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Abstract

The Amazon Basin’s agricultural frontiers — many of which overlap with protected areas (PAs) —
experience deforestation for agriculture and pasture. Responses to PA deforestation require
understanding the region-wide and PA-specific socio-environmental factors that increase forest
conversion. Standard, quantitative approaches to land-use change (LUC) modeling may omit
some factors, constraining understandings of and responses to deforestation. Dominant
discourses about deforestation — promoted by government and conservation organizations — also
shape deforestation responses. We integrated quantitative and qualitative analysis of
deforestation dynamics into LUC models of three Amazonian PA complexes (Brazil’s Jamanxim
National Forest, Bolivia’s Ambor6 and Carrasco National Parks, and Peru’s Tambopata National
Reserve and Bahuaja-Sonene National Park) to understand 1) the ability of conservation
discourses to inform deforestation models and 2) region-wide and site-level factors related to
deforestation. Our integrative methodology yielded better model performance than standard LUC
modeling. From 2008-2018, forests on steeper slopes with higher population densities were less
likely to convert, while forests surrounded by non-forest and closer to agriculture and fires had
increased deforestation. Legal threats to Jamanxim’s status increased deforestation likelihood,
while in Ambor6 and Carrasco, payments for ecosystem services projects were associated with
decreased deforestation. While dominant discourses sometimes aligned with LUC models’
results (e.g., fires and increased deforestation), some factors commonly cited in deforestation
discourses were not supported (e.g., REDD+ projects). Our results can inform forest
management in our study sites and Amazon-wide, and emphasize the need for integrative
approaches to operationalizing discourses in conservation science and practice, as the framing of
deforestation shapes management responses.
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1. Introduction

Forest conversion to agriculture occurs along agricultural frontiers throughout the Amazon
Basin, with consequences for Indigenous communities, biodiversity, and ecosystem services
(Ochoa-Quintero et al., 2015; Rorato et al., 2020; Xu et al., 2022). Agricultural frontiers are
areas with active land use conversion for agriculture or livestock production (Browder et al.,
2008; Schielein and Borner, 2018). While some policy interventions have successfully reduced
forest clearing in the Amazon (Hanggli et al., 2023; Silva Junior et al., 2021), increasingly in the
Amazon and around the world, areas of current and potential agricultural expansion overlap with
areas of conservation priority, including protected areas (Dobrovolski et al., 2011; Hoang et al.,
2023).

Protected areas (PAs) are a leading tool for reducing forest loss, and by 2022, they covered 25%
of the Amazon region (RAISG, 2022), with an additional ~16% of land area in the nine countries
that comprise the Amazon under some form of area-based conservation (Qin et al., 2024). These
PAs have had varying impacts on deforestation. Amazonian PAs are diverse in their governance
and the degree to which extractive activities are permitted, with consequences for forest cover
(Jusys, 2018; Pfaff et al., 2015b, 2015a; Schleicher et al., 2017). Notably, despite the reductions
in deforestation within PAs relative to unprotected forests in the Amazon, forest loss continues
even within PA boundaries (Paiva et al., 2020), a trend mirrored worldwide (Wolf et al., 2021).

The precise land-use change pathways of agricultural frontiers vary with local environmental,
socioeconomic, and policy contexts (Curtis et al., 2018; Hanggli et al., 2023). To understand
deforestation dynamics in a particular place therefore requires understanding the spatial variation
in socio-environmental drivers of forest conversion and variation in the strength of their effect on
land use and land cover (Angelsen, 2007; Meyfroidt, 2016). Previous studies have compared
deforestation trends and drivers, often using countries as the scale of analysis (Austin et al.,
2017; Hénggli et al., 2023) or comparing individual sites within a country (Rosa et al., 2015).
Across the Amazon, these analyses have identified common drivers of deforestation, such as
proximity to roads or navigable rivers (Hanggli et al., 2023; Soares-Filho et al., 2006). Other
factors have emerged at smaller spatial scales, such as oil palm expansion in Peru (Glinskis and
Gutiérrez-Vélez, 2019) and oil exploration in the western Amazon (Finer et al., 2008). Despite
regional- and national-level commonalities, the specific context of each individual PA also plays
a role in determining the factors that contribute to land-use change within and around its
boundaries, highlighting the importance of site-level land-use change analyses (Hanggli et al.,
2023). Understanding the context-specific factors driving deforestation is important because it
dictates effective solutions.

We use a mixed methods approach to compare factors related to forest conversion to agriculture
in three case study sites across the Amazon Basin. While standard approaches to land-use change
models typically draw on literature review and contextual, expert knowledge from land system
science and conservation science to identify model variables, we integrate varied, context-
specific factors into our land-use change models through an iterative approach that draws on both
qualitative discourse analysis and literature review to identify appropriate model variables



(Kinnebrew et al., 2020). Previous work demonstrated that models that integrate variables
derived through qualitative research methods with quantitative approaches have improved ability
to predict deforestation in a PA in Brazil (Siegel et al., 2022). Here, we address the following
research questions: 1) Do integrated methods better predict deforestation across multiple
protected area complexes in the Amazon Basin, relative to land-use change models that do not
integrate qualitative research approaches? 2) If so, what do integrative land-use change models
tell us about the relative importance of different factors related to forest conversion to agriculture
across protected area complexes with different geographic, socioeconomic, and political
contexts? We thus aim to both inform deforestation modeling and to improve our understanding
of deforestation dynamics in Amazonian PAs.

2. Methods

2.1. Study sites

We modeled land-use change in three Amazonian PA complexes: Brazil’s Jamanxim National
Forest, Bolivia’s Ambor6 and Carrasco National Parks, and Peru’s Tambopata National Reserve
and Bahuaja-Sonene National Park (Figure 1a). The Jamanxim National Forest case study
consists of a single PA, while the other sites comprise two or more adjacent PAs (Figure 1b).
These sites have similar sizes (12,962-13,661 km?), deforestation rates ranging from less than
1% (in Tambopata and Bahuaja-Sonene) to 3.6% (Jamanxim) from 2008-2018 (Kinnebrew et al.,
2022), and varying deforestation dynamics and drivers (Killeen et al., 2007; Oliveira et al., 2007;
Pinheiro et al., 2016; van Gils and Armand Ugon, 2006).
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Figure 1. Map of the three case study sites. a) Location of the three case study sites within the
Amazon Basin (black outline). b) Detailed map of the protected area complexes comprising each
case study site, with a 20-kilometer buffer surrounding the protected area boundaries.

Jamanxim National Forest, in Para, Brazil, was established in 2006 to address deforestation
related to highway development. It has experienced deforestation through land-clearing for
ranching, agriculture, and land speculation (Arima, 2016; Fearnside, 2005, 2001). Ambor6
National Park (established in 1984), Carrasco National Park (1991), and Amboré Natural
Integrated Management Area (1995) (hereafter “Ambor6-Carrasco”) have experienced
deforestation primarily for small-scale agriculture and ranching (Killeen et al., 2008; Miiller et
al., 2012; Romero-Munoz et al., 2019). Amboré6-Carrasco also faces pressure from coca
cultivation, hydrocarbon extraction, and a proposed hydropower dam (Romero-Munoz et al.,
2019; UNODC, 2020). Tambopata National Reserve (established in 2000) and Bahuaja-Sonene
National Park (1996) are in a globally recognized biodiversity hotspot (Myers et al., 2000).



Tambopata has a buffer zone with land use restrictions along its northern border (Weisse and
Naughton-Treves, 2016). Prior to the mid-2000s, agricultural expansion drove forest loss in the
region, but informal gold mining became a major factor beginning around 2006 (Scullion et al.,
2014; Vuohelainen et al., 2012).

