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Abstract: Understanding patterns of species occupancy across landscapes and throughout time is a 

long-standing objective of ecological research that has inspired the development of numerous 

quantitative modelling approaches. However, estimating occupancy can be a challenge, particularly 

when contending with issues like imperfect detection and shifting distributions. Dynamic occupancy 

models (DOMs) offer a framework for occupancy estimation that explicitly accounts for observation error 

while capturing the mechanisms driving occupancy dynamics by estimating colonisation and local 

extinction processes. In light of increasing interest in more process-explicit models for understanding 

species occurrence, here we examine how DOMs have been applied to field ecological data in the two 

decades since their introduction. Following a general introduction to the model, we present the results of 

a systematic review exploring where and how DOMs have been applied. We interrogate how authors 

have built their models, with particular emphasis on how covariates are incorporated to describe 

variation in occupancy dynamics. Our findings indicate that DOMs are a flexible tool readily applied to 

diverse study systems and data types, with their usage expanding in recent years as more studies apply 

them to make spatial and temporal predictions of species occupancy. DOMs are also amenable to 

extension, further broadening their utility. However, model complexity in DOMs tends to be low; most 

studies consider relatively few covariates and these are typically represented as simple linear 

relationships. Approaches to covariate selection also vary considerably, and there remains little research 
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on how these choices may influence model performance. Furthermore, only a fraction of articles report 

evaluating DOMs and little guidance exists on how to approach this task. These uncertainties in the 

modelling process should be key priorities for future research on DOMs given their increasing use in 

applied ecological research. 
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Introduction 1	

The description of patterns of species occupancy across landscapes has been a long-2	

standing subject of ecological research (Humboldt, 1849). Estimates of how 3	

widespread a species is and where it occurs are the foundation of monitoring 4	

programs and important for assessing conservation status while identifying potential 5	

drivers of occurrence can help inform potential management actions (MacKenzie & 6	

Reardon, 2013). Robust knowledge of the occupancy patterns of a species can also 7	

help us to predict where a species is most likely to occur, both under present 8	

conditions and in hypothetical future scenarios (Kéry et al., 2013). 9	

While occupancy is a useful concept, it is also a challenging quantity to describe, 10	

measure, and estimate. The need to understand and quantitatively describe species 11	

occupancy has led to the development of several popular modelling approaches, 12	

including stochastic patch occupancy models commonly applied to study meta-13	

population dynamics (Gutiérrez-Arellano et al., 2024), and species distribution models 14	

(SDMs) widely used to explore species occurrence at larger scales (Franklin, 2010). 15	

However, several factors can make occupancy difficult to estimate. For instance, 16	

simple presence/absence observations can be biased when species are detected 17	

imperfectly – this is often the case in wildlife field data, where it can be impossible to 18	

determine from a single observation whether a location is truly occupied or whether the 19	

species occurs but was not detected (Gu & Swihart, 2004; Lahoz-Monfort et al., 2014). 20	

Despite the ubiquity of imperfect detection in data collection, many models fit to 21	
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presence/absence data make no adjustment for this source of bias (Kellner & Swihart, 22	

2014). Another challenge for modelling occupancy is the difficulty in describing 23	

populations under non-equilibrium conditions, where a species’ occurrence pattern 24	

and relationship to its environment is in flux (Dormann, 2007; Elith et al., 2010). These 25	

conditions often occur during biological invasions and climate change driven range 26	

shifts, each of which are conservation priorities and increasingly common scenarios in 27	

the Anthropocene (Bertelsmeier et al., 2013; Lenoir & Svenning, 2015). 28	

The site occupancy models first introduced by MacKenzie et al. (2002) set the 29	

foundation for a powerful framework for modelling presence/absence data while 30	

accounting for each of these challenges (Guillera-Arroita, 2017). Drawing on principles 31	

from the mark-recapture literature, occupancy models use multiple resurveys of sites 32	

to estimate detection probabilities and correct for bias in estimates of site occupancy. 33	

Originally a static model, MacKenzie et al. (2003) extended this model for use in 34	

multiple time-steps by explicitly describing the process of changing occupancy via 35	

colonisation and extinction, relaxing assumptions of equilibrium and allowing 36	

description of patterns of site occupancy through time. This dynamic occupancy model 37	

(DOM) balances complexity and feasibility, explicitly describing the key processes 38	

driving occupancy dynamics while requiring reasonably simple-to-collect presence 39	

absence/data instead of the detailed demographic or abundance data required by 40	

more process-explicit models (Briscoe et al., 2019). These features make the DOM an 41	

important tool, with uses including hypothesis testing of relationships between 42	

occupancy and the environment, explorations of the key drivers of occupancy, and 43	
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even prediction of occupancy under future conditions (Briscoe et al., 2021; Kéry et al., 44	

2013). 45	

In this review we examine how dynamic occupancy models have been used by 46	

ecologists in the two decades since their inception. Following an introduction to the 47	

model’s form and assumptions, we present the results of a systematic review exploring 48	

how researchers have applied DOMs to ecological data, with emphasis on how they 49	

collected their data, selected covariates, and evaluated their models. Based on these 50	

results we highlight the DOM’s flexibility as a tool for understanding species 51	

occurrence, examine approaches to the model building process, and outline key 52	

priorities for future research involving this model class. 53	

Dynamic occupancy model form and assumptions 54	

The DOM structure encompasses two processes: the ecological process of site 55	

occupancy dynamics describing the presence or absence of a species at a site at any 56	

point in time, and the observational process of detection describing whether a species 57	

is observed at a site where it is present (Figure 1). In the latent ecological process of 58	

site occupancy, sites may exist in either an occupied (z = 1) or unoccupied state (z = 59	

