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Abstract  

The Amazon Basin’s agricultural frontiers – many of which overlap with protected areas (PAs) – 

experience deforestation for agriculture and pasture. Responses to PA deforestation require 

understanding the region-wide and PA-specific socio-environmental factors that increase forest 
conversion. Standard, quantitative approaches to land-use change (LUC) modeling may omit 

some factors, constraining understandings of and responses to deforestation. Dominant 
discourses about deforestation – promoted by government and conservation organizations – also 

shape deforestation responses. We integrated quantitative and qualitative analysis of 

deforestation dynamics into LUC models of three Amazonian PA complexes (Brazil’s Jamanxim 
National Forest, Bolivia’s Amboró and Carrasco National Parks, and Peru’s Tambopata National 

Reserve and Bahuaja-Sonene National Park) to understand 1) the ability of conservation 
discourses to inform deforestation models and 2) region-wide and site-level factors related to 

deforestation. Our integrative methodology yielded better model performance than standard LUC 

modeling. From 2008-2018, forests on steeper slopes with higher population densities were less 
likely to convert, while forests surrounded by non-forest and closer to agriculture and fires had 

increased deforestation. Legal threats to Jamanxim’s status increased deforestation likelihood, 
while in Amboró and Carrasco, payments for ecosystem services projects were associated with 

decreased deforestation. While dominant discourses sometimes aligned with LUC models’ 

results (e.g., fires and increased deforestation), some factors commonly cited in deforestation 
discourses were not supported (e.g., REDD+ projects). Our results can inform forest 

management in our study sites and Amazon-wide, and emphasize the need for integrative 
approaches to operationalizing discourses in conservation science and practice, as the framing of 

deforestation shapes management responses. 
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1. Introduction 

Forest conversion to agriculture occurs along agricultural frontiers throughout the Amazon 

Basin, with consequences for Indigenous communities, biodiversity, and ecosystem services 
(Ochoa-Quintero et al., 2015; Rorato et al., 2020; Xu et al., 2022). Agricultural frontiers are 

areas with active land use conversion for agriculture or livestock production (Browder et al., 
2008; Schielein and Börner, 2018). While some policy interventions have successfully reduced 

forest clearing in the Amazon (Hänggli et al., 2023; Silva Junior et al., 2021), increasingly in the 

Amazon and around the world, areas of current and potential agricultural expansion overlap with 
areas of conservation priority, including protected areas (Dobrovolski et al., 2011; Hoang et al., 

2023).  
 

Protected areas (PAs) are a leading tool for reducing forest loss, and by 2022, they covered 25% 

of the Amazon region (RAISG, 2022), with an additional ~16% of land area in the nine countries 
that comprise the Amazon under some form of area-based conservation (Qin et al., 2024). These 

PAs have had varying impacts on deforestation. Amazonian PAs are diverse in their governance 
and the degree to which extractive activities are permitted, with consequences for forest cover 

(Jusys, 2018; Pfaff et al., 2015b, 2015a; Schleicher et al., 2017). Notably, despite the reductions 

in deforestation within PAs relative to unprotected forests in the Amazon, forest loss continues 
even within PA boundaries (Paiva et al., 2020), a trend mirrored worldwide (Wolf et al., 2021). 

 
The precise land-use change pathways of agricultural frontiers vary with local environmental, 

socioeconomic, and policy contexts (Curtis et al., 2018; Hänggli et al., 2023). To understand 

deforestation dynamics in a particular place therefore requires understanding the spatial variation 
in socio-environmental drivers of forest conversion and variation in the strength of their effect on 

land use and land cover (Angelsen, 2007; Meyfroidt, 2016). Previous studies have compared 
deforestation trends and drivers, often using countries as the scale of analysis (Austin et al., 

2017; Hänggli et al., 2023) or comparing individual sites within a country (Rosa et al., 2015). 

