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Abstract	11 

The global climate is changing to be more extreme and less predictable, threatening many 12 
species. Cooperative breeding is more common under such conditions, indicating it may improve 13 
resilience to challenging climates. However, whether specific features of cooperative breeding 14 
systems, such as how groups form and how large they become, evolved to cope with particular 15 
climates is unclear. We test two predictions using phylogenetic analyses across birds. First, 16 
cooperative groups formed by unrelated adults (‘nonfamily’) are an adaptation to variable 17 
environments. Nonfamily groups can form relatively quickly when conditions deteriorate, unlike 18 
family groups, which often require offspring retention over multiple generations. Second, species 19 
with larger groups are able to breed in more extreme environments. We found that as climates get 20 
hotter and precipitation becomes more variable, cooperative breeding with nonfamily is more 21 
frequent and groups become larger (nspecies=39). Conversely, cooperative breeding in family 22 
groups is more frequent in stable, hot environments (nspecies=128). Additionally, both nonfamily 23 
and family cooperative species had broader climatic niches than phylogenetically matched pair 24 
breeders (nspecies=456). Our results highlight that cooperation with unrelated individuals may 25 
enable species to live in hot environments with variable rainfall that are expected to become more 26 
common in the future.  27 
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Introduction	28 

Extreme and variable climates make it hard for organisms to survive and reproduce1,2. The speed 29 
of recent climate change is thought to be outpacing that of genetic adaptation for many species, 30 
such as long-lived vertebrates3,4. Cooperative breeding can quickly emerge when environments 31 
change, which has led to the idea that cooperation may be in helping animals to mitigate the 32 
effects of climate change5,6. However, cooperative groups vary in how they form, their genetic 33 
structure and how large they become, and we lack an understanding of whether this influences 34 
the resilience of species to different climatic conditions7–12. 35 

Cooperative breeding groups can form in different ways13. First, groups can form when 36 
nonfamily members aggregate after dispersing from their natal territories. These groups typically 37 
consist of unrelated individuals who all attempt to breed at some point during their life and 38 
mutually benefit from cooperative care7,9,14–20. Second, offspring can remain in their natal 39 
territory, foregoing independent reproduction, to help their parents raise their siblings, resulting 40 
in multi-generational family groups21,22. 41 

The different mechanisms by which groups form, and the influence this has on relatedness12, is 42 
predicted to change the environments that species can cope with. Nonfamily groups have the 43 
potential to form relatively quickly and in environments where high mortality erodes genetic kin 44 
structure among potential group members8,17,19,20,23–26. Nonfamily cooperative breeders are 45 
therefore expected to be in variable climatic regions where independent breeding is difficult and 46 
options for cooperating with kin are limited. In contrast, the formation of family groups requires 47 
kin associations to be maintained, often over multiple generations, which requires low rates of 48 
dispersal and mortality that is more likely in stable environments. Family groups may also be 49 
able to colonise more extreme environments due to the benefits of high relatedness12,27,28. 50 
Helping relatives means that individuals do not have to reproduce to pass on their genes10,29,30. 51 
This reduces reproductive competition and allows individuals to devote more time to other 52 
activities, such as foraging, that may enable groups to successfully raise offspring in extreme 53 
climates where food is scarce. 54 

The environments where species persist may also depend on group size31,32. Larger groups have 55 
the advantages of economies of scale and the division of labour that may be crucial for acquiring 56 
the resources to reproduce33. For example, having more foraging individuals and partitioning 57 
tasks such as predator vigilance and offspring care, may enable larger groups to cope with 58 
climatic challenges. Group size can differ between nonfamily and family groups12,17: In 59 
nonfamily groups, reproductive competition among unrelated individuals can limit group size, 60 
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which is not the case in family groups with non-reproductive helpers. This can result in family 61 
groups being larger, enabling them to potentially inhabit more extreme environments. However, 62 
it is currently unclear if the way groups form and how large they become influences the climatic 63 
conditions that species are resilient to. This is primarily because the frequency of cooperation 64 
(e.g. % of cooperative breeding nests in populations) and the group sizes of species breeding in 65 
nonfamily and family groups have not be analysed in relation to climatic conditions or formally 66 
compared to pair breeding species34–38. 67 

Here we use data across birds to test if species that breed in nonfamily and family groups live in 68 
environments with different climatic conditions (Supplementary Table 1; Supplementary Table 69 
2). The breeding systems of cooperative species were classified using data on the presence of 70 
cobreeders (pairs versus multiple breeders) and the relatedness of helpers, and global climate 71 
databases were used to characterise species climatic niches (see Methods section ‘Classification 72 
of breeding systems’. Table 1). We first tested whether variation in the frequency of cooperative 73 
breeding (% nests with 3+ adults) and group size were related to climate, and if this differed 74 
between nonfamily and family groups. Second, we tested if the environments that nonfamily and 75 
family cooperative breeders inhabit differ from phylogenetically matched pair breeding species 76 
(five most closely related species: nspecies=456). Data were analysed using multi-response 77 
Bayesian phylogenetic mixed models (MR-BPMM) that enable the coevolution (phylogenetic 78 
correlations) of cooperative breeding and climatic variables to be estimated. 79 

Results	80 

Nonfamily	cooperation	increases	with	climatic	variation	81 

Nonfamily cooperative breeders are broadly distributed across the globe, occurring in northern, 82 
southern and equatorial regions (Figure 1). The frequency of cooperative breeding in nonfamily 83 
groups increased significantly in environments with more variable precipitation across breeding 84 
seasons and higher average temperatures (Figure 2, Extended Data Fig. 3. Variation in 85 
precipitation between years (95% credible interval, CI) = 0.29 (0.13, 0.5), pMCMC = 0.001; 86 
temperature = 0.28 (0.1, 0.47), pMCMC = 0.001. Supplementary Table 3). Similarly, the group 87 
sizes of nonfamily cooperative breeders increased in hotter environments with more variable 88 
precipitation across breeding seasons (Figure 2, Extended Data Fig. 4. Variation in precipitation 89 
between years (CI) = 1.4 (0.18, 2.58), pMCMC = 0.044. Temperature (CI) = 1.12 (-0.09, 2.34), 90 
pMCMC = 0.058. Supplementary Table 4). 91 
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In contrast, family group cooperative breeding increased in hotter, more stable environments 92 
(Figure 2, Extended Data Fig. 3. Temperature (CI) 0.17 (0.04, 0.28), pMCMC = 0.008. Variation 93 
in temperature between years (CI) -0.14 (-0.27, -0.03), pMCMC = 0.024. Supplementary Table 94 
3). This is reflected by the concentration of family cooperative breeders around equatorial regions 95 
(Figure 1). The size of family groups were also not related to any climate variables, as in 96 
nonfamily cooperative breeders (Figure 2, Extended Data Fig. 4. Supplementary Table 4). 97 

Cooperative	breeders	occupy	more	arid	environments	than	pair	breeders	98 

When comparing cooperative breeding species to phylogenetically matched pair breeders, we 99 
found that both nonfamily and family cooperative breeders inhabit drier environments than pair 100 
breeding species (Figure 3, Extended Data Fig. 2). Specifically, cooperative breeders are in 101 
significantly drier habitats than pair breeders (Figure 3. Pair vs Nonfamily: Precipitation (CI) = 102 
0.49 (0.06, 0.82), pMCMC = 0.02. Pair vs Family: Precipitation (CI) = 0.28 (0.02, 0.58), 103 
pMCMC = 0.042. Supplementary Table 5). Cooperative species also experience consistently 104 
drier periods throughout their breeding seasons than pair breeders (Figure 3. Pair vs Nonfamily: 105 
Within-year variation in precipitation (CI) = 0.64 (0.24, 1), pMCMC = 0.001. Pair vs Family: 106 
Within-year variation in precipitation (CI) = 0.38 (0.1, 0.65), pMCMC = 0.014. Supplementary 107 
Table 5). These results were consistent across different classifications of cooperative breeding, 108 
for example, sub-setting family cooperative breeders according to the numbers of breeders (pair 109 
versus multiple), if helpers were a mix of family and nonfamily members, and which cutoff was 110 
used to assign species to breeding categories (>0% versus >30% of nests with cobreeders and 111 
helpers. Supplementary Table 6, Supplementary Table 7, Supplementary Table 8, Supplementary 112 
Table 9 and Supplementary Table 10). 113 

Cooperative	breeders	have	broader	climate	niches	than	pair	breeders	114 

To further examine the climates that nonfamily, family and pair breeding species are adapted to, 115 
we analysed differences in the correlations between climate variables across breeding systems. 116 
For example, it is possible that the benefits of cooperation in dry environments, such as sharing 117 
foraging duties, may be even greater in hot areas where being active for long periods is thermally 118 
stressful. Comparing differences in temperature and precipitation between breeding systems will 119 
not detect such effects. We therefore tested if the correlations between climatic variables differ 120 
across breeding systems using eigenvector analysis of phylogenetic variance-covariance matrices 121 
of climate variables for nonfamily, family and pair breeders. Here the eigenvectors describe the 122 
axes of variation across climate variables and the eigenvalues indicate the amount of variation in 123 
each direction. If the first eigenvector explains a greater proportion of variation in the eigenvalues 124 
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for a given breeding system, such as pair breeders, this indicates that more variation is aligned 125 
along a single axis of climatic variation (see Statistical analyses for more details). 126 

We found across pair breeders that the first eigenvector explained a greater proportion of the 127 
variation in eigenvalues compared to nonfamily and family cooperative breeders (Figure 4). This 128 
indicates that pair breeders are restricted to environments with specific climatic conditions, as 129 
indicated by stronger correlations between climate variables (Figure 4). In particular, pair 130 
breeders are not found in dry environments with consistently high temperatures (Figure 4). 131 
Conversely, nonfamily and family cooperative breeders occupy a broader range of climates than 132 
pair breeders, and are less constrained by the relationship between temperature and precipitation 133 
(Figure 4. Phylogenetic correlation between precipitation and temperature variation within-years 134 
(CI): pair = -0.56 (-0.71, -0.37), pMCMC = 0.001; nonfamily = -0.14 (-0.5, 0.41), pMCMC = 135 
0.754; family = -0.18 (-0.56, 0.17), pMCMC = 0.248 Supplementary Table 11). This is consistent 136 
with cooperative breeders having broader climatic niches than pair breeders, irrespective of 137 
whether they form nonfamily or family groups (Figure 4). 138 

Discussion	139 

Our results show that cooperation with nonfamily is associated with hot climates with variable 140 
precipitation, conditions that also lead to larger group sizes. In contrast, cooperative breeding in 141 
family groups is associated with stable hot environments and group sizes are largely decoupled 142 
from climatic variation. Compared to pair breeders, both nonfamily and family cooperative 143 
breeders occupy a wider range of environments, in particular more arid environments. Together 144 
these results highlight the potential importance of social behaviour in determining the resilience 145 
of species to climatic challenges. 146 

It has previously been shown that family and nonfamily cooperative breeding species evolved 147 
independently with important consequences for the reproductive division of labour12,13,30,39,40. 148 
Our results indicate that different mechanisms of group formation may also influence the 149 
ecological niches of species. Cooperative breeding in vertebrates has repeatedly been associated 150 
with high temperatures and variable rainfall, but previous analyses have either considered only 151 
family groups or combined family and nonfamily group species24,27,41–45. Our results partially 152 
align with this work, showing that high temperatures are consistently associated with cooperative 153 
breeding. However, our findings highlight that only nonfamily cooperative breeding is associated 154 
with increased variation in precipitation and that cooperative breeding with family actually shows 155 
the opposite pattern, being more prevalent in stable environments. 156 
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There are several possible reasons for why nonfamily cooperative breeding is associated with 157 
more variable precipitation across breeding seasons. First, fluctuating environmental conditions 158 
can erode population genetic structure, limiting opportunities for cooperating with kin5,19,46,47. 159 
Kin structure can be reduced by higher dispersal and mortality, which are known to increase in 160 
cooperative breeders in high and low rainfall years20,48–50. The interaction between temperature 161 
and rainfall can also influence patterns of adult and juvenile mortality directly, for instance 162 
through cold and heat stress3,26,47, and indirectly by affecting prey species abundances51,52. 163 
Second, in variable environments the benefits and costs of cooperation can vary over space and 164 
time53,54. As nonfamily groups can potentially form relatively quickly, it is possible that 165 
individuals adjust their cooperative behaviour in response to environmental change more easily 166 
than individuals in family groups, which can take longer to form. For example, in Taiwan 167 
yuhinas, Yuhina brunneiceps, females increase their cooperative behaviour towards unrelated 168 
cobreeders in years when rainfall makes independent breeding harder48. Nonfamily cooperative 169 
breeding systems may therefore be favoured in environments where variable climatic conditions 170 
reduce kin structure and select for relatively fast group formation and breakdown. 171 

Similar to frequencies of cooperative breeding, the size of nonfamily groups was linked to hot 172 
climates with fluctuating precipitation, whereas family group size varied independently of 173 
climate. The costs of reproductive competition amongst unrelated individuals in nonfamily 174 
groups may mean that groups only become larger when environmental conditions increase the 175 
benefits of cooperation, resulting in group size closely tracking climatic variation31,32. For 176 
example, in nonfamily groups of the greater ani, Crotophaga major, it has been shown that dry 177 
years favour small groups because of competition over food, whereas larger groups are more 178 
successful in wet years because of better protection against predators31. In contrast, family group 179 
sizes are rarely found to vary with environmental conditions (e.g.26,47) and may instead be 180 
determined by diminishing indirect fitness returns that are capped by the reproductive output of 181 
breeding females8,55. 182 

Extreme climatic conditions, where high temperatures are combined with periods of drought can 183 
lead to reproductive failure and even the collapse of entire communities3,26,47. Cooperative 184 
breeding is one way species may cope with such adverse climates6,49. Climate change is expected 185 
to magnify environmental variation and it has been proposed that cooperative breeding can help 186 
reduce the impact of such variation on reproductive success53. However, recent work shows that 187 
variable environments do not always select for cooperative behaviour among relatives54. In line 188 
with this, our results show that family cooperative breeding is associated with hot, stable climates 189 
and only cooperation with unrelated individuals is associated with variable environments. 190 
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Cooperation amongst unrelated individuals may therefore be an important strategy that allows 191 
animals to cope with climatic conditions that are becoming ever more frequent. 192 
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 324 

Figures	325 

 

Fig. 1: The areas where family and nonfamily cooperative breeders occur in relation to 
(A) median temperature and (B) variation in precipitation across years. Points represent 
study sites, the colour of the circles represents the breeding system, and the size of the circle 
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represents the % of cooperative nests in the population. Maps of all climatic variables with 
points labelled by species are presented in Extended Data Fig. 1. 