For all three sites, we modeled land-use change within the PAs and in 10- and 20-kilometer
buffers around the PAs, to capture land-use change dynamics directly outside the PAs (Ewers
and Rodrigues, 2008; Tesfaw et al., 2018). In the case of Tambopata-Bahuaja-Sonene, the buffer
extended over the border between Peru and Bolivia. We cropped the buffer to only include the
Peruvian portion because the sociopolitical factors identified in the discourse analysis vary by
nation (Piquer-Rodriguez et al., 2021). We modeled deforestation from 2008 to 2018, ending our
analysis before the beginning of Jair Bolsonaro’s presidency in Brazil because his administration
had a large impact on deforestation rates and conservation discourses (Barbosa et al., 2021;
Pereira et al., 2020).

2.2. Land-use change maps

Our land-use change models used published land cover maps from 2008 and 2018 for each site
(Kinnebrew et al., 2022). These maps were generated through supervised classification of cloud-
free composites using pixels from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI)
Surface Reflectance datasets with 30 m resolution, using random forests. The maps identify
forest, agricultural land and pastures, bare soil, built areas, wetlands, water, and in Ambord-
Carrasco, deserts, with an overall accuracy rate of > 90% across the case study sites (Kinnebrew
et al., 2022).

2.3. Land-use change modeling and projection

We used logistic regression to model the probability of conversion to agriculture for each
forested pixel from 2008-2018, extracting pixel values along a 300-meter grid to avoid
introducing spatial autocorrelation (Siegel et al., 2022). We performed all modeling in R (R Core
Team, 2019). Logistic regression models facilitate interpretation of coefficient estimates, making
them well suited to the dual goals of our analyses (Moulds et al., 2015). Following a
methodological framework from Siegel et al. (2022), we created models for each site using
different combinations of variables derived from an iterative process for integrating qualitative
and quantitative methods. We selected variables using 1) a review of land-use change papers in
the Amazon Basin (Appendix A), and 2) a qualitative discourse analysis of textual material
addressing the causes of and solutions to forest conversion (Siegel et al., 2022; Appendix B). The
discourse analysis identified deforestation discourses promoted by government and conservation
actors: we coded management, policy, and advocacy documents, as well as gray literature at the
park-, state-, and national-scale at each sites, using snowball sampling, legislative databases, and
non-governmental organization (NGO) websites in English, Spanish, and Portuguese (Table
B.1). We coded all documents in NVivo 12 (QSR International Pty Ltd., 2019), first using a set
of predetermined themes identified from our review of Amazon land-use change models (e.g.,
physical and economic accessibility, suitability for agriculture, and protection status), and then
adding emergent themes that arose through the coding process (e.g., land grabbing, state
governance, and legal challenges to PAs) (Table B.2).



For each site, we built four models. The first used solely variables from the review of Amazonian
land-use change literature (the LUC model), the second only used variables identified through
discourse analysis (the DA model), the third model included all variables used in the LUC model
and the DA model (the LUC and DA model), and the fourth model used the variables that
emerged as statistically significant in the LUC model and qualitatively important through the
discourse analysis (refined LUC and DA model) (Figure 2). The variables for the LUC model
were the same across all sites and related to topography, accessibility to infrastructure and
markets, agricultural suitability, human population characteristics, management status, and
neighborhood effects (the proportion of surrounding pixels that were forested) (Table 1). The
DA model variables varied across study sites, depending on the themes identified (Table 1;
Table C.1). The models for Jamanxim differ from those in Siegel et al. (2022) due to minor
changes in methodology to ensure comparability of the regression coefficients across case study
sites. We compiled and standardized data from global, regional, and local datasets (Table 1),
using the R packages sf'(version 1.0-16), raster (version 3.6-26), and lwgeom (version 0.2-14)
(Hijmans, 2019; Pebesma, 2019, 2018). To facilitate comparisons between study sites, we
centered and scaled continuous variables.

While the variables for the LUC model were spatially explicit and quantitative or categorical,
and thus straightforward to include in our models, additional steps were required to translate the
discourse analysis themes into quantitative, spatially explicit proxies. For each theme, we
attempted to develop a quantitative, spatial proxy using available data and published literature
(Mallampalli et al., 2016; Siegel et al., 2022). As an illustration, sustainable development
emerged as a theme mediating forest loss in Amboro-Carrasco and Tambopata-Bahuaja-Sonene:
we used distance to ecotourism sites and the presence of PES programs and REDD+ projects as
proxies for this theme. Some themes did not translate into spatial, quantitative proxies with
available data; we did not include these themes in our models but integrated them into our
interpretation of model results.
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Figure 2. Methods for identification of deforestation variables. Overview of the methods
used to identify and assemble the variables for the four logistic regression models created for
each site: the land-use change (LUC) model, the discourse analysis (DA) model, the LUC and
DA model, and the refined LUC and DA model.



To avoid multicollinearity, we assessed correlations between continuous variables and the
variance inflation factor (VIF), using a final suite of variables for each model that minimized
VIF and collinearity. Each model thus had a subset of the potential variables from Table 1. When
faced with highly correlated explanatory variables, we selected which variable to retain in the
model based on data quality and spatial resolution, the year of the data relative to our study
period, and the expected strength of the variable’s relationship to agricultural expansion (Siegel
et al., 2022). Table C.1 lists the variables included in each final model. Due to the strong
emphasis on unauthorized mining in the Tambopata-Bahuaja-Sonene discourses, we ran a
version of the refined LUC & DA model for Tambopata-Bahuaja-Sonene that included distance
to unauthorized mining sites as an explanatory variable, despite its collinearity with other
variables (Table C.2).

Table 1. Variables used in LUC models, including the LUC variables used for each case study
site, and the site-specific DA variables, demonstrating the translation from qualitative theme to
spatial and quantitative proxy variable.

LUC variables

Variable Source Case study sites(s)

Elevation (Farr et al., 2007) All

Slope

Aspect

Distance to roads (“Open Street Map,”
2019)

Distance to rivers (DIVA-GIS, 2019;
GeoBolivia, 2009;
OCHA, 2015a,
2015b)

Distance to mines and mining concessions (ANM, 2019;
GeoBolivia, 2005;
INGEMMET, 2021)

Distance to cities (GeoBolivia, 2013,
2002; IBGE, 2010;
INEI, 2020)

Crop suitability (Zabel et al., 2014)

Precipitation (Funk et al., 2015)

Soil moisture (O’Neill et al., 2016)

Population density (GeoBolivia, 2013;
IBGE, 2010; INEI,
n.d.)




Poverty rate

(GeoBolivia, 2015;
IBGE, 2003; INEI,
n.d.)