Across the Amazon, these analyses have identified common drivers of deforestation, such as 
proximity to roads or navigable rivers (Hänggli et al., 2023; Soares-Filho et al., 2006). Other 

factors have emerged at smaller spatial scales, such as oil palm expansion in Peru (Glinskis and 
Gutiérrez-Vélez, 2019) and oil exploration in the western Amazon (Finer et al., 2008). Despite 

regional- and national-level commonalities, the specific context of each individual PA also plays 

a role in determining the factors that contribute to land-use change within and around its 
boundaries, highlighting the importance of site-level land-use change analyses (Hänggli et al., 

2023). Understanding the context-specific factors driving deforestation is important because it 
dictates effective solutions. 

 

We use a mixed methods approach to compare factors related to forest conversion to agriculture 
in three case study sites across the Amazon Basin. While standard approaches to land-use change 

models typically draw on literature review and contextual, expert knowledge from land system 
science and conservation science to identify model variables, we integrate varied, context-

specific factors into our land-use change models through an iterative approach that draws on both 
qualitative discourse analysis and literature review to identify appropriate model variables 



(Kinnebrew et al., 2020). Previous work demonstrated that models that integrate variables 
derived through qualitative research methods with quantitative approaches have improved ability 

to predict deforestation in a PA in Brazil (Siegel et al., 2022). Here, we address the following 
research questions: 1) Do integrated methods better predict deforestation across multiple 

protected area complexes in the Amazon Basin, relative to land-use change models that do not 

integrate qualitative research approaches? 2) If so, what do integrative land-use change models 
tell us about the relative importance of different factors related to forest conversion to agriculture 

across protected area complexes with different geographic, socioeconomic, and political 
contexts? We thus aim to both inform deforestation modeling and to improve our understanding 

of deforestation dynamics in Amazonian PAs. 

 
2. Methods 

2.1. Study sites 

We modeled land-use change in three Amazonian PA complexes: Brazil’s Jamanxim National 

Forest, Bolivia’s Amboró and Carrasco National Parks, and Peru’s Tambopata National Reserve 

and Bahuaja-Sonene National Park (Figure 1a). The Jamanxim National Forest case study 
consists of a single PA, while the other sites comprise two or more adjacent PAs (Figure 1b). 

These sites have similar sizes (12,962-13,661 km2), deforestation rates ranging from less than 
1% (in Tambopata and Bahuaja-Sonene) to 3.6% (Jamanxim) from 2008-2018 (Kinnebrew et al., 

2022), and varying deforestation dynamics and drivers (Killeen et al., 2007; Oliveira et al., 2007; 

Pinheiro et al., 2016; van Gils and Armand Ugon, 2006).  
 

 
 
Figure 1. Map of the three case study sites. a) Location of the three case study sites within the 

Amazon Basin (black outline). b) Detailed map of the protected area complexes comprising each 
case study site, with a 20-kilometer buffer surrounding the protected area boundaries.  

 

Jamanxim National Forest, in Pará, Brazil, was established in 2006 to address deforestation 
related to highway development. It has experienced deforestation through land-clearing for 

ranching, agriculture, and land speculation (Arima, 2016; Fearnside, 2005, 2001). Amboró 
National Park (established in 1984), Carrasco National Park (1991), and Amboró Natural 

Integrated Management Area (1995) (hereafter “Amboró-Carrasco”) have experienced 

deforestation primarily for small-scale agriculture and ranching (Killeen et al., 2008; Müller et 
al., 2012; Romero-Munoz et al., 2019). Amboró-Carrasco also faces pressure from coca 

cultivation, hydrocarbon extraction, and a proposed hydropower dam (Romero-Munoz et al., 
2019; UNODC, 2020). Tambopata National Reserve (established in 2000) and Bahuaja-Sonene 

National Park (1996) are in a globally recognized biodiversity hotspot (Myers et al., 2000). 



Tambopata has a buffer zone with land use restrictions along its northern border (Weisse and 
Naughton-Treves, 2016). Prior to the mid-2000s, agricultural expansion drove forest loss in the 

region, but informal gold mining became a major factor beginning around 2006 (Scullion et al., 
2014; Vuohelainen et al., 2012).  

