
Gaps in global alien plant trait data and
how to fill them

Authors
Matthias Grenié 1,2,3 ORCID: 0000-0002-4659-7522

email: matthias.grenie@univ-grenoble-alpes.fr

Helge Bruelheide 3,4 ORCID: 0000-0003-3135-0356

Wayne Dawson 5 ORCID: 0000-0003-3402-0774

Franz Essl 6ORCID: 0000-0001-8253-2112

Mark van Kleunen7,8 ORCID: 0000-0002-2861-3701

Ingolf Kühn 9,4,3 ORCID: 0000-0003-1691-8249

Holger Kreft 10,11,12ORCID: 0000-0003-4471-8236

Petr Pyšek 13,14 ORCID: 0000-0001-8500-442X

Patrick Weigelt 10,15 ORCID: 0000-0002-2485-3708

Marten Winter 2,3 ORCID: 0000-0002-9593-7300

Affiliations
1 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France

2 Leipzig University, Ritterstraße 26, 04109 Leipzig, Germany

3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,

Puschstraße 4, 04103 Leipzig, Germany

4 Institute of Biology/Geobotany and Botanical Garden, Martin Luther University

Halle-Wittenberg, Halle, Germany

5 Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and

Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK

https://orcid.org/0000-0002-4659-7522
mailto:matthias.grenie@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-3135-0356
https://orcid.org/0000-0003-3402-0774
https://orcid.org/0000-0001-8253-2112
https://orcid.org/0000-0002-2861-3701
https://orcid.org/0000-0003-1691-8249
https://orcid.org/0000-0003-4471-8236
http://orcid.org/0000-0001-8500-442X
https://orcid.org/0000-0002-2485-3708
https://orcid.org/0000-0002-9593-7300


6 Division of BioInvasions, Global Change & Macroecology, Department of Botany and

Biodiversity Research, University of Vienna, Vienna, Austria

7Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457

Konstanz, Germany

8 Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,

Taizhou University, Taizhou 318000, China.

9 Dept. Community Ecology, Helmholtz Centre for Environmental Resaerch - UFZ,

Theodor-Lieser-Str. 4, 06120 Halle, Germany

10 Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany

11 Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen,

Germany

12 Campus Institute Data Science, Göttingen, Germany

13Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology,

CZ-25243 Průhonice, Czech Republic

14Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-12844

Prague, Czech Republic

15 Department of Environmental Science, Radboud Institute for Biological and

Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The

Netherlands

Acknowledgments
M.G., H.B., IK and M.W. gratefully acknowledge the support of iDiv funded by the German

Research Foundation (DFG– FZT 118, 202548816), specifically funding through sDiv, the

Synthesis Centre of iDiv. PP was supported by EXPRO grant no. 19-28807X (Czech Science

Foundation) and long-term research development project RVO 67985939 (Czech Academy of

Sciences). MvK acknowledges support of the German Research Foundation DFG (grant



264740629). FE appreciates funding by the Austrian Science Fund (FWF; pr.no. I 5825-B). HK

acknowledges funding by German Research Foundation DFG (Research unit FOR2716

DynaCom).

Conflict of Interest
There is no conflict of interest to declare.

Author Contributions
M.G. and M.W. conceived the ideas and designed methodology; M.G. collected and

analyzed the data; M.G. and M.W. led the writing of the manuscript. All authors contributed

critically to the drafts and gave final approval for publication.



Title
Gaps in alien plant trait data and how to fill them

Running title
Global gaps in alien plant trait data

Abstract
Aim

Functional traits help to understand the ecological processes underlying biological

invasions. The extent to which trait data are available for alien plants at the global scale is

unknown. In this study, we assess the availability of trait data and identify global gaps and

biases

Location
Global

Time Period
Present

Major taxa studied
Vascular plants

Methods
We used the GloNAF database to get a global list of plants naturalized outside their native

range and their distributions. We combined data from the four largest trait databases: AusTraits,

BIEN, GIFT, and TRY, on which we performed taxonomic and trait harmonization. We studied

the availability of trait data. Then, based on the distribution data, we tested to what extent trait

knowledge was driven by ecological and socioeconomic variables.



Results
We found that the species-by-trait matrix (16,044 species for 2,764 traits) was only 1.4%

filled, with most traits measured on very few species. Only ten traits were available for more

than 50% of all alien plants. Four percent of the species had not a single trait measured, while

27% of species had data for the three key plant traits of leaf mass per area, seed mass, and

plant height. We observed a strong latitudinal gradient in trait knowledge with areas in the

Tropics showing lower trait knowledge than higher latitudes. Growth form, range size, and

invasion status were the strongest predictors of trait knowledge.

Main conclusions
We identified large trait data gaps at a global scale for alien plants. These gaps are partly

driven by uneven sampling and a lack of trait data integration across sources. We recommend

that prioritizing the most invasion-relevant traits and distributing community efforts of plant and

invasion scientists to sample them in a standardized way can help close these gaps.

Keywords
functional traits; naturalized plants; non-native plants; missing trait; raunkiaerian shortfall;

trait database



Introduction
Biological invasions are one of the most important drivers of biodiversity loss and we need

a better understanding of the underlying ecological processes for effective management (Díaz et

al., 2019; Roy et al., 2023). Global invasion of plants led to approximately four percent of the

global flora being established outside of its native range (Küster et al., 2008; e.g., Pyšek et al.,

2008; Drenovsky et al., 2012; van Kleunen et al., 2015; Gallien & Carboni, 2017), becoming

alien (i.e. non-native) somewhere on this planet. Identifying plant traits promoting successful

species introductions, establishment and dispersal is one of the major aims of plant invasion

ecology (Küster et al., 2008; e.g., Pyšek et al., 2008; Drenovsky et al., 2012; van Kleunen et al.,

2015; Gallien & Carboni, 2017). With the knowledge of species traits the management and

prediction of population dynamics of established or future alien species can be much more

effective. This includes biological invasions: for example, species that are able to self-fertilize

are more likely to become naturalized than outcrossing species (Razanajatovo et al., 2016).