 326 

 

Fig. 2: The frequency of non-family cooperative breeding (% nests with >2 adults) and 
group sizes increases in environments with higher temperatures (A-B) and variable 
precipitation across years (C-D). The frequency of family cooperative breeding only 
increases in relation to median temperature (A) and group size are independent of climate (B, 
D). Points represent species with the size of circles proportional to the number of nests studied 
to ascertain % of cooperative nests and group sizes. Regression lines with 95% confidence 
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intervals are plotted. For relationships between all climatic variables and the % of cooperative 
nests and group sizes see Extended Data Fig. 3 and Extended Data Fig. 4. 

 

Fig. 3: The environments where nonfamily group, family group and pair breeding species 
occur. Different breeding systems in relation to (A) median precipitation (mm per second) and 
(B) median temperature. Nonfamily and family cooperative breeders occur in environments 
with significantly less precipitation but similar temperatures to closely related pair breeders. 
Points are means ± SEs. (C) The difference in climates between breeding systems. Orange dots 
show mean ± SEs of pair - nonfamily species and blue dots show pair - family species for 
different bird orders. In five out of seven bird orders nonfamily cooperative breeders were in 
environments were lower precipitation than pair breeders (left of dashed line, B left panel) and 
were also in a wide variety of thermal environments (C right panel). In contrast, family 
cooperative breeders occur in environments with similar temperatures to pair breeders (C right 
panel) and in four out of six bird orders environments had less precipitation (C left panel). For 
plots with more breeding system classifications that distinguish between species with multiple 
breeders and a combination of family and nonfamily members see Extended Data Fig. 5. 
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Fig. 4: Nonfamily and family cooperative breeders occupy a broader range of climates 
than pair breeding species. (A-C) The correlational structure of climate variables across the 
different breeding systems. Ellipses show the direction and strength of correlations (tighter 
ellipses represent stronger correlations) with more intense blue colours indicating stronger 
positive correlations and more intense red colours indicating stronger negative correlations. D) 
The proportion of variation in eigenvalues explained by each eigenvector across breeding 
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systems. If the first eigenvector explains a greater proportion of variation in the eigenvalues for 
a particular breeding system (pair breeders, family cooperative breeders or nonfamily 
cooperative breeders) this indicates that more variation is aligned along a single axis of 
climatic variation. Lines represent significant differences (95% CI of difference does not 
included 0) with pMCMC values (proportion of iterations greater or less than 0). 

Methods	327 

To quantify variation across cooperative breeding systems, we used published papers to collect 328 
data on the how groups form, relatedness among group members, the presence of cobreeders, the 329 
presence of non-reproductive adults that assisted with offspring care, the frequency of nests in the 330 
population where group breeding was observed and the size of cooperative groups. To compare 331 
cooperative breeders to pair breeders, we selected the five most closely related pair breeding 332 
species to each cooperative species using phylogenetic information from Jetz et. al 201256 and 333 
breeding system information from Cockburn 200657. To quantify the environments where species 334 
live we extracted climate data for breeding and nonbreeding seasons from study sites and 335 
breeding ranges (i.e. temperature and precipitation) from 1979 to 2018 using the ERA5 global 336 
bioclimatic indicators dataset derived from reanalysis58. We analyzed our data using Bayesian 337 
phylogenetic mixed models. 338 

Data	collection	339 

We used the species list of cooperative breeders and corresponding literature from Downing et 340 
al. 202012, supplemented with additional literature (full list of references in Supplementary Table 341 
1). To find additional species the following search terms were used: “cooperative breeding” OR 342 
“helper” OR “related” OR ”unrelated” OR “kin” OR “nonkin” OR “nonfamily” OR “family” 343 
AND “bird” OR “avian”. Where required data were missing for specific species, we also 344 
searched for references using only the common and Latin names of the species as given by 345 
BirdLife and Handbook of Birds of World. For our searches we used Google Scholar, PubMed 346 
and the library database at Lund University. 347 

Data	on	breeding	systems,	helpers	and	helper	relatedness	348 

Classification	of	breeding	systems	349 

Species were classified according to the presence of cobreeders in groups (pair or multiple 350 
breeders) and the presence of related and/or unrelated individuals that helped raise offspring 351 
(Table 1). Pairs within cooperative species were socially monogamous pairs with one or more 352 
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helpers. Multiple breeders were any species where more than two adults contribute offspring to 353 
the brood, ascertained using information on joint nesting females and rates of within-group 354 
multiple paternity. Classifications were based on species-specific articles and available 355 
information in review articles on avian breeding systems (supptbl-datacoop and Supplementary 356 
Table 2)12,16,27,57. Data were only included if exact percentages of nests with cobreeders (pair 357 
versus multiple) and the presence of nonfamily and family helpers (yes versus no) were recorded 358 
(but see section ‘Sensitivity to breeding system classficiations’ for relaxation of this criteria). 359 
This reduced the number of species from 39 to 32 for nonfamily cooperative breeders and 128 to 360 
58 for family cooperative breeders. Classifications of breeders and helpers were made at a 361 
threshold of >10% of nests, for example, species were recorded as having multiple breeders if 362 
there were more than two breeding adults at more than 10% of nests. 363 

Table 1: Classification of different cooperative breeding systems. 

Breeders1 Family 
Helpers2 

Nonfamily 
Helpers2 Group size3 

Detailed 
Classification
4 

Broad 
Classification 

Pair Yes No >2 Pair Family Family 

Pair Yes Yes >2 Pair Mixed Family 

Multiple Yes No >2 Multiple Family Family 

Multiple Yes Yes >2 Multiple Mixed Family 

Multiple No Yes >2 Multiple Nonfamily Nonfamily 

Pair No No 2 Pair Pair 
1Breeders = reproducing individuals 
2Helpers = adult individuals foregoing reproduction 
3Group size >2 = cooperative species 
4Note there were no species with clear evidence of a pair of breeders with nonfamily helpers. 

 

Classification	of	helpers	and	helper	behaviour	364 

Helpers were defined as adult non-reproducing individuals that assisted with offspring care. 365 
Immature individuals were disregarded in this study and not included in any data or analyses. For 366 
example, if a species had helpers at 100% of nests but 50% of the helpers were juveniles, species 367 
were recorded as having helpers at 50% of nests. If it was clear that both juvenile and adult 368 
helpers were present at nests, but it was not possible to disentangle the exact percentage of helper 369 
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presence for each age group from any references, we assumed an estimate of 50% for each helper 370 
age group. While helping traditionally includes a wide range of behaviours (e.g., nest 371 
construction, incubation, provisioning of the incubation female, nest and chick defence and 372 
provisioning of chicks), our data collection only included verified accounts of incubation and/or 373 
feeding of chicks or fledglings. Studies including other accounts of helping behaviour were 374 
excluded. Studies in which observations of incubation or feeding were rare (i.e. only for one nest 375 
or only observed on one occasion) were also excluded. 376 

Relatedness	of	helpers	to	breeders	377 

The relatedness of helpers to the breeding pair and chicks they helped raise was assessed as high, 378 
medium or low using information on genetic markers and pedigrees constructed from ringing 379 
data. In cases of multiple studies on the same species using different methods, we first used 380 
information from genetic markers to assess relatedness, followed by pedigree data 381 
(Supplementary Table 5). For species with polygamous, polyandrous or polygynandrous mating 382 
systems, we assumed that breeding/adult individuals were unrelated unless genetic analyses of 383 
the population specifically state otherwise. If data on relatedness was too sparse to assess if 384 
groups members were nonfamily or family, species were excluded from analyses. 385 

Sensitivity	to	different	breeding	system	classifications	386 

The quality of data we were able to extract from the available literature varied across species. For 387 
the analyses presented in the manuscript we used a threshold of >10% nests where citeria were 388 
met. However, to assess the sensitivity of our results to excluding species without data on the 389 
exact percentages of nests with cobreeders and the presence of nonfamily and family helpers, we 390 
classified as many species as possible using a summary of available information from all 391 
references for a given species (Supplementary Table 1). In cases of discrepancies between 392 
references, we implemented a hierarchical decision-making process with advantage given to 393 
information based genetic data, then ringing data, then observational data and lastly anecdotal or 394 
referred to information (i.e. information based on other studies, unpublished data, personal 395 
communication or references of unclear origin). 396 

We also examined the sensitivity of our results to classifying species at a 10% threshold by 397 
reclassifying breeding systems at a threshold of >30% of nests (Supplementary Table 1). For 398 
example, if a species had multiple breeders at 15% of nests, nonfamily helpers at 20% of nests 399 
and family helpers at 40% of nests it would be classified at the 10% threshold as “multiple 400 
mixed” (main analyses) whereas it would be reclassified at a >30% threshold as “pair family”. 401 
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Breeding	seasons	402 

As some cooperative species have widespread distributions, breeding seasons can vary widely 403 
between study sites. We therefore applied a two-step approach in assessing breeding seasons. 404 
First, we assessed the breeding season for each species at the study sites given in references 405 
(Supplementary Table 1). In the few cases where a breeding season was not stated in the 406 
reference, we used breeding seasons given for the same species at identical study sites, or sites 407 
within reasonable proximity in different references, or lastly from Handbook of Birds of the 408 
World59. In cases where breeding seasons given for species at the same location did not match 409 
across references, we recorded all months where breeding was reported to occur across 410 
references. For the breeding seasons of pair breeding species we used Handbook of Birds of the 411 
World59 (Supplementary Table 2). 412 

Climate	data	413 

Information on temperature and precipitation was extracted from the ERA5 global bioclimatic 414 
indicators dataset58. This dataset combines multiple sources of observational data with forecast 415 
models to accurately reconstruct the global weather conditions between 1979 to 2018 at a 416 
resolution of 0.5∘ x 0.5∘. We extracted data on monthly mean air temperature at 2m above the 417 
surface in units of Kelvin (converted to centigrade for analyses) and monthly mean precipitation 418 
as accumulated liquid and frozen water, comprising rain and snow, falling onto the Earth’s 419 
surface in meters per second. 420 

The primary benefit of using the ERA5 reanalysis data over observational data is gap-free 421 
coverage in both space and time. This approach assimilates a vast array of observational weather 422 
data from different sources, e.g. from satellites and weather stations, into a model that accounts 423 
for how different climatic variables interact, resulting in highly reliable estimates of past climatic 424 
conditions60. Precipitation datasets based purely on in-situ direct observations, such as the CRU 425 
dataset (one of the longest running observational climate datasets that has previously been used in 426 
studies of cooperative breeding e.g.27,43,61), are more influenced by individual rain-gauge 427 
estimates, which are sensitive to factors such as local topological features62. Reanalysis data may 428 
be less impacted by anomalies in single sources of observational data60,62,63. 429 

For all species we extracted information on temperature and precipitation for study sites for 430 
cooperative breeding species and centroid coordinates for pair breeding species. We also 431 
examined temperature and precipitation values across entire distributions by intersecting climate 432 
data with range maps from BirdLife International64 and Handbook of Birds of the World59. The 433 
map shapefiles contain information on the seasonal distribution of each species, allowing us to 434 
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separate breeding and wintering ranges. To extract the climatic data for the relevant coordinates 435 
for each species from the gridded ERA5 dataset the R package ‘Raster’ was used65. This resulted 436 
in datasets containing monthly mean estimates of temperature and precipitation for each species 437 
between 1979-2018. For the data extracted using species ranges (ii) we then calculated a median 438 
value across the range for each time point. From each of these datasets, we selected only the 439 
breeding season months for each species (see ‘Breeding seasons’). Three summary values were 440 
then calculated for each dataset for each species: (i) the median breeding season temperature and 441 
precipitation across the full 40 year period (calculated from yearly medians); (ii) the within 442 
breeding season variation in temperature or precipitation as the median of the standard deviation 443 
within years of each of these variables; and (iii), the between breeding season variation in 444 
temperature or precipitation as the standard deviation of the yearly medians of each of these 445 
variables. 446 

There was strong correspondence between measurements at study sites/centroid values and 447 
measurements across whole ranges (correlation coefficients across datasets (r): temperature 448 
median and variation r >0.79; precipitation median and variation r >0.73. See R script 449 
‘data_nonfam.R’. Therefore, we analysed climate data from study sites/centroid values. 450 

Data	compilation	451 

Raw data on cooperative breeding species is presented in Supplementary Table 1 with references. 452 
Data on breeding seasons and climate data for all species, together with summarised information 453 
on cooperative breeders, is presented in Supplementary Table 2. Datasets were compiled using 454 
the R script ‘data_nonfam.R’. 455 