0). In the first time-step, occupancy is determined by the probability of initial 60	

occupancy ψ1, such that z! ∼ Bernouilli(ψ!). In following time steps, occupancy state 61	

can change according to a Markovian process where occupancy is predicated on the 62	

site’s state in the prior time-step and the probabilities of colonisation γ and local 63	

extinction ε, such that z" ∼ Bernoulli(ψ) where ψ = z"#!(1 − ϵ) + (1 − z"#!)γ. Where the 64	

occupancy process is latent, the observation component of the DOM describes the 65	
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probability of recording a detection when a site is occupied, allowing the DOM to 66	

account for imperfect detection. At occupied sites, the detection probability ρ 67	

describes whether the species is observed (y = 1) during a survey j or whether it is not 68	

(y = 0), according to the formula y",% ∼ Bernouilli(z"ρ). Under the DOM’s original 69	

parameterisation, it is assumed that false-positive detections at unoccupied sites never 70	

occur. In this review we use the term “parameter” to refer to the quantities being 71	

estimated: in most cases, these are the probabilities initial occupancy ψ1, colonisation 72	

γ, extinction ε, and detection ρ (see Figure 1). However, some alternative model forms 73	

may directly estimate occupancy ψ as a parameter.  74	
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Figure 1: The form of the dynamic occupancy model as described by MacKenzie et 

al. (2003). The ecological process sub-model describes changes in occupancy over 

time, while the observational process sub-model describes detectability. 
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To disentangle the ecological and observational processes the DOM requires a 75	

hierarchical sampling design as depicted in Figure 2. Under this design, observations 76	

at a site occur during distinct, time-bound seasons within which it is assumed site 77	

occupancy does not change (that is, sites are closed to changes in occupancy). In 78	

each season multiple observations are made, permitting estimation of the probability of 79	

detection conditional on occupancy. Most frequently these repeat observations are 80	

collected by revisiting the site on separate occasions, although they can also be 81	

attained by alternative means: examples include conducting surveys at multiple 82	

locations within a site, using multiple observers during a survey, or recording the time 83	

elapsed until a detection is recorded (Guillera-Arroita, 2017; Guillera-Arroita & Lahoz-84	

Monfort, 2017). It is important to note that it is not necessary for the same number of 85	

observations to occur in each year or for each site, enabling flexibility in data inputs. 86	
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Figure 2: The sampling design of the standard dynamic occupancy model. During 

seasons (also called primary occasions) sites are considered closed to changes in 

true occupancy state; occupancy state may only change between seasons. Within 

each season, multiple observations (also called surveys or secondary occasions) are 

conducted to record the observed presence or absence of the species at each site. 

These multiple observations may be recorded in many ways: sites can be revisited 

multiple times within a season, surveys can be conducted at multiple points within a 

larger site, multiple observers can conduct surveys simultaneously, or the time 
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elapsed prior to a detection occurring can be recorded. Note that it is not necessary 

for each site or season to have the same number of observations, and that missing 

data can be accommodated. 
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DOMs make several key assumptions requiring careful consideration by model users; 87	

we outline these here as our review interrogates related aspects of model building. 88	

I. False positive detections do not occur. While this assumption can be safely met 89	

in many studies, it is not necessarily guaranteed when working with more cryptic 90	

species or less reliable survey methods. Previous research has demonstrated 91	

the bias induced when false positives occur and are not accounted for, 92	

highlighting the need to consider how certain detections truly are for any given 93	

study system (McClintock et al., 2010; D. Miller et al., 2015). Importantly, even 94	

genuine detections of a species can be considered ‘false positives’ when they 95	

do not represent the intended definition of occupancy, such as detections of 96	

transient individuals when the intent is to estimate breeding occupancy (Berigan 97	

et al., 2019). Where this assumption cannot reasonably be met, model 98	

extensions designed to account for false positive error should be considered (D. 99	

Miller et al., 2011; D. Miller et al., 2015; Royle & Link, 2006). 100	

II. Sites are closed to occupancy between seasons. This requirement, best known 101	

as the ‘closure assumption,’ has also been subject to considerable discussion in 102	

terms of the bias introduced when it is violated (Otto et al., 2013; Rota et al., 103	

2009). Closure is dependent not only on the life history of the species, but also 104	

on the definition of occupancy used by researchers — short seasons may 105	

capture dynamics more representative of species ‘use,’ and it can often be 106	

difficult to distinguish local extinction from temporary emigration (Valente et al., 107	

2017). Model extensions to relax the closure assumption have been developed, 108	
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including approaches using staggered arrival and departure periods between 109	

sites (Kendall et al., 2013). A more pertinent approach for most studies, 110	

however, is careful consideration of the appropriate definition of occupancy 111	

under the survey design used (Steenweg et al., 2018). 112	

III. Heterogeneity in occupancy and detection is accounted for. As with any 113	

approach for modelling species occurrence, it is assumed that DOMs 114	

appropriately capture variation in occupancy patterns and species detectability 115	

across the study system. Generally, this is achieved by allowing model 116	

parameters (ψ1, γ, ε, and ρ) to vary with respect to covariates representing the 117	

environmental factors that may be expected to influence these parameters. An 118	

important element of this assumption is the caveat that the likelihood of 119	

detection of a species can depend not only on the observability of the species, 120	

but also on factors like habitat suitability that influence species abundance and 121	

activity (Guillera-Arroita, 2017). While no model will fully account for the 122	

complexity inherent in patterns of species occupancy and detection, failure to 123	

capture key drivers is likely to introduce bias and confound inference made from 124	

model estimates (Barry & Elith, 2006). Relative to the first two assumptions, this 125	

aspect of DOMs has been less thoroughly discussed and comparatively little is 126	

known about how latent heterogeneity can influence model performance. 127	

Since its original description in MacKenzie et al. (2003), the DOM has been further 128	

developed with numerous model extensions and alternative formulations including the 129	

aforementioned implementations accounting for false positives (D. Miller et al., 2011; D. 130	
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Miller et al., 2015; Royle & Link, 2006), as well as models for multiple states beyond 131	

occupied and unoccupied (Nichols et al., 2007) and jointly estimated multi-species 132	

models (Dorazio et al., 2010). For a comprehensive discussion of common extensions 133	

and their applications see Bailey et al. (2014) and Guillera-Arroita (2017), as well as 134	