Despite massive collaborative mobilization efforts, large trait data gaps remain for the

global vascular plant flora (Kattge et al., 2020; Visscher et al., 2022). Recent efforts have

identified and systematically described such gaps (Hortal et al., 2015; Cornwell et al., 2019;

Rudbeck et al., 2022; Maitner et al., 2023). For example, we observe a systematic lack of trait

data for species occurring in less studied regions such as in the Tropics or Africa, while species

in temperate regions have been studied more intensely (Hortal et al., 2015). Geographical

accessibility is also known to drive data availability (Oliveira et al., 2016), which means that we

have greater trait knowledge of accessible regions than less accessible ones. In addition,

species in economically wealthier areas show greater occurrence data coverage than species in

comparatively poorer areas (Meyer et al., 2016).

To fully embrace context-dependency of traits in biological invasions, traits should be

considered in conjunctions to use them to manage alien species (Küster et al., 2008; Pyšek et



al., 2020). Thus, trait availability of alien species is key to using traits to explain idiosyncrasies

associated with different invasion syndromes (Novoa et al., 2020) and across environmental

gradients (Golivets et al., 2024).

There is no assessment of the availability of trait data for alien plant species. To better

understand potential biases or vice versa to identify collection priorities in trait data of alien

plants, we need to identify the factors determining the trait knowledge of alien plants, spatially

and taxonomically. Given the previous studies on biases in plant trait data (Cornwell et al., 2019;

Gallagher et al., 2020; Kattge et al., 2020; Maitner et al., 2023), we know that species with

larger ranges have greater data availability than species with smaller ranges, because they are

more likely to be sampled. In addition, we expect that species occurring in wealthier countries

(in either their native or naturalized range) have more trait data present in databases, than

species in poorer countries. We also expect invasive (i.e. species with ecological and/or

economic negative impacts) species to have data available for more traits than naturalized

species that were never recorded as invasive, because the impacts of invasiveness should

incentivise trait research on invasive plants.

Scientists rarely leverage multiple trait databases, which would likely improve trait coverage

(Feng et al., 2022). This is because plant trait databases are often not directly interoperable and

do not follow commonly defined standards. As a result, most trait studies do not use the full

range of available trait data (Feng et al., 2022). The lack of shared trait definitions impedes the

reuse of plant traits across databases (Garnier et al., 2017), while combination of traits coming

from different databases requires care and specific expertise (Keller et al., 2023), but ensures a

greater trait coverage and reduces the potential taxonomic and spatial biases (Maitner et al.,

2023).

Here we map and quantify the trait knowledge for alien plants at global scale, using the

largest trait dataset for non-native species assembled to date, by combining four major plant

trait databases. We then assess the main ecological and socioeconomic factors driving the data



availability of plant traits.



Methods
Alien plants list

We extracted a list of alien vascular plants from the Global Naturalized Alien Flora

(GloNAF) database v.2.0 (van Kleunen et al., 2019) that is being continuously updated by the

database creators (accessed 2024-05-30). We extracted the list of species in GloNAF that were

labeled as “naturalized” or “invasive”. Our list of alien species comprised 16,044 taxonomic

names of vascular plants before taxonomic harmonization. We also extracted the naturalized

geographic distribution (at TDWG4 resolution level) of each taxon from the GloNAF database.

Taxonomic harmonization
We gathered trait data from four different plant trait databases: AusTraits (Falster et al.,

2021), BIEN (Enquist et al., 2016), GIFT (Weigelt et al., 2020), and TRY (Kattge et al., 2020).

We used these databases because they represent the largest and most accessible trait

databases for plants globally (Feng et al., 2022).

As the different databases used different taxonomic backbones to standardize species

names, we performed taxonomic harmonization (Grenié et al., 2022) by merging the accepted

binomial species names between GloNAF and each trait database. In the end, we had 13,705

matched species names between GloNAF and all trait databases (see Supplementary

Information 1 for details).

Trait data
For each trait database, we counted the number of measured traits for each species. Some

traits may have more than one observation. We however decided to be the least conservative

for our analyses: we considered as “measured” a trait that was at least measured once across

all databases. We did so as any single measured trait gives greater alien species trait

knowledge than no observation.



AusTraits. We extracted all traits available for species referenced in GloNAF from AusTraits

version 6.0 (Falster et al., 2021). We obtained data for 33,494 taxa (including infraspecific ones)

and 497 traits.

BIEN. We queried all traits available in BIEN through the BIEN R package (Maitner et al.,

2018). We used BIEN version 4.2.6 (released 2022-08-09, Enquist et al., 2016). We obtained

data for 109,394 species and 52 traits.

GIFT. We used the GIFT database (Weigelt et al., 2020) as it offers complimentary traits

from global databases and notably contains the growth form for most plant species. We used

GIFT version 3.1, including both public and private records through the GIFT R package

(Denelle et al., 2023). We obtained data for 287,229 species and 106 traits.

TRY. We queried all publicly available traits in TRY v6.0 (Kattge et al., 2020). We obtained

data for 301,799 species and 2,460 traits.