Statistical	analyses	456 

General	Overview	457 

Three sets of analyses were conducted using multi-response Bayesian Phylogenetic mixed 458 
models (MR-BPMM) with Markov chain Monte Carlo (MCMC) estimation implemented in the 459 
R package MCMCglmm66. First, we analysed if the percentage of nests with cooperative 460 
breeding and the number of individuals in groups were related to climate across nonfamily and 461 
family cooperative breeders. Second, we tested if there were mean differences in the climates 462 
occupied by different types of cooperative breeders and pair breeders. Third, we examined if the 463 
relationships between climate variables differed between cooperative and pair breeders. See R 464 
script ‘analyses_nonfam.R’. 465 
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Model	settings	466 

For MR-BPMMs default priors were used for fixed effects (independent normal priors with zero 467 
mean and large variance (10^10)) and for random effects inverse-gamma priors were used (V = 468 
diag(n), nu = n − 1 + 0.002, where nu is the degree of belief and n was equivalent to the number 469 
of response traits). Phylogenetic relationships were modelled by fitting a variance-covariance 470 
matrix constructed from the phylogeny as a random effect. To account for uncertainty in 471 
phylogenetic relationships, we ran models across a sample of 1500 trees. Estimates from the last 472 
iteration from tree i were used as starting values for tree i+1. Estimates from the last iteration of 473 
each tree were saved, with samples from the first 500 trees being discarded as a burn-in. Each 474 
tree was sampled for 2000 iterations with a burn-in of 1999 and a thinning interval of 1. Model 475 
convergence was examined by repeating each analysis three times and examining the 476 
correspondence between chains using the R package ‘coda’67 in the following ways: (i) visually 477 
inspecting the traces of the MCMC posterior estimates and their overlap; (ii) calculating the 478 
autocorrelation and effective sample size of the posterior distribution of each chain; and (iii) 479 
using Gelman and Rubin’s convergence diagnostic test that compares within- and between- chain 480 
variance using a potential scale reduction factor (PSR). PSR values substantially higher than 1.1 481 
indicate chains with poor convergence properties. 482 

Parameter	estimation	483 

The global intercept was removed from MR-BPMMs to allow trait specific intercepts to be 484 
estimated. Parameter estimates from models are presented as posterior modes (PM) with 95% 485 
credible intervals (CIs). P values (pMCMC) were estimated as the number of posterior samples 486 
above or below a specified value divided by the total number of posterior samples, corrected for 487 
the finite number of MCMC samples. For correlations and fixed effects, the specified value was 488 
0, and for testing differences between fixed effect levels (e.g. breeding systems) it was the 489 
number of posterior samples where one level was greater than the other. 490 

Phylogenetic and residual correlations between traits were calculated using the variance and 491 
covariance estimates from the unstructured phylogenetic and residual variance-covariance 492 
matrices. We estimated the amount of variation in response variables explained by random 493 
effects (RE), including phylogenetic effects, as the intraclass correlation coefficient (ICC) 494 
estimated as: Vi / VRE + Ve 495 

where Vi is the focal random effect, VRE is the sum of all random effects and Ve is the residual 496 
variance on the latent scale68,69. 497 
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Specific	analyses	498 

Differences	in	the	%	of	nests	with	cooperative	breeder	and	number	of	individuals	in	499 
groups	in	relation	to	climate	500 

To test if the proportion of nests where there was cooperative breeding was related to the climate, 501 
we re-ran model mod_bs10 including the proportion of nests with more than two individuals 502 
(logit transformed) as a covariate interacted with each climate variable separately for nonfamily 503 
and family cooperative breeders using the ‘at.level’ notation in MCMCglmm (Rcode model 504 
mod_nests). Finally, the relationship between the number of individuals in groups and climate 505 
across family and nonfamily cooperative breeders was estimated using the same setup as model 506 
mod_nests, but including the number of individuals in groups instead of the proportion of 507 
cooperative nests (Rcode model mod_groupsize). 508 

Median	climatic	differences	across	cooperative	breeders	and	pair	breeders	509 

To test for climatic differences across breeding systems a MR-BPMM was used with the 510 
responses of median, variation within years and variation between years for temperature and 511 
precipitation (six responses) and breeding system (nonfamily cooperative breeders, family 512 
cooperative and pair breeders) as a fixed effect. The “at.level” notation in MCMCglmm was used 513 
to estimate each response variable at the level of each breeding system. For details see model 514 
mod_bs10 in R code. 515 

To verify that our results were not dependent on how breeding systems were classified we re-ran 516 
model mod_bs10 with the breeding system defined as: i) ‘pair breeders’, ‘pair with family 517 
helpers’, ‘pair with family and nonfamily helpers’, ‘multiple breeders with family helpers’ and 518 
‘nonfamily’ (Table 1. Rcode model mod_bsdetailed. Supplementary Table 6); ii) ‘pair breeders’, 519 
‘pair with helpers’, ‘multiple breeders’ (Rcode model mod_breeders. Supplementary Table 7); 520 
and iii) ‘pair breeders’, ‘family helpers’, ‘family and nonfamily helpers’ and ‘nonfamily’ (Rcode 521 
model mod_helpers. Supplementary Table 8). We also tested whether classifying species as 522 
having multiple breeders, family helpers and nonfamily helpers using all information and a 30% 523 
threshold influenced our results by re-running model mod_bs10 including all species (Rcode 524 
models mod_bs. Supplementary Table 9) and 30% classifications (Rcode models mod_bs30. 525 
Supplementary Table 10). Across these analyses we found qualitatively and quantitatively similar 526 
results (Supplementary Table 5, Supplementary Table 6, Supplementary Table 7, Supplementary 527 
Table 8, Supplementary Table 9 and Supplementary Table 10). 528 
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Differences	in	the	relationships	between	climate	variables	across	cooperative	and	pair	529 
breeders	530 

To examine if the correlations between climatic variables differed across breeding systems we re-531 
ran model mod_bs10 including separate phylogenetic variance-covariance matrices for each 532 
breeding system (nonfamily cooperative breeders, family cooperative and pair breeders). This 533 
was done using the “at.level” notation in MCMCglmm and variance-covariance estimates were 534 
used to calculated phylogenetic correlations between all climate variables for each breeding 535 
system (Rcode model mod_climcorrs). 536 

It is possible that including more pair breeding species (456 versus 39 nonfamily and 128 family) 537 
may bias variance and covariance estimates across climate variables. We therefore verified that 538 
our phylogenetic variance-covariance estimates for pair breeders were not different from 539 
cooperative breeders by down-sampling our data to the same number of species as family 540 
cooperative breeders and re-running analyses (Rcode model mod_climcorrsdown). The results 541 
were qualitatively and quantitatively similar (Supplementary Table 12). 542 

To analyse the structure of the phylogenetic covariance matrices across breeding systems we 543 
calculated the eigenvectors and their eigenvalues for each posterior sample from model 544 
mod_climcorrs for each breeding system using the R function ‘eigen’. To test if the structure of 545 
the covariances between climate variables was different across breeding systems, we calculated 546 
the posterior mode and 95% CIs of the pairwise differences between pair, family cooperative and 547 
nonfamily cooperative breeders in the proportion of variance in eigenvalues explained by each 548 
eigenvector (Figure 4). Differences where the 95% CIs did not span 0 and less than 5% of 549 
iterations was greater or less than 0 were considered statistically significant. 550 

Data	and	code	availability	551 

All code, data and analysis results are available at the open science framework (osf.io project 552 
number qhvs5) and can be located at doi.org using the doi number 553 
(https://doi.org/10.17605/OSF.IO/QHVS5). 554 
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Extended Data Figures 1624 

 

Extended Data Fig. 1: The areas where family and nonfamily cooperative breeders occur 
in relation to median temperature (A) and precipitation (B) and variation across years in 
temperature (C) and precipitation (D). Points represent study sites and are labelled by 
species common names with the colour of the circle representing breeding system and the size 
of the circle represent % of cooperative nests in the population. 



 

 

 
 

 

64 

 1625 

 

Extended Data Fig. 2: The evolution of different cooperative breeding systems in relation 
to climatic variation. Tip label colours indicate different breeding systems and colour rings 
represent (inner to outer circle) median precipitation (dark blue), precipitation variation within 
breeding seasons (aqua), precipitation variation across breeding seasons (turquoise), median 
temperature (dark red), temperature variation within breeding seasons (pink), and temperature 
variation across breeding seasons (orange). Climate data was restricted to the months each 
species has been found breeding. 
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 1626 

 

Extended Data Fig. 3: Variation in the frequency of cooperation across nonfamily and 
family groups in relation to (A) median temperature, (B) median precipitation (C) 
temperature and (D) precipitation variation within breeding seasons, and (E) 
temperature and (F) precipitation variation across breeding seasons. Climate data was 
restricted to the months each species has been found breeding. Regression lines with 95% 
confidence intervals are plotted. Points represent species with size proportional to the number 
of nests studied. 
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 1627 

 

Extended Data Fig. 4: Variation in group size in nonfamily and family groups in relation 
to (A) median temperature, (B) median precipitation (C) temperature and (D) 
precipitation variation within breeding seasons, and (E) temperature and (F) 
precipitation variation across breeding seasons. Climate data was restricted to the months 
each species has been found breeding. Regression lines with 95% confidence intervals are 
plotted. Points represent species with size proportional to the number of nests studied. 
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Extended Data Fig. 5: The environments inhabited by cooperative breeding species with 
cobreeders (pair versus multiple breeders) and the relatedness of group members 
(presence of nonfamily, family & mixed helpers) compared to pair breeding species. 
Means ± SEs across different breeding system are presented with the size of circles 
proportional to the number of species in each category. 
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Supplementary	Information	1628 

Supplementary	Tables	1629 

Data	used	for	analyses	1630 

Supplementary	Table	1:	See	SItablesXL.xlsx	1631 

Supplementary	Table	2:	See	SItablesXL.xlsx	1632 

Results	of	analyses	1633 

To estimate the variation in response variables explained by random effects the percentage of 1634 
total random effect variance explained by each random term was calculated on the latent data 1635 
scale (I2). 1636 

Supplementary Table 3: Variation in the frequency of cooperative breeding (% nests with 
group breeding, logit transformed) in nonfamily and family groups in relation to climate. 

Fixed Effects Posterior Mode (CI) pMCMC 

Family temp -0.02 (-0.2, 0.18) - 

Family precip 0 (-0.2, 0.18) - 

Family temp within-year 0.11 (-0.11, 0.26) - 

Family precip within-year 0.08 (-0.19, 0.2) - 

Family temp between-year 0.08 (-0.1, 0.27) - 

Family precip between-year -0.01 (-0.19, 0.19) - 

Nonfamily temp -0.28 (-0.52, 0.12) - 

Nonfamily precip -0.03 (-0.37, 0.3) - 

Nonfamily temp within-year -0.13 (-0.39, 0.26) - 

Nonfamily precip within-year -0.2 (-0.47, 0.17) - 

Nonfamily temp between-year -0.09 (-0.37, 0.3) - 

Nonfamily precip between-year -0.03 (-0.36, 0.31) - 

Family temp: coop frequency 0.17 (0.04, 0.28) 0.008 

Family precip: coop frequency -0.04 (-0.12, 0.12) 0.858 
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Family temp within-year: coop 
frequency -0.11 (-0.21, 0.03) 0.124 

Family precip within-year: coop 
frequency 0.02 (-0.12, 0.12) 0.948 

Family temp between-year: coop 
frequency -0.14 (-0.27, -0.03) 0.024 

Family precip between-year: coop 
frequency -0.07 (-0.17, 0.06) 0.29 

Nonfamily temp: coop frequency 0.28 (0.1, 0.47) 0.001 

Nonfamily precip: coop frequency 0.19 (0.01, 0.38) 0.028 

Nonfamily temp within-year: coop 
frequency -0.25 (-0.44, -0.09) 0.008 

Nonfamily precip within-year: coop 
frequency 0.29 (0.09, 0.47) 0.004 

Nonfamily temp between-year: coop 
frequency -0.12 (-0.33, 0.05) 0.154 

Nonfamily precip between-year: coop 
frequency 0.29 (0.13, 0.5) 0.001 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.57 (0.28, 0.82) 53.24 (32.97, 74.77) 

Phylogeny temp within-year 0.53 (0.25, 0.84) 51.22 (22.62, 74.47) 

Phylogeny temp between-year 0.58 (0.26, 0.84) 50.59 (25.62, 75.8) 

Phylogeny precip 0.55 (0.23, 0.89) 52.15 (25.61, 80.46) 

Phylogeny precip within-year 0.54 (0.21, 0.89) 49.2 (24.57, 71.85) 

Phylogeny precip between-year 0.56 (0.21, 0.83) 51.79 (23.97, 76.15) 

Residual temp 0.45 (0.27, 0.75) 46.76 (25.23, 67.03) 

Residual temp within-year 0.53 (0.24, 0.8) 48.78 (25.53, 77.38) 

Residual temp between-year 0.5 (0.28, 0.87) 49.41 (24.2, 74.38) 

Residual precip 0.49 (0.22, 0.85) 47.85 (19.54, 74.39) 

Residual precip within-year 0.42 (0.19, 0.86) 50.8 (28.15, 75.43) 

Residual precip between-year 0.43 (0.2, 0.8) 48.21 (23.85, 76.03) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.57 (-0.73, -0.17) 0.004 
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Phylogeny temp between-year : 
Phylogeny temp -0.45 (-0.69, -0.1) 0.03 