Neighborhood effect Derived from
Kinnebrew et al.
(2022)
Management status (UNEP-WCMC and
IUCN, 2018)
DA variables
Theme Proxy variable Source Case study site(s)

Physical accessibility,
agricultural and land-
clearing activity

Distance to

Derived from

agriculture Kinnebrew et al.
(2022)

Distance to fires (INPE, 2019)

Fire density (INPE, 2019)

All

Resource extraction

Distance to
unauthorized mines

(RAISG, 2018)

All

Ranching Head of cattle per (GeoBolivia, 2012; Jamanxim, Amboro-
km? IBGE, 2017) Carrasco
Legal challenges to Protected area (Conservation Jamanxim,
protected areas downgrading, International and Tambopata-Bahuaja-
downsizing and World Wildlife Fund, | Sonene
degazettement 2019)
(PADDD)
Infrastructure Distance to proposed | (Ministério da Jamanxim
development railroads Infraestrutura, 2019)
Distance to proposed | (ANEE, n.d.)
dams
Land tenure; Unallocated public (Imaflora and Jamanxim
settlements; land land GeolLab, 2018)
grabbing Agricultural reform | (INCRA, n.d.) Jamanxim
settlements

Land tenure

(INRA, 2016)

Amboro-Carrasco




Distance to (COFOPRI, 2020) Tambopata-Bahuaja-

Indigenous Sonene
communities
Sustainable Distance to tourism | (Google Earth Pro, Amboro-Carrasco,
development 2019; SERNAP, Tambopata-Bahuaja-
2018) Sonene
Presence of PES (Asquith, 2020) Amboro6-Carrasco
programs
Presence of REDD+ | (SERFOR, 2019) Tambopata-Bahuaja-
projects (medicinal Sonene
plants, nut
production,

reforestation plots)

Enforcement capacity | Distance to control (SERNANP, 2011) Tambopata-Bahuaja-
posts Sonene

Migration and Location to the north | Derived Amboro6-Carrasco
settlement patterns or south of the
geographic boundary
from El Torno to
Tablas Monte

2.4. Model comparisons

We assessed model performance using Akaike information criterion (AIC) and analysis-of-
variance (ANOVA) comparisons of model fit. To account for the different numbers of variables
in the models, we used McFadden’s adjusted pseudo R? to compare model performance for a
given study site (Hebbali, 2020).

We compared the location of deforestation for agriculture predicted in 2018 by each model for
each site to the actual observations of forest conversion. We used each logistic regression model
to create a landscape representing each pixel’s predicted probability of forest conversion to
agriculture in 2008. Using these predicted probability maps and Monte Carlo simulations, we
made 1000 projected landscapes in 2018 for each model, assuming no change in land cover for
pixels that were non-forest in 2008. We used the observed forest loss area for each site to
determine deforestation in the projected landscape by allocating forest loss to the pixels that
converted most frequently across the simulations, until we reached the observed quantity of
forest conversion. This resulted in a single predicted 2018 landscape for each model. The Monte
Carlo simulations allowed us to predict which pixels would convert from forest to agriculture
without relying on an arbitrary probability threshold for classifying converted vs. unconverted
pixels. Comparing these predicted landscapes with the observed 2018 landscape in each site, we
calculated quantity and allocation disagreement using the diffeR package (version 0.0-8) (Pontius
Jr. and Santacruz, 2019; Pontius and Millones, 2011).

3. Results



3.1. Comparisons of model performance
Across all sites, models that included discourse analysis-derived variables along with more

commonly used land-use change modeling variables explained the most variation in observed
forest conversion to agriculture, as measured by McFadden’s pseudo R? and AIC (Table 2). In
Jamanxim, the refined LUC & DA model explained the most variation, explaining almost twice
as much variation as the LUC model. In Ambord-Carrasco, the LUC & DA and refined LUC &
DA models explained the most variation, followed by the DA model, then the LUC model, with
less drop-off in variation explained than in Jamanxim. Per AIC, the refined LUC & DA model
outperformed the LUC & DA model, but ANOVA analysis revealed no significant difference in
performance between the two. In Tambopata-Bahuaja-Sonene, the LUC & DA model explained

the most variation, followed closely by the refined LUC & DA model. The LUC model

explained the least variation. Including distance to unauthorized mines did not yield significant
improvements in model performance for Tambopata-Bahuaja-Sonene. The Tambopata-Bahuaja-

Sonene models explained more variation than the other sites’ models.

Table 2. Model performance metrics for the four models across the three case study sites. AIC

values compare model performance within a given case study site. Allocation and quantity
disagreements are reported as proportions.

Sonene

Case study | Metric LUC model | DA model |LUC & DA | Refined LUC
model & DA model
Jamanxim AIC 82567 66822 66044 62357
McFadden’s | 24.7 39.0 39.8 43.1
pseudo R? (%)
Allocation 0 0 0 0
disagreement
Quantity 0.0256 0.0232 0.0226 0.0202
disagreement
Amboro6- AIC 62876 59373 56522 56506
Carrasco McFadden’s | 31.1 34.9 38.1 38.1
pseudo R? (%)
Allocation 0.0167 0.0001 0.0008 0.0113
disagreement
Quantity 0.0429 0.0511 0.0508 0.0456
disagreement
Tambopata- | AIC 2986 2538 2328 2331
Bahuaja- (2329%)




McFadden’s |41.2 49.9 54.4 543
pseudo R? (%) (54.4%)
Allocation 0.0011 0.0020 0.0012 0.0011
disagreement (0.00112)
Quantity 0.0049 0.0044 0.0049 0.0049
disagreement (0.00492)

a Refined LUC & DA model when distance to unauthorized mines is included as a predictor
variable

The different models’ allocation (the proportion of difference between the predicted and
observed maps caused by mismatch in the location of the pixels in each land cover class) and
quantity (the difference in the proportion of pixels in each land cover category in the predicted
and observed maps) disagreement was not as similar across the sites (Table 2). In Jamanxim, all
models had negligible allocation disagreement, and the refined LUC & DA model had the lowest
quantity disagreement. In Amboro6-Carrasco, the DA model had the lowest allocation
disagreement, but the LUC model had the lowest quantity disagreement. In Tambopata-Bahuaja-
Sonene, the DA model had the highest allocation disagreement but the lowest quantity
disagreement. The LUC model and refined LUC & DA models had the lowest allocation
disagreement. Allocation disagreement was low across all sites, with the highest allocation
disagreement in Ambord-Carrasco (mean of 0.007 across the four models). Quantity
disagreement was similarly low in Tambopata-Bahuaja-Sonene (mean of 0.005) but higher in
Jamanxim (mean of 0.023) and Ambord-Carrasco (mean of 0.048).

3.2. Site-level factors related to forest conversion to agriculture

Across Jamanxim models, forests on steeper slopes, at higher elevations, and further from
agriculture, past fire perimeters, unauthorized mining, and proposed railroads had lower
probability of converting to agriculture (Tables C.3-C.6). Forests with higher population
densities also had lower conversion probability, while sites surrounded by a higher proportion of
non-forest pixels were more likely to convert. Forested sites in the 10- and 20-km buffer outside
Jamanxim National Forest were also more likely to convert, as were sites with greater fire
densities and higher proportions of unallocated public land. Other variables’ relationships with
the likelihood of forest conversion varied across models.

In Ambord-Carrasco, forests on steeper slopes, at higher elevations, more distant from roads,
rivers, mining concessions, cities, agriculture, past fire perimeters, and unauthorized mining sites
always had lower probabilities of converting to agriculture (Tables C.3-C.6), as did forests
within parcels enrolled in PES programs. Sites with higher crop suitability and a higher
proportion of non-forest neighbors were more likely to convert, as were sites with higher fire
density and formalized land tenure. Forests in the 10- and 20-km buffer outside the PA complex



were also more likely to convert. Across the models, distance to tourism and precipitation did not
have significant relationships with forest conversion. As in Jamanxim, there were also variables
whose relationship with deforestation probability varied across the models (e.g., population
density and poverty rate).

Across the models in Tambopata-Bahuaja-Sonene, forests located further from agriculture and
fires were less likely to convert, while sites with higher crop suitability, a higher proportion of
non-forest neighboring pixels, higher fire density, and presence of protected area downgrading,
downsizing and degazettement (PADDD) proposals were more likely to convert. Distance to
roads, cities, and unauthorized mining sites did not have significant relationships with forest
conversion, nor did the locations of REDD+ projects. Other variables (e.g., elevation and
distance to rivers, tourism sites and control posts) had differing relationships with deforestation
across the models.

