C) Proportion of species covered by the 25 most frequently measured traits. The x-axis 330 

shows the number of species with the given trait measured (the top x-axis gives the 331 

corresponding proportion). The y-axis shows the different traits with their names as labels, the 332 

labels indicate whether the traits are continuous (cont.), categorical (cat.), or binary (bin.). The 333 

points are the proportions of alien species with at least one trait value for the trait indicated on 334 

the y-axis. The proportions are displayed above the points. The red dashed line represents 335 

100% cover of the alien species (14,539 in our dataset), while the blue dashed line represents 336 

50%.  337 



 

 

Uneven proportion of measured combination of traits 338 

We mapped species for which we had the measured combinations of traits (see details in 339 

Table S3-1): Leaf-Height-Seed Mass (LHS), aboveground spectrum traits, and root traits. For 340 

only 3.3% of alien species not a single trait measurement exists (476 species, Figure 2A), which 341 

means that 96% of alien plant species have at least one trait measured in our consolidated 342 

dataset. However, to compare species or compute functional diversity metrics, the traits 343 

measured across species need to be the same. 29.1% of the species with non-native 344 

occurrences have a measured LHS combination (4,227 species), 14.3% have the aboveground 345 

spectrum traits fully described (2,079 species), and root traits are measured for only 1.8% (266 346 

species). When jointly considering multiple combinations, the numbers drop further: 1.7% of 347 

species (244 species) have measured LHS and root traits, while 1.5% of species (216 species) 348 

have both the full aboveground spectrum and root combinations measured. 349 

The available trait combinations show strong taxonomic biases (Figure 2B). While we 350 

expect families with a larger number of alien species to show a higher proportion of trait 351 

combinations available, smaller families like Myrtaceae have trait data for most of their alien 352 

species, while the bigger families like Poaceae show lacking trait combinations for most alien 353 

species. 354 



 

 

 355 



 

 

Figure 2. Shares of alien vascular plant species covered by different trait combinations for  all 356 

alien species (A) and per plant family (B). The area of rectangles is directly proportional to the 357 

number of species in each category. The numbers show the number of species and in (A) 358 

additionally respective proportion of species compared to the global number of alien species 359 

(14,539). In (B), the blocks contained within thick white borders represent botanical families 360 

ordered by decreasing number of alien species (e.g., Asteraceae has the most aliens). The 361 

numbers depicted are the number of species of the family with the given trait combination. 362 

Areas are colored depending on measured trait combinations. The colors correspond to 363 

different trait combinations: light gray, no measured trait; gray, at least one measured trait; light 364 

purple, LHS; dark purple, aboveground spectrum traits; bright orange; root traits; darker orange, 365 

LHS and root traits; brown, aboveground spectrum and root traits. For ease of navigation and 366 

reading, an interactive online version of this figure is available at: 367 

https://rekyt.github.io/alientraitgaps/, archived for long-term on Zenodo 368 

doi:10.5281/zenodo.13940200  369 

https://rekyt.github.io/alientraitgaps/
https://doi.org/10.5281/zenodo.13940200


 

 

 370 

Figure 3. Maps of alien vascular plant species richness and proportion of aliens with measured 371 

trait combinations. (A) Alien species richness based on GloNAF. For readability reasons the 372 

richness scale has been discretized in four colors following a log10 scale. Gray areas show 373 

where no data were available. (B) Proportions of alien species in each region with measured 374 

trait combination (at least one trait; Leaf-Height-Seed Mass, LHS; aboveground spectrum; and 375 

root traits). Empty circles represent islands and are not scaled for readability reasons. All maps 376 

are projected in Equal Earth projection (EPSG:8857). 377 



 

 

Combinations of traits are poorly represented across the world 378 

We mapped the alien species richness and the proportion of alien species with measured 379 

trait combinations (Figure 3). The latter measure varied strongly depending on which particular 380 

traits we combined (Figure 3B). Most regions showed trait coverage over 80% when considering 381 

single traits. The LHS traits show the highest degrees of coverage variation of all trait 382 

combinations considered. Some regions with higher alien species richness also showed high 383 

LHS coverage like the North of North America or different regions in Russia. Regions with very 384 

low alien species richness (fewer than 10 alien species) showed a high LHS coverage (over 385 

80%). We observed a strong latitudinal gradient in trait coverage. Temperate regions showed an 386 