Phylogeny precip within-year : 
Phylogeny precip 0.67 (0.28, 0.82) 0.008 

Phylogeny precip between-year : 
Phylogeny precip 0.66 (0.33, 0.83) 0.002 

Phylogeny precip : Phylogeny temp 0.13 (-0.39, 0.41) 0.826 

Phylogeny precip within-year : 
Phylogeny temp 0.34 (-0.04, 0.65) 0.122 

Phylogeny precip between-year : 
Phylogeny temp 0.27 (-0.12, 0.6) 0.206 

Phylogeny temp within-year : Phylogeny 
precip -0.58 (-0.73, -0.02) 0.066 

Phylogeny temp between-year : 
Phylogeny precip -0.41 (-0.67, 0.08) 0.154 

Residual temp within-year : Residual 
temp -0.53 (-0.72, -0.11) 0.028 

Residual temp between-year : Residual 
temp -0.38 (-0.64, 0.02) 0.1 

Residual precip within-year : Residual 
precip 0.64 (0.22, 0.79) 0.006 

Residual precip between-year : 
Residual precip 0.68 (0.32, 0.81) 0.001 

Residual precip : Residual temp 0 (-0.41, 0.43) 0.978 

Residual precip within-year : Residual 
temp 0.4 (-0.12, 0.65) 0.178 

Residual precip between-year : 
Residual temp 0.36 (-0.19, 0.59) 0.288 

Residual temp within-year : Residual 
precip -0.47 (-0.72, -0.04) 0.06 

Residual temp between-year : Residual 
precip -0.45 (-0.66, 0.07) 0.15 

 

 1637 
 1638 

Supplementary Table 4: Variation in the mean group size (log transformed) of nonfamily and 
family groups in relation to climate. 
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Fixed Effects Posterior Mode (CI) pMCMC 

Family temp -0.24 (-0.91, 0.25) - 

Family precip 0.07 (-0.38, 0.82) - 

Family temp within-year 0.41 (-0.23, 0.9) - 

Family precip within-year 0.13 (-0.64, 0.55) - 

Family temp between-year 0.36 (-0.12, 1.04) - 

Family precip between-year 0.06 (-0.44, 0.74) - 

Nonfamily temp -1.28 (-2.87, -0.19) - 

Nonfamily precip -1.03 (-2, 0.61) - 

Nonfamily temp within-year 1.32 (-0.43, 2.25) - 

Nonfamily precip within-year -0.91 (-2.29, 0.4) - 

Nonfamily temp between-year 0.73 (-0.63, 1.99) - 

Nonfamily precip between-year -1.24 (-2.81, -0.09) - 

Family temp: group size 0.29 (-0.11, 0.72) 0.152 

Family precip: group size -0.18 (-0.59, 0.27) 0.482 

Family temp within-year: group size -0.32 (-0.62, 0.17) 0.296 

Family precip within-year: group size 0.06 (-0.4, 0.43) 0.848 

Family temp between-year: group size -0.3 (-0.72, 0.1) 0.15 

Family precip between-year: group size -0.07 (-0.51, 0.31) 0.56 

Nonfamily temp: group size 1.12 (-0.09, 2.34) 0.058 

Nonfamily precip: group size 0.69 (-0.45, 1.94) 0.306 

Nonfamily temp within-year: group size -0.88 (-2.01, 0.42) 0.146 

Nonfamily precip within-year: group size 0.54 (-0.49, 1.9) 0.24 

Nonfamily temp between-year: group 
size -0.81 (-1.75, 0.67) 0.402 

Nonfamily precip between-year: group 
size 1.4 (0.18, 2.58) 0.044 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.64 (0.31, 0.88) 53.66 (30.33, 74.25) 

Phylogeny temp within-year 0.53 (0.24, 0.88) 51.91 (23.83, 76.36) 
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Phylogeny temp between-year 0.58 (0.26, 0.86) 51.33 (24.7, 75.83) 

Phylogeny precip 0.63 (0.28, 0.97) 52.77 (24.2, 78.61) 

Phylogeny precip within-year 0.61 (0.26, 0.99) 50.29 (25.59, 72.13) 

Phylogeny precip between-year 0.69 (0.25, 0.95) 52.6 (25.18, 78.17) 

Residual temp 0.46 (0.24, 0.78) 46.34 (25.75, 69.67) 

Residual temp within-year 0.46 (0.25, 0.87) 48.09 (23.64, 76.17) 

Residual temp between-year 0.45 (0.27, 0.86) 48.67 (24.17, 75.3) 

Residual precip 0.46 (0.26, 0.93) 47.23 (21.39, 75.8) 

Residual precip within-year 0.49 (0.24, 0.92) 49.71 (27.87, 74.41) 

Residual precip between-year 0.43 (0.21, 0.83) 47.4 (21.83, 74.82) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.53 (-0.74, -0.18) 0.01 

Phylogeny temp between-year : 
Phylogeny temp -0.51 (-0.71, -0.09) 0.032 

Phylogeny precip within-year : 
Phylogeny precip 0.72 (0.29, 0.82) 0.01 

Phylogeny precip between-year : 
Phylogeny precip 0.71 (0.33, 0.83) 0.001 

Phylogeny precip : Phylogeny temp 0.18 (-0.36, 0.47) 0.806 

Phylogeny precip within-year : 
Phylogeny temp 0.38 (0.01, 0.69) 0.084 

Phylogeny precip between-year : 
Phylogeny temp 0.34 (-0.13, 0.62) 0.196 

Phylogeny temp within-year : Phylogeny 
precip -0.59 (-0.74, -0.04) 0.064 

Phylogeny temp between-year : 
Phylogeny precip -0.42 (-0.67, 0.05) 0.132 

Residual temp within-year : Residual 
temp -0.43 (-0.71, -0.06) 0.042 

Residual temp between-year : Residual 
temp -0.45 (-0.65, 0.03) 0.102 

Residual precip within-year : Residual 
precip 0.69 (0.27, 0.81) 0.002 
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Residual precip between-year : 
Residual precip 0.68 (0.29, 0.82) 0.001 

Residual precip : Residual temp 0.07 (-0.41, 0.43) 0.966 

Residual precip within-year : Residual 
temp 0.37 (-0.11, 0.64) 0.178 

Residual precip between-year : 
Residual temp 0.25 (-0.2, 0.57) 0.328 

Residual temp within-year : Residual 
precip -0.44 (-0.74, -0.06) 0.054 

Residual temp between-year : Residual 
precip -0.38 (-0.64, 0.07) 0.118 

 

Supplementary Table 5: Differences in the environments of nonfamily, family and pair 
breeding species. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0.09 (-0.13, 0.31) 0.356 

Pair temp vs Nonfamily temp 0.27 (-0.07, 0.52) 0.164 

Pair precip vs Family precip 0.28 (0.02, 0.58) 0.042 

Pair precip vs Nonfamily precip 0.49 (0.06, 0.82) 0.02 

Pair temp within-year vs Family temp 
within-year 0 (-0.26, 0.22) 0.948 

Pair temp within-year vs Nonfamily 
temp within-year 0.16 (-0.19, 0.49) 0.358 

Pair precip within-year vs Family precip 
within-year 0.38 (0.1, 0.65) 0.014 

Pair precip within-year vs Nonfamily 
precip within-year 0.64 (0.24, 1) 0.001 

Pair temp between-year vs Family temp 
between-year -0.26 (-0.53, 0) 0.036 

Pair temp between-year vs Nonfamily 
temp between-year -0.15 (-0.49, 0.19) 0.446 

Pair precip between-year vs Family 
precip between-year 0.06 (-0.22, 0.35) 0.606 

Pair precip between-year vs Nonfamily 
precip between-year 0.25 (-0.11, 0.66) 0.116 

Family temp vs Nonfamily temp 0.19 (-0.22, 0.5) 0.51 
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Family precip vs Nonfamily precip 0.23 (-0.34, 0.59) 0.56 

Family temp within-year vs Nonfamily 
temp within-year 0.11 (-0.24, 0.58) 0.42 

Family precip within-year vs Nonfamily 
precip within-year 0.33 (-0.13, 0.77) 0.188 

Family temp between-year vs Nonfamily 
temp between-year 0.1 (-0.27, 0.59) 0.504 

Family precip between-year vs 
Nonfamily precip between-year 0.21 (-0.22, 0.68) 0.306 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.26 (0.19, 0.4) 50.3 (34.56, 68.88) 

Phylogeny temp within-year 0.43 (0.22, 0.61) 50 (24.42, 75.87) 

Phylogeny temp between-year 0.37 (0.23, 0.65) 50.48 (27.51, 72.71) 

Phylogeny precip 0.45 (0.23, 0.77) 50.18 (26.23, 73.05) 

Phylogeny precip within-year 0.48 (0.24, 0.7) 50.19 (28.41, 74.22) 

Phylogeny precip between-year 0.55 (0.22, 0.77) 50.44 (24.11, 76.44) 

Residual temp 0.31 (0.18, 0.39) 49.7 (31.12, 65.44) 

Residual temp within-year 0.38 (0.23, 0.61) 50 (24.13, 75.58) 

Residual temp between-year 0.45 (0.23, 0.66) 49.52 (27.29, 72.49) 

Residual precip 0.55 (0.24, 0.78) 49.82 (26.95, 73.77) 

Residual precip within-year 0.5 (0.24, 0.7) 49.81 (25.78, 71.59) 

Residual precip between-year 0.46 (0.22, 0.76) 49.56 (23.56, 75.89) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.5 (-0.64, -0.16) 0.01 

Phylogeny temp between-year : 
Phylogeny temp -0.44 (-0.58, -0.08) 0.026 

Phylogeny precip within-year : 
Phylogeny precip 0.65 (0.24, 0.77) 0.004 

Phylogeny precip between-year : 
Phylogeny precip 0.8 (0.58, 0.89) 0.001 

Phylogeny precip : Phylogeny temp 0.2 (-0.3, 0.37) 0.752 

Phylogeny precip within-year : 
Phylogeny temp 0.32 (-0.07, 0.52) 0.16 
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Phylogeny precip between-year : 
Phylogeny temp 0.2 (-0.15, 0.48) 0.234 

Phylogeny temp within-year : Phylogeny 
precip -0.62 (-0.74, -0.19) 0.008 

Phylogeny temp between-year : 
Phylogeny precip -0.53 (-0.72, -0.08) 0.038 

Residual temp within-year : Residual 
temp -0.42 (-0.62, -0.11) 0.01 

Residual temp between-year : Residual 
temp -0.37 (-0.6, -0.07) 0.026 

Residual precip within-year : Residual 
precip 0.59 (0.24, 0.77) 0.006 

Residual precip between-year : 
Residual precip 0.82 (0.59, 0.88) 0.001 

Residual precip : Residual temp 0.08 (-0.28, 0.39) 0.85 

Residual precip within-year : Residual 
temp 0.24 (-0.06, 0.51) 0.164 

Residual precip between-year : 
Residual temp 0.25 (-0.14, 0.48) 0.3 

Residual temp within-year : Residual 
precip -0.55 (-0.72, -0.17) 0.012 

Residual temp between-year : Residual 
precip -0.54 (-0.71, -0.08) 0.042 

 

Supplementary Table 6: Differences in the environments of pair breeding species and 
cooperative breeding species with cobreeders (pair versus multiple breeders) and nonfamily, 
family and a mix of both nonfamily and family group members. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Pair_family temp 0.12 (-0.24, 0.4) 0.542 

Pair temp vs Pair_mixed temp 0.1 (-0.24, 0.55) 0.468 

Pair temp vs Multiple_family temp 0.02 (-0.3, 0.47) 0.74 

Pair temp vs Nonfamily temp 0.22 (-0.09, 0.49) 0.154 

Pair precip vs Pair_family precip 0.36 (-0.2, 0.6) 0.268 

Pair precip vs Pair_mixed precip 0.27 (-0.13, 0.85) 0.13 

Pair precip vs Multiple_family precip 0.36 (-0.15, 0.88) 0.14 
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Pair precip vs Nonfamily precip 0.52 (0.08, 0.83) 0.024 

Pair temp within-year vs Pair_family 
temp within-year -0.06 (-0.38, 0.36) 0.874 

Pair temp within-year vs Pair_mixed 
temp within-year -0.04 (-0.48, 0.35) 0.772 

Pair temp within-year vs Multiple_family 
temp within-year 0.17 (-0.34, 0.56) 0.766 

Pair temp within-year vs Nonfamily 
temp within-year 0.15 (-0.18, 0.54) 0.384 

Pair precip within-year vs Pair_family 
precip within-year 0.55 (0.23, 1.01) 0.002 

Pair precip within-year vs Pair_mixed 
precip within-year 0.29 (-0.24, 0.74) 0.256 

Pair precip within-year vs 
Multiple_family precip within-year 0.19 (-0.31, 0.65) 0.562 

Pair precip within-year vs Nonfamily 
precip within-year 0.65 (0.28, 1.01) 0.001 

Pair temp between-year vs Pair_family 
temp between-year -0.34 (-0.82, -0.03) 0.034 

Pair temp between-year vs Pair_mixed 
temp between-year -0.29 (-0.59, 0.35) 0.526 

Pair temp between-year vs 
Multiple_family temp between-year -0.22 (-0.73, 0.25) 0.36 

Pair temp between-year vs Nonfamily 
temp between-year -0.18 (-0.49, 0.22) 0.438 

Pair precip between-year vs Pair_family 
precip between-year 0.23 (-0.22, 0.62) 0.378 

Pair precip between-year vs Pair_mixed 
precip between-year 0.06 (-0.47, 0.48) 0.948 