Devarajan et al. (2020) for a more detailed review of multi-species occupancy models. 135	

Systematic review methods 136	

To assess how DOMs have been applied in the years since their introduction we 137	

gathered a representative sample of articles that fit DOMs to field ecological data. A 138	

pool of candidate articles was generated using two queries on Web of Science. The 139	

first of these included all articles from 2004-2023 that cited MacKenzie et al. (2003). To 140	

capture any additional relevant articles that did not directly cite MacKenzie et al. 141	

(2003), a second query was generated searching articles in the same time-span 142	

matching the terms “dynamic occupancy model*”, “multi-season occupancy model*”, 143	

OR “occupancy dynamic*”; articles including each of “occupancy”, “colonization”, 144	

“extinction|persistence”, AND “detection”; and articles with the term “occupancy” 145	

located near “dynamic” in the title, key terms, or abstract. These queries resulted in 146	

1469 articles: 897 were retrieved only from the MacKenzie citations, 274 only from the 147	

keywords search, and 298 from both queries. As we were interested in how the use of 148	

DOMs has changed through time, we divided all articles across four-year-long strata 149	

spanning 2004-2007, 2008-2011, 2012-2015, 2016-2019, and 2020-2024. From each 150	
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of these strata we randomly selected 20 articles for inclusion in the review. Articles that 151	

did not meet inclusion criteria were replaced from within their own strata. 152	

As our review focuses only on applications of the dynamic multi-season occupancy 153	

model of MacKenzie et al. (2003) and its extensions, we included articles that fit a 154	

model meeting the following criteria: i) used non-simulated, field-collected, presence-155	

absence data; ii) relied on data from multiple sites that could exist in at least two 156	

states, including an occupied and unoccupied state; iii) had multiple seasons, between 157	

which sites could change states conditional on the prior season’s occupancy state and 158	

transition probabilities such as colonisation and extinction; and iv) contained at least 159	

one parameter describing the detection process. 160	

For each article we recorded key details on authorship, research objectives, study taxa 161	

and system, survey methods, and modelling approach. To examine the reasons why 162	

authors used DOMs, we allocated each article to one or more categories of objective 163	

based on the study’s stated aims. These categories were Estimating trends, where 164	

authors expressed interest in estimates of site occupancy, colonisation, extinction, or 165	

detection probabilities; Testing relationships, where authors explored specific 166	

predefined hypotheses of relationships between covariates and model parameters; 167	

Identifying drivers, where authors attempted to find which covariates influence model 168	

parameters; Predicting temporally, where authors predicted site occupancy under 169	

future conditions, Predicting spatially, where authors predicted site occupancy to 170	

unsurveyed locations, and Developing methods, where authors introduced, tested, or 171	

demonstrated aspects of dynamic occupancy models. 172	
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We recorded details on the type of organisms (bird, mammal, etc.) modelled in each 173	

article, and how multiple species were modelled where applicable. Taxa were denoted 174	

as threatened either when they are listed on the IUCN Red List of Species or when 175	

authors indicated that they are threatened. This deference to authors’ representation of 176	

conservation status was to account for sub-species that lack listings or species that 177	

are of more local concern. Study locality and size was documented, the size of the 178	

study area being defined as the intended area of inference containing all sites — this 179	

was measured to the order of magnitude to account for uncertainty in reporting. 180	

We were particularly interested in how authors navigated the modelling process, from 181	

covariate selection through model evaluation. To this end, we recorded all covariates 182	

considered in each study regardless of whether they were or were not included in final 183	

models. Key traits of each covariate were recorded including their general category, 184	

whether they were directly observed or remotely sensed, whether they were static or 185	

varied between seasons, and how they were presented in the model (as a linear term, a 186	

polynomial term, or as part of an interaction with another covariate (James et al., 187	

2021)). Model selection procedures were also sorted into non-exclusive categories 188	

including A priori, where only one model was considered; candidate suite, where a 189	

predefined set of models was considered; sequential, where covariates were selected 190	

parameter-by-parameter (e.g., fitting detection first, followed by initial occupancy and 191	

so on); and simple precursors, where selection was preceded by another simpler 192	

model implementation. Finally, for each model we documented whether goodness-of-193	

fit was tested and reported, and whether model performance was assessed by 194	
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validation with either in or out-of-sample data. For the full spreadsheet of data 195	

collected and further details on categorisation, see Supplementary material.	196	

Applications of dynamic occupancy models 197	

A total of 92 articles were included in this review. Based on the acceptance rates within 198	

each stratum and the quantity of unprocessed articles, an estimated 496 of the 1152 199	

unreviewed articles in our sample would have met inclusion criteria, with an apparent 200	

increase over time in the number of articles fitting DOMs (Figure 3).  201	
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Figure 3: Bars indicate the 92 articles included in our review as a proportion of the 

estimated number of published articles fitting DOMs, based on the qualification rate 

for articles in each stratum. The proportion of articles included from each stratum 

were: 12% from 2005-2008; 24% from 2008-2011; 42% from 2012-2015; 35% from 

2016-2019; and 57% from 2020-2023. 
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The articles included in our review demonstrate considerable diversity in their scope, 202	

scale, and objectives. A selection of attributes of these studies is presented in Figure 4, 203	

and throughout this section we provide notable examples of DOMs to highlight how 204	

this variation appears in practice. Study systems included in our sample are globally 205	

distributed: while a majority of articles use data collected in the United States of 206	