LHS trait coverage over 60%, while most tropical regions showed LHS trait coverage below 387 

60% (with the notable exception of Brazil with several regions over 60% coverage). For both 388 

aboveground and especially root traits, most regions showed coverage below 20% of the 389 

species, except for regions with low alien species richness. Some regions of North America, 390 

South America, and Central Asia, however, showed coverage between 20% and 40% for 391 

aboveground spectrum traits. 392 

 393 

Traits of widespread invasives are measured more often 394 

The species’ invasion status influenced the knowledge of trait combinations (Figure 4A). 395 

Non-native species referred to as invasive in at least one region in GloNAF (“invasive” in this 396 

section) had a greater coverage in all trait combinations than non-native species never reported 397 

as invasive (“non-invasive” in this section), which themselves showed higher coverage than 398 

species never referenced as non-natives (“natives” in this section). We found strong evidence 399 

that LHS traits are more frequently measured for invasive species (48.2% of species) than for 400 

non-invasive species (24.8%; χ2 = 325, df = 1, p-value < 0.001). We observed similar 401 

differences for aboveground traits and root traits (26.9% vs. 11.3% for aboveground traits; and 402 



 

 

3.9% vs. 1.3% for root traits). Even when considering any trait, invasive species were better 403 

measured than non-invasives (respectively 99.1% had at least one measured trait vs. 96.1%). 404 

The number of traits available per species followed the same pattern, invasive species had 74.8 405 

traits available on average, while non-invasives had 34.7 and native ones 7.44 (All pairwise t-406 

tests showed p-values < 0.001). 407 

We also observed a difference in trait knowledge depending on geographical spread of 408 

species. The 100 most widespread species in GloNAF consistently showed higher trait-409 

combination knowledge than less widespread species (81% vs. 27.5% for LHS traits; 59% vs. 410 

13.5% for aboveground traits; and 18% vs. 1.7% for root traits). The only case where we found 411 

no difference between the most widespread and other species was when considering whether 412 

they had data on at least one trait (96% vs. 85.3%, respectively, χ2 = 0.57, df = 1, p-value = 413 

0.45). 414 



 

 

 415 

Figure 4. (A) Effect of invasiveness on measured trait combinations across species. The x-axis 416 

shows the proportion of species with the given trait combination. The y-axis shows the different 417 

trait combinations. Shapes and colors distinguish species based on their invasion status: orange 418 

squares are for species mentioned as invasive at least once, blue triangles for the ones never 419 

mentioned as invasive, and green circles for the natives ones. (B) Effect of range size (over 100 420 

GloNAF regions from which the species is reported) on trait combination knowledge across 421 

species. The x-axis shows the proportion of species with the given trait combination, the y-axis 422 

shows different trait combinations. The points and lines of different shapes and colors 423 

distinguish species based on their widespreadness: whether they are part of the 100 most 424 

widespread species (expressed as the number of GloNAF regions) or not.425 



 

 

Plant growth form and range size predict trait knowledge 426 

We modeled the number of traits measured per species as a function of predictors 427 

averaged over the entire range size of the species as well as the growth form of species. We 428 

found evidence for effects of all our tested variables (p < 0.001, Figure 5, see partial residual 429 

plots in Figure S3). Our model had a Nagelkerke’s pseudo-R² of 62.7%. The strongest variable 430 

explaining the number of measured traits was growth form: measured as trees, shrubs, herbs, 431 

and others. Trees had on average more trait information than shrubs (56.5 on average versus 432 

37.4 traits), which had more than herbs (33.3), which had more than species of other growth 433 

forms (19.7). The next predictor with the strongest effect was the species total range size, with a 434 

positive effect meaning that for every factor 10 increase in the range (in km²), there was a 85% 435 

increase in the number of traits for a species. The number of biomes a species occurs in and 436 

the human influence index averaged across its range also had a positive effect on the number 437 

of measured traits per species. The other variables all decreased the number of measured traits 438 

per species, with GDPpc in the native range having a stronger negative effect (decreasing the 439 

number of traits by 20%) than the non-native range size (19%), GDPpc in the non-native range 440 

(9%) and, as well as the accessibility of the range (9%). The analyses were performed 441 

considering species for which the predictors were available for at least 80% of their total range, 442 

we obtained similar results when performing the same analyses with a threshold of 70% and 443 

90% (Figure S4). Considering the phylogeny in the model didn’t affect the direction of the effect 444 

of all of the variables, which all remained with p-values < 0.001 (Figure S5).  445 