Pair precip between-year vs 
Multiple_family precip between-year 0.04 (-0.53, 0.52) 0.976 

Pair precip between-year vs Nonfamily 
precip between-year 0.2 (-0.03, 0.73) 0.104 

Pair_family temp vs Pair_mixed temp 0.05 (-0.48, 0.55) 0.816 

Pair_family temp vs Multiple_family 
temp -0.1 (-0.54, 0.48) 0.914 

Pair_family temp vs Nonfamily temp 0.15 (-0.3, 0.58) 0.55 

Pair_family precip vs Pair_mixed precip 0.08 (-0.45, 0.79) 0.592 
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Pair_family precip vs Multiple_family 
precip 0.34 (-0.45, 0.79) 0.644 

Pair_family precip vs Nonfamily precip 0.22 (-0.32, 0.7) 0.444 

Pair_family temp within-year vs 
Pair_mixed temp within-year 0.03 (-0.55, 0.53) 0.944 

Pair_family temp within-year vs 
Multiple_family temp within-year 0.06 (-0.45, 0.66) 0.722 

Pair_family temp within-year vs 
Nonfamily temp within-year 0.23 (-0.3, 0.69) 0.5 

Pair_family precip within-year vs 
Pair_mixed precip within-year -0.27 (-0.9, 0.28) 0.314 

Pair_family precip within-year vs 
Multiple_family precip within-year -0.35 (-1.08, 0.16) 0.168 

Pair_family precip within-year vs 
Nonfamily precip within-year -0.04 (-0.42, 0.61) 0.854 

Pair_family temp between-year vs 
Pair_mixed temp between-year 0.29 (-0.35, 0.85) 0.402 

Pair_family temp between-year vs 
Multiple_family temp between-year 0.21 (-0.46, 0.75) 0.566 

Pair_family temp between-year vs 
Nonfamily temp between-year 0.35 (-0.27, 0.82) 0.3 

Pair_family precip between-year vs 
Pair_mixed precip between-year -0.28 (-0.79, 0.43) 0.574 

Pair_family precip between-year vs 
Multiple_family precip between-year 0.04 (-0.8, 0.45) 0.592 

Pair_family precip between-year vs 
Nonfamily precip between-year 0.09 (-0.42, 0.67) 0.642 

Pair_mixed temp vs Multiple_family 
temp -0.03 (-0.63, 0.42) 0.78 

Pair_mixed temp vs Nonfamily temp 0.06 (-0.41, 0.51) 0.756 

Pair_mixed precip vs Multiple_family 
precip 0.04 (-0.67, 0.66) 0.986 

Pair_mixed precip vs Nonfamily precip 0.16 (-0.5, 0.69) 0.852 

Pair_mixed temp within-year vs 
Multiple_family temp within-year 0.22 (-0.48, 0.77) 0.64 

Pair_mixed temp within-year vs 
Nonfamily temp within-year 0.22 (-0.32, 0.73) 0.47 
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Pair_mixed precip within-year vs 
Multiple_family precip within-year -0.11 (-0.81, 0.53) 0.72 

Pair_mixed precip within-year vs 
Nonfamily precip within-year 0.17 (-0.29, 0.97) 0.216 

Pair_mixed temp between-year vs 
Multiple_family temp between-year -0.28 (-0.75, 0.56) 0.812 

Pair_mixed temp between-year vs 
Nonfamily temp between-year 0.1 (-0.62, 0.53) 0.956 

Pair_mixed precip between-year vs 
Multiple_family precip between-year 0.17 (-0.73, 0.63) 0.996 

Pair_mixed precip between-year vs 
Nonfamily precip between-year 0.24 (-0.25, 0.96) 0.312 

Multiple_family temp vs Nonfamily temp 0.27 (-0.32, 0.64) 0.524 

Multiple_family precip vs Nonfamily 
precip 0.14 (-0.53, 0.64) 0.838 

Multiple_family temp within-year vs 
Nonfamily temp within-year 0.15 (-0.43, 0.66) 0.78 

Multiple_family precip within-year vs 
Nonfamily precip within-year 0.48 (-0.15, 1.04) 0.128 

Multiple_family temp between-year vs 
Nonfamily temp between-year 0.1 (-0.49, 0.71) 0.754 

Multiple_family precip between-year vs 
Nonfamily precip between-year 0.37 (-0.36, 0.95) 0.338 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.3 (0.19, 0.4) 49.39 (31.79, 65.04) 

Phylogeny temp within-year 0.45 (0.22, 0.61) 48.97 (21.86, 74.6) 

Phylogeny temp between-year 0.46 (0.25, 0.67) 49.42 (25.71, 71.94) 

Phylogeny precip 0.51 (0.22, 0.76) 48.89 (26.39, 72.5) 

Phylogeny precip within-year 0.38 (0.25, 0.69) 49.21 (28.45, 73.84) 

Phylogeny precip between-year 0.5 (0.22, 0.76) 48.86 (23.83, 76.91) 

Residual temp 0.26 (0.19, 0.4) 50.61 (34.96, 68.21) 

Residual temp within-year 0.43 (0.21, 0.61) 51.03 (25.4, 78.14) 

Residual temp between-year 0.49 (0.24, 0.66) 50.58 (28.06, 74.29) 

Residual precip 0.49 (0.22, 0.78) 51.11 (27.5, 73.61) 

Residual precip within-year 0.53 (0.25, 0.69) 50.79 (26.16, 71.55) 
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Residual precip between-year 0.59 (0.21, 0.77) 51.14 (23.09, 76.17) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.46 (-0.62, -0.13) 0.02 

Phylogeny temp between-year : 
Phylogeny temp -0.38 (-0.58, -0.06) 0.032 

Phylogeny precip within-year : 
Phylogeny precip 0.61 (0.24, 0.78) 0.002 

Phylogeny precip between-year : 
Phylogeny precip 0.83 (0.57, 0.88) 0.001 

Phylogeny precip : Phylogeny temp 0.06 (-0.3, 0.35) 0.856 

Phylogeny precip within-year : 
Phylogeny temp 0.28 (-0.11, 0.5) 0.186 

Phylogeny precip between-year : 
Phylogeny temp 0.12 (-0.17, 0.49) 0.298 

Phylogeny temp within-year : Phylogeny 
precip -0.56 (-0.75, -0.2) 0.008 

Phylogeny temp between-year : 
Phylogeny precip -0.46 (-0.72, -0.11) 0.038 

Residual temp within-year : Residual 
temp -0.43 (-0.64, -0.15) 0.01 

Residual temp between-year : Residual 
temp -0.41 (-0.62, -0.12) 0.008 

Residual precip within-year : Residual 
precip 0.61 (0.28, 0.78) 0.002 

Residual precip between-year : 
Residual precip 0.82 (0.59, 0.89) 0.001 

Residual precip : Residual temp 0.03 (-0.25, 0.4) 0.68 

Residual precip within-year : Residual 
temp 0.27 (-0.06, 0.5) 0.122 

Residual precip between-year : 
Residual temp 0.18 (-0.13, 0.48) 0.206 

Residual temp within-year : Residual 
precip -0.59 (-0.75, -0.19) 0.008 

Residual temp between-year : Residual 
precip -0.51 (-0.73, -0.13) 0.026 
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Supplementary Table 7: Differences in the environments of pair breeding species, 
cooperative species with pairs of breeders and cooperative species with multiple breeders. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Coop pair temp 0.17 (-0.05, 0.4) 0.156 

Pair temp vs Multiple temp 0.14 (-0.07, 0.43) 0.152 

Pair precip vs Coop pair precip 0.32 (0.05, 0.62) 0.028 

Pair precip vs Multiple precip 0.38 (0.05, 0.7) 0.038 

Pair temp within-year vs Coop pair temp 
within-year -0.04 (-0.33, 0.19) 0.562 

Pair temp within-year vs Multiple temp 
within-year 0.19 (-0.14, 0.46) 0.36 

Pair precip within-year vs Coop pair 
precip within-year 0.45 (0.23, 0.79) 0.001 

Pair precip within-year vs Multiple 
precip within-year 0.38 (0.17, 0.77) 0.004 

Pair temp between-year vs Coop pair 
temp between-year -0.42 (-0.65, -0.1) 0.006 

Pair temp between-year vs Multiple 
temp between-year -0.19 (-0.47, 0.13) 0.31 

Pair precip between-year vs Coop pair 
precip between-year 0.13 (-0.1, 0.48) 0.248 

Pair precip between-year vs Multiple 
precip between-year 0.14 (-0.18, 0.48) 0.356 

Coop pair temp vs Multiple temp -0.04 (-0.33, 0.31) 0.902 

Coop pair precip vs Multiple precip -0.02 (-0.39, 0.46) 0.784 

Coop pair temp within-year vs Multiple 
temp within-year 0.28 (-0.16, 0.6) 0.27 

Coop pair precip within-year vs Multiple 
precip within-year -0.05 (-0.48, 0.33) 0.732 

Coop pair temp between-year vs 
Multiple temp between-year 0.16 (-0.14, 0.62) 0.278 

Coop pair precip between-year vs 
Multiple precip between-year -0.05 (-0.46, 0.39) 0.918 

Random Effects Posterior Mode (CI) I2 % (CI) 
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Phylogeny temp 0.29 (0.18, 0.38) 50.11 (33.21, 66.37) 

Phylogeny temp within-year 0.41 (0.21, 0.6) 50.12 (24.38, 77.98) 

Phylogeny temp between-year 0.39 (0.23, 0.67) 49.88 (27.5, 73.92) 

Phylogeny precip 0.41 (0.23, 0.79) 50.3 (27.51, 73.49) 

Phylogeny precip within-year 0.43 (0.23, 0.68) 49.89 (28.01, 74.79) 

Phylogeny precip between-year 0.5 (0.21, 0.78) 49.94 (23.64, 77.13) 

Residual temp 0.27 (0.19, 0.4) 49.89 (33.63, 66.79) 

Residual temp within-year 0.44 (0.22, 0.61) 49.88 (22.02, 75.62) 

Residual temp between-year 0.41 (0.24, 0.66) 50.12 (26.08, 72.5) 

Residual precip 0.53 (0.23, 0.78) 49.7 (26.51, 72.49) 

Residual precip within-year 0.46 (0.23, 0.68) 50.11 (25.21, 71.99) 

Residual precip between-year 0.49 (0.23, 0.78) 50.06 (22.87, 76.36) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.37 (-0.61, -0.14) 0.004 

Phylogeny temp between-year : 
Phylogeny temp -0.36 (-0.57, -0.05) 0.024 

Phylogeny precip within-year : 
Phylogeny precip 0.65 (0.24, 0.76) 0.001 

Phylogeny precip between-year : 
Phylogeny precip 0.81 (0.55, 0.88) 0.001 

Phylogeny precip : Phylogeny temp 0.07 (-0.29, 0.37) 0.776 

Phylogeny precip within-year : 
Phylogeny temp 0.18 (-0.09, 0.49) 0.16 

Phylogeny precip between-year : 
Phylogeny temp 0.27 (-0.15, 0.47) 0.27 

Phylogeny temp within-year : Phylogeny 
precip -0.53 (-0.74, -0.17) 0.014 

Phylogeny temp between-year : 
Phylogeny precip -0.5 (-0.71, -0.08) 0.038 

Residual temp within-year : Residual 
temp -0.4 (-0.62, -0.12) 0.012 

Residual temp between-year : Residual 
temp -0.43 (-0.6, -0.09) 0.03 
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Residual precip within-year : Residual 
precip 0.59 (0.24, 0.77) 0.004 

Residual precip between-year : 
Residual precip 0.8 (0.56, 0.89) 0.001 

Residual precip : Residual temp 0.09 (-0.31, 0.35) 0.764 

Residual precip within-year : Residual 
temp 0.2 (-0.07, 0.5) 0.194 

Residual precip between-year : 
Residual temp 0.23 (-0.13, 0.48) 0.294 

Residual temp within-year : Residual 
precip -0.58 (-0.74, -0.17) 0.01 

Residual temp between-year : Residual 
precip -0.56 (-0.69, -0.07) 0.038 

 

Supplementary Table 8: Differences in the environments of pair breeding species and 
cooperative breeding species with nonfamily, family, a mix of both nonfamily and family 
group members, or no helpers. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0.14 (-0.16, 0.42) 0.436 

Pair temp vs Mixed temp 0.08 (-0.19, 0.39) 0.506 

Pair temp vs Nohelpers temp 0.23 (0.02, 0.55) 0.038 

Pair precip vs Family precip 0.23 (-0.18, 0.56) 0.312 

Pair precip vs Mixed precip 0.41 (0.06, 0.85) 0.016 

Pair precip vs Nohelpers precip 0.49 (0.04, 0.72) 0.026 

Pair temp within-year vs Family temp 
within-year 0.03 (-0.36, 0.35) 0.928 

Pair temp within-year vs Mixed temp 
within-year -0.09 (-0.37, 0.33) 0.828 

Pair temp within-year vs Nohelpers 
temp within-year 0.03 (-0.22, 0.4) 0.71 

Pair precip within-year vs Family precip 
within-year 0.47 (0.2, 0.87) 0.002 

Pair precip within-year vs Mixed precip 
within-year 0.3 (-0.17, 0.61) 0.252 

Pair precip within-year vs Nohelpers 
precip within-year 0.61 (0.27, 0.93) 0.001 
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Pair temp between-year vs Family temp 
between-year -0.34 (-0.75, -0.03) 0.048 