 

For all three sites, we modeled land-use change within the PAs and in 10- and 20-kilometer 
buffers around the PAs, to capture land-use change dynamics directly outside the PAs (Ewers 

and Rodrigues, 2008; Tesfaw et al., 2018). In the case of Tambopata-Bahuaja-Sonene, the buffer 
extended over the border between Peru and Bolivia. We cropped the buffer to only include the 

Peruvian portion because the sociopolitical factors identified in the discourse analysis vary by 

nation (Piquer-Rodríguez et al., 2021). We modeled deforestation from 2008 to 2018, ending our 
analysis before the beginning of Jair Bolsonaro’s presidency in Brazil because his administration 

had a large impact on deforestation rates and conservation discourses (Barbosa et al., 2021; 
Pereira et al., 2020). 

  

2.2. Land-use change maps 

Our land-use change models used published land cover maps from 2008 and 2018 for each site 

(Kinnebrew et al., 2022). These maps were generated through supervised classification of cloud-
free composites using pixels from Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI) 

Surface Reflectance datasets with 30 m resolution, using random forests. The maps identify 

forest, agricultural land and pastures, bare soil, built areas, wetlands, water, and in Amboró-
Carrasco, deserts, with an overall accuracy rate of > 90% across the case study sites (Kinnebrew 

et al., 2022).  
  

2.3. Land-use change modeling and projection 

We used logistic regression to model the probability of conversion to agriculture for each 
forested pixel from 2008-2018, extracting pixel values along a 300-meter grid to avoid 

introducing spatial autocorrelation (Siegel et al., 2022). We performed all modeling in R (R Core 
Team, 2019). Logistic regression models facilitate interpretation of coefficient estimates, making 

them well suited to the dual goals of our analyses (Moulds et al., 2015). Following a 

methodological framework from Siegel et al. (2022), we created models for each site using 
different combinations of variables derived from an iterative process for integrating qualitative 

and quantitative methods. We selected variables using 1) a review of land-use change papers in 
the Amazon Basin (Appendix A), and 2) a qualitative discourse analysis of textual material 

addressing the causes of and solutions to forest conversion (Siegel et al., 2022; Appendix B). The 

discourse analysis identified deforestation discourses promoted by government and conservation 
actors: we coded management, policy, and advocacy documents, as well as gray literature at the 

park-, state-, and national-scale at each sites, using snowball sampling, legislative databases, and 
non-governmental organization (NGO) websites in English, Spanish, and Portuguese (Table 

B.1). We coded all documents in NVivo 12 (QSR International Pty Ltd., 2019), first using a set 

of predetermined themes identified from our review of Amazon land-use change models (e.g., 
physical and economic accessibility, suitability for agriculture, and protection status), and then 

adding emergent themes that arose through the coding process (e.g., land grabbing, state 
governance, and legal challenges to PAs) (Table B.2).  

  



For each site, we built four models. The first used solely variables from the review of Amazonian 
land-use change literature (the LUC model), the second only used variables identified through 

discourse analysis (the DA model), the third model included all variables used in the LUC model 
and the DA model (the LUC and DA model), and the fourth model used the variables that 

emerged as statistically significant in the LUC model and qualitatively important through the 

discourse analysis (refined LUC and DA model) (Figure 2). The variables for the LUC model 
were the same across all sites and related to topography, accessibility to infrastructure and 

markets, agricultural suitability, human population characteristics, management status, and 
neighborhood effects (the proportion of surrounding pixels that were forested) (Table 1). The 

DA model variables varied across study sites, depending on the themes identified (Table 1; 

Table C.1). The models for Jamanxim differ from those in Siegel et al. (2022) due to minor 
changes in methodology to ensure comparability of the regression coefficients across case study 

sites. We compiled and standardized data from global, regional, and local datasets (Table 1), 
using the R packages sf (version 1.0-16), raster (version 3.6-26), and lwgeom (version 0.2-14) 

(Hijmans, 2019; Pebesma, 2019, 2018). To facilitate comparisons between study sites, we 

centered and scaled continuous variables. 
  