3.3. Cross-site comparisons

To compare factors related to forest conversion across the three sites, we focus on the LUC &
DA model, as this was the best-performing model (with similar performance and variable
relationships as the refined LUC & DA model). In all sites, the probability of forest conversion
to agriculture from 2008-2018 increased as slope, population density, distance to agriculture, and
distance to past fire perimeters decreased, and as fire density and the portion of non-forest
surrounding pixels increased (Figure 3, Table C.5). Thus, forested areas with low human
population density and flatter terrain, located closer to areas with higher fire activity and in
proximity to existing agriculture or other non-forest land covers were more likely to convert. In
Jamanxim and Amboro-Carrasco, forests located closer to roads and unauthorized mining sites
had higher probability of conversion, while neither variable was included in Tambopata-
Bahuaja-Sonene’s model due to collinearity with other variables. When we ran a version of the
refined LUC & DA model for Tambopata-Bahuaja-Sonene that intentionally included distance to
unauthorized mining sites as an explanatory variable (due to the high importance this variable
received in the discourse analysis), it did not have a significant relationship with forest
conversion (Table C.2). The Supplementary Materials include tables with the coefficient
estimates from all four models across all three sites (Appendix C, Tables C.3-C.6).



p-value

® <0.05
C >=0.05

Slope ®
Aspect [ ]
Distance to roads L
Distance to rivers
Distance to cities @
Distance to mines @
® Case study
L ]
@

# Amboro-Carrasco
@ Jamanxim
@ Tambopata-Bahuaja-Sonene

Crop suitability
Population density
Poverty rate
Neighborhood effect ®
10 km buffer L
20 km bufier L
Distance to agriculture @
Distance o fires ®
Fire density @
Distance to unautharized mines @
Cattle density g
Distance to tourism sites
Payments for ecosystem services @
Narth-South division @
Formalized land tenure @
Amboro NIMA e
Carrasco NP (=]

Elevation S
Slope S
Aspect
Distance to roads
Distance to rivers
Distance to mines b
Crop suitability
Precipitation i
Soil moisture =
Population density L |
Neighborhood effect 8
|

Variable type
. Standard land use change

D Derived from discourse analysis

.

Variable

10 km buffer =
20 km buffer
Distance to agriculture -
Distance o fires &

Fire density

Distance to unauthorized mines <
PADDD proposals. =

Distance to proposed railroads S
Agricultural reform settlements

Elevation
Slope -
Aspect =
Distance to rivers B
Crop suitability ]
Precipitation £
Population density L o
Neighborhood effect ®
10 km buffer —=—
20 km buffer
Distance to agriculture
Distance o fires. L 4
Fire density 1 ]
Distance to tourism sites. &
Distance to control posts &
REDD+ concessions
Bahuaja-Sonene NP o
-4 2 0
Coefficient estimate

Figure 3. Relationships between explanatory variables and likelihood of deforestation.
Coefficient estimates for the explanatory variables included in the LUC & DA model for the
three sites, with their standard errors. All variables were scaled and centered. The coefficient
estimate for distance to agriculture in Tambopata-Bahuaja-Sonene (f =-81.3137 +7.9017, p <
0.001) is omitted for ease of visualization. Filled circles indicate statistically significant estimates
(p < 0.05), while empty circles represent estimates with p-values 2 0.05. All coefficient estimate
values reported in Table C.5.

The remaining variables had inconsistent relationships with forest conversion across the three
sites. For example, in Jamanxim, forests closer to rivers had higher conversion probability, but
the relationship was not significant elsewhere. In Jamanxim, forests located further from mining
sites were also more likely to experience conversion, while the opposite pattern held for
Ambordé-Carrasco, and distance to mines was not included for Tambopata-Bahuaja-Sonene due
to collinearity with other variables. In Ambord-Carrasco and Tambopata-Bahuaja-Sonene, sites
with higher crop suitability had increased conversion probability, but this relationship was



reversed in Jamanxim, where there is less spatial variation in crop suitability. And while forests
located in the 10- or 20-km buffer outside of the PAs in Jamanxim and Ambord-Carrasco were
more likely to convert than forests located within PA boundaries, no such relationship existed for
Tambopata-Bahuaja-Sonene.

Some variables were only included in the model for a single site — due to lack of relative
importance in the discourse analysis or collinearity with other variables — preventing cross-site
comparisons. In Jamanxim, as soil moisture and distance from proposed railroads increased,
probability of forest conversion decreased, while the presence of PADDD proposals was related
to higher probability of conversion. PADDD proposals were also associated with increased
deforestation likelihood in Tambopata-Bahuaja-Sonene in the refined LUC & DA model, but
PADDD was not included as an explanatory variable in the LUC & DA model due to elevated
VIF values. In Amboro-Carrasco, distance to cities, poverty rate, geographic location in the
southern half of the study site, and enrollment in PES had negative relationships with forest
conversion, while formalized land tenure was associated with increased conversion. Forests in
Carrasco National Park had lower conversion probability than those in Ambor6 National Park. In
Tambopata-Bahuaja-Sonene, sites located further from control posts had higher conversion
likelihood.

4. Discussion

Our findings emphasize the limitations of large-scale and global modeling for understanding
deforestation dynamics, as our models using only literature-derived land-use change variables
had the poorest performance and missed context-specific factors, constraining the potential for
tailored conservation responses. In contrast, models that integrated variables identified through
qualitative discourse analysis best predicted forest conversion to agriculture across all sites,
expanding on previous findings (Siegel et al., 2022) and highlighting the benefits of integrative
methodologies for conservation science (Kinnebrew et al., 2020).

4.1. Insights for site-level and regional conservation

Identification of common factors related to deforestation can inform conservation interventions
in PAs across the Amazon. While we cannot assume that the patterns observed in our case study
sites hold uniformly across the region, the common trends across sites with diverse geographies
and social, economic, and political contexts suggests that these factors — slope, fire activity,
PADDD proposals, and proximity to roads, agriculture, and other non-forest land uses — may be
important in other locations as well. However, some variables that are commonly included in
Amazon land-use change models did not have consistent relationships with deforestation across
the three sites, again illustrating the limitations of large- and global-scale analysis.

While our integrated models supported many of the relationships between explanatory variables
and deforestation that would be predicted given existing literature and conservation discourses
(Rosa et al., 2015, 2013; Soares-Filho et al., 2006), we observed some unexpected relationships.
In all sites, higher population densities were associated with lower forest conversion probability;
this may reflect the underlying data’s coarse spatial scale, but it also aligns with findings that
areas of the Brazilian Amazon where smallholder farmers have been replaced by ranchers and
industrial farmers have both high deforestation rates and low population density (Tritsch and Le
Tourneau, 2016).



In Amboro-Carrasco, areas with formalized land tenure had increased deforestation probabilities,
reflecting the mixed evidence about the link between formalized land tenure and deforestation
globally (Busch and Ferretti-Gallon, 2023): land tenure protects against encroachment and
appropriation, but rightsholders may not choose land uses that align with conservation priorities
(Robinson et al., 2018). In Jamanxim, forests located further from rivers and mining concessions
had increased conversion probabilities, and neither proportion of unallocated public land nor
presence of agricultural reform settlements had a significant relationship with forest conversion
probability, contrary to our expectations (Pereira et al., 2022; Reydon et al., 2022). Finally, in
Tambopata-Bahuaja-Sonene, forests located within the PAs or in REDD+ projects did not have
reduced deforestation relative to unprotected or non-REDD+ forests. Distance to unauthorized
mines was also not a significant explanatory variable, despite a strong emphasis on this dynamic
in discourses and published literature (Asner and Tupayachi, 2017; Nicolau et al., 2019;
Sanchez-Cuervo et al., 2020; Vuohelainen et al., 2012).