Pair temp between-year vs Mixed temp 
between-year -0.17 (-0.59, 0.16) 0.286 

Pair temp between-year vs Nohelpers 
temp between-year -0.27 (-0.57, 0.08) 0.112 

Pair precip between-year vs Family 
precip between-year 0.11 (-0.25, 0.48) 0.42 

Pair precip between-year vs Mixed 
precip between-year 0.02 (-0.34, 0.44) 0.88 

Pair precip between-year vs Nohelpers 
precip between-year 0.37 (-0.02, 0.66) 0.106 

Family temp vs Mixed temp -0.08 (-0.42, 0.4) 0.932 

Family temp vs Nohelpers temp 0.25 (-0.22, 0.54) 0.422 

Family precip vs Mixed precip 0.31 (-0.22, 0.86) 0.356 

Family precip vs Nohelpers precip 0.19 (-0.31, 0.72) 0.452 

Family temp within-year vs Mixed temp 
within-year -0.01 (-0.53, 0.43) 0.824 

Family temp within-year vs Nohelpers 
temp within-year -0.03 (-0.4, 0.53) 0.85 

Family precip within-year vs Mixed 
precip within-year -0.27 (-0.8, 0.2) 0.254 

Family precip within-year vs Nohelpers 
precip within-year 0.12 (-0.39, 0.53) 0.772 

Family temp between-year vs Mixed 
temp between-year 0.12 (-0.38, 0.63) 0.548 

Family temp between-year vs 
Nohelpers temp between-year -0.06 (-0.34, 0.63) 0.672 

Family precip between-year vs Mixed 
precip between-year -0.1 (-0.66, 0.39) 0.63 

Family precip between-year vs 
Nohelpers precip between-year 0.18 (-0.42, 0.57) 0.594 

Mixed temp vs Nohelpers temp 0.11 (-0.21, 0.55) 0.39 

Mixed precip vs Nohelpers precip 0 (-0.56, 0.44) 0.842 

Mixed temp within-year vs Nohelpers 
temp within-year 0.02 (-0.34, 0.52) 0.666 
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Mixed precip within-year vs Nohelpers 
precip within-year 0.39 (-0.12, 0.85) 0.154 

Mixed temp between-year vs Nohelpers 
temp between-year 0.08 (-0.53, 0.41) 0.86 

Mixed precip between-year vs 
Nohelpers precip between-year 0.37 (-0.27, 0.73) 0.33 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.29 (0.19, 0.41) 50.12 (34.98, 68.95) 

Phylogeny temp within-year 0.34 (0.21, 0.62) 48.92 (21.61, 75.09) 

Phylogeny temp between-year 0.44 (0.22, 0.67) 49.59 (27.28, 75.45) 

Phylogeny precip 0.39 (0.22, 0.77) 49.52 (24.99, 73.88) 

Phylogeny precip within-year 0.41 (0.25, 0.72) 49.9 (26.05, 74.33) 

Phylogeny precip between-year 0.41 (0.22, 0.76) 48.79 (23.04, 75.32) 

Residual temp 0.3 (0.19, 0.39) 49.88 (31.05, 65.02) 

Residual temp within-year 0.45 (0.21, 0.63) 51.08 (24.91, 78.39) 

Residual temp between-year 0.46 (0.23, 0.68) 50.41 (24.55, 72.72) 

Residual precip 0.48 (0.22, 0.78) 50.48 (26.12, 75.01) 

Residual precip within-year 0.46 (0.22, 0.69) 50.1 (25.67, 73.95) 

Residual precip between-year 0.49 (0.23, 0.79) 51.21 (24.68, 76.96) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.37 (-0.63, -0.13) 0.014 

Phylogeny temp between-year : 
Phylogeny temp -0.37 (-0.57, -0.07) 0.028 

Phylogeny precip within-year : 
Phylogeny precip 0.64 (0.2, 0.75) 0.002 

Phylogeny precip between-year : 
Phylogeny precip 0.83 (0.56, 0.88) 0.001 

Phylogeny precip : Phylogeny temp 0.03 (-0.31, 0.35) 0.822 

Phylogeny precip within-year : 
Phylogeny temp 0.28 (-0.07, 0.5) 0.17 

Phylogeny precip between-year : 
Phylogeny temp 0.21 (-0.13, 0.47) 0.276 
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Phylogeny temp within-year : Phylogeny 
precip -0.64 (-0.76, -0.15) 0.008 

Phylogeny temp between-year : 
Phylogeny precip -0.55 (-0.7, -0.04) 0.056 

Residual temp within-year : Residual 
temp -0.45 (-0.6, -0.12) 0.008 

Residual temp between-year : Residual 
temp -0.38 (-0.59, -0.07) 0.03 

Residual precip within-year : Residual 
precip 0.59 (0.25, 0.77) 0.004 

Residual precip between-year : 
Residual precip 0.84 (0.6, 0.89) 0.001 

Residual precip : Residual temp 0.08 (-0.28, 0.35) 0.756 

Residual precip within-year : Residual 
temp 0.19 (-0.04, 0.53) 0.154 

Residual precip between-year : 
Residual temp 0.28 (-0.12, 0.48) 0.24 

Residual temp within-year : Residual 
precip -0.6 (-0.73, -0.18) 0.008 

Residual temp between-year : Residual 
precip -0.55 (-0.72, -0.08) 0.044 

 

Supplementary Table 9: Differences in the environments of pair breeders, nonfamily 
cooperative breeders and family cooperative breeders with classifications assigned without a 
threshold (>0%). 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0.01 (-0.1, 0.19) 0.674 

Pair temp vs Nonfamily temp 0.18 (-0.03, 0.45) 0.106 

Pair precip vs Family precip 0.32 (0.07, 0.47) 0.006 

Pair precip vs Nonfamily precip 0.14 (-0.12, 0.53) 0.254 

Pair temp within-year vs Family temp 
within-year 0.09 (-0.08, 0.27) 0.352 

Pair temp within-year vs Nonfamily 
temp within-year 0.25 (-0.1, 0.5) 0.186 

Pair precip within-year vs Family precip 
within-year 0.29 (0.13, 0.52) 0.001 
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Pair precip within-year vs Nonfamily 
precip within-year 0.39 (0.07, 0.67) 0.018 

Pair temp between-year vs Family temp 
between-year -0.15 (-0.35, 0.02) 0.08 

Pair temp between-year vs Nonfamily 
temp between-year -0.12 (-0.42, 0.19) 0.598 

Pair precip between-year vs Family 
precip between-year 0.13 (-0.05, 0.35) 0.182 

Pair precip between-year vs Nonfamily 
precip between-year 0.05 (-0.29, 0.34) 0.92 

Family temp vs Nonfamily temp 0.13 (-0.08, 0.46) 0.208 

Family precip vs Nonfamily precip -0.03 (-0.42, 0.29) 0.658 

Family temp within-year vs Nonfamily 
temp within-year 0.12 (-0.21, 0.43) 0.46 

Family precip within-year vs Nonfamily 
precip within-year -0.09 (-0.27, 0.4) 0.728 

Family temp between-year vs Nonfamily 
temp between-year 0.01 (-0.28, 0.4) 0.706 

Family precip between-year vs 
Nonfamily precip between-year -0.08 (-0.45, 0.25) 0.536 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.26 (0.2, 0.4) 52.5 (36.98, 70.22) 

Phylogeny temp within-year 0.4 (0.2, 0.58) 52.15 (24.91, 78.61) 

Phylogeny temp between-year 0.41 (0.25, 0.64) 50.77 (27.4, 73.43) 

Phylogeny precip 0.56 (0.22, 0.76) 52.65 (27.37, 75.22) 

Phylogeny precip within-year 0.53 (0.24, 0.69) 50.68 (27.91, 72.03) 

Phylogeny precip between-year 0.63 (0.23, 0.78) 52.39 (25.02, 78.87) 

Residual temp 0.28 (0.16, 0.36) 47.5 (29.78, 63.02) 

Residual temp within-year 0.35 (0.2, 0.58) 47.85 (21.39, 75.09) 

Residual temp between-year 0.34 (0.23, 0.62) 49.23 (26.57, 72.6) 

Residual precip 0.3 (0.21, 0.75) 47.35 (24.78, 72.63) 

Residual precip within-year 0.38 (0.22, 0.67) 49.32 (27.97, 72.09) 

Residual precip between-year 0.45 (0.21, 0.76) 47.61 (21.13, 74.98) 

Correlations Posterior Mode (CI) pMCMC 
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Phylogeny temp within-year : Phylogeny 
temp -0.52 (-0.63, -0.2) 0.002 

Phylogeny temp between-year : 
Phylogeny temp -0.44 (-0.61, -0.16) 0.004 

Phylogeny precip within-year : 
Phylogeny precip 0.69 (0.28, 0.78) 0.006 

Phylogeny precip between-year : 
Phylogeny precip 0.82 (0.59, 0.89) 0.001 

Phylogeny precip : Phylogeny temp 0.1 (-0.28, 0.37) 0.668 

Phylogeny precip within-year : 
Phylogeny temp 0.34 (-0.03, 0.51) 0.088 

Phylogeny precip between-year : 
Phylogeny temp 0.24 (-0.11, 0.47) 0.188 

Phylogeny temp within-year : Phylogeny 
precip -0.62 (-0.73, -0.19) 0.006 

Phylogeny temp between-year : 
Phylogeny precip -0.51 (-0.72, -0.1) 0.03 

Residual temp within-year : Residual 
temp -0.43 (-0.62, -0.14) 0.006 

Residual temp between-year : Residual 
temp -0.41 (-0.59, -0.07) 0.042 

Residual precip within-year : Residual 
precip 0.6 (0.24, 0.78) 0.006 

Residual precip between-year : 
Residual precip 0.82 (0.55, 0.88) 0.001 

Residual precip : Residual temp 0.06 (-0.33, 0.37) 0.844 

Residual precip within-year : Residual 
temp 0.28 (-0.08, 0.51) 0.164 

Residual precip between-year : 
Residual temp 0.16 (-0.16, 0.47) 0.296 

Residual temp within-year : Residual 
precip -0.63 (-0.76, -0.19) 0.01 

Residual temp between-year : Residual 
precip -0.55 (-0.7, -0.05) 0.044 

 

Supplementary Table 10: Differences in the environments of pair breeders, nonfamily 
cooperative breeders and family cooperative breeders with classifications assigned using a 30% 
nests threshold. 
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Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0 (-0.26, 0.29) 0.878 

Pair temp vs Nonfamily temp 0.1 (-0.29, 0.4) 0.802 

Pair precip vs Family precip 0.45 (0.08, 0.79) 0.026 

Pair precip vs Nonfamily precip 0.39 (-0.08, 0.78) 0.136 

Pair temp within-year vs Family temp 
within-year -0.09 (-0.42, 0.2) 0.618 

Pair temp within-year vs Nonfamily 
temp within-year 0.43 (-0.09, 0.69) 0.138 

Pair precip within-year vs Family precip 
within-year 0.43 (0.08, 0.75) 0.012 

Pair precip within-year vs Nonfamily 
precip within-year 0.31 (0.09, 0.88) 0.026 

Pair temp between-year vs Family temp 
between-year -0.37 (-0.62, 0.02) 0.056 

Pair temp between-year vs Nonfamily 
temp between-year -0.03 (-0.43, 0.41) 0.846 

Pair precip between-year vs Family 
precip between-year 0.17 (-0.18, 0.53) 0.308 

Pair precip between-year vs Nonfamily 
precip between-year -0.02 (-0.4, 0.45) 0.918 

Family temp vs Nonfamily temp 0.08 (-0.43, 0.42) 0.962 

Family precip vs Nonfamily precip -0.06 (-0.62, 0.5) 0.688 

Family temp within-year vs Nonfamily 
temp within-year 0.44 (-0.09, 0.9) 0.138 

Family precip within-year vs Nonfamily 
precip within-year 0.06 (-0.51, 0.53) 0.896 

Family temp between-year vs Nonfamily 
temp between-year 0.35 (-0.24, 0.8) 0.296 

Family precip between-year vs 
Nonfamily precip between-year -0.36 (-0.72, 0.39) 0.534 

Random Effects Posterior Mode (CI) I2 % (CI) 

Phylogeny temp 0.31 (0.19, 0.41) 49.98 (35.11, 68.25) 

Phylogeny temp within-year 0.35 (0.2, 0.6) 49.43 (22.78, 75.62) 

Phylogeny temp between-year 0.43 (0.21, 0.64) 50.14 (26.95, 73.26) 
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Phylogeny precip 0.37 (0.24, 0.78) 49.39 (27.42, 74.7) 

Phylogeny precip within-year 0.43 (0.23, 0.7) 49.7 (27.45, 73.78) 

Phylogeny precip between-year 0.43 (0.21, 0.77) 49.48 (24.42, 78.22) 

Residual temp 0.3 (0.2, 0.4) 50.02 (31.75, 64.89) 

Residual temp within-year 0.39 (0.22, 0.61) 50.57 (24.38, 77.22) 

Residual temp between-year 0.46 (0.24, 0.67) 49.86 (26.74, 73.05) 

Residual precip 0.57 (0.24, 0.79) 50.61 (25.3, 72.58) 

Residual precip within-year 0.5 (0.25, 0.71) 50.3 (26.22, 72.55) 

Residual precip between-year 0.57 (0.22, 0.79) 50.52 (21.78, 75.58) 