While the variables for the LUC model were spatially explicit and quantitative or categorical, 
and thus straightforward to include in our models, additional steps were required to translate the 

discourse analysis themes into quantitative, spatially explicit proxies. For each theme, we 

attempted to develop a quantitative, spatial proxy using available data and published literature 
(Mallampalli et al., 2016; Siegel et al., 2022). As an illustration, sustainable development 

emerged as a theme mediating forest loss in Amboró-Carrasco and Tambopata-Bahuaja-Sonene: 
we used distance to ecotourism sites and the presence of PES programs and REDD+ projects as 

proxies for this theme. Some themes did not translate into spatial, quantitative proxies with 

available data; we did not include these themes in our models but integrated them into our 
interpretation of model results. 

 

 
Figure 2. Methods for identification of deforestation variables. Overview of the methods 

used to identify and assemble the variables for the four logistic regression models created for 
each site: the land-use change (LUC) model, the discourse analysis (DA) model, the LUC and 

DA model, and the refined LUC and DA model. 
 



To avoid multicollinearity, we assessed correlations between continuous variables and the 
variance inflation factor (VIF), using a final suite of variables for each model that minimized 

VIF and collinearity. Each model thus had a subset of the potential variables from Table 1. When 
faced with highly correlated explanatory variables, we selected which variable to retain in the 

model based on data quality and spatial resolution, the year of the data relative to our study 

period, and the expected strength of the variable’s relationship to agricultural expansion (Siegel 
et al., 2022). Table C.1 lists the variables included in each final model. Due to the strong 

emphasis on unauthorized mining in the Tambopata-Bahuaja-Sonene discourses, we ran a 
version of the refined LUC & DA model for Tambopata-Bahuaja-Sonene that included distance 

to unauthorized mining sites as an explanatory variable, despite its collinearity with other 

variables (Table C.2). 
 

Table 1. Variables used in LUC models, including the LUC variables used for each case study 
site, and the site-specific DA variables, demonstrating the translation from qualitative theme to 

spatial and quantitative proxy variable. 

LUC variables 

Variable Source Case study sites(s) 

Elevation 
Slope 

Aspect 

(Farr et al., 2007) All 

Distance to roads (“Open Street Map,” 
2019) 

Distance to rivers (DIVA-GIS, 2019; 

GeoBolivia, 2009; 
OCHA, 2015a, 

2015b) 

Distance to mines and mining concessions (ANM, 2019; 

GeoBolivia, 2005; 

INGEMMET, 2021) 

Distance to cities (GeoBolivia, 2013, 

2002; IBGE, 2010; 
INEI, 2020) 

Crop suitability (Zabel et al., 2014) 

Precipitation (Funk et al., 2015) 

Soil moisture (O’Neill et al., 2016) 

Population density (GeoBolivia, 2013; 

IBGE, 2010; INEI, 
n.d.) 



Poverty rate (GeoBolivia, 2015; 
IBGE, 2003; INEI, 

n.d.) 

Neighborhood effect Derived from 

Kinnebrew et al. 

(2022) 

Management status (UNEP-WCMC and 

IUCN, 2018) 

DA variables 

Theme Proxy variable Source Case study site(s) 

Physical accessibility, 

agricultural and land-

clearing activity 

Distance to 

agriculture 

Derived from 

Kinnebrew et al. 

(2022) 

All 

Distance to fires (INPE, 2019) 

Fire density (INPE, 2019) 

Resource extraction Distance to 

unauthorized mines 

(RAISG, 2018) All 

Ranching Head of cattle per 
km2 

(GeoBolivia, 2012; 
IBGE, 2017) 

Jamanxim, Amboró-
Carrasco 

  

Legal challenges to 

protected areas 

Protected area 

downgrading, 
downsizing and 

degazettement 

(PADDD) 

(Conservation 

International and 
World Wildlife Fund, 

2019) 

Jamanxim, 

Tambopata-Bahuaja-
Sonene 

Infrastructure 

development 

Distance to proposed 

railroads 

(Ministério da 

Infraestrutura, 2019) 

Jamanxim 

Distance to proposed 
dams 

(ANEE, n.d.) 