Aligning common trait definitions. We created a single species-by-trait matrix from all trait

databases after harmonizing the traits across them (see details in Supplementary Information

S1), to make correspondence tables for all possible pairwise database combinations we

leveraged the Australian Plant Trait Dictionary (APD) v2.0.0 (Wenk et al., 2024), which provides

trait correspondence between AusTraits and all three other databases we used.

Final trait dataset. We created three distinct trait datasets based on how stringent we were

to consider traits similar in their definition across our correspondence tables. In the first option

(“full” trait network), we considered all traits that were exactly matching, close, or related as

being the same. The second option (“close” trait network) considered only traits that were

exactly or closely matching. The final option, the most stringent one (“exact” trait network),

considered two traits the same only if they were exactly matching. For example, in our network

Austraits “Leaf lamina mass per area” trait (APD:0011231), was considered exactly matching

TRY SLA trait with petiole excluded (TRY:3115), closely matching with TRY SLA trait with

petiole, midrib and rachis excluded (TRY:3086), and related to two other TRY SLA traits where

https://w3id.org/APD/traits/trait_0011231


petiole included (TRY:3116) and where it is undefined if petiole was or not included (TRY:3117).

In the “full” network, all these traits would be lumped together, while in the “close” network the

trait from AusTraits would be connected to TRY:3115 and TRY:3086, in the more stringent

“exact” network, only TRY:3115 would be connected to the leaf lamina mass per area trait from

AusTraits. We provide the “full” network in Table S1.

We performed our analyses with all three versions of the trait networks but present only the

“full” option hereafter as the results were quantitatively and qualitatively similar across all

versions. Our trait name network initially contained 3,351 unique trait names across databases

and 804 links between exact, close, and related matches of traits. Using our correspondence

tables, considering the “full” trait network, we obtained 2,764 unique traits. In the end, in the

“full” trait network, our combined trait dataset contained 13,705 species (after taxonomic

harmonization) and 2,243 observed traits as 521 traits were never observed across our set of

target species.

Trait combinations
Because one can’t measure all traits for all species to fully describe phenotypes,

researchers identified generic trait combinations reflecting major ecological trade-offs to

compare as many species as possible (Westoby, 1998; Díaz et al., 2016; Bergmann et al.,

2020). We focused on three ecological trait trade-offs: the Leaf-Height-Seed Mass (Westoby,

1998), the global spectrum of plant form and function (Díaz et al., 2016; aboveground spectrum

traits hereafter), and the root economics space (Bergmann et al., 2020). See Supplementary

Information S2 for list of traits and extended justification.

Modeling trait knowledge
We tested to what extent the determinants of other shortfalls of biodiversity (Hortal et al.,

2015; Rudbeck et al., 2022) correlated with the number of measured traits per species (our

response variable). We extracted for each GloNAF region of alien plant species occurrence



several predictors provided in the GIFT database: the average gross domestic product per

capita (GDPpc) from 2015 (Kummu et al., 2018), the mean access time from major cities (Weiss

et al., 2018), and the Human Influence Index (WCS & CIESIN, 2005), which aggregates and

averages disparate sources of anthropogenization (density of roads, density of population,

land-use, etc.) per region. We computed the average of all predictor variables across the entire

range for each species. For GDPpc, because we hypothesized that species occurring in

wealthier countries in their non-native range and/or their native range would have more traits

measured, we computed two GDPpc, one across the native range of the species, the other

across its non-native range. As species with larger ranges are more likely to have more traits

measured, especially larger native ranges, we considered separately the number of regions

where a species is native and the number of regions where it is non-native. We assumed that

species occurring in more diverse habitats have a higher chance of being sampled, as they are

more likely of occurring in a well sampled environment, we thus counted the number of biomes

a species occurs in from Dinerstein et al. (2017). We also included the simplified growth form of

the species (tree, shrub, herb, or other) extracted from GIFT as a predictor variable, available

for all species.

Final data subset. We only kept species for which all predictors were known for at least

80% of the regions they occur in as naturalized species. This led to a total of 13,253 species

being included in the analyses presented here.

Statistical Model. Our response variable was the number of traits measured per species out

of our theoretical maximum of 2,764 traits; we thus performed a negative binomial generalized

linear model that we fit using the glm.nb() function in the MASS package (Venables & Ripley,

2002). We used the nine above-mentioned predictor variables: species growth form, species

total range size, species non-native range size, the number of biomes a species occurs in, the

average Human Influence Index across its entire range, the standard deviation of Human

Influence Index across its entire range, the average GDP per capita across its native range, the



average GDP per capita across its non-native range, and the average accessibility across its

entire range. All predictor variables were centered to 0 mean and scaled to 1 standard deviation

prior to the analysis. All predictors showed low multicollinearity with variance inflation factors all

< 5. The checks using the check_model() function of the performance package (Lüdecke et

al., 2021) showed normal residuals and no evidence for overdispersion nor zero-inflation. We

used Nagelkerke’s pseudo-R-square for GLMs through the r2_nagelkerke() function from the

performance package. All data extraction and analyses were done using R 4.2.2 (R Core

Team, 2022).



Results
A sparse species-traits matrix

We obtained a species-traits table containing observations for 13,705 alien vascular plant

species (out of 16,044 known at global scale) and 2,243 different traits (out of 2,764) (Figure

1A). This gives a theoretical maximum of 48,646,400 possible species by trait combinations,

while our observed matrix only contained 691,653 (1.4%) of them. Narrowing on the 200 most

frequently measured traits (Figure 1B) gives 3,208,800 combinations of which 501,736 (15.6%)

are observed.