 

 

 446 

Figure 5. Summary plot showing the incidence rate ratios for variables explaining number of 447 

traits measured per alien vascular plant species. Variables with blue dots increase the number 448 

of traits measured per species, while variables in red decrease it. All tested variables showed p-449 

values < 0.0001.  450 



 

 

Discussion 451 

We assembled the largest collection of traits for alien vascular plant species worldwide from 452 

the four biggest global plant trait databases and systematically assessed the completeness of 453 

available information. We showed that the global alien species-by-trait matrix was mostly empty 454 

and that the most well measured traits were categorical. When considering multiple traits 455 

together, we found that only a fraction of species had “classical” trait combinations measured. 456 

The knowledge of traits was mostly driven by plant growth form, invasiveness status, and range 457 

size. Furthermore, when considering these combinations across space, we identified that most 458 

regions in the world showed consistently low trait coverage for alien plant species. The huge 459 

gaps in global trait availability of plants in general and, in particular, of alien plants might prevent 460 

us from identifying potentially important traits for invasion processes at large scales. 461 

Biases in trait knowledge 462 

Several dimensions of biodiversity are known for showing strong geographic, taxonomic, 463 

and trait biases (Tyler et al., 2012; Hortal et al., 2015; Cornwell et al., 2019; Webb & Vanhoorne, 464 

2020; Hughes et al., 2021; Rudbeck et al., 2022). Traits of alien plants are no exception. The 465 

lack of trait data, the so-called Raunkiærian shortfall, is characterized by several biases. First 466 

comes the trait bias; although many traits have been measured, and around 70% of species 467 

have at least 10 traits measured (Figure S6), only few traits are consistently measured across 468 

species. Second, the taxonomic bias: when traits are measured, we found that even the 469 

common ones are not measured uniformly across species within botanical families (Figure 2, 470 

Figure S7). Third, regarding the biogeographic bias, we identified a strong latitudinal gradient in 471 

trait knowledge (Figure 3, Figure S8), with greater trait knowledge for species occurring in 472 

temperate regions than for species occurring in tropical regions. Finally, for the invasion and 473 

range related biases, we identified that the invasion status and widespreadness of species 474 

strongly correlated with the knowledge on their traits. Accounting for these trait, taxonomic, 475 



 

 

biogeographic, and spatial biases requires careful analyses. They call for greater attention to 476 

data collection, mobilization, and integration to compensate for biases (See “How to fill the trait 477 

data gap” section). 478 

As we expected, we found that non-native plants with larger ranges and occurring in more 479 

biomes had more traits measured across the databases. Opposite to our expectations, we 480 

found negative relationships between the number of traits measured and the average GDP in 481 

countries in both their native and non-native ranges. While average GDP should correlate with 482 

research effort, and as such collection effort, this negative relationship could be due to the 483 

relationships between average GDP over species ranges and the area of their ranges. Large-484 

range species, which tend to have more traits measured, will show lower average GDP over 485 

their ranges. Small-range species may occur over higher GDP areas, but show a lower number 486 

of traits measured because of their overall smaller range. These findings call for additional 487 

studies on the determinants of trait knowledge for both native and non-natives plants. 488 

Trait relevance 489 

We decided to focus on commonly used and clearly defined trait combinations, namely LHS 490 

traits from Westoby (1998), the global spectrum of plants form and functions (GSPFF) from Díaz 491 

et al. (2016), and root traits from Bergmann et al. (2020) and Weigelt et al. (2021). These three 492 

trait-combination frameworks are easy to interpret, allowing us to compare species at a global 493 

scale. LHS was one of the first clearly defined combinations compared across species (1998), 494 

while later the GSPFF traits (2016), extended the LHS set of traits with the two main dimensions 495 

being size and the leaf economics spectrum; finally, the root traits (2020; 2021) add information 496 

regarding resource acquisition versus conservation, and collaboration with soil microbes 497 

(mycorrhizal fungi). They all measure aspects of the strategies of plant species globally, and 498 

position them across ecological gradients. Invasion ecology relies heavily on these general 499 

ecological trait frameworks, and given the sparsity of data available for these trait combinations, 500 



 