America, representatives are included from all geographic realms and a broad diversity 207	

of ecosystems (Figure 4 A). A particularly notable aspect of these study areas is their 208	

variation in size, which ranges from the hyper-local to the continental scale (Figure 4 209	

B). The smallest study locality included in our sample studied insect occurrence in a 210	

rainforest plot less than one square kilometre, while the largest analysis modelled avian 211	

range shifts across the entire eastern half of the United States (Basset et al., 2023; 212	

Clement et al., 2019). 213	

The temporal scale of studies shows similar variability. The time elapsed between the 214	

first and last survey ranged from under one month to over forty years, with a median 215	

duration of 8 years (Figure 4 F). More meaningful, however, is the period of the primary 216	

occasion, as this represents the temporal scale at which changes in occupancy are 217	

assumed to occur. Most applications describe primary occasions as occurring 218	

annually, although some studies divide years into multiple primary occasions to 219	

describe seasonal variation in occupancy. In the most extreme cases the primary 220	

occasion may be as brief as a week and capture much finer scale changes in 221	

occupancy. These shortened-season occupancy models are most common with 222	

camera trapping or acoustic monitoring data, which can be arbitrarily divided into 223	
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primary and secondary sampling occasions. One example of this is Kleiven et al. 224	

(2020)’s study of rodent and mustelid interactions using camera trap data, which used 225	

primary occasions less than one week in length. On the other end of the spectrum, 226	

some studies modelled primary occasions that were decades apart and represented 227	

generational changes in occupancy – this is illustrated in Couturier et al. (2023)’s study 228	

on long-term otter recovery in France which used data from two primary occasions, 229	

one in 2003 and one in 2012.   230	

DOMs have been used to study a variety of species, although most studies have 231	

focused on vertebrate taxa (Figure 4 C). The DOM has been less frequently applied to 232	

non-animal organisms, perhaps due to a reduced emphasis on imperfect detection 233	

outside of the wildlife modelling community. However, there are exceptions, including 234	

DOMs used to model decadal changes in lichen occupancy or the spread of the prion 235	

chronic wasting disease (Belinchón et al., 2017; Cook et al., 2022). The application to 236	

disease dynamics is not unique, and the DOM has been touted as a valuable tool for 237	

such applications (Bailey et al., 2014). Multiple authors have used DOMs to model 238	

mosquito dynamics, a strongly applied use-case with important human health 239	

implications (Mores et al., 2020; Padilla-Torres et al., 2013). While the vast majority of 240	

studies model terrestrial species, there have been a limited number of DOMs fit to data 241	

from aquatic systems, including invasive salmon, Great Plains stream fishes, and 242	

whales (Falke et al., 2012; Fisher et al., 2014; Pendleton et al., 2022). 243	

Where most studies in our sample fit a model to a single species, 44% fit models to 244	

multiple species either as independent models (34%) or explicitly multi-species 245	
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implementations (12%; some articles attempted multiple approaches). The multi-246	

species models used various extensions of the conventional DOM, including 247	

hierarchical models that fit hundreds of species in a single implementation with 248	

species-level effects (Dorazio et al., 2010; Hendershot et al., 2020), as well as explicit 249	

interaction models that estimate conditional occupancy, colonisation, extinction, and 250	

detection probabilities (Fidino et al., 2019; Lesmeister et al., 2015). Rather than using 251	

multi-species models, several other authors fit large numbers of independent models 252	

to different species (Otto & Roloff, 2012; Peach et al., 2019). Working with large 253	

numbers of taxa does raise additional challenges, as the degree to which models are 254	

tailored to the taxa is likely to be limited for the sake of practicality. 255	
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Figure 4: A) Locations of the study areas where data was collected for DOMs. B) 

Spatial extent of study areas in square kilometres, defined as the area of inference 

within all surveyed points were contained. C) Number of articles that fit models to 
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each category of taxa. Taxa were considered ‘threatened’ if they are listed on the 

IUCN Red List, or if authors indicate that they are otherwise threatened. D) 

Explicitly multi-species models include both hierarchical, jointly estimated models 

as well as more directly interactive models. Some studies fit both independent and 

multi-species models, such that these values do not sum to our sample size. E) 

Survey methods used to collect presence/absence data. Note that some articles 

employed multiple detection methods, and that some methods (e.g., citizen bird 

counts) may fall into multiple categories. F) Quantity of sites where surveys were 

conducted and duration of studies. Study duration is defined as the time elapsed 

between the first and last survey. Yellow lines indicate median values for site 

quantity (100 sites) and study duration (8.2 years). 
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Studies collected the presence/absence data required for DOMs from a breadth of 256	

different sources and detection methods (Figure 4 E). In our sample, 79% of studies 257	

used human observational data, 11% used live-trapping methods, and 14% used 258	

detections from camera traps. 10% of articles also use citizen-science data to build 259	

detection histories, including both long-term volunteer monitoring programs as well as 260	

more ad-hoc surveys of local knowledge (Zuckerberg 2011; Warrier 2020). Using 261	

citizen-science data may require additional consideration of assumptions (particularly 262	

false-positives), as discussed in greater detail by Cruickshank et al. (2019). Within 263	

these broad categories of detection method there is additional diversity, with several 264	

studies using unique survey methods to determine the presence of a species at a 265	

location. For example, in the only application of a DOM for a marine species in our 266	

sample, Pendleton et al. (2022) used aerial transects broken up into grid cells to 267	

observe whale occupancy; in another unique implementation, Marescot et al. (2020) fit 268	

a unique ’multi-species’ model treating poachers as a taxon and using ranger reports 269	

to create detection histories. 270	

Notably, many of these studies use data that were not originally collected in a robust 271	

design framework for occupancy modelling. In these articles, authors formatted their 272	

data into a hierarchical format post-hoc using a variety of methods. Some defined 273	

primary seasons as a discrete time interval, treating all surveys occurring within the 274	

season as secondary occasions; others defined sites as larger grid cells, treating any 275	

survey falling within the grid as a spatial replicate. These manipulations permit authors 276	
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to use data that predate the DOM, as in a study using surveys conducted by Joseph 277	