Correlations Posterior Mode (CI) pMCMC 

Phylogeny temp within-year : Phylogeny 
temp -0.42 (-0.6, -0.12) 0.008 

Phylogeny temp between-year : 
Phylogeny temp -0.34 (-0.58, -0.09) 0.024 

Phylogeny precip within-year : 
Phylogeny precip 0.63 (0.21, 0.77) 0.002 

Phylogeny precip between-year : 
Phylogeny precip 0.84 (0.57, 0.89) 0.001 

Phylogeny precip : Phylogeny temp 0.05 (-0.31, 0.38) 0.744 

Phylogeny precip within-year : 
Phylogeny temp 0.26 (-0.05, 0.53) 0.142 

Phylogeny precip between-year : 
Phylogeny temp 0.23 (-0.16, 0.47) 0.268 

Phylogeny temp within-year : Phylogeny 
precip -0.54 (-0.75, -0.17) 0.008 

Phylogeny temp between-year : 
Phylogeny precip -0.49 (-0.74, -0.09) 0.03 

Residual temp within-year : Residual 
temp -0.45 (-0.61, -0.12) 0.012 

Residual temp between-year : Residual 
temp -0.34 (-0.6, -0.08) 0.036 

Residual precip within-year : Residual 
precip 0.63 (0.24, 0.78) 0.001 

Residual precip between-year : 
Residual precip 0.82 (0.57, 0.88) 0.001 
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Residual precip : Residual temp 0.09 (-0.27, 0.4) 0.694 

Residual precip within-year : Residual 
temp 0.32 (-0.07, 0.48) 0.138 

Residual precip between-year : 
Residual temp 0.21 (-0.12, 0.49) 0.258 

Residual temp within-year : Residual 
precip -0.56 (-0.77, -0.19) 0.016 

Residual temp between-year : Residual 
precip -0.48 (-0.72, -0.09) 0.044 

 

Supplementary Table 11: Examining the correlations between climate variables across 
different breeding systems. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0.1 (-0.13, 0.32) 0.386 

Pair temp vs Nonfamily temp 0.19 (-0.16, 0.6) 0.24 

Pair precip vs Family precip 0.3 (0.05, 0.58) 0.026 

Pair precip vs Nonfamily precip 0.5 (0.05, 0.83) 0.036 

Pair temp within-year vs Family temp 
within-year -0.07 (-0.26, 0.24) 0.962 

Pair temp within-year vs Nonfamily 
temp within-year 0.04 (-0.2, 0.51) 0.414 

Pair precip within-year vs Family precip 
within-year 0.39 (0.11, 0.64) 0.01 

Pair precip within-year vs Nonfamily 
precip within-year 0.74 (0.28, 1.02) 0.001 

Pair temp between-year vs Family temp 
between-year -0.29 (-0.55, -0.02) 0.058 

Pair temp between-year vs Nonfamily 
temp between-year -0.05 (-0.52, 0.3) 0.52 

Pair precip between-year vs Family 
precip between-year 0.04 (-0.19, 0.36) 0.57 

Pair precip between-year vs Nonfamily 
precip between-year 0.38 (-0.09, 0.71) 0.164 

Family temp vs Nonfamily temp 0.29 (-0.36, 0.5) 0.514 

Family precip vs Nonfamily precip 0.18 (-0.35, 0.55) 0.576 
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Family temp within-year vs Nonfamily 
temp within-year 0.19 (-0.26, 0.57) 0.454 

Family precip within-year vs Nonfamily 
precip within-year 0.32 (-0.2, 0.69) 0.258 

Family temp between-year vs Nonfamily 
temp between-year 0.17 (-0.36, 0.6) 0.552 

Family precip between-year vs 
Nonfamily precip between-year 0.25 (-0.28, 0.7) 0.326 

Random Effects Posterior Mode (CI) I2 % (CI) 

Pair Phylogeny temp 0.3 (0.22, 0.43) 20.82 (12.86, 28.93) 

Pair Phylogeny temp within-year 0.54 (0.36, 0.71) 31.18 (18.68, 42.8) 

Pair Phylogeny temp between-year 0.49 (0.32, 0.7) 30.85 (18.83, 39.96) 

Pair Phylogeny precip 0.65 (0.38, 0.88) 27.89 (16.59, 37.97) 

Pair Phylogeny precip within-year 0.58 (0.36, 0.79) 24.25 (14.04, 33.57) 

Pair Phylogeny precip between-year 0.61 (0.4, 0.87) 28.18 (17.01, 39.13) 

Family Phylogeny temp 0.32 (0.22, 0.6) 24.54 (13.24, 34.89) 

Family Phylogeny temp within-year 0.29 (0.19, 0.6) 20.77 (11.74, 30.5) 

Family Phylogeny temp between-year 0.41 (0.22, 0.78) 21.24 (11.66, 32) 

Family Phylogeny precip 0.4 (0.21, 0.69) 23.5 (12.1, 34.82) 

Family Phylogeny precip within-year 0.46 (0.22, 0.78) 23.52 (12.52, 34.92) 

Family Phylogeny precip between-year 0.44 (0.24, 0.81) 21.77 (11.77, 33.35) 

Nonfamily Phylogeny temp 0.57 (0.26, 1.1) 37.87 (21.93, 54.56) 

Nonfamily Phylogeny temp within-year 0.44 (0.19, 0.96) 28.87 (16.59, 45.66) 

Nonfamily Phylogeny temp between-
year 0.77 (0.32, 1.33) 30.19 (16.84, 46.24) 

Nonfamily Phylogeny precip 0.54 (0.22, 1.08) 28.18 (14.33, 42.22) 

Nonfamily Phylogeny precip within-year 0.44 (0.24, 1.02) 33.42 (18.22, 49.49) 

Nonfamily Phylogeny precip between-
year 0.46 (0.27, 1.26) 31.32 (18.93, 48.66) 

Residual temp 0.25 (0.18, 0.37) 16.77 (8.86, 24.83) 

Residual temp within-year 0.26 (0.17, 0.46) 19.19 (8.13, 31.2) 

Residual temp between-year 0.34 (0.21, 0.57) 17.72 (8.87, 28.54) 
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Residual precip 0.41 (0.2, 0.6) 20.43 (9.2, 32.16) 

Residual precip within-year 0.42 (0.23, 0.61) 18.81 (8.7, 29.32) 

Residual precip between-year 0.37 (0.21, 0.62) 18.72 (7.84, 31.03) 

Correlations Posterior Mode (CI) pMCMC 

Pair Phylogeny temp within-year : Pair 
Phylogeny temp -0.38 (-0.61, -0.21) 0.001 

Pair Phylogeny temp between-year : 
Pair Phylogeny temp -0.32 (-0.56, -0.13) 0.002 

Pair Phylogeny precip within-year : Pair 
Phylogeny precip 0.57 (0.34, 0.73) 0.001 

Pair Phylogeny precip between-year : 
Pair Phylogeny precip 0.85 (0.74, 0.9) 0.001 

Pair Phylogeny precip : Pair Phylogeny 
temp 0.12 (-0.18, 0.32) 0.598 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp 0.21 (-0.1, 0.41) 0.164 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp 0.19 (-0.11, 0.4) 0.188 

Pair Phylogeny temp within-year : Pair 
Phylogeny precip -0.56 (-0.71, -0.37) 0.001 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip -0.54 (-0.67, -0.26) 0.002 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year -0.24 (-0.45, 0.04) 0.116 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year -0.44 (-0.63, -0.15) 0.018 

Family Phylogeny temp within-year : 
Family Phylogeny temp -0.18 (-0.51, 0.16) 0.26 

Family Phylogeny temp between-year : 
Family Phylogeny temp -0.16 (-0.48, 0.24) 0.518 

Family Phylogeny precip within-year : 
Family Phylogeny precip 0.34 (-0.05, 0.65) 0.086 

Family Phylogeny precip between-year : 
Family Phylogeny precip 0.44 (0.06, 0.72) 0.042 

Family Phylogeny precip : Family 
Phylogeny temp -0.19 (-0.45, 0.27) 0.624 

Family Phylogeny precip within-year : 
Family Phylogeny temp 0.29 (-0.22, 0.5) 0.376 
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Family Phylogeny precip between-year : 
Family Phylogeny temp 0.1 (-0.26, 0.45) 0.574 

Family Phylogeny temp within-year : 
Family Phylogeny precip -0.18 (-0.56, 0.17) 0.248 

Family Phylogeny temp between-year : 
Family Phylogeny precip -0.26 (-0.58, 0.14) 0.294 

Family Phylogeny precip within-year : 
Family Phylogeny temp within-year -0.31 (-0.67, 0.03) 0.096 

Family Phylogeny precip between-year : 
Family Phylogeny temp between-year -0.07 (-0.54, 0.24) 0.43 

Nonfamily Phylogeny temp within-year : 
Nonfamily Phylogeny temp -0.29 (-0.67, 0.13) 0.158 

Nonfamily Phylogeny temp between-
year : Nonfamily Phylogeny temp -0.22 (-0.65, 0.21) 0.294 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny precip 0.39 (-0.13, 0.7) 0.19 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny precip 0.15 (-0.25, 0.63) 0.376 

Nonfamily Phylogeny precip : Nonfamily 
Phylogeny temp -0.07 (-0.53, 0.34) 0.788 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp 0.22 (-0.31, 0.58) 0.484 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 0.09 (-0.25, 0.62) 0.39 

Nonfamily Phylogeny temp within-year : 
Nonfamily Phylogeny precip -0.14 (-0.5, 0.41) 0.754 

Nonfamily Phylogeny temp between-
year : Nonfamily Phylogeny precip -0.06 (-0.55, 0.35) 0.704 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year 0.02 (-0.52, 0.4) 0.852 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 
between-year 

-0.1 (-0.49, 0.42) 0.914 

Residual temp within-year : Residual 
temp -0.46 (-0.62, -0.16) 0.004 

Residual temp between-year : Residual 
temp -0.43 (-0.6, -0.11) 0.014 

Residual precip within-year : Residual 
precip 0.62 (0.34, 0.79) 0.002 
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Residual precip between-year : 
Residual precip 0.77 (0.58, 0.86) 0.001 

Residual precip : Residual temp 0.05 (-0.24, 0.36) 0.728 

Residual precip within-year : Residual 
temp 0.32 (0, 0.53) 0.072 

Residual precip between-year : 
Residual temp 0.24 (-0.1, 0.48) 0.192 

Residual temp within-year : Residual 
precip -0.35 (-0.63, -0.01) 0.046 

Residual temp between-year : Residual 
precip -0.33 (-0.65, -0.02) 0.074 

Residual precip within-year : Residual 
temp within-year -0.43 (-0.6, -0.01) 0.046 

Residual precip between-year : 
Residual temp between-year -0.35 (-0.63, -0.02) 0.074 

Correlation comparions Estimates pMCMC 

Pair Phylogeny precip : Pair Phylogeny 
temp vs Family Phylogeny precip : 
Family Phylogeny temp 

0.25 (-0.27, 0.58) 0.456 

Pair Phylogeny precip : Pair Phylogeny 
temp vs Nonfamily Phylogeny precip : 
Nonfamily Phylogeny temp 

0.21 (-0.33, 0.66) 0.616 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp vs Family Phylogeny 
precip within-year : Family Phylogeny 
temp 

0.13 (-0.4, 0.45) 0.922 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp vs Nonfamily 
Phylogeny precip within-year : 
Nonfamily Phylogeny temp 

-0.08 (-0.48, 0.53) 0.982 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp vs Family 
Phylogeny precip between-year : Family 
Phylogeny temp 

0.02 (-0.31, 0.5) 0.76 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp vs Nonfamily 
Phylogeny precip between-year : 
Nonfamily Phylogeny temp 

0.04 (-0.5, 0.46) 0.942 

Pair Phylogeny temp within-year : Pair 
Phylogeny precip vs Family Phylogeny 
temp within-year : Family Phylogeny 
precip 

-0.2 (-0.74, 0.03) 0.074 
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Pair Phylogeny temp within-year : Pair 
Phylogeny precip vs Nonfamily 
Phylogeny temp within-year : Nonfamily 
Phylogeny precip 

-0.4 (-0.98, -0.02) 0.038 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip vs Family 
Phylogeny temp between-year : Family 
Phylogeny precip 

-0.34 (-0.65, 0.12) 0.156 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip vs Nonfamily 
Phylogeny temp between-year : 
Nonfamily Phylogeny precip 

-0.55 (-0.91, 0.06) 0.096 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year vs Family 
Phylogeny precip within-year : Family 
Phylogeny temp within-year 

0.07 (-0.38, 0.41) 0.588 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year vs 
Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year 

-0.32 (-0.64, 0.38) 0.514 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year vs 
Family Phylogeny precip between-year : 
Family Phylogeny temp between-year 

-0.18 (-0.66, 0.17) 0.226 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year vs 
Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 
between-year 

-0.39 (-0.83, 0.2) 0.16 

Family Phylogeny precip : Family 
Phylogeny temp vs Nonfamily 
Phylogeny precip : Nonfamily 
Phylogeny temp 

-0.17 (-0.55, 0.55) 0.88 

Family Phylogeny precip within-year : 
Family Phylogeny temp vs Nonfamily 
Phylogeny precip within-year : 
Nonfamily Phylogeny temp 

-0.05 (-0.52, 0.62) 0.992 

Family Phylogeny precip between-year : 
Family Phylogeny temp vs Nonfamily 
Phylogeny precip between-year : 
Nonfamily Phylogeny temp 

-0.14 (-0.6, 0.49) 0.746 

Family Phylogeny temp within-year : 
Family Phylogeny precip vs Nonfamily 
Phylogeny temp within-year : Nonfamily 
Phylogeny precip 

-0.2 (-0.68, 0.47) 0.648 

Family Phylogeny temp between-year : 
Family Phylogeny precip vs Nonfamily 

0.07 (-0.7, 0.47) 0.712 
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Phylogeny temp between-year : 
Nonfamily Phylogeny precip 

Family Phylogeny precip within-year : 
Family Phylogeny temp within-year vs 
Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year 

-0.27 (-0.81, 0.33) 0.396 

Family Phylogeny precip between-year : 
Family Phylogeny temp between-year 
vs Nonfamily Phylogeny precip 
between-year : Nonfamily Phylogeny 
temp between-year 

-0.04 (-0.71, 0.46) 0.668 

 

Supplementary Table 12: Reanalysis of model mod_climcorrs but with down sampling to 
check greater number of pair species does not alter results. 