Land tenure; 

settlements; land 
grabbing 

Unallocated public 

land 

(Imaflora and 

GeoLab, 2018) 

Jamanxim 

Agricultural reform 
settlements 

(INCRA, n.d.) Jamanxim 

Land tenure (INRA, 2016) Amboró-Carrasco 



Distance to 
Indigenous 

communities 

(COFOPRI, 2020) Tambopata-Bahuaja-
Sonene 

Sustainable 

development 

Distance to tourism (Google Earth Pro, 

2019; SERNAP, 

2018) 

Amboró-Carrasco, 

Tambopata-Bahuaja-

Sonene 

Presence of PES 

programs 

(Asquith, 2020) Amboró-Carrasco 

Presence of REDD+ 
projects (medicinal 

plants, nut 

production, 
reforestation plots) 

(SERFOR, 2019) Tambopata-Bahuaja-
Sonene 

Enforcement capacity Distance to control 
posts 

(SERNANP, 2011) Tambopata-Bahuaja-
Sonene 

Migration and 
settlement patterns 

Location to the north 
or south of the 

geographic boundary 
from El Torno to 

Tablas Monte 

Derived Amboró-Carrasco 

 
2.4. Model comparisons 

We assessed model performance using Akaike information criterion (AIC) and analysis-of-
variance (ANOVA) comparisons of model fit. To account for the different numbers of variables 

in the models, we used McFadden’s adjusted pseudo R2 to compare model performance for a 

given study site (Hebbali, 2020).  
 

We compared the location of deforestation for agriculture predicted in 2018 by each model for 
each site to the actual observations of forest conversion. We used each logistic regression model 

to create a landscape representing each pixel’s predicted probability of forest conversion to 

agriculture in 2008. Using these predicted probability maps and Monte Carlo simulations, we 
made 1000 projected landscapes in 2018 for each model, assuming no change in land cover for 

pixels that were non-forest in 2008. We used the observed forest loss area for each site to 
determine deforestation in the projected landscape by allocating forest loss to the pixels that 

converted most frequently across the simulations, until we reached the observed quantity of 

forest conversion. This resulted in a single predicted 2018 landscape for each model. The Monte 
Carlo simulations allowed us to predict which pixels would convert from forest to agriculture 

without relying on an arbitrary probability threshold for classifying converted vs. unconverted 
pixels. Comparing these predicted landscapes with the observed 2018 landscape in each site, we 

calculated quantity and allocation disagreement using the diffeR package (version 0.0-8) (Pontius 

Jr. and Santacruz, 2019; Pontius and Millones, 2011).  
 

3. Results 



3.1. Comparisons of model performance 

Across all sites, models that included discourse analysis-derived variables along with more 

commonly used land-use change modeling variables explained the most variation in observed 
forest conversion to agriculture, as measured by McFadden’s pseudo R2 and AIC (Table 2). In 

Jamanxim, the refined LUC & DA model explained the most variation, explaining almost twice 

as much variation as the LUC model. In Amboró-Carrasco, the LUC & DA and refined LUC & 
DA models explained the most variation, followed by the DA model, then the LUC model, with 

less drop-off in variation explained than in Jamanxim. Per AIC, the refined LUC & DA model 
outperformed the LUC & DA model, but ANOVA analysis revealed no significant difference in 

performance between the two. In Tambopata-Bahuaja-Sonene, the LUC & DA model explained 

the most variation, followed closely by the refined LUC & DA model. The LUC model 
explained the least variation. Including distance to unauthorized mines did not yield significant 

improvements in model performance for Tambopata-Bahuaja-Sonene. The Tambopata-Bahuaja-
Sonene models explained more variation than the other sites’ models. 

 

Table 2. Model performance metrics for the four models across the three case study sites. AIC 
values compare model performance within a given case study site. Allocation and quantity 

disagreements are reported as proportions. 