Grinnell in 1908 to model century-long changes in occupancy (Riddell et al., 2021). 278	

Additionally, not all articles rely on a single source of detection data; some integrate 279	

multiple sources of data to maximise sample size. In one example, Warrier et al. (2020) 280	

modelled tiger occupancy in India using three sources of detections: camera traps, 281	

sign surveys, and citizen science reports. These integrated detection method models 282	

do require additional care and consideration; users must ensure that different detection 283	

methods represent comparable spatial and temporal scales, and that any variation in 284	

perceptibility between detection methods is accounted for (Pitman et al., 2017). A 285	

special case exists when different detection methods are used where one has the 286	

potential for false positive detections; e.g., where less-than-certain citizen science 287	

detections are combined with certain detections from expert field surveys. In this 288	

context, the “certain” detections are used to help account for false-positive detection 289	

probability, as in D. Miller et al. (2011)’s study integrating GPS collars and hunter 290	

reports to estimate wolf occupancy in Montana. 291	

The flexibility in the data used for DOMs, including the model structure and the scale of 292	

observations, is not amenable to a one-size-fits-all definition of occupancy. Users of 293	

DOMs must carefully consider precisely what they are modelling and address 294	

questions on the scale represented by their model (Chave, 2013). The interpretation of 295	

what ‘occupancy’ means and the factors which drive it may differ depending on the 296	

scale of what is considered a site, and how that relates to the ecology of a species. 297	

This is also true for the temporal scale of occupancy: whether a site is occupied within 298	
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a week or within a year leads to vastly different conceptions of occupancy. This idea is 299	

particularly relevant in cases where the selection of season length is to some extent 300	

arbitrary, as with camera-trap or bioacoustic data where continuous recordings can be 301	

broken down into distinct ‘seasons’ of any length. The DOM may be readily applied to 302	

these data types, and the proliferation of autonomous survey techniques provides 303	

novel opportunities for analyses that are simply not possible with human-collected data 304	

(Balantic & Donovan, 2019). This is already apparent in recent camera trap studies that 305	

collapsed their detections into seasons of just a few days, far shorter than is realistic 306	

with conventional survey methods (Kleiven et al., 2020; Mölle et al., 2022). While these 307	

studies provide interesting insights of occupancy at extremely fine temporal scale, 308	

further research could help provide general guidance on determining appropriate 309	

season and survey durations with respect to research questions and the closure 310	

assumption.	311	

Practices in implementation and model building 312	

Building dynamic occupancy models can be a challenging process, requiring careful 313	

consideration of which environmental factors to incorporate to adequately represent 314	

occupancy and detection in complex natural systems. In this review, we recorded all 315	

covariates considered for each model in our sample, including those not used in final 316	

models. These are summarised in a taxonomy presented in Table 1, which states the 317	

proportion of studies that considered each type of covariate in their models, the means 318	

by which that covariate data was collected, and how covariates responses were 319	
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represented in DOMs. We further delineate their use in the model by classifying 320	

covariates into two groups: environmental covariates, representing plausible ecological 321	

correlates of parameters; and structural covariates, representing aspects of model 322	

form and observation functionally distinct from the environment. Our findings indicate 323	

that DOM users have incorporated a wide diversity of covariates in their models — 324	

while the most common varieties of covariates include aspects of habitat and land 325	

cover, a range of other unique factors were considered by authors in our sample. Many 326	

models also incorporate covariates representing aspects of site geometry and 327	

connectivity (35% of studies). Often these are included as simple covariates, as in 328	

Duggan et al. (2011)’s models using landscape connectivity metrics as covariates on 329	

colonisation and extinction. Alternatively, more complex parameterisations explicitly 330	

model colonisation or extinction as a spatial process, blending attributes of DOMs and 331	

stochastic patch occupancy models (Broms et al., 2016; Risk et al., 2011). Several 332	

studies also include biotic interactions with other species as covariates, particularly 333	

those focused on taxa threatened by invasive species. This is observed frequently in 334	

the Spotted owl literature, where Barred Owl presence is often considered as a 335	

covariate driving Spotted owl occupancy dynamics (Olson et al., 2005; Sovern et al., 336	

2014; Dugger et al., 2016). The use of these types of covariates effectively incorporates 337	

species interactions in DOMs without requiring the use of more complex explicitly 338	

multi-species models.  339	
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Table 1: All covariates considered for inclusion in a study were classified into mutually 

exclusive categories. We calculate the percentage of studies that include at least one 

covariate of a given category on any parameter, Initial Occupancy (ψ1), Occupancy 

(ψ), Colonisation (γ), Extinction(ε), and Detection (ρ). We also present the average 

percentage of covariates in a study that are dynamic (varying through seasons) and 

directly observed for each category, as well as the percentage of studies that model 

each category of covariate with a non-linear relationship or as part of an interaction 

with another covariate. 
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Covariate data for studies in our sample was either collected directly by researchers 340	

(an average of 30% of environmental covariates per study), or derived from pre-341	

existing remotely sensed datasets (70% of environmental covariates); this of course 342	

varies depending on the category of covariate (Table 1). Directly collected data can 343	

often represent finer-scale factors like prey species occurrence or details of habitat 344	

structure, which can be difficult to measure remotely but can often be more proximal 345	

drivers of occupancy. These species-specific covariates do come with trade-offs, as 346	

they can be expensive to collect and often preclude projection to locations where 347	

these data are unavailable. For studies interested in making such projections, 348	

remotely-sensed covariates are generally more feasible despite their generally more 349	

distal nature (Austin, 2002). An average of 43% percent of environmental factors and 350	