Fixed Effects Posterior Mode (CI) pMCMC 

Pair temp vs Family temp 0.07 (-0.19, 0.34) 0.62 

Pair temp vs Nonfamily temp 0.2 (-0.19, 0.58) 0.33 

Pair precip vs Family precip 0.33 (0.04, 0.64) 0.01 

Pair precip vs Nonfamily precip 0.46 (0.08, 0.91) 0.018 

Pair temp within-year vs Family temp 
within-year -0.08 (-0.35, 0.2) 0.672 

Pair temp within-year vs Nonfamily 
temp within-year 0.06 (-0.32, 0.47) 0.628 

Pair precip within-year vs Family precip 
within-year 0.41 (0.14, 0.78) 0.016 

Pair precip within-year vs Nonfamily 
precip within-year 0.7 (0.29, 1.1) 0.002 

Pair temp between-year vs Family temp 
between-year -0.36 (-0.67, -0.05) 0.03 

Pair temp between-year vs Nonfamily 
temp between-year -0.29 (-0.67, 0.18) 0.28 

Pair precip between-year vs Family 
precip between-year 0.19 (-0.16, 0.46) 0.334 

Pair precip between-year vs Nonfamily 
precip between-year 0.41 (-0.05, 0.81) 0.078 

Family temp vs Nonfamily temp 0.12 (-0.3, 0.53) 0.56 

Family precip vs Nonfamily precip 0.24 (-0.29, 0.6) 0.534 
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Family temp within-year vs Nonfamily 
temp within-year 0.16 (-0.28, 0.56) 0.484 

Family precip within-year vs Nonfamily 
precip within-year 0.3 (-0.16, 0.73) 0.228 

Family temp between-year vs Nonfamily 
temp between-year 0.03 (-0.4, 0.57) 0.632 

Family precip between-year vs 
Nonfamily precip between-year 0.09 (-0.2, 0.71) 0.336 

Random Effects Posterior Mode (CI) I2 % (CI) 

Pair Phylogeny temp 0.36 (0.25, 0.57) 23.46 (13.73, 33.12) 

Pair Phylogeny temp within-year 0.55 (0.35, 0.85) 27.42 (15.96, 39.47) 

Pair Phylogeny temp between-year 0.46 (0.26, 0.73) 32.6 (21.66, 46.27) 

Pair Phylogeny precip 0.59 (0.3, 0.83) 31.46 (18.33, 44.58) 

Pair Phylogeny precip within-year 0.72 (0.38, 1.02) 23.39 (13.35, 34.06) 

Pair Phylogeny precip between-year 0.62 (0.32, 0.91) 27.97 (14.97, 39.26) 

Family Phylogeny temp 0.35 (0.22, 0.63) 23.4 (13.48, 35.08) 

Family Phylogeny temp within-year 0.31 (0.19, 0.6) 22.7 (12.66, 34.28) 

Family Phylogeny temp between-year 0.53 (0.26, 0.8) 20.16 (10.95, 30.37) 

Family Phylogeny precip 0.38 (0.23, 0.74) 21.4 (10.99, 32.46) 

Family Phylogeny precip within-year 0.41 (0.22, 0.77) 24.14 (13.64, 36.41) 

Family Phylogeny precip between-year 0.45 (0.24, 0.8) 21.61 (11.55, 32.94) 

Nonfamily Phylogeny temp 0.54 (0.3, 1.09) 35.59 (20.83, 51.27) 

Nonfamily Phylogeny temp within-year 0.43 (0.26, 0.96) 31.39 (17.07, 46.46) 

Nonfamily Phylogeny temp between-
year 0.54 (0.31, 1.29) 29.35 (16.77, 44.18) 

Nonfamily Phylogeny precip 0.53 (0.27, 1.17) 26.61 (13.03, 41.49) 

Nonfamily Phylogeny precip within-year 0.54 (0.26, 1.11) 33.77 (19.83, 51.8) 

Nonfamily Phylogeny precip between-
year 0.6 (0.29, 1.25) 30.91 (17.28, 46.47) 

Residual temp 0.29 (0.17, 0.41) 17.55 (9.89, 27.15) 

Residual temp within-year 0.36 (0.19, 0.5) 18.5 (8.83, 29.14) 

Residual temp between-year 0.38 (0.21, 0.55) 17.88 (8.18, 27.02) 
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Residual precip 0.36 (0.19, 0.53) 20.53 (9.79, 33.26) 

Residual precip within-year 0.43 (0.23, 0.65) 18.7 (7.78, 28.61) 

Residual precip between-year 0.37 (0.22, 0.65) 19.5 (8.63, 31.77) 

Correlations Posterior Mode (CI) pMCMC 

Pair Phylogeny temp within-year : Pair 
Phylogeny temp -0.35 (-0.6, -0.1) 0.028 

Pair Phylogeny temp between-year : 
Pair Phylogeny temp -0.31 (-0.6, -0.05) 0.032 

Pair Phylogeny precip within-year : Pair 
Phylogeny precip 0.42 (0, 0.61) 0.07 

Pair Phylogeny precip between-year : 
Pair Phylogeny precip 0.78 (0.59, 0.88) 0.001 

Pair Phylogeny precip : Pair Phylogeny 
temp 0.1 (-0.23, 0.4) 0.536 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp 0.16 (-0.12, 0.46) 0.266 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp 0.23 (-0.11, 0.5) 0.186 

Pair Phylogeny temp within-year : Pair 
Phylogeny precip -0.51 (-0.73, -0.29) 0.004 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip -0.53 (-0.71, -0.18) 0.01 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year -0.12 (-0.34, 0.32) 0.77 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year -0.5 (-0.72, -0.13) 0.028 

Family Phylogeny temp within-year : 
Family Phylogeny temp -0.23 (-0.59, 0.11) 0.24 

Family Phylogeny temp between-year : 
Family Phylogeny temp -0.18 (-0.46, 0.22) 0.506 

Family Phylogeny precip within-year : 
Family Phylogeny precip 0.29 (-0.03, 0.66) 0.08 

Family Phylogeny precip between-year : 
Family Phylogeny precip 0.47 (0.05, 0.68) 0.038 

Family Phylogeny precip : Family 
Phylogeny temp -0.17 (-0.48, 0.28) 0.66 

Family Phylogeny precip within-year : 
Family Phylogeny temp 0.16 (-0.21, 0.52) 0.404 
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Family Phylogeny precip between-year : 
Family Phylogeny temp 0.11 (-0.3, 0.44) 0.618 

Family Phylogeny temp within-year : 
Family Phylogeny precip -0.25 (-0.56, 0.15) 0.254 

Family Phylogeny temp between-year : 
Family Phylogeny precip -0.2 (-0.55, 0.17) 0.276 

Family Phylogeny precip within-year : 
Family Phylogeny temp within-year -0.34 (-0.69, 0.02) 0.122 

Family Phylogeny precip between-year : 
Family Phylogeny temp between-year -0.24 (-0.51, 0.26) 0.486 

Nonfamily Phylogeny temp within-year : 
Nonfamily Phylogeny temp -0.43 (-0.66, 0.15) 0.21 

Nonfamily Phylogeny temp between-
year : Nonfamily Phylogeny temp -0.33 (-0.64, 0.19) 0.32 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny precip 0.34 (-0.11, 0.71) 0.168 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny precip 0.24 (-0.23, 0.62) 0.366 

Nonfamily Phylogeny precip : Nonfamily 
Phylogeny temp -0.08 (-0.49, 0.43) 0.752 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp 0.3 (-0.28, 0.62) 0.566 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 0.34 (-0.29, 0.59) 0.464 

Nonfamily Phylogeny temp within-year : 
Nonfamily Phylogeny precip -0.14 (-0.49, 0.4) 0.756 

Nonfamily Phylogeny temp between-
year : Nonfamily Phylogeny precip -0.17 (-0.52, 0.35) 0.752 

Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year -0.01 (-0.49, 0.38) 0.844 

Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 
between-year 

0.08 (-0.52, 0.42) 0.978 

Residual temp within-year : Residual 
temp -0.36 (-0.62, -0.09) 0.014 

Residual temp between-year : Residual 
temp -0.33 (-0.61, -0.07) 0.026 

Residual precip within-year : Residual 
precip 0.55 (0.23, 0.73) 0.004 
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Residual precip between-year : 
Residual precip 0.73 (0.45, 0.81) 0.001 

Residual precip : Residual temp 0.03 (-0.18, 0.46) 0.592 

Residual precip within-year : Residual 
temp 0.34 (0, 0.56) 0.066 

Residual precip between-year : 
Residual temp 0.23 (-0.05, 0.52) 0.156 

Residual temp within-year : Residual 
precip -0.46 (-0.74, -0.04) 0.04 

Residual temp between-year : Residual 
precip -0.47 (-0.75, -0.07) 0.036 

Residual precip within-year : Residual 
temp within-year -0.47 (-0.64, -0.04) 0.04 

Residual precip between-year : 
Residual temp between-year -0.42 (-0.68, -0.09) 0.036 

Correlation comparions Estimates pMCMC 

Pair Phylogeny precip : Pair Phylogeny 
temp vs Family Phylogeny precip : 
Family Phylogeny temp 

0.25 (-0.29, 0.64) 0.436 

Pair Phylogeny precip : Pair Phylogeny 
temp vs Nonfamily Phylogeny precip : 
Nonfamily Phylogeny temp 

0.11 (-0.39, 0.7) 0.52 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp vs Family Phylogeny 
precip within-year : Family Phylogeny 
temp 

-0.11 (-0.41, 0.49) 0.99 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp vs Nonfamily 
Phylogeny precip within-year : 
Nonfamily Phylogeny temp 

0 (-0.48, 0.58) 0.944 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp vs Family 
Phylogeny precip between-year : Family 
Phylogeny temp 

0.08 (-0.31, 0.59) 0.644 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp vs Nonfamily 
Phylogeny precip between-year : 
Nonfamily Phylogeny temp 

-0.06 (-0.46, 0.59) 0.93 

Pair Phylogeny temp within-year : Pair 
Phylogeny precip vs Family Phylogeny 
temp within-year : Family Phylogeny 
precip 

-0.33 (-0.69, 0.09) 0.156 
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Pair Phylogeny temp within-year : Pair 
Phylogeny precip vs Nonfamily 
Phylogeny temp within-year : Nonfamily 
Phylogeny precip 

-0.35 (-0.99, -0.01) 0.064 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip vs Family 
Phylogeny temp between-year : Family 
Phylogeny precip 

-0.2 (-0.68, 0.14) 0.204 

Pair Phylogeny temp between-year : 
Pair Phylogeny precip vs Nonfamily 
Phylogeny temp between-year : 
Nonfamily Phylogeny precip 

-0.44 (-0.9, 0.11) 0.118 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year vs Family 
Phylogeny precip within-year : Family 
Phylogeny temp within-year 

0.21 (-0.16, 0.7) 0.224 

Pair Phylogeny precip within-year : Pair 
Phylogeny temp within-year vs 
Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year 

-0.07 (-0.57, 0.51) 0.982 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year vs 
Family Phylogeny precip between-year : 
Family Phylogeny temp between-year 

-0.23 (-0.71, 0.16) 0.202 

Pair Phylogeny precip between-year : 
Pair Phylogeny temp between-year vs 
Nonfamily Phylogeny precip between-
year : Nonfamily Phylogeny temp 
between-year 

-0.44 (-0.98, 0.07) 0.1 

Family Phylogeny precip : Family 
Phylogeny temp vs Nonfamily 
Phylogeny precip : Nonfamily 
Phylogeny temp 

0.15 (-0.61, 0.58) 0.932 

Family Phylogeny precip within-year : 
Family Phylogeny temp vs Nonfamily 
Phylogeny precip within-year : 
Nonfamily Phylogeny temp 

0.05 (-0.56, 0.57) 0.946 

Family Phylogeny precip between-year : 
Family Phylogeny temp vs Nonfamily 
Phylogeny precip between-year : 
Nonfamily Phylogeny temp 

-0.14 (-0.64, 0.48) 0.758 

Family Phylogeny temp within-year : 
Family Phylogeny precip vs Nonfamily 
Phylogeny temp within-year : Nonfamily 
Phylogeny precip 

-0.23 (-0.72, 0.42) 0.632 

Family Phylogeny temp between-year : 
Family Phylogeny precip vs Nonfamily 

-0.17 (-0.7, 0.44) 0.698 
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Phylogeny temp between-year : 
Nonfamily Phylogeny precip 

Family Phylogeny precip within-year : 
Family Phylogeny temp within-year vs 
Nonfamily Phylogeny precip within-year 
: Nonfamily Phylogeny temp within-year 

-0.42 (-0.9, 0.24) 0.354 

Family Phylogeny precip between-year : 
Family Phylogeny temp between-year 
vs Nonfamily Phylogeny precip 
between-year : Nonfamily Phylogeny 
temp between-year 

-0.11 (-0.68, 0.48) 0.642 
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