We listed 25 most frequently measured traits. About 90% of alien plant species had data

available for each of the following three traits: growth form, woodiness, and life history (Figure

1C). Around 70% of the alien species had two other traits measured at least once: plant height,

which is fundamental to understanding the ecology of species; and leaf type, distinguishing

between a broad leaf or a needle. Each of four other traits were available for more than half of

the species: leaf compoundness (compound or simple leaf), dispersal syndrome

(anemochorous, etc.), seed mass, and photosynthetic pathway (C3, C4, or other). The

remaining 16 traits are available for less than half of the species. Most of those traits describe

fundamental ecological characteristics: flowering phenology, nitrogen fixation, fruit type, leaflet

number per leaf, leaf length, leaf phenology, species tolerance to frost, leaf phyllotaxis, leaf

width, pollination syndrome, fruit length, plant sex type, flower color, leaf mass per area, leaf

area, seed germination rate. Among the 25 most frequently measured traits, the different

databases had various unique contributions (Figure S1). For some traits, like leaf type (available

for 9,528 out of 10,162 species), TRY covered 6,121 species, while for plant height. For leaf

type, GIFT was the greatest provider of unique species-trait observations unavailable in other

databases (2,564 species out of 10,467). The contribution of AusTraits for leaf type, though

smaller, mostly brought unique observations (398 species unobserved in other databases).



Species-traits observations in BIEN were generally also available in TRY, but BIEN had some

unique contributions for certain traits, for example for pollination syndrome (113 species

uniquely in BIEN versus 525 in AusTraits, 989 in GIFT, and 1080 in TRY for a total of 5,460

species).





Figure 1. (A) Species-by-trait matrix for alien vascular plants of the 200 most measured traits.

Each pixel represents the measurement of one trait for one species. Traits are ordered on the

x-axis from most to least measured. Species are ordered in columns ordered from most to least

measured (bottom to top). The color of the pixel shows whether the trait was ever measured for

this species (dark gray) or never (white). (B) shows the same figure with all 2,273 measured

traits. (C) Proportion of species covered by the 25 most frequently measured traits. The x-axis

shows the number of species with the given trait measured (the top x-axis gives the

corresponding proportion). The y-axis shows the different traits with their names as labels, the

labels indicate whether the traits are continuous (cont.), categorical (cat.), or binary (bin.). The

points are the proportions of alien species with at least one trait value for the trait indicated on

the y-axis. The proportions are displayed above the points. The red dashed line represents

100% cover of the alien species (16,044 in our dataset), while the blue dashed line represents

50%.



Uneven proportion of measured combination of traits
We mapped species for which we had the measured combinations of traits (see details in

Table S2-1): Leaf-Height-Seed Mass (LHS), aboveground spectrum traits, and root traits. For

only 4% of alien species not a single trait measurement exists (498 species, Figure 2A), which

means that 96% of alien plant species have at least one trait measured in our consolidated

dataset. However, to compare species or compute functional diversity metrics, the traits

measured across species need to be the same. Only 26.8% of the species with non-native

occurrences have a measured LHS combination (4,307 species), only 13.3% have the

aboveground spectrum traits fully described (2,134 species), and root traits are measured for

only 1.7% (267 species). When jointly considering multiple combinations, the numbers drop

further: 1.6% of species (250 species) have measured LHS and root traits, while 1.4% of

species (221 species) have both the full aboveground spectrum and root combinations

measured.

The available trait combinations show strong taxonomic biases (Figure 2B). While we

expect families with a larger number of alien species to show a higher proportion of trait

combinations available, smaller families like Myrtaceae have trait data for most of their alien

species, while the bigger families like Poaceae show lacking trait combinations for most alien

species.





Figure 2. Shares of alien vascular plant species covered by different trait combinations. The

area of rectangles is directly proportional to the number of species in each category. (A)

Organized by trait combinations. The numbers show the number of species and respective

proportion of species compared to the global number of alien species (16,044). (B) Organized

by families and trait combinations. The blocks contained within thick white borders are botanical

families. Families are ordered by decreasing number of alien species (e.g., Asteraceae has the

most aliens). The numbers depicted are the number of species of the family with the given trait

combination. Areas are colored depending on measured trait combinations. The colors

correspond to different trait combinations: light gray, no measured trait; gray, at least one

measured trait; light purple, LHS; dark purple, aboveground spectrum traits; bright orange; root

traits; darker orange, LHS and root traits; brown, aboveground spectrum and root traits.



Figure 3. Maps of alien vascular plant species richness and proportion of aliens with measured

trait combinations. (A) Alien species richness based on GloNAF. For readability reasons the

richness scale has been discretized in four colors following a log10 scale. Gray areas show

where no data were available. (B) Proportions of alien species in each region with measured

trait combination (at least one trait; Leaf-Height-Seed Mass, LHS; aboveground spectrum; and

root traits). Empty circles represent islands and are not scaled for readability reasons. All maps

are projected in Equal Earth projection (EPSG:8857).



Combinations of traits are poorly represented across the world
We mapped the alien species richness and the proportion of alien species with measured

trait combinations (Figure 3). The latter measure varied strongly depending on which particular

traits we combined (Figure 3B). Most regions showed trait coverage over 80% when considering

single traits. The LHS traits show the highest degrees of coverage variation of all trait

combinations considered. Some regions with higher alien species richness also showed high

LHS coverage like the North of North America or different regions in Russia. Regions with very

low alien species richness (fewer than 10 alien species) showed a high LHS coverage (over

80%). We observed a strong latitudinal gradient in trait coverage. Temperate regions showed an

LHS trait coverage over 60%, while most tropical regions showed LHS trait coverage below

60% (with the notable exception of Brazil with several regions over 60% coverage). For both

aboveground and especially root traits, most regions showed coverage below 20% of the

species, except for regions with low alien species richness. Some regions of North America,

South America, and Central Asia, however, showed coverage between 20% and 40% for

aboveground spectrum traits.