 

our understanding of the roles of traits in plant invasions can only advance if we identify the 501 

most ecologically relevant traits and fill the data gaps. 502 

Although we know that the provenance of the traits, i.e., where the measurements come 503 

from (e.g., native or non-native range), is relevant in invasion ecology (e.g., Parker et al., 2013), 504 

we could not consider this factor. The main reason is the lack of georeferenced measures (e.g., 505 

only 42% of trait observations are georeferenced in TRY v.5.0; Kattge et al., 2020). Additionally, 506 

we wanted to include as many trait data as possible in our gap analysis. Identifying if trait 507 

measurements are from native or non-native ranges is challenging. Species can show very 508 

different trait values between their native and non-native ranges (Leishman et al., 2014). Those 509 

differences can potentially point to underlying ecological plasticity, evolutionary processes, or 510 

non-random selection of phenotypes at introduction, which are important to understand when 511 

managing invasions. Representing naturalized species trait variability requires measuring them 512 

in both the non-native and the native range. 513 

We here made the simplifying assumption that all trait measurements were perfectly 514 

recorded, with no measurement nor reporting errors. Considering these errors would certainly 515 

reduce even further our trait knowledge. It was recently shown for the TRY database that only 516 

23% of the original SLA measurements from TRY were actually original, representative, logical, 517 

comparable, and traceable (Augustine et al., 2024). While we know the ecological importance of 518 

intraspecific trait variation for plants (Westerband et al., 2021), we also simplified our trait matrix 519 

by considering any single trait measurement for a single species enough to know the trait value 520 

for the species. Our study could be further extended by studying the number of trait 521 

measurements known for each trait and each species to estimate how well we know the 522 

intraspecific variation for each species. 523 

The challenges of integrating trait databases 524 

Even though there are efforts in unifying the format of plant trait databases, they are far 525 



 

 

from being interoperable or even automatically integrable, both of which are criteria to follow 526 

FAIR principles (i.e., Findability, Accessibility, Interoperability, and Reusability) in data 527 

stewardship (Wilkinson et al., 2016; Keller et al., 2023). One of the challenges we faced in our 528 

study was to combine data from heterogeneous trait sources. The four databases we used are 529 

complimentary in terms of species coverage and using all four increased data coverage (Figure 530 

S2) but posed serious conceptual and analytical challenges. First, trait data are increasingly 531 

shared openly, which means a greater trait coverage for species but scattering into multiple data 532 

sources (Gallagher et al., 2020). This problem calls for more attention for data integration and 533 

better data sharing practices (Feng et al., 2022). Second, even though the databases are open, 534 

they may not be easily accessible. We focused on four trait databases (AusTraits, BIEN, GIFT, 535 

and TRY) because all of them offer an R package to access and/or clean their data (Maitner et 536 

al., 2018; Falster et al., 2021; Lam et al., 2022; Weigelt & Denelle, 2022). Third, the trait and 537 

distribution databases all used different taxonomies, which is a known issue when combining 538 

data (Grenié et al., 2022); this emphasizes the importance of preserving original species names 539 

when aggregating data. In principle, one would even need to know the taxonomic concept used 540 

(Berendsohn, 1995). Fourth, we had to align the trait definitions across databases. Thankfully, 541 

standard vocabularies, thesauri, and ontologies facilitate this integration (Garnier et al., 2017; 542 

Wenk et al., 2024) but only AusTraits and TRY provided links to trait ontologies. For all other 543 

comparisons, the first author manually paired the traits from all the databases. Our proposed 544 

correspondence method and cross-database table is available as Supplementary Information in 545 

the hope that it would be useful for other studies. Community-developed trait correspondence 546 

schemes, for example through the OpenTrait Network (Gallagher et al., 2020), would help 547 

enforce interoperability of trait databases so that definitions would be more consensus-driven 548 

and openly discussed (Wenk et al., 2024). In a world of increasing automatic algorithms 549 

matching data or looking for patterns, an expert driven unifying global plant trait correspondence 550 

scheme is the only way to minimize errors in those automatic processes. 551 



 

 

How to fill the trait data gap? 552 

Prioritizing trait acquisition 553 

It seems unrealistic to expect all trait gaps to be filled with in situ measurements in the near 554 

future. Given the immense diversity of the plant traits reported here (more than 2,764 different 555 

traits), prioritizing the most commonly studied traits would seem more tractable. Adopting a 556 

prioritization framework similar to the one used in conservation biology would be more realistic 557 