4.2. The role of discourses in explaining deforestation and constraining conservation
responses

Analysis of conservation discourses identified significant regional and site-specific factors.
Discourses across all sites stressed the role of fires in facilitating the spread of deforestation. In
our models, we found that proximity to and high density of past fires were associated with
increased likelihood of forest conversion, supporting dominant conservation discourses. The
discourse analysis also identified PES programs and migration and settlement patterns as
important factors in Ambord-Carrasco, proposed infrastructure and PADDD events in Jamanxim,
and tourism and enforcement in Tambopata-Bahuaja-Sonene, and our models quantitatively
supported these qualitative findings.

Our findings also demonstrate the potential for dominant conservation discourses to constrain
our understanding of the drivers of and solutions to PA deforestation. The site-specific variables
identified through the discourse analysis were not always quantitatively supported by our
models. For example, in Amboro6-Carrasco, the discourse analysis indicated that poverty was a
driver of deforestation, but our models found the opposite relationship: higher poverty rates
correlated to lower forest conversion (Figure 3). Conservation discourses associating the rural
poor with deforestation are persistent and prevalent in the Amazon and beyond (Duraiappah,
1998; Peprah et al., 2017; Rai, 2019), even when data do not support these claims (Ravikumar et
al., 2017). These discourses have shaped past policy responses, with ineffective and at times
unethical outcomes (Green et al., 2022). Thus, while conservation discourses provide a window
into potentially important factors related to deforestation in PAs, they may also reproduce power
dynamics and recycle old tropes. We thus suggest that while qualitative methods and data can
enrich land-use change modeling — and thus deepen our understanding of the drivers of and
potential solutions to deforestation — quantitative modeling can in turn illuminate conservation
discourses’ oversights.

4.3. Limitations and nuances

There were additional, qualitatively significant themes that we identified through the discourse
analysis that we were unable to integrate into our quantitative models. In some cases, this was
due to lack of spatial variation in the themes across an individual site (e.g., agricultural policies,



which apply at coarser spatial scales). Other themes lacked spatial, quantitative proxies with
available data, as was the case for “level of local participation and inclusion” in Amboré-
Carrasco and “lack of commodity traceability” in Jamanxim (Table B.2). In addition, there were
scale mismatches for some variables in our models (e.g., cattle density, poverty rate, and
population density were available at the municipal level, so the relationships between those
variables and forest conversion may reflect municipal-level confounding variables). Finally,
while we attempted to identify appropriate proxy variables to include the discourse analysis
themes in the land-use change models, our ability to make this translation depended on data
availability, so we were not always able to use the optimal proxy variable.

4.4. Conclusions

Through integration of qualitative analysis of conservation discourses with quantitative land-use
change modeling, we identified factors related to deforestation in three protected areas in
Amazonian agricultural frontiers. We found that land-use change models informed by qualitative
discourse analysis better explained patterns of forest conversion to agriculture from 2008-2018
across a diverse region, highlighting the potential for conservation discourses to inform land-use
change modeling and potential limitations of modeling at large spatial scales. Simultaneously,
our results emphasize the need to critically consider dominant conservation discourses, as they
may reflect the priorities of powerful actors rather than on-the-ground dynamics.

Supplementary materials

Appendix A: Land-use change literature in the Amazon

Appendix B: Discourse analysis methods

Appendix C: Models of land-use change in the three case study sites

References
ANEE, n.d. Sistema de Informacoes Geograficas do Setor Eletrico: Usina Hidrelétrica.

Angelsen, A., 2007. Forest cover change in space and time: Combining the von Thiinen and
forest transition (No. 4117), Policy Research Working Paper. Washington, D.C.

ANM, 2019. SIGMINE: Para.

Arima, E., 2016. What drives downsizing of protected areas?: A case study of Amazon National
Park. Journal of Latin American Geography 15, 7-31. https://doi.org/10.1353/lag.2016.0013

Asner, G.P., Tupayachi, R., 2017. Accelerated losses of protected forests from gold mining in the
Peruvian Amazon. Environmental Research Letters 12, 094004.
https://doi.ore/10.1088/17489326/aa7dab

Asquith, N., 2020. Watershared Acuerdos Reciprocos. Fundacion Natura Bolivia.

Austin, K.G., Gonzélez-Roglich, M., Schaffer-Smith, D., Schwantes, A.M., Swenson, J.J., 2017.
Trends in size of tropical deforestation events signal increasing dominance of industrial-scale
drivers. Environmental Research Letters 12. https://doi.org/10.1088/1748-9326/aa6a88



https://doi.org/10.1353/lag.2016.0013
https://doi.org/10.1088/17489326/aa7dab
https://doi.org/10.1088/1748-9326/aa6a88

Barbosa, L.G., Alves, M.A.S., Grelle, C.E.V., 2021. Actions against sustainability: Dismantling
of the environmental policies in Brazil. Land Use Policy 104, 105384.
https://doi.org/10.1016/j.landusepol.2021.105384

Browder, J.O., Pedlowski, M.A., Walker, R., Wynne, R.H., Summers, P.M., Abad, A., Becerra
Cordoba, N., Mil-Homens, J., 2008. Revisiting theories of frontier expansion in the Brazilian
Amazon: A survey of the colonist farming population in Rondoénia’s post-frontier, 1992-2002.
World Development 36, 1469—1492. https://doi.org/10.1016/].worlddev.2007.08.008

Busch, J., Ferretti-Gallon, K., 2023. What drives and stops deforestation, reforestation, and forest

degradation? An updated meta-analysis. Rev Environ Econ Policy 17, 217-250.
https://doi.org/10.1086/725051

COFOPRI, 2020. Comunidades Nativas.

Conservation International, World Wildlife Fund, 2019. PADDDtracker: Tracking Protected
Area Downgrading, Downsizing, and Degazettement.

Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., Hansen, M.C., 2018. Classifying drivers of
global forest loss. Science 361, 1108—1111. https://doi.org/10.1126/science.aau3445

DIVA-GIS, 2019. Brazil: Inland waters.

Dobrovolski, R., Diniz-Filho, J.A.F., Loyola, R.D., De Marco Junior, P., 2011. Agricultural
expansion and the fate of global conservation priorities. Biodivers Conserv 20, 2445-2459.

Duraiappah, A.K., 1998. Poverty and environmental degradation: A review and analysis of the
nexus. World Dev 26, 2169-2179. https://doi.org/10.1016/S0305-750X(98)00100-4

Ewers, R M., Rodrigues, A.S.L., 2008. Estimates of reserve effectiveness are confounded by
leakage. Trends Ecol Evol 23, 113—116.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M.,
Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M.,
Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Reviews of Geophysics
45, RG2004.

Fearnside, P.M., 2005. Deforestation in Brazilian Amazonia: History, rates, and consequences.
Conservation Biology 19, 680—-688. https://doi.org/10.1111/].1523-1739.2005.00697.x

Fearnside, P.M., 2001. Land-tenure issues as factors in environmental destruction in Brazilian
Amazonia: The case of Southern Para. World Dev 29, 1361-1372.
https://doi.org/10.1016/S0305-750X(01)00039-0

Finer, M., Jenkins, C.N., Pimm, S.L., Keane, B., Ross, C., 2008. Oil and gas projects in the
Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS One 3.


https://doi.org/10.1016/j.landusepol.2021.105384
https://doi.org/10.1016/j.worlddev.2007.08.008
https://doi.org/10.1086/725051
https://doi.org/10.1126/science.aau3445
https://doi.org/10.1016/S0305-750X(98)00100-4
https://doi.org/10.1111/j.1523-1739.2005.00697.x
https://doi.org/10.1016/S0305-750X(01)00039-0

https://doi.org/10.1371/journal.pone.0002932

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland,
J., Harrison, L., Hoell, A., Michaelson, J., 2015. The climate hazards infrared precipitation with
stations—a new environmental record for monitoring extremes. Sci Data 150066.
https://doi.org/https://doi.org/10.1038/sdata.2015.66

GeoBolivia, 2015. Indicadores Sociales (VAM-NBI), 2012. URL
https://eeo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/3f73d133-031c-
4ed2a7c3e4569103c5a6 (accessed 2.26.19).