94% of structural factors included in reviewed studies were dynamic covariates that 351	

varied through time — this again varied with the category of covariate in question, with 352	

terms relating to climate or weather most frequently dynamic and topographic 353	

covariates universally static (Table 1). 354	

In the standard DOM, covariates for each parameter are most commonly incorporated 355	

via a logistic regression (i.e., a linear regression through a logit link function) 356	

(MacKenzie et al., 2017). Statistical relationships between model parameters and 357	

covariates (e.g., between initial occupancy and its environmental covariates) are 358	

represented as linear terms unless more complexity is specified. Of course, many 359	

ecological relationships are non-linear and require more complex forms to be 360	

realistically represented in a model. Austin (2007) discusses the importance of 361	
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modelling ecologically realistic responses to covariates, advocating for careful 362	

consideration of the most appropriate statistical form for hypothesised relationships. 363	

Non-linear responses can be easily accommodated in DOMs by using polynomial 364	

transformations and interactions between covariates. Despite this, in our sample only 365	

35% of articles tested one or more non-linear responses to an environmental covariate, 366	

with the majority of studies representing all covariates as simple linear terms (Table 1). 367	

Interactions between covariates were similarly rare, with only 24% of studies 368	

considering at least one interaction between terms (Table 1). The relatively low 369	

emphasis on more complex non-linear responses contrasts with other popular 370	

methods for modelling species occupancy. Many common approaches for SDMs, such 371	

as MAXENT and Boosted Regression Trees, permit considerable flexibility in the shape 372	

of their covariate response curves and use of interactions where supported by the data 373	

(Elith et al., 2008; Merow et al., 2013). This emphasis on more complex responses in 374	

SDMs may be due to their frequent application across relatively large geographic 375	

extents that might encompass the full species niche, where environmental relationships 376	

may be expected to be non-linear. However, as previously indicated DOMs have also 377	

been implemented across large spatial extents where the same assumptions should 378	

exist and similar responses might be expected. Similar concerns exist for the relatively 379	

low level of covariate interactions, given that these relationships are commonly 380	

expected based on ecological theory and that their exclusion can negatively impact 381	

model performance (Guisan et al., 2006). 382	
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In addition to the types of covariates considered for modelling we also recorded the 383	

size of the candidate covariate pool in each reviewed study, tallying the number of 384	

environmental and structural covariates that were available for use on each parameter ( 385	

Figure 5). This is an area of considerable variation in modelling practices — the number 386	

of covariates considered for each parameter ranges from 0 (effectively modelling the 387	

parameter as a constant) to over 40 candidates on a single parameter.  388	
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Figure 5: The number of covariates considered for each parameter across all studies 

in our sample. ‘Occupancy’ given here represents the alternative parameterisation of 

the DOM that jointly estimates Occupancy for every season, Colonisation, and 

Detection, where Extinction is a derived parameter; this differs from the more popular 

Initial occupancy/Colonisation/Extinction/Detection parameterisation. Here, a 

‘covariate’ is defined as each distinct covariate considered for inclusion. Linear and 

quadratic representations of the same covariate are counted as one covariate. 



	 33	

The median number of covariates varies strongly by parameter, with transition 389	

probabilities (colonisation and extinction) more likely to consider a broader range of 390	

environmental covariates compared to initial occupancy and detection. The lack of any 391	

covariates considered for initial occupancy in many cases (38% of studies) is 392	

particularly notable — unless a study is conducted at very small extents or study sites 393	

are truly uniform in their suitability, one would expect some amount of non-random 394	

variation in occupancy probability across any study system that will not be captured 395	

when representing initial occupancy as a constant. Omission of the factors that drive 396	

occupancy is a known source of bias in static SDMs (Barry & Elith, 2006), which the 397	

initial occupancy component of the DOM conceptually resembles. Furthermore, any 398	

bias in occupancy estimation in the first time-step will perpetuate into future seasons 399	

due to the DOM’s Markovian nature, with implications for the reliability of model 400	

outputs. Detection probability is also typically represented with low numbers of 401	

environmental covariates (Table 1). Recall that detectability is dependent on not only 402	

observation factors, but also by drivers of abundance and species use; the low number 403	

of candidate covariates here relative to colonisation and extinction raises additional 404	

questions on whether this variation is always appropriately captured in models. 405	

To this point in our review, we have discussed only the covariates that were considered 406	

for inclusion in DOMs without regard for which terms were actually included in the final 407	

models used by authors to make their inference. Identifying the ‘best’ model from a 408	

range of possible candidates can be a challenging process, especially for hierarchical 409	

models like DOMs (Doherty et al., 2012). Consider that the quantity of candidate 410	
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models involving up to n covariates on p parameters can be given by (2&)': where a 411	

simple linear regression may have up to 64 possible combinations of 6 covariates, a 4-412	

parameter dynamic occupancy model would have 16 million combinations of these 413	

same covariates. This explosion of candidate models generally precludes exhaustive 414	

comparisons of possible models and requires some reduction of the models tested. 415	

Models in our sample include both Frequentist (n = 76) and Bayesian (n = 24) 416	

frameworks that differ considerably in their manner of implementation. A summary of 417	

modelling practices in DOMs is given in Table 2. Note that some articles in our sample 418	

included multiple distinct modelling workflows, resulting in a higher total number of 419	

models than articles.  420	
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Table 2: Modelling practices in dynamic occupancy models, subset by frequentist or 

Bayesian implementations. The median covariate count presented here represents 

the median quantity of covariates considered for each model parameter across the 

studies in our review. The model selection methods represented in this table are non-

exclusive and some articles employ multiple approaches. 2 models included in the 

‘Overall’ column are neural network based and fall into neither the Frequentist or 