(Arponen, 2012). Prioritization schemes use well-defined criteria on species, traits, or regions, to 558 

target data sampling or data integration and increase their trait coverage. The prioritization 559 

depends on the aims and purpose of the sampling. 560 

Any prioritization approach would have to make a decision on the origin of the respective 561 

trait measure (native or non-native range). Traits of alien species can be measured anywhere in 562 

their range but this would limit their ecological applicability as discussed before. In an ideal 563 

world, traits are measured in both the native and alien range equally (which is frequently not the 564 

case, see Parker et al., 2013). New trait measures should come with a clear georeferenced 565 

locality information, including habitat characteristics and note on the invasion status of the 566 

species. For example, we could prioritize species to be sampled based on their impact through 567 

their (potential) invasiveness (e.g., with their Environmental Impact Classification for Alien Taxa 568 

–EICAT– score; Blackburn et al., 2014). Such a prioritization, however, risks reinforcing the gap 569 

in trait knowledge between invasive and non-invasive species that we have identified in this 570 

study. 571 

We showed greater gaps in trait knowledge of alien plant species in the Tropics than in 572 

temperate regions, which suggest a need for a geographic prioritization scheme. Areas richer in 573 

alien species could be targeted, as these are more likely to harbor many invasive species 574 

(Chytrý et al., 2012) and suffer from the impacts of invasion. Another region-based approach 575 

would prioritize regions with the highest potential increase in projected new alien species in 576 



 

 

relation to the existing trait knowledge (e.g., Seebens et al., 2021). Finally, because it is likely 577 

that many of the trait gaps will not be filled soon, we could rely on methods to prioritize 578 

species/traits/locations that would minimize the error from trait imputation methods (Penone et 579 

al., 2014; Schrodt et al., 2015; Joswig et al., 2023). Then species and traits would be prioritized 580 

to reduce the uncertainty of the imputation the most. For example, we could prioritize species 581 

from families where only a few species have been sampled. 582 

Closing the trait gaps 583 

Once species, traits and locations have been prioritized, we need to find ways to close the 584 

trait gaps. In this section, we list potential solutions to do so. They fall into two categories: 585 

mobilization of existing data and collecting new data. Major gaps in trait data that we identified 586 

do not necessarily mean that the traits have never been sampled. Potentially, these traits were 587 

measured but never contributed and aggregated into databases. There may be solutions to get 588 

these data from previously acquired sources. 589 

  590 



 

 

Figure 6. Strategies to increase alien species trait knowledge.  591 



 

 

Trait data are increasingly shared openly in the literature. The four trait databases we used 592 

do not continuously monitor the published articles for trait data (pers. comm. from database 593 

managers). Targeted literature searches, for specific species and traits, could give access to 594 

more trait data than available in databases. LT-Brazil is a recent successful example of this 595 

strategy (Mariano et al., 2021), where researchers more than doubled the coverage for leaf 596 

traits of Brazilian vascular plant species in TRY (i.e., LT-Brazil is now included in TRY) through 597 

a well crafted literature search. Recent advancements in natural language processing might in 598 

addition reduce the manual effort needed for mobilizing traits from the literature (Domazetoski et 599 

al., 2023). 600 

If the traits are not available in databases nor directly from the literature, they may well be 601 

privately available from researchers. A targeted call for data can help increase data coverage of 602 

some areas and species (Newbold et al., 2012; Kattge et al., 2020). For example, the manager 603 

of the PREDICTS database issued a call for data in Frontiers of Biogeography that successfully 604 

increased data coverage in under-represented regions (Newbold et al., 2012). The calls could 605 

be publicly made or through direct contacts with researchers who mobilized the data, like 606 

GloNAF did (van Kleunen et al., 2019). These calls should always be accompanied by 607 

incentives for data providers like specific citation requirements. 608 

Distributed field campaigns could help to acquire a few traits of alien species. After trait and 609 

species prioritization, a call for a global measurement campaign could be issued. The campaign 610 

would require standard protocols distributed to partner labs across the world and then pooling 611 

their data, also to avoid the definition of new trait states, which is not necessary given >2000 612 

existing plant trait names already. This approach has been used successfully to perform 613 

experiments at global scale on nutrient addition through the NutNet network for example (Borer 614 

et al., 2014), but it has not been used to acquire trait data to our knowledge. There is, though, a 615 

series of “Functional Plant Trait Courses” organised by V. Vandvik and B. Enquist who 616 

organised several campaigns to acquire additional trait data 617 



 