GeoBolivia, 2013. Poblacion por municipios segin censo 2012. URL
https://eeo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5d0af4b-c1dd-40ee-
97749ad13976e219 (accessed 2.26.19).

GeoBolivia, 2012. Mapa de poblacion de ganado bovino por municipios. La Paz, Bolivia.

GeoBolivia, 2009. Mapa de rios menores de Bolivia. URL
https://eeo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5b6efl 8-8693-44bb-
855tabeb9d3b3d42 (accessed 3.20.19).

GeoBolivia, 2005. Mapa de concesiones mineras de Bolivia, 2005. URL
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/062¢2b50-bd99-4¢71-
a4103c2bf4077419 (accessed 2.26.19).

GeoBolivia, 2002. Mapa de centros poblados segin nimero de habitantes, Bolivia 2002.

Glinskis, E.A., Gutiérrez-Vélez, V.H., 2019. Quantifying and understanding land cover changes
by large and small oil palm expansion regimes in the Peruvian Amazon. Land use policy 80, 95
106. https://doi.org/10.1016/.landusepol.2018.09.032

Google Earth Pro, 2019. Tambopata National Reserve and Bahuaja-Sonene National Park.

Green, A.R., Murphy, A., Collison, B.R., Sinchez-Nivicela, M., Anderson, H., Morano, J.L.,
Williams, T.D., Wilkinson, C.E., 2022. A response to Cafaro, Hansson & Gotmark (2022):

Shifting the narrative from overpopulation to overconsumption. Biol Conserv 273, 109698.
https://doi.org/10.1016/;.biocon.2022.109698

Hinggli, A., Levy, S.A., Armenteras, D., Bovolo, C.I., Brandao, J., Rueda, X., Garrett, R.D.,
2023. A systematic comparison of deforestation drivers and policy effectiveness across the
Amazon biome. Environmental Research Letters 18. https://doi.org/10.1088/1748-9326/acd408

Hebbali, A., 2020. blorr: Tools for Developing Binary Logistic Regression Models. R package
version 0.3.0.

Hijmans, R.J., 2019. raster: Geographic data analysis and modeling.


https://doi.org/10.1371/journal.pone.0002932
https://doi.org/https:/doi.org/10.1038/sdata.2015.66
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/3f73d133-031c-4ed2a7c3e4569f03c5a6
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/3f73d133-031c-4ed2a7c3e4569f03c5a6
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5d0af4b-c1dd-40ee-97749ad13976e219
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5d0af4b-c1dd-40ee-97749ad13976e219
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5b6ef18-8693-44bb-855fabeb9d3b3d42
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/c5b6ef18-8693-44bb-855fabeb9d3b3d42
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/062c2b50-bd99-4c7f-a4103c2bf4077419
https://geo.gob.bo/geonetwork/srv/eng/catalog.search#/metadata/062c2b50-bd99-4c7f-a4103c2bf4077419
https://doi.org/10.1016/j.landusepol.2018.09.032
https://doi.org/10.1016/j.biocon.2022.109698
https://doi.org/10.1088/1748-9326/acd408

Hoang, N.T., Taherzadeh, O., Ohashi, H., Yonekura, Y., Nishijima, S., Yamabe, M., Matsui, T.,
Matsuda, H., Moran, D., Kanemoto, K., 2023. Mapping potential conflicts between global
agriculture and terrestrial conservation. Proceedings of the National Academy of Sciences 120.
https://doi.org/10.1073/pnas.2208376120

IBGE, 2017. Bovinos do Para por Efetivo do rebanho.

IBGE, 2010. Tabela 2.1 - Populacao residente, total, urbana total e urbana na sede municipial,
com indicacao da area total e densidade demografica, segundo as Unidades da Federacao e os
municipios - 2010.

IBGE, 2003. Mapa de pobreza e desigualdade.

Imaflora, GeoLab, 2018. Atlas: The geography of Brazilian agriculture.

INCRA, n.d. Assentamento Brasil: Para.

INEI, 2020. Censos Nacionales de Poblacion y Vivienda 1940, 1961, 1972, 1981, 1993, 2007 y
2017.

INEI n.d. Densidad Poblacional - Formula Estadistica Distritos, 2007.
INEI, n.d. Mapa de pobreza distrital, 2013.

INGEMMET, 2021. Catastro Minero Actualizado.

INPE, 2019. Banco de dados de queimadas.

INRA, 2016. Land tenure, 2016.

Jusys, T., 2018. Changing patterns in deforestation avoidance by different protection types in the
Brazilian Amazon. PLoS One 13, €0195900. https://doi.org/10.1371/journal.pone.0195900

Killeen, T.J., Calderon, V., Soria, L., Quezada, B., Steininger, M.K., Harper, G., Solorzano, L.A.,
Tucker, C.J., 2007. Thirty years of land-cover change in Bolivia. Ambio 36, 600-606.
https://doi.org/https://do1.org/10.1579/0044-7447(2007)36[600: TYOLCI]2.0.CO;2

Killeen, T.J., Guerra, A., Calzada, M., Correa, L., Calderon, V., Soria, L., Quezada, B.,
Steininger, M.K., 2008. Total historical land-use change in eastern Bolivia: Who, where, when,
and how much? Ecology and Society 13, art36. https://doi.org/10.5751/ES-02453-130136

Kinnebrew, E., Ochoa-Brito, J.I., French, M., Mills-Novoa, M., Shoftner, E., Siegel, K., 2022.
Biases and limitations of Global Forest Change and author-generated land cover maps in
detecting deforestation in the Amazon. PLoS One 17, €0268970.
https://doi.org/10.1371/journal.pone.0268970



https://doi.org/10.1073/pnas.2208376120
https://doi.org/10.1371/journal.pone.0195900
https://doi.org/https:/doi.org/10.1579/0044-7447(2007)36%5b600:TYOLCI%5d2.0.CO;2
https://doi.org/10.5751/ES-02453-130136
https://doi.org/10.1371/journal.pone.0268970

Kinnebrew, E., Shoffner, E., Farah-Pérez, A., Mills-Novoa, M., Siegel, K., 2020. Approaches to
interdisciplinary mixed methods research in land change science and environmental management.
Conservation Biology 0, 1-12. https://doi.org/10.1111/cobi.13642

Mallampalli, V.R., Mavrommati, G., Thompson, J., Duveneck, M., Meyer, S., Ligmann-
Zielinska, A., Druschke, C.G., Hychka, K., Kenney, M.A., Kok, K., Borsuk, M.E., 2016.
Methods for translating narrative scenarios into quantitative assessments of land use change.
Environmental Modelling and Software 82, 7-20. https://doi.org/10.1016/j.envsoft.2016.04.011

Meyfroidt, P., 2016. Approaches and terminology for causal analysis in land systems science. J
Land Use Sci 11, 501-522. https://doi.org/10.1080/1747423X.2015.1117530

Ministério da Infraestrutura, 2019. Mapas Ferroviarios.

Moulds, S., Buytaert, W., Mijic, A., 2015. An open and extensible framework for spatially
explicit land use change modelling: The lulcc R package. Geosci Model Dev 8, 3215-3229.
https://doi.org/10.5194/gmd-8-3215-2015

Miiller, R., Miiller, D., Schierhorn, F., Gerold, G., Pacheco, P., 2012. Proximate causes of
deforestation in the Bolivian lowlands: An analysis of spatial dynamics. Reg Environ Change 12,
445-459. https://doi.org/10.1007/s10113-011-0259-0

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.
Biodiversity hotspots for conservation priorities. Nature 403, 853—858.
https://doi.org/10.1038/35002501

Nicolau, A.P., Herndon, K., Flores-Anderson, A., Griffin, R., 2019. A spatial pattern analysis of
forest loss in the Madre de Dios region, Peru. Environmental Research Letters 14, 124045.
https://doi.org/10.1088/1748-9326/ab57c3

OCHA, 2015a. Hidrografia de Pert: Rios quebradas. Humanitarian Data
Exchange. URL https://data.humdata.org/dataset/hidrografia-de-peru (accessed 3.23.19).