Traits of widespread and invasive species are more measured
The species’ invasion status influenced the knowledge of trait combinations (Figure 4A).

Species referenced as invasive in at least one region in GloNAF (“invasive” in this section) had

a greater coverage in all trait combinations than species never referenced as invasive

(“non-invasive” in this section). We found strong evidence that LHS traits are better measured

for invasive species (48.2% of species) than for non-invasive species (24.8%; χ2 = 325, df = 1,

p-value < 0.001). We observed similar differences for aboveground traits and root traits (26.9%

vs. 11.3% for aboveground traits; and 3.9% vs. 1.3% for root traits). Even when considering any

trait, invasive species were better measured than non-invasives (respectively 99.1% had at

least one measured trait vs. 96.1%).



We also observed a difference in trait knowledge depending on geographical spread of

species. The 100 most widespread species in GloNAF consistently showed higher

trait-combination knowledge than less widespread species (81% vs. 27.5% for LHS traits; 59%

vs. 13.5% for aboveground traits; and 18% vs. 1.7% for root traits). The only case where we

found no difference between the most widespread and other species was when considering

whether they had data on at least one trait (96% vs. 85.3%, respectively, χ2 = 0.57, df = 1,

p-value = 0.45).



Figure 4. (A) Effect of invasiveness on measured trait combinations across species. The x-axis

shows the proportion of species with the given trait combination. The y-axis shows the different

trait combinations. Shapes and colors distinguish species based on their invasion status: orange

triangles are for species mentioned as invasive at least once and blue circles for the ones never

mentioned as invasive. (B) Effect of range size (over 100 GloNAF regions from which the

species is reported) on trait combination knowledge across species. The x-axis shows the

proportion of species with the given trait combination, the y-axis shows different trait

combinations. The points and lines of different shapes and colors distinguish species based on

their widespreadness: whether they are part of the 100 most widespread species (expressed as

the number of GloNAF regions) or not.



Plant growth form and range size predict trait knowledge

We modeled the number of traits measured per species as a function of predictors

averaged over the entire range size of the species as well as the growth form of species. We

found evidence for effects of all our tested variables (p < 0.001, Figure 5, see partial residual

plots in Figure S2). Our model had a Nagelkerke’s pseudo-R² of 59.4%. The strongest variable

explaining the number of measured traits was growth form: measured as trees, shrubs, herbs,

and others. Trees had on average more trait information than shrubs (56.5 on average versus

37.4 traits), which had more than herbs (33.3), which had more than species of other growth

forms (19.7). The next predictor with the strongest effect was the species total range size, with a

positive effect meaning that for every factor 10 increase in the range (in km²), there was a 85%

increase in the number of traits for a species. The number of biomes a species occurs in and

the human influence index averaged across its range also had a positive effect on the number of

measured traits per species. The other variables all decreased the number of measured traits

per species, with GDPpc in the native range having a stronger negative effect (decreasing the

number of traits by 20%) than the non-native range size (19%), GDPpc in the non-native range

(9%) and, as well as the accessibility of the range (9%). We performed similar analyses with

thresholds of 70% and 90% and obtained similar results (Figure S3)



Figure 5. Summary plot showing the incidence rate ratios for variables explaining number of

traits measured per alien vascular plant species. Variables with blue dots increase the number

of traits measured per species, while variables in red decrease it. The coefficients are

interpreted as follows: an increase in 1 of the total range increases the number of measured

traits by 85%, while an increase in 1 in accessibility decreases the number of measured traits by

9% (1 - 0.91). All tested variables showed p-values < 0.0001.



Discussion
We assembled the largest collection of traits for alien vascular plant species worldwide from

the four biggest global plant trait databases and systematically assessed the completeness of

available information. We showed that the global alien species-by-trait matrix was mostly empty

and that the most well measured traits were categorical. When considering multiple traits

together, we found that only a fraction of species had “classical” trait combinations measured.

The knowledge of traits was mostly driven by plant growth form, invasiveness status, and range

size. Furthermore, when considering these combinations across space, we identified that most

regions in the world showed consistently low trait coverage for alien plant species. The huge

gaps in global trait availability of plants in general and, in particular, of alien plants might prevent

us from identifying potentially important traits for invasion processes at large scales.

Biases in trait knowledge
Several dimensions of biodiversity are known for showing strong geographic, taxonomic,

and trait biases (Hortal et al., 2015; Cornwell et al., 2019; Hughes et al., 2021; Rudbeck et al.,

2022). Traits of alien plants are no exception. The lack of trait data, the so-called Raunkiærian

shortfall, is characterized by several biases. First comes the trait bias; although many traits have

been measured, and around 70% of species have at least 10 traits measured (Figure S4), only

few traits are consistently measured across species. Second, the taxonomic bias: when traits

are measured, we found that even the common ones are not measured uniformly across

species within botanical families (Figure 2, Figure S5). Third, regarding the biogeographic bias,

we identified a strong latitudinal gradient in trait knowledge (Figure 3, Figure S6), with greater

trait knowledge for species occurring in temperate regions than for species occurring in tropical

regions. Finally, for the invasion and range related biases, we identified that the invasion status

and widespreadness of species strongly correlated with the knowledge on their traits.

Accounting for these trait, taxonomic, biogeographic, and spatial biases requires careful



analyses. They call for greater attention to data collection, mobilization, and integration to

compensate for biases (See “How to fill the trait data gap” section).