Case study Metric LUC model DA model LUC & DA 

model 

Refined LUC 

& DA model 

Jamanxim AIC 82567 66822 66044 62357 

McFadden’s 

pseudo R2 (%) 

24.7 39.0 39.8 43.1 

Allocation 
disagreement 

0 0 0 0 

Quantity 

disagreement 

0.0256 0.0232 0.0226 0.0202 

Amboró- 
Carrasco 

AIC 62876 59373 56522 56506 

McFadden’s 

pseudo R2 (%) 

31.1 34.9 38.1 38.1 

Allocation 
disagreement 

0.0167 0.0001 0.0008 0.0113 

Quantity 

disagreement 

0.0429 0.0511 0.0508 0.0456 

Tambopata-
Bahuaja- 

Sonene 

AIC 2986 2538 2328 2331 
(2329a) 



McFadden’s 
pseudo R2 (%) 

41.2 49.9 54.4 54.3 
(54.4a) 

Allocation 

disagreement 

0.0011 0.0020 0.0012 0.0011 

(0.0011a) 
  

Quantity 
disagreement 

0.0049 0.0044 0.0049 0.0049 
(0.0049a) 

a Refined LUC & DA model when distance to unauthorized mines is included as a predictor 

variable 
 

The different models’ allocation (the proportion of difference between the predicted and 
observed maps caused by mismatch in the location of the pixels in each land cover class) and 

quantity (the difference in the proportion of pixels in each land cover category in the predicted 

and observed maps) disagreement was not as similar across the sites (Table 2). In Jamanxim, all 
models had negligible allocation disagreement, and the refined LUC & DA model had the lowest 

quantity disagreement. In Amboró-Carrasco, the DA model had the lowest allocation 
disagreement, but the LUC model had the lowest quantity disagreement. In Tambopata-Bahuaja-

Sonene, the DA model had the highest allocation disagreement but the lowest quantity 

disagreement. The LUC model and refined LUC & DA models had the lowest allocation 
disagreement. Allocation disagreement was low across all sites, with the highest allocation 

disagreement in Amboró-Carrasco (mean of 0.007 across the four models). Quantity 
disagreement was similarly low in Tambopata-Bahuaja-Sonene (mean of 0.005) but higher in 

Jamanxim (mean of 0.023) and Amboró-Carrasco (mean of 0.048). 

 
3.2. Site-level factors related to forest conversion to agriculture 

Across Jamanxim models, forests on steeper slopes, at higher elevations, and further from 
agriculture, past fire perimeters, unauthorized mining, and proposed railroads had lower 

probability of converting to agriculture (Tables C.3-C.6). Forests with higher population 

densities also had lower conversion probability, while sites surrounded by a higher proportion of 
non-forest pixels were more likely to convert. Forested sites in the 10- and 20-km buffer outside 

Jamanxim National Forest were also more likely to convert, as were sites with greater fire 
densities and higher proportions of unallocated public land. Other variables’ relationships with 

the likelihood of forest conversion varied across models. 

 
In Amboró-Carrasco, forests on steeper slopes, at higher elevations, more distant from roads, 

rivers, mining concessions, cities, agriculture, past fire perimeters, and unauthorized mining sites 
always had lower probabilities of converting to agriculture (Tables C.3-C.6), as did forests 

within parcels enrolled in PES programs. Sites with higher crop suitability and a higher 

proportion of non-forest neighbors were more likely to convert, as were sites with higher fire 
density and formalized land tenure. Forests in the 10- and 20-km buffer outside the PA complex 



were also more likely to convert. Across the models, distance to tourism and precipitation did not 
have significant relationships with forest conversion. As in Jamanxim, there were also variables 

whose relationship with deforestation probability varied across the models (e.g., population 
density and poverty rate). 

 

Across the models in Tambopata-Bahuaja-Sonene, forests located further from agriculture and 
fires were less likely to convert, while sites with higher crop suitability, a higher proportion of 

non-forest neighboring pixels, higher fire density, and presence of protected area downgrading, 
downsizing and degazettement (PADDD) proposals were more likely to convert. Distance to 

roads, cities, and unauthorized mining sites did not have significant relationships with forest 

conversion, nor did the locations of REDD+ projects. Other variables (e.g., elevation and 
distance to rivers, tourism sites and control posts) had differing relationships with deforestation 

across the models. 
 