OCHA, 2015b. Hidrografia de Perti: Rios navegables. Humanitarian Data
Exchange. URL https://data.humdata.org/dataset/hidrografia-de-peru (accessed 3.19.19).

Ochoa-Quintero, J.M., Gardner, T.A., Rosa, 1., de Barros Ferraz, S.F., Sutherland, W.J., 2015.
Thresholds of species loss in Amazonian deforestation frontier landscapes. Conservation Biology
29, 440-451.

Oliveira, P.J.C., Asner, G.P., Knapp, D.E., Almeyda, A., Galvan-Gildemeister, R., Keene, S.,
Raybin, R.F., Smith, R.C., 2007. Land-use allocation protects the Peruvian Amazon. Science
317, 1233-1236.

O’Neill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., 2016. SMAP L2 Radiometer Half


https://doi.org/10.1111/cobi.13642
https://doi.org/10.1016/j.envsoft.2016.04.011
https://doi.org/10.1080/1747423X.2015.1117530
https://doi.org/10.5194/gmd-8-3215-2015
https://doi.org/10.1007/s10113-011-0259-0
https://doi.org/10.1038/35002501
https://doi.org/10.1088/1748-9326/ab57c3
https://data.humdata.org/dataset/hidrografia-de-peru
https://data.humdata.org/dataset/hidrografia-de-peru

Orbit 36 km EASE-Grid Soil Moisture, Version 3. Boulder, CO.
https://doi.org/10.5067/PLRS641U03IT

Open Street Map, 2019.

Paiva, P.F.P.R., de Lourdes Pinheiro Ruivo, M., da Silva Junior, O.M., de Nazaré Martins
Maciel, M., Braga, T.G.M., de Andrade, M.M.N., dos Santos Junior, P.C., da Rocha, E.S., de
Freitas, T.P.M., da Silva Leite, T.V., Gama, L.H.O.M., de Sousa Santos, L., da Silva, M.G.,
Silva, E.R.R., Ferreira, B.M., 2020. Deforestation in protect areas in the Amazon: a threat to
biodiversity. Biodivers Conserv 29, 19-38. https://doi.org/10.1007/s10531-019-01867-9

Pebesma, E., 2019. lwgeom: Bindings to selected “liblwgeom” functions for simple features.

Pebesma, E., 2018. Simple features for R: Standardized support for spatial vector data. R J 10,
439-446.

Peprah, P., Abalo, E.M., Amoako, J., Nyonyo, J., Duah, W.A., Adomako, 1., 2017. “The Reality
from the Myth”: The poor as main agents of forest degradation: Lessons from Ashanti Region,
Ghana. Environmental & Socio-economic Studies 5, 1-11.
https://doi.org/10.1515/environ-2017-0011

Pereira, A.S.A. de P., dos Santos, V.J., Alves, S. do C., Amaral e Silva, A., da Silva, C.G.,
Calijuri, M.L., 2022. Contribution of rural settlements to the deforestation dynamics in the Legal
Amazon. Land use policy 115, 106039. https://doi.org/10.1016/j.landusepol.2022.106039

Pereira, E.J. de A.L., de Santana Ribeiro, L.C., da Silva Freitas, L.F., de Barros Pereira, H.B.,
2020. Brazilian policy and agribusiness damage the Amazon rainforest. Land use policy 92,
104491. https://doi.org/10.1016/j.landusepol.2020.104491

Pfaff, A., Robalino, J., Herrera, D., Sandoval, C., 2015a. Protected areas’ impacts on Brazilian
Amazon deforestation: Examining conservation — development interactions to inform planning.
PLoS One 10, €0129460. https://doi.org/10.1371/journal.pone.0129460

Pfaff, A., Robalino, J., Sandoval, C., Herrera, D., 2015b. Protected area types, strategies and
impacts in Brazil’s Amazon: public protected area strategies do not yield a consistent ranking of

protected area types by impact. Philosophical Transactions of the Royal Society B: Biological
Sciences 370, 20140273. https://doi.org/10.1098/rstb.2014.0273

Pinheiro, T.F., Escada, M.1.S., Valeriano, D.M., Hostert, P., Gollnow, F., Muller, H., 2016.
Forest degradation associated with logging frontier expansion in the Amazon: The BR-163
region in southwestern Para, Brazil. Earth Interact 20, 1-26.

Piquer-Rodriguez, M., Gasparri, N.I., Zarba, L., Ardoz, E., Grau, H.R., 2021. Land systems’
asymmetries across transnational ecoregions in South America. Sustain Sci 16, 1519-1538.
https://doi.org/10.1007/s11625-021-00967-2



https://doi.org/10.5067/PLRS64IU03IT
https://doi.org/10.1007/s10531-019-01867-9
https://doi.org/10.1515/environ-2017-0011
https://doi.org/10.1016/j.landusepol.2022.106039
https://doi.org/10.1016/j.landusepol.2020.104491
https://doi.org/10.1371/journal.pone.0129460
https://doi.org/10.1098/rstb.2014.0273
https://doi.org/10.1007/s11625-021-00967-2

Pontius Jr., R.G., Santacruz, A., 2019. diffeR: metrics of difference for comparing pairs of maps
or pairs of variables.

Pontius, R.G., Millones, M., 2011. Death to Kappa: Birth of quantity disagreement and allocation
disagreement for accuracy assessment. /nt J Remote Sens 32, 4407—-4429.
https://doi.org/10.1080/01431161.2011.552923

Qin, S., He, Y., Golden Kroner, R.E., Shrestha, S., Henriques Coutinho, B., Karmann, M.,
Ledezma, J.C., Martinez, C., Moroén-Zambrano, V., Ulloa, R., Yerena, E., Bernard, C., Bull,
J.W., Mendoza, E., de Pracontal, N., Reytar, K., Veit, P., Olsson, E., Matallana-Tob6n, C.L.,
Wily, L.A., Mascia, M.B., 2024. An inclusive, empirically grounded inventory facilitates
recognition of diverse area-based conservation of nature. One Earth 7, 962-975.
https://doi.org/10.1016/j.oneear.2024.03.005

QSR International Pty Ltd., 2019. NVivo 12.
R Core Team, 2019. R: A language and environment for statistical computing.

Rai, J., 2019. Why are Narratives that Place the Blame for Deforestation on the Rural Poor so
Pervasive and so Persistent? Journal of Geography, Environment and Earth Science

International
20, 1-15. https://doi.org/10.9734/jgeesi/2019/v201130099

RAISG, 2022. RAISG: Amazon in Numbers. Red Amazoénica de Informacion Socioambiental
Georreferenciada. URL https:/www.raisg.org/en/infographic/ (accessed 8.30.24).

RAISG, 2018. Mineria ilegal.