Trait relevance
We decided to focus on commonly used and clearly defined trait combinations, namely LHS

traits from Westoby (1998), the global spectrum of plants form and functions (GSPFF) from Díaz

et al. (2016), and root traits from Bergmann et al. (2020) and Weigelt et al. (2021). These three

trait-combination frameworks are easy to interpret, allowing us to compare species at a global

scale. LHS was one of the first clearly defined combinations compared across species (1998),

while later the GSPFF traits (2016), extended the LHS set of traits with the two main dimensions

being size and the leaf economics spectrum; finally, the root traits (2020; 2021) add information

regarding resource acquisition versus conservation, and collaboration with soil microbes

(mycorrhizal fungi). They all measure aspects of the strategies of plant species globally, and

position them across ecological gradients. Invasion ecology relies heavily on these general

ecological trait frameworks, and given the sparsity of data available for these trait combinations,

our understanding of the roles of traits in plant invasions can only advance if we identify the

most ecologically relevant traits and fill the data gaps.

Although we know that the provenance of the traits, i.e. where the measurements come

from (e.g. native or non-native range), is relevant in invasion ecology (e.g. Parker et al., 2013),

we could not consider this factor. The main reason is the lack of georeferenced measures (e.g.,

only 42% of trait observations are georeferenced in TRY v.5.0; Kattge et al., 2020). Additionally,

we wanted to include as much trait data as possible in our gap analysis. Identifying if trait

measurements are from native or non-native ranges is challenging. Species can show very

different trait values between their native and non-native ranges (Leishman et al., 2014). Those

differences can potentially point to underlying ecological plasticity, evolutionary processes, or

non-random selection of phenotypes at introduction, which are important to understand when



managing invasions. Representing naturalized species trait variability requires measuring them

in both the non-native and the native range.

The challenges of integrating trait databases
Even though there are efforts in unifying the format of plant trait databases, they are far

from being interoperable or even automatically integrable. One of the challenges we faced in

our study was to combine data from heterogeneous trait sources. The four databases we used

are complimentary in terms of species coverage and using all four increased data coverage

(Figure S1) but posed serious conceptual and analytical challenges. First, trait data are

increasingly shared openly, which means a greater trait coverage for species but scattering into

multiple data sources (Gallagher et al., 2020). This problem calls for more attention for data

integration and better data sharing practices (Feng et al., 2022). Second, even though the

databases are open, they may not be easily accessible. We focused on four trait databases

(AusTraits, BIEN, GIFT, and TRY) because all of them offer an R package to access and/or

clean their data (Maitner et al., 2018; Falster et al., 2021; Lam et al., 2022; Weigelt & Denelle,

2022). Third, the trait and distribution databases all used different taxonomies, which is a known

issue when combining data (Grenié et al., 2022); this emphasizes the importance of preserving

original species names when aggregating data. In principle, one would even need to know the

taxonomic concept used (Berendsohn, 1995). Fourth, we had to align the trait definitions across

databases. Thankfully, standard vocabularies, thesauri, and ontologies facilitate this integration

(Garnier et al., 2017; Wenk et al., 2024) but only AusTraits and TRY provided links to trait

ontologies. For all other comparisons, the first author manually paired the traits from all the

databases. Our proposed correspondence method and cross-database table is available as

Supplementary Information in the hope that it would be useful for other studies (Table S1).

Community-developed trait correspondence schemes, for example through the Open Trait

Networks (Gallagher et al., 2020), would help enforce interoperability of trait databases so that



definitions would be more consensus-driven and openly discussed (Wenk et al., 2024). In a

world of increasing automatic algorithms matching data, looking for patterns (e.g. via AI ) an

expert driven unifying global plant trait correspondence scheme is the only way to minimize

errors in those automatic processes.

How to fill the trait data gap?

Prioritizing trait acquisition
It seems unrealistic to expect all trait gaps to be filled with in-situ measurements in the near

future. Adopting a prioritization framework similar to the one used in conservation biology would

be more realistic (Arponen, 2012). Prioritization schemes use well-defined criteria on species,

traits, or regions, to target data sampling or data integration and increase their trait coverage.

The prioritization depends on the aims and purpose of the sampling.

Any prioritization approach would have to make a decision on the origin of the respective

trait measure (native or non-native range). Traits of alien species can be measured anywhere in

their range but this would limit their ecological applicability as discussed before. In an ideal

world, traits are measured in both the native and alien range equally (which is frequently not the

case, see Parker et al., 2013). New trait measures should come with a clear georeferenced

locality information, including habitat characteristics and note on the invasion status of the

species. For example, we could prioritize species to be sampled based on their impact through

their (potential) invasiveness (e.g., with their Environmental Impact Classification for Alien Taxa

–EICAT– score; Blackburn et al., 2014). Such a prioritization, however, risks reinforcing the gap

in trait knowledge between invasive and non-invasive species that we have identified in this

study.

We showed greater gaps in trait knowledge of alien plant species in the Tropics than in

temperate regions, which suggest a need for a geographic prioritization scheme. Areas richer in

alien species could be targeted, as these are more likely to harbor many invasive species



(Chytrý et al., 2012) and suffer from the impacts of invasion. Another region-based approach

would prioritize regions with the highest potential increase in projected new alien species in

relation to the existing trait knowledge (e.g., Seebens et al., 2021). Finally, because it is likely

that many of the trait gaps will not be filled soon, we could rely on methods to prioritize

species/traits/locations that would minimize the error from trait imputation methods (Penone et

al., 2014; Schrodt et al., 2015; Joswig et al., 2023). Then species and traits would be prioritized

to reduce the uncertainty of the imputation the most. For example, we could prioritize species

from families where only a few species have been sampled.