Bayesian categories. 
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The largest differences between the frequentist and Bayesian models in our sample lie 421	

in their approaches to model selection. Where 95% of frequentist models perform 422	

some manner of model selection to determine covariate inclusions for their models, 423	

only 33% of Bayesian models do so, with the majority instead fitting a single model 424	

defined a priori. Methods used for model selection vary considerably both within and 425	

between the two modelling frameworks (Table 2). For frequentist models, the most 426	

popular and conventional approach to model selection (45% of models) involves the 427	

creation of a fully pre-defined model set containing some number of hypothesis 428	

candidate models, where the best model is selected according to the lowest AIC 429	

score. The next most popular method in frequentist studies is to use procedural model 430	

selection methods (37% of models), where the structure for each model parameter is fit 431	

in sequence. For example, this protocol might first identify the best structure for 432	

detection probability while holding the other parameters constant, before moving on to 433	

initial occupancy and so on until all parameters are fixed. The remainder of frequentist 434	

studies (8%) use a variety of approaches, such as fitting simpler models like single 435	

season occupancy models to identify the most informative terms to use in a DOM. 436	

Across all frequentist implementations, 47% of articles summarise a final subset of 437	

models using multi-model inference and model-averaging with AIC weights (Burnham 438	

& Anderson, 2004). 439	

Those Bayesian models which do perform model selection take various approaches, 440	

with largely idiosyncratic methods across these studies. While direct comparison of 441	

model fit is rare in Bayesian methods, it is feasible — Urban et al. (2023) identifies the 442	
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best model from a Bayesian candidate set using the predictive performance on both in 443	

and out-of-sample validation data. Another approach used by Cook et al. (2022) fit a 444	

global model including all covariates before removing each covariate where the 95% 445	

credible interval of the posterior distribution overlapped zero and refitting the model. 446	

Ahumada et al. (2013) takes a hybrid approach, in which model selection is conducted 447	

by a procedural method in the frequentist framework before refitting the best structure 448	

as a Bayesian model. 449	

Limited research has been conducted on the advantages of different methods for 450	

covariate selection in DOMs, and there is unlikely to be a one-size-fits-all approach 451	

that will be appropriate for all possible use-cases. However, it is important to consider 452	

the implications of the different model selection approaches in common usage, and 453	

research from the SDM literature highlights how covariate selection can influence our 454	

interpretation of model outputs (Brodie et al., 2020). Within the occupancy modelling 455	

literature, Stewart et al. (2023)’s article on covariate selection in single-season 456	

occupancy models discusses important attributes of the information-criteria 457	

approaches widely used in frequentist models in our review, noting that these 458	

approaches can lead to inaccurate coefficient estimates that may influence model 459	

inference. Morin et al. (2020)’s work raises other concerns on procedural model 460	

selection methods, demonstrating how the fine details of modelling protocols can 461	

determine whether the best-fitting possible model is identified and which covariates 462	

appear in final models. The literature on performance of Bayesian model selection 463	

methods is more sparse, although Hooten & Hobbs (2015)’s guide to Bayesian model 464	
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selection in ecology is a valuable resource for possible methods of fitting those 465	

models. 466	

Regardless of covariate selection protocol, ‘the selection of a best model does not 467	

guarantee the selection of a good model’ (MacKenzie & Bailey, 2004). Assessment of 468	

the performance of DOMs generally requires additional steps, and the best ways to 469	

achieve this are not yet clear. There is no broadly-accepted goodness-of-fit test for 470	

dynamic occupancy models, although MacKenzie & Bailey (2004)’s approach for 471	

single-season occupancy models using a parametric bootstrap that can been 472	

extended to DOMs; this test is implemented in the AICcModAvg and unmarked R 473	

packages (Mazerolle 2016; Kéry and Chandler, 2016). Kéry & Royle (2021) describe the 474	

test and present an alternative based on separately assessing fit to static and dynamic 475	

components of the model. In Bayesian implementations, posterior predictive checks 476	

offer means to assess model fit (Gelman, 2014). Broms et al. (2016) discusses further 477	

possibilities for model evaluation in the Bayesian context focusing on single-season 478	

multi-species occupancy models, and extensions of their approach may also be 479	

applicable to the DOM. As with other hierarchical models, model evaluation for DOMs 480	

can be difficult and somewhat uncertain compared to other model types, as the 481	

primary response variable of interest (species occupancy) is a latent variable where the 482	

true state is generally not known. Predictive performance evaluation is thus typically 483	

based on observed occupancy data, where a DOM is used to simulate detection 484	

histories to be compared with field survey results. 485	
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Perhaps as a result of these difficulties, assessment of model fit and model 486	

performance was rare amongst the articles in our sample. Only 18% of studies tested 487	

for goodness-of-fit, and just 7% calculated predictive performance. These rates are 488	

considerably lower than those reported for SDMs; for which closer to 50% of articles 489	

were found to test both fit and performances (Araújo et al., 2019). 490	

Modelling objectives 491	

Studies in our sample were classified according to their objectives as stated by authors 492	

to explore the use-cases that the DOM has been applied to (Figure 6). These objective 493	

categories are non-exclusive, with many studies falling into multiple categories. Across 494	

the study period the DOM has been frequently employed to estimate trends in species 495	

occupancy, to explore relationships between environmental factors and occupancy, 496	

and, increasingly often, to make predictions of occupancy spatially to unsurveyed 497	

locations or temporally to hypothetical future conditions. Within each of these broad 498	

categories lies even more variation in objectives, emphasising the DOM’s flexibility as a 499	

tool for making ecological inference in diverse contexts. 500	

36% of articles used the DOM to monitor trends in occupancy state through time 501	

(“Estimate trends” in Figure 6 A), both for single species of high conservation interest 502	

and for broader community assemblages of species (Ahumada et al., 2013; Scott & 503	

Rissler, 2015). These studies offer valuable insights on the state of species across 504	

landscapes and through time, demonstrating the DOM’s suitability for monitoring 505	

oriented projects; including those where multiple species need to be assessed at once. 506	
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Other articles were more focused on examining the factors that influence species 507	

occupancy, either testing pre-specified hypothetical relationships (44% of articles) or 508	

taking a broader tack to identify drivers of occupancy without preconception (35%). 509	