Ravikumar, A., Sears, R.R., Cronkleton, P., Menton, M., Pérez-Ojeda del Arco, M., 2017. Is
small-scale agriculture really the main driver of deforestation in the Peruvian Amazon? Moving
beyond the prevailing narrative. Conserv Lett 10, 170—177. https://doi.org/10.1111/conl.12264

Reydon, B., Siqueira, G.P., Passos, D.S., Honer, S., 2022. Unclear Land Rights and
Deforestation: Pieces of Evidence from Brazilian Reality. Land 12, 89.
https://doi.org/10.3390/land12010089

Robinson, B.E., Masuda, Y.J., Kelly, A., Holland, M.B., Bedford, C., Childress, M., Fletschner,
D., Game, E.T., Ginsburg, C., Hilhorst, T., Lawry, S., Miteva, D.A., Musengezi, J., Naughton-
Treves, L., Nolte, C., Sunderlin, W.D., Veit, P., 2018. Incorporating land tenure security into
conservation. Conserv Lett 11. https://doi.org/10.1111/conl.12383

Romero-Munoz, A., Fernandez-Llamazares, A., Monica Moraes, R., Larrea-Alcazar, D.M.,
Wordley, C.F.R., 2019. A pivotal year for Bolivian conservation policy. Nat Ecol Evol 3, 866—
869.

Rorato, A.C., Camara, G., Escada, M.L.S., Picoli, M.C.A., Moreira, T., Verstegen, J.A., 2020.


https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1016/j.oneear.2024.03.005
https://doi.org/10.9734/jgeesi/2019/v20i130099
https://www.raisg.org/en/infographic/
https://doi.org/10.1111/conl.12264
https://doi.org/10.3390/land12010089
https://doi.org/10.1111/conl.12383

Brazilian amazon indigenous peoples threatened by mining bill. Environmental Research Letters
15. https://doi.org/10.1088/1748-9326/abb428

Rosa, LM.D., Purves, D., Carreiras, J.M.B., Ewers, R.M., 2015. Modelling land cover change in
the Brazilian Amazon: temporal changes in drivers and calibration issues. Reg Environ Change
15, 123-137. https://doi.org/10.1007/s10113-014-0614-z

Rosa, .LM.D., Purves, D., Souza Jr., C., Ewers, R.M., 2013. Predictive modelling of contagious
deforestation in the Brazilian Amazon. PLoS One 8, ¢77231.
https://doi.org/10.1371/journal.pone.0077231

Sanchez-Cuervo, A.M., de Lima, L.S., Dallmeier, F., Garate, P., Bravo, A., Vanthomme, H.,
2020. Twenty years of land cover change in the southeastern Peruvian Amazon: implications for
biodiversity conservation. Reg Environ Change 20, 8.
https://doi.org/10.1007/s10113-020-01603-y

Schielein, J., Borner, J., 2018. Recent transformations of land-use and land-cover dynamics

across different deforestation frontiers in the Brazilian Amazon. Land use policy 76, 81-94.
https://doi.org/10.1016/j.landusepol.2018.04.052

Schleicher, J., Peres, C.A., Amano, T., Llactayo, W., Leader-Williams, N., 2017. Conservation
performance of different conservation governance regimes in the Peruvian Amazon. Sci Rep 7,
1-10. https://doi.org/10.1038/s41598-017-10736-w

Scullion, J.J., Vogt, K.A., Sienkiewicz, A., Gmur, S.J., Trujillo, C., 2014. Assessing the influence
of land-cover change and conflicting land-use authorizations on ecosystem conversion on the
forest frontier of Madre de Dios, Peru. Biol Conserv 171, 247-258.
https://doi.org/10.1016/;.biocon.2014.01.036

SERFOR, 2019. Informacion sobre el patrimonio forestal y de fauna silvestre a nivel nacional.
Servicio Nacional Forestal y de Fauna Silvester, Gobierno de Peru.

SERNANP, 2011. Reserva Nacional Tambopata: Plan Maestro 2011-2016.

SERNAP, 2018. Atractivos turisticos. Servicio Nacional de Areas
Protegidas. URL http://sernap.gob.bo/carrasco/atractivos-turisticos/

Siegel, K., Farah Perez, A., Kinnebrew, E., Mills-Novoa, M., Ochoa, J., Shoftner, E., 2022.
Integration of qualitative and quantitative methods for land-use-change modeling in a
deforestation frontier. Conservation Biology €13924. https://doi.org/10.1111/cobi.13924

Silva Junior, C.H.L., Pessoa, A.C.M., Carvalho, N.S., Reis, J.B.C., Anderson, L.O., Aragao,
L.E.O.C,, 2021. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade.
Nat Ecol Evol 5, 144-145.

Soares-Filho, B.S., Nepstad, D.C., Curran, L.M., Cerqueira, G.C., Garcia, R.A., Ramos, C.A.,


https://doi.org/10.1088/1748-9326/abb428
https://doi.org/10.1007/s10113-014-0614-z
https://doi.org/10.1371/journal.pone.0077231
https://doi.org/10.1007/s10113-020-01603-y
https://doi.org/10.1016/j.landusepol.2018.04.052
https://doi.org/10.1038/s41598-017-10736-w
https://doi.org/10.1016/j.biocon.2014.01.036
http://sernap.gob.bo/carrasco/atractivos-turisticos/
https://doi.org/10.1111/cobi.13924

Voll, E., McDonald, A., Lefebvre, P., Schlesinger, P., 2006. Modelling conservation in the
Amazon basin. Nature 440, 520-523. https://doi.org/10.1038/nature04389

Tesfaw, A.T., Pfaff, A., Golden Kroner, R.E., Qin, S., Medeiros, R., Mascia, M.B., 2018. Land-
use and land-cover change shape the sustainability and impacts of protected areas. Proceedings
of the National Academy of Sciences 201716462. https://doi.org/10.1073/pnas.1716462115

Tritsch, 1., Le Tourneau, F.-M., 2016. Population densities and deforestation in the Brazilian
Amazon: New insights on the current human settlement patterns. Applied Geography 76, 163—
172. https://doi.org/10.1016/.apgeog.2016.09.022

UNEP-WCMC, IUCN, 2018. Protected Planet: The World Database on Protected Areas
(WDPA).

UNODC, 2020. Estado Plurinacional De Bolivia: Monitoreo de Cultivos de Coca 2019. La Paz,
Bolivia.

van Gils, H.A.M.J., Armand Ugon, A.V.L., 2006. What drives conversion of tropical forest in
Carrasco Province, Bolivia? Ambio 35, 81-85.

Vuohelainen, A.J., Coad, L., Marthews, T.R., Malhi, Y., Killeen, T.J., 2012. The effectiveness of
contrasting protected areas in preventing deforestation in Madre de Dios, Peru. Environ Manage
50, 645—663. https://doi.org/10.1007/s00267-012-9901-y

Weisse, M.J., Naughton-Treves, L.C., 2016. Conservation beyond park boundaries: The impact
of buffer zones on deforestation and mining concessions in the Peruvian Amazon. Environ
Manage 58, 297-311. https://doi.org/10.1007/s00267-016-0709-z

Wolf, C., Levi, T., Ripple, W.J., Zarrate-Charry, D.A., Betts, M.G., 2021. A forest loss report
card for the world’s protected areas. Nat Ecol Evol 5, 520-529.
https://doi.org/10.1038/s41559-021-01389-0

Xu, X., Zhang, X., Riley, W.J., Xue, Y., Nobre, C.A., Lovejoy, T.E., Jia, G., 2022. Deforestation
triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters
17, 034037. https://doi.org/10.1088/1748-9326/ac4c1d

Zabel, F., Putzenlechner, B., Mauser, W., 2014. Global agricultural land resources — a high
resolution suitability evaluation and its perspectives until 2100 under climate change conditions.
PLoS One 9, e107522.


https://doi.org/10.1038/nature04389
https://doi.org/10.1073/pnas.1716462115
https://doi.org/10.1016/j.apgeog.2016.09.022
https://doi.org/10.1007/s00267-012-9901-y
https://doi.org/10.1007/s00267-016-0709-z
https://doi.org/10.1038/s41559-021-01389-0
https://doi.org/10.1088/1748-9326/ac4c1d