 

(https://plantfunctionaltraitscourses.w.uib.no/).   618 

Participatory science has been rising across many fields in ecology (Silvertown, 2009), 619 

empowering large communities to take part in and help science. With the rise of AI-driven plant 620 

identification smartphone applications (Hart et al., 2023), it would be possible to acquire trait 621 

data from these applications, though limited on the type of traits that could be (easily) acquired. 622 

It would require determining which data can be confidently and accurately acquired by 623 

participants, through which tools (e.g., photographs, manual measurements, apps such as 624 

BioLeaf (Machado et al., 2016) or LeafByte (Getman‐Pickering et al., 2020)) with an appropriate 625 

protocol. 626 

With the increasing coverage of satellite imagery, trait ecologists leverage remotely sensed 627 

data (Homolová et al., 2013; Feilhauer et al., 2018; Cherif et al., 2023). Recent studies extend 628 

their approach to the traits of alien species, though at the community rather than the species 629 

level (Huang & Asner, 2009; Niphadkar & Nagendra, 2016). This approach is limited to traits 630 

that can be remotely sensed for species occurring in open areas (Niphadkar & Nagendra, 631 

2016). Those approaches also need robust ground truthing data for model calibration (Dechant 632 

et al., 2023). Remote-sensing trait distribution forms a dynamic field with strong ongoing efforts 633 

to leverage its high resolution capabilities (Torresani et al., 2024). 634 

Several studies show that useful trait data can be extracted from herbarium specimens 635 

(Davis, 2022). Herbaria are globally underused resources and can help access useful trait data, 636 

especially from difficult to acquire or rare species. While herbarium specimens have been used 637 

to reconstruct the spread history of alien species (Mandák et al., 2004; Williamson et al., 2005; 638 

Fuentes et al., 2008), they have not been systematically mobilized for trait data. In particular, 639 

because many herbaria provide digitized specimens, it would be possible to acquire trait data 640 

semi-automatically from these images (Davis, 2022). 641 

The above-mentioned strategies help fill the trait gaps by acquiring new data. Trait 642 

imputation (also known as trait gap filling) is a complementary strategy that leverages trait 643 

https://plantfunctionaltraitscourses.w.uib.no/


 

 

correlations as well as additional data (whether spatial and/or phylogenetic depends on the 644 

exact method) to infer the trait values for species with missing values (Schrodt et al., 2015; 645 

Joswig et al., 2023). Trait imputation should be performed carefully, considering the strengths 646 

and weaknesses of the different imputation methods as well as the ecological context of the 647 

original trait measurements used to fit the imputation models (Penone et al., 2014; Johnson et 648 

al., 2021; Blomberg & Todorov; Gorné et al.). 649 

Most solutions stated above require collective work from plant, invasion, and remote 650 

sensing scientists as well funding schemes which focus on pure data collection campaigns, 651 

which rarely exist. We want to emphasize the importance of community building in this regard to 652 

tackle the issue of trait data through community efforts. Potential routes to close the gaps in trait 653 

knowledge rely on the good will of individual past or present contributors (people who acquired 654 

the data, collected the species for herbaria, citizen scientists, participating labs, etc.) and 655 

research funders. We want to underline that any of these scientific contributions should be 656 

valued and recognized as they create a basis for progress in research. 657 

Conclusion 658 

We identified large trait gaps for alien plant species at global scale. These gaps are partly 659 

driven by uneven sampling and missing integration of data. With distributed efforts of the global 660 

community of plant and invasion scientists these gaps can be reduced. Our suggestions should 661 

encourage efforts to harmonize plant trait information to be able to unify plant trait databases. 662 

Such developments should result in FAIR and open data, increasing incentives for people to 663 

deposit their trait data in databases (Wilkinson et al., 2016; Islam et al., 2022). The advent of 664 

large-scale trait-based invasion ecology will improve the understanding of biological invasions. 665 
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Supplementary Information S1. Details on taxonomic harmonization 1203 

Because we combined data across different trait databases (AusTraits, BIEN, GIFT, and 1204 

TRY) with GloNAF, we had to harmonize the taxonomy across all of them. These databases 1205 

however do not use a shared taxonomic backbone, and as such we had to align them along the 1206 

same taxonomic backbone. The size of the combined dataset only allowed us for an automatic 1207 

harmonization, with efficient tools. We leveraged the Taxonomic Name Resolution Service 1208 