The distinction between the two is important, as it guides which covariates may be 510	

considered and how model selection may be used to fit models. Many of these studies 511	

target core conservation priorities for their focal species, like Olson et al. (2005)’s early 512	

DOM assessing the influence of barred owls on threatened spotted owl. Explorations 513	

of these pivotal relationships are important for guiding management action, and may 514	

also be used to test the effectiveness of these actions (K. E. Miller & Brown, 2023). In 515	

scenarios where less is known about species habitat preference, DOMs may be used 516	

to examine the influence of a wider variety of factors as in Huber et al. (2017)’s study 517	

testing the relative influence of dozens of habitat covariates on Wood warbler 518	

occupancy. In recent years, increasing numbers of articles have used DOMs to 519	

generate predictions of species occupancy; this is a use-case for which DOMs show 520	

considerable promise (Briscoe et al., 2021; Kéry et al., 2013). These predictions often 521	

have strong utility for conservation management. For example, McGowan et al. (2020) 522	

projects future occupancy for wetland birds under alternative management scenarios, 523	

and Pollentier et al. (2021) generates distribution maps resembling those made with 524	

SDMs.  525	
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Figure 6: A) Proportion of articles in each year-strata and across all years that match 

each of six non-exclusive objective categories. B) Quantity of covariates considered 

per parameter for models that pursued each objective. 
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Study objectives strongly inform approaches to model building, particularly with 526	

respect to covariate selection. Figure 6 B presents the quantity of covariates 527	

considered for models applied to each of our objective categories, with apparent 528	

differences between objectives. Not unexpectedly, articles that focused on describing 529	

new methods for DOMs had fewer covariates than those studies focused on more 530	

applied objectives. However, differences persist between those articles observing 531	

trends, identifying trends in occupancy, testing relationships, and making predictions. 532	

Synthesis and key priorities 533	

Approaches to building any type of model will necessarily depend on the possibilities 534	

of the data at hand and on the priorities of the model-builder. This precludes any 535	

prescription of the ‘best’ way to build a model, however, there are still important 536	

discussions to be had on decisions made in the modelling process. One aspect of 537	

fitting DOMs meriting broader discussion centres on ‘model complexity,’ and how 538	

much must be incorporated into models to reliably model species occupancy under 539	

different contexts and use cases. Complexity is a broad term encompassing many 540	

aspects of a model (Merow et al., 2014), and opinions on simplicity versus complexity 541	

in ecological models are diverse. Where some advocate for the simplest possible 542	

models, arguing that they are most generalisable; others insist that overly-simple 543	

models cannot adequately represent the most important drivers in a system (Evans et 544	

al., 2013; Lonergan, 2014). By their nature the DOM is somewhat more complex than 545	

simpler models for studying occupancy due to their hierarchical structure, which is 546	
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necessary to control for detectability and to capture occupancy dynamics. Within this 547	

structure, however, further complexity is to some degree up to the modeller: one can 548	

choose how many covariates to consider for inclusion on the various parameters, and 549	

how to represent the nature of the relationship between those covariates and 550	

parameters. Research from SDMs indicates that allowing for more complex 551	

relationships can improve model performance in predicting occupancy (Valavi et al., 552	

2023), an increasingly popular use-case for the DOM. Within the DOM framework, 553	

there are promising developments on that front: Joseph (2020) presents a novel neural-554	

network occupancy model that allows for exponentially higher levels of complexity and 555	

may offer improved performance for prediction-oriented studies. 556	

Covariate selection seems to be a particularly important area for further investigations 557	

into building DOMs. In our review, we see little consensus around which approaches 558	

are most applicable for any given use case, and existing work on covariate selection in 559	

DOMs raises concerns on whether common methods always produce the most 560	

suitable models (Morin et al., 2020; Stewart et al., 2023). This is true for both 561	

frequentist and Bayesian implementations, and comparative research on covariate 562	

selection under both frameworks may help to inform model users on which method is 563	

most appropriate for their use-cases. In a similar vein, the low number of articles in our 564	

review that conducted model evaluation or assessed model fit raises different 565	

questions. While the appropriate method of model evaluation may depend on data 566	

availability and research objectives, assessing models by some method is generally 567	

important to understand how reliable model outputs may be (Araújo et al., 2005; 568	
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Guisan & Thuiller, 2005). Existing uncertainties around whether current methods are 569	

suitable for the task likely discourage users from calculating these metrics, and further 570	

research is needed to establish trusted practices for assessing the quality of DOMs. 571	

These priorities are particularly important given the frequent applied objectives of DOM 572	

users, tackling challenges that include assessing critically endangered species, guiding 573	

public health management of disease vectors, and tracking rapidly developing 574	

biological invasions (Carvalho et al., 2023; Moreira et al., 2016; Wood et al., 2020). The 575	

DOM is well suited to these situations, and it is to be expected that as these types of 576	

applications are more commonly attempted understanding the sensitivity of model 577	

outputs to decisions made in the model fitting process becomes increasingly 578	

important. In the two decades since the publication of MacKenzie et al. (2003) the 579	

dynamic occupancy model has become a widely used tool for ecological inference, 580	

with numerous extensions to the modelling framework further broadening the scope of 581	

questions and use-cases for which it may be applied. Given their increasing popularity, 582	

further research and guidelines around issues of model building may help to make 583	

DOMs more accessible to newcomers and support confidence in model interpretation. 584	

Parallels to existing work in the SDM literature on guidelines for reporting and 585	

modelling standards could be valuable contributions in achieving these aims and 586	

provide useful examples in developing methods and guidelines specifically focused on 587	

DOMs (Araújo et al., 2019; Zurell et al., 2020). 588	
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