Closing the trait gaps
Once species, traits and locations have been prioritized, we need to find ways to close the

trait gaps. In this section, we list potential solutions to do so. They fall into two categories:

mobilization of existing data and collecting new data. Major gaps in trait data that we identified

do not necessarily mean that the traits have never been sampled. Potentially, these traits were

measured but never contributed and aggregated into databases. There may be solutions to get

these data from previously acquired sources.



Figure 6. Strategies to increase alien species trait knowledge.



Trait data are increasingly shared openly in the literature. The four trait databases we used

do not continuously monitor the published articles for trait data (pers. comm. from database

managers). Targeted literature searches, for specific species and traits, could give access to

more trait data than available in databases. LT-Brazil is a recent successful example of this

strategy (Mariano et al., 2021), where researchers more than doubled the coverage for leaf

traits of Brazilian vascular plant species in TRY (i.e. LT-Brazil is now included in TRY) through a

well crafted literature search. Recent advancements in natural language processing might in

addition reduce the manual effort needed for mobilizing traits from the literature (Domazetoski et

al., 2023).

If the traits are not available in databases nor directly from the literature, they may well be

privately available from researchers. A targeted call for data can help increase data coverage of

some areas and species (Newbold et al., 2012; Kattge et al., 2020). For example, the manager

of the PREDICTS database issued a call for data in Frontiers of Biogeography that successfully

increased data coverage in under-represented regions (Newbold et al., 2012). The calls could

be publicly made or through direct contacts with researchers who mobilized the data, like

GloNAF did (van Kleunen et al., 2019). These calls should always be accompanied by

incentives for data providers like specific citation requirements.

Distributed field campaigns could help to acquire a few traits of alien species. After trait and

species prioritization, a call for a global measurement campaign could be issued. The campaign

would require standard protocols distributed to partner labs across the world and then pooling

their data, also to avoid the definition of new trait states, which is not necessary given >2000

existing plant trait names already. This approach has been used successfully to perform

experiments at global scale on nutrient addition through the NutNet network for example (Borer

et al., 2014), but it has not been used to acquire trait data to our knowledge.

Participatory science has been rising across many fields in ecology (Silvertown, 2009),

empowering large communities to take part in and help science. With the rise of AI-driven plant



identification smartphone applications (Hart et al., 2023), it would be possible to acquire trait

data from these applications, though limited on the type of traits that could be (easily) acquired.

It would require determining which data can be confidently and accurately acquired by

participants, through which tools (e.g., photographs, manual measurements, apps such as

BioLeaf (Machado et al., 2016) or LeafByte (Getman‐Pickering et al., 2020)) with an appropriate

protocol.

With the increasing coverage of satellite imagery, trait ecologists leverage remotely sensed

data (Homolová et al., 2013; Feilhauer et al., 2018; Cherif et al., 2023). Recent studies extend

their approach to the traits of alien species, though at the community rather than the species

level (Huang & Asner, 2009; Niphadkar & Nagendra, 2016). This approach is limited to traits

that can be remotely sensed for species occurring in open areas (Niphadkar & Nagendra,

2016). Those approaches also need robust ground truthing data for model calibration (Dechant

et al., 2023). Remote-sensing trait distribution forms a dynamic field with strong ongoing efforts

to leverage its high resolution capabilities (Torresani et al., 2024).

Several studies show that useful trait data can be extracted from herbarium specimens

(Davis, 2022). Herbaria are globally underused resources and can help access useful trait data,

especially from difficult to acquire or rare species. While herbarium specimens have been used

to reconstruct the spread history of alien species (Mandák et al., 2004; Williamson et al., 2005;

Fuentes et al., 2008), they have not been systematically mobilized for trait data. In particular,

because many herbaria provide digitized specimens, it would be possible to acquire trait data

semi-automatically from these images (Davis, 2022).

Most solutions stated above require collective work from plant, invasion, and remote

sensing scientists as well funding schemes which focus on pure data collection campaigns,

which rarely exist. We want to emphasize the importance of community building in this regard to

tackle the issue of trait data through community efforts. Potential routes to close the gaps in trait

knowledge rely on the good will of individual past or present contributors (people who acquired



the data, collected the species for herbaria, citizen scientists, participating labs, etc.) and

research funders. We want to underline that any of these scientific contributions should be

valued and recognized as they create a basis for progress in research.

Conclusion
We identified large trait gaps for alien plant species at global scale. These gaps are partly

driven by uneven sampling and missing integration of data. With distributed efforts of the global

community of plant and invasion scientists these gaps can be reduced. Our suggestions should

encourage efforts to harmonize plant trait information to be able to unify plant trait databases.

Such developments should result in FAIR and open data, increasing incentives for people to

deposit their trait data in databases (Wilkinson et al., 2016; Islam et al., 2022). The advent of

large-scale trait-based invasion ecology will improve the understanding of biological invasions.

Data Availability
All the code and data are available online through Zenodo as a permanent archive

(https://doi.org/10.5281/zenodo.13940200) and on GitHub for the development version

(https://github.com/Rekyt/alientraitgaps).
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Supplementary Information

Supplementary Information S1. Details on trait harmonization

Only AusTraits offered direct correspondence between its trait definitions and TRY, through

direct mention of TRY Trait ID and, for certain traits, links to standard definitions provided by the

TOP trait Thesaurus (Garnier et al., 2017; Falster et al., 2021; Wenk et al., 2024). For all other

databases, we manually matched the names of traits of each pair of databases (giving a total of

six correspondence tables). For each trait of an input database, we tried to match trait(s) in the

target database based on their associated metadata. We then noted if traits were either identical

or related, the latter meaning that they are not exactly measuring the same entity but could be

considered similar in a certain context. For example, BIEN reports “leaf area per leaf dry mass”,

i.e. LMA, while AusTraits uses a trait named “specific_leaf_area”, which corresponds to SLA.