(TNRS) through its R package named TNRS with the eponymous function TNRS(). For each 1209 

database we proceeded in a similar fashion: we first went back to the original taxon name 1210 

recorded in the database, we then used TNRS separately for each database. We configured 1211 

TNRS to only return the best matched name for each submitted taxon name. We only kept 1212 

binomial names returned as the Accepted_species field by TNRS for each database before 1213 

merging all datasets. Because all databases provided taxon names that were already 1214 

standardized for common entry errors, like double spaces or encoding issues, we didn’t process 1215 

them further before submission to TNRS. 1216 

For AusTraits, we extracted the column taxon_name from the taxa table of AusTraits, we 1217 

then matched this column, which contains the complete raw taxon name (including author 1218 

names and infraspecific), through TNRS. We got 33 494 names which matched to 24 454 1219 

binomial names through TNRS. 1220 

For BIEN, we directly used the column scrubbed_species_binomial from the traits table, 1221 

as the entire database is already matched against TNRS. 1222 

For GIFT, we extracted the columns genus, species_epithet, subtaxon, and author 1223 

from the raw traits table obtained from GIFT::GIFT_traits_raw() function. We processed 1224 

these 676 678 raw unmatched names through TNRS and obtained 286 818 names 1225 

For TRY, we extracted the SpeciesName field from the trait table. We initially had 509 366 1226 

names which matched 268 312 names through TNRS. 1227 



 

 

For GloNAF, we extracted the taxon_orig column from the flora_orig_2_0 table, which 1228 

gave original referenced names. We had 57 156 names, which matched 14 539 binomial names 1229 

through TNRS. 1230 

In the end we had a set of 320 539 matched binomial names across trait databases, of 1231 

which 14 073 were found in GloNAF. 1232 
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Supplementary Information S2. Details on trait harmonization 1234 

 Only AusTraits offered direct correspondence between its trait definitions and TRY, 1235 

through direct mention of TRY Trait ID and, for certain traits, links to standard definitions 1236 

provided by the TOP trait Thesaurus (Garnier et al., 2017; Falster et al., 2021; Wenk et al., 1237 

2024). For all other databases, we manually matched the names of traits of each pair of 1238 

databases (giving a total of six correspondence tables). For each trait of an input database, we 1239 

tried to match trait(s) in the target database based on their associated metadata. We then noted 1240 

if traits were either identical or related, the latter meaning that they are not exactly measuring 1241 

the same entity but could be considered similar in a certain context. For example, BIEN reports 1242 

“leaf area per leaf dry mass”, i.e., LMA, while AusTraits uses a trait named “specific_leaf_area”, 1243 

which corresponds to SLA. Even if both traits are named differently, they correspond to the 1244 

same biological measurement as LMA = 1/SLA, they can be considered fully identical. TRY 1245 

reports six different types of SLA/LMA depending if it includes the petiole and/or is done at the 1246 

leaflet level for compound leaves or if it’s undetermined. At the date of the analyses, no other 1247 

database differentiated SLA values as much, thus we considered them identical to the 1248 

“undetermined” value (TraitID in TRY: 3117) of TRY and considered the five other types of SLA 1249 

as similar but not identical. Another example is that GIFT references “maximum plant height” 1250 

while BIEN reports “measured plant height”; these two traits can be considered related while not 1251 

identical. We built a trait name network where nodes are trait names and edges are links 1252 

between traits, with three categories of links, as in the Austraits Plant Dictionary ontology: exact, 1253 

if the traits were exactly matching ; close, if the traits were close but not exactly matching ; 1254 

related, if the traits are related more lightly. The network allowed us to jointly consider all links 1255 

across all databases. We considered traits the same across databases if they were part of the 1256 

same connected component in the network. Each connected component then got assigned a 1257 

new consolidated name representing the final trait name. We obtained three different trait name 1258 

networks based on how stringent we were to consider two traits connected: 1259 



 

 

● The “full” network considered all links (exact, close, and related) to obtain connected 1260 

components. 1261 

● The “close” network considered only exact and close links. 1262 

● The “exact” network considered only exact links. 1263 

We present only the result of the full network in the article as the results for the two other 1264 

networks were qualitatively and quantitatively similar. We also focused on the “full” network as it 1265 

allowed us to cast the widest net possible and show the most optimistic picture for trait data of 1266 

non-native species. 1267 
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Supplementary Information S3. Ecological justification of used trait combinations. 1269 

 Westoby suggested the Leaf Mass per Area-Height-Seed Mass trio to quickly classify the 1270 

ecology of many species with the fewest traits. We considered three ecologically meaningful 1271 

trait combinations and assessed how often they were measured across non-native species, that 1272 

are detailed in the table below: 1273 

Table S3-1. Description of the three considered trait sets 1274 

Name of trait 
combination 

Source of trait 
combination 

Number 
of traits 

Traits in the set Justification 

Leaf-Height-
Seed Mass 
(LHS) 

Westoby, 1998 3 ● Leaf mass par 
area, 

● Plant height, 
● Seed mass 

Compares the general 
life history strategy of 
species at global scale 
without being context-
dependent 

Global 
Spectrum of 
Plant Form 
and Function 
(GSPFF) 

Díaz et al., 2016 6 ● Leaf mass par 
area, 

● Plant height, 
● Seed mass 
● Leaf area, 
● Stem Specific 

Density, 
● Leaf Nitrogen 

Content 

Captures the main 
axes of variation in 
aboveground plant 
strategies worldwide 

Root traits Bergmann et al., 
2020 

4 ● Specific root 
length, 

● Root diameter, 
● Root tissue 

density, 
● Root nitrogen 

content 

Positions species 
along the root 
economics spectrum 
and contrasts species 
along two axes: a 
“conservation” gradient 
corresponding to the 
fast-slow continuum 
and a “collaboration” 
gradient corresponding 
to reliance on 
mycorrhizal fungi to 
extract nutrients. 
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Supplementary Figures 1290 

1291 

Figure S1. Venn diagram showing the number of shared species across databases. AusTraits, 1292 

BIEN, GIFT, and TRY are functional trait databases. GloNAF database references non-native 1293 

species worldwide, while all other four are trait databases. 1294 

 1295 



 

 

1296 

Figure S2. Complementarity of trait databases for the twenty-five most measured traits. Each 1297 

circle has an area proportional to the number of species covered by a database for this trait, the 1298 

intersections between circles is also proportional to the number of shared species. The numbers 1299 

give the number of species in each section. Each database is always represented using the 1300 

same color across traits: red for AusTraits, blue for BIEN, green for GIFT, and purple for TRY.  1301 



 

 

 1302 

Figure S3. Partial residual plots of the trait knowledge model. These follow the negative-1303 

binomial model of the number of traits measured predicted with the 9 variables indicated as the 1304 

x-axis of each panel (see Methods section for details). It shows the predicted variation of the 1305 

number of traits in function of the variation of one predictor keeping all the other predictors equal 1306 

to their mean value (here 0 as they were scaled). 1307 



 

 

 1308 

Figure S4. Coefficients of alternative models of number of traits measured by species where 1309 

variables were available for 70%, 80%, or 90% of the total range of species. The different 1310 

models are thus fitted on a different number of species. 1311 

 1312 



 

 

1313 

Figure S5. Comparison of estimates between phylogenetic and non phylogenetic models of trait 1314 

knowledge. All variables showed p < 0.001 and are displayed with their confidence intervals. 1315 



 

 

1316 

Figure S6. Cumulative number and proportion of alien vascular plant species with at least a 1317 

given number of traits indicated by the x-axis. The x-axis represents the number of traits. The 1318 

way to read the graph is the following: “Close to 100% of species have at least 1 trait. More than 1319 

10,000 species have at least 10 measured traits”.  1320 



 

 

1321 

Figure S7. Treemap with number of traits measured per family. (A) All species ordered by 1322 

number of traits with the respective numbers and proportions of species per amount of 1323 

measured traits. (B) Ordered by family. The numbers correspond to the number of species 1324 

within a family with the given trait knowledge. Way to read the graph: “There are 384 Poaeceae 1325 

species which have 1 to 10 measured traits”.  1326 



 

 

1327 

Figure S8. Map showing the median number of measured traits across species per region (A) 1328 

and the standard deviation of the number of traits across species per region (B). Note that the 1329 

scale has been discretized for ease of reading. Empty circles represent islands and are not to 1330 

scale for readability reasons. Light gray areas show areas with no information on alien vascular 1331 

plant species, dark gray regions are where there were no variations in number of measured 1332 

traits per species. The map is projected using the Equal-Earth projection. 1333 