Even if both traits are named differently, they correspond to the same biological measurement

as LMA = 1/SLA, they can be considered fully identical. TRY reports six different types of

SLA/LMA depending if it includes the petiole and/or is done at the leaflet level for compound

leaves or if it’s undetermined. At the date of the analyses, no other database differentiated SLA

values as much, thus we considered them identical to the “undetermined” value (TraitID in TRY:

3117) of TRY and considered the five other types of SLA as similar but not identical. Another

example is that GIFT references “maximum plant height” while BIEN reports “measured plant

height”; these two traits can be considered related while not identical. We built a trait name

network where nodes are trait names and edges are links between traits, with three categories

of links, as in the Austraits Plant Dictionary ontology: exact, if the traits were exactly matching ;

close, if the traits were close but not exactly matching ; related, if the traits are related more

lightly. The network allowed us to jointly consider all links across all databases. We considered

traits the same across databases if they were part of the same connected component in the



network. Each connected component then got assigned a new consolidated name representing

the final trait name. We obtained three different trait name networks based on how stringent we

were to consider two traits connected:

● The “full” network considered all links (exact, close, and related) to obtain connected

components.

● The “close” network considered only exact and close links.

● The “exact” network considered only exact links.

We present only the result of the full network in the article as the results for the two other

networks were qualitatively and quantitatively similar. We also focused on the “full” network as it

allowed us to cast the widest net possible and show the most optimistic picture for trait data of

non-native species.



Supplementary Information S2. Ecological justification of used trait combinations.

Westoby suggested the Leaf Mass per Area-Height-Seed Mass trio to quickly classify the

ecology of many species with the fewest traits. We considered three ecologically meaningful

trait combinations and assessed how often they were measured across non-native species, that

are detailed in the table below:

Table S2-1. Description of the three considered trait sets

Name of trait
combination

Source of trait
combination

Number
of traits

Traits in the set Justification

Leaf-Height-
Seed Mass
(LHS)

Westoby, 1998 3 ● Leaf mass par
area,

● Plant height,
● Seed mass

Compares the general
life history strategy of
species at global scale
without being
context-dependent

Global
Spectrum of
Plant Form
and Function
(GSPFF)

Díaz et al., 2016 6 ● Leaf mass par
area,

● Plant height,
● Seed mass
● Leaf area,
● Stem Specific

Density,
● Leaf Nitrogen

Content

Captures the main
axes of variation in
aboveground plant
strategies worldwide

Root traits Bergmann et al.,
2020

4 ● Specific root
length,

● Root diameter,
● Root tissue

density,
● Root nitrogen

content

Positions species
along the root
economics spectrum
and contrasts species
along two axes: a
“conservation” gradient
corresponding to the
fast-slow continuum
and a “collaboration”
gradient corresponding
to reliance on
mycorrhizal fungi to
extract nutrients.



Supplementary Tables and Figures
Table S1. Final trait alignment table for “full” network. See companion CSV file:

https://drive.google.com/file/d/1IXabqGXkxhdQJCiZBzg1ZyXBCAASP-qO/view?usp=sharing

Description of fields:

● component, number of the connected component the trait name network ordered by

size.

● consolidated_name, automatically assigned name of the component for understanding.

● component_size, size of the connected component in number of nodes (= trait names)

● austraits_trait_name, trait name provided as in AusTraits.

● bien_trait_name, trait name provided as in BIEN

● gift_trait_name, trait name provided as in GIFT corresponding to the “Trait2” level.

● try_trait_id, trait id as provided in TRY TraitID column

https://drive.google.com/file/d/1IXabqGXkxhdQJCiZBzg1ZyXBCAASP-qO/view?usp=sharing


Figure S1. Complementarity of trait databases for the twenty-five most measured traits. Each

circle has an area proportional to the number of species covered by a database for this trait, the

intersections between circles is also proportional to the number of shared species. The numbers

give the number of species in each section. Each database is always represented using the

same color across traits: red for AusTraits, blue for BIEN, green for GIFT, and purple for TRY.



Figure S2. Partial residual plots of the trait knowledge model. These follow the

negative-binomial model of the number of traits measured predicted with the 9 variables

indicated as the x-axis of each panel (see Methods section for details). It shows the predicted

variation of the number of traits in function of the variation of one predictor keeping all the other

predictors equal to their mean value (here 0 as they were scaled).



Figure S3. Coefficients of alternative models of number of traits measured by species where

variables were available for 70%, 80%, or 90% of the total range of species. The different

models are thus fitted on a different number of species.



Figure S4. Cumulative number and proportion of alien vascular plant species with at least a

given number of traits indicated by the x-axis. The x-axis represents the number of traits. The

way to read the graph is the following: “Close to 100% of species have at least 1 trait. More than

10,000 species have at least 10 measured traits”.



Figure S5. Treemap with number of traits measured per family. (A) All species ordered by

number of traits with the respective numbers and proportions of species per amount of

measured traits. (B) Ordered by family. The numbers correspond to the number of species

within a family with the given trait knowledge. Way to read the graph: “There are 384 Poaeceae

species which have 1 to 10 measured traits”.



Figure S6. Map showing the median number of measured traits across species per region (A)

and the standard deviation of the number of traits across species per region (B). Note that the

scale has been discretized for ease of reading. Empty circles represent islands and are not to

scale for readability reasons. Light gray areas show areas with no information on alien vascular

plant species, dark gray regions are where there were no variations in number of measured

traits per species. The map is projected using the Equal-Earth projection.