3.3. Cross-site comparisons  

To compare factors related to forest conversion across the three sites, we focus on the LUC & 
DA model, as this was the best-performing model (with similar performance and variable 

relationships as the refined LUC & DA model). In all sites, the probability of forest conversion 
to agriculture from 2008-2018 increased as slope, population density, distance to agriculture, and 

distance to past fire perimeters decreased, and as fire density and the portion of non-forest 

surrounding pixels increased (Figure 3, Table C.5). Thus, forested areas with low human 
population density and flatter terrain, located closer to areas with higher fire activity and in 

proximity to existing agriculture or other non-forest land covers were more likely to convert. In 
Jamanxim and Amboró-Carrasco, forests located closer to roads and unauthorized mining sites 

had higher probability of conversion, while neither variable was included in Tambopata-

Bahuaja-Sonene’s model due to collinearity with other variables. When we ran a version of the 
refined LUC & DA model for Tambopata-Bahuaja-Sonene that intentionally included distance to 

unauthorized mining sites as an explanatory variable (due to the high importance this variable 
received in the discourse analysis), it did not have a significant relationship with forest 

conversion (Table C.2). The Supplementary Materials include tables with the coefficient 

estimates from all four models across all three sites (Appendix C, Tables C.3-C.6).  
 



 
Figure 3. Relationships between explanatory variables and likelihood of deforestation. 
Coefficient estimates for the explanatory variables included in the LUC & DA model for the 

three sites, with their standard errors. All variables were scaled and centered. The coefficient 

estimate for distance to agriculture in Tambopata-Bahuaja-Sonene (𝛽 = -81.3137 ± 7.9017, p < 

0.001) is omitted for ease of visualization. Filled circles indicate statistically significant estimates 

(p < 0.05), while empty circles represent estimates with p-values ≥ 0.05. All coefficient estimate 

values reported in Table C.5. 

 

The remaining variables had inconsistent relationships with forest conversion across the three 
sites. For example, in Jamanxim, forests closer to rivers had higher conversion probability, but 

the relationship was not significant elsewhere. In Jamanxim, forests located further from mining 
sites were also more likely to experience conversion, while the opposite pattern held for 

Amboró-Carrasco, and distance to mines was not included for Tambopata-Bahuaja-Sonene due 

to collinearity with other variables. In Amboró-Carrasco and Tambopata-Bahuaja-Sonene, sites 
with higher crop suitability had increased conversion probability, but this relationship was 



reversed in Jamanxim, where there is less spatial variation in crop suitability. And while forests 
located in the 10- or 20-km buffer outside of the PAs in Jamanxim and Amboró-Carrasco were 

more likely to convert than forests located within PA boundaries, no such relationship existed for 
Tambopata-Bahuaja-Sonene.  

  

Some variables were only included in the model for a single site – due to lack of relative 
importance in the discourse analysis or collinearity with other variables – preventing cross-site 

comparisons. In Jamanxim, as soil moisture and distance from proposed railroads increased, 
probability of forest conversion decreased, while the presence of PADDD proposals was related 

to higher probability of conversion. PADDD proposals were also associated with increased 

deforestation likelihood in Tambopata-Bahuaja-Sonene in the refined LUC & DA model, but 
PADDD was not included as an explanatory variable in the LUC & DA model due to elevated 

VIF values. In Amboró-Carrasco, distance to cities, poverty rate, geographic location in the 
southern half of the study site, and enrollment in PES had negative relationships with forest 

conversion, while formalized land tenure was associated with increased conversion. Forests in 

Carrasco National Park had lower conversion probability than those in Amboró National Park. In 
Tambopata-Bahuaja-Sonene, sites located further from control posts had higher conversion 

likelihood. 

 
4. Discussion 

Our findings emphasize the limitations of large-scale and global modeling for understanding 
deforestation dynamics, as our models using only literature-derived land-use change variables 

had the poorest performance and missed context-specific factors, constraining the potential for 

tailored conservation responses. In contrast, models that integrated variables identified through 
qualitative discourse analysis best predicted forest conversion to agriculture across all sites, 

expanding on previous findings (Siegel et al., 2022) and highlighting the benefits of integrative 
methodologies for conservation science (Kinnebrew et al., 2020).  

 

4.1. Insights for site-level and regional conservation  

Identification of common factors related to deforestation can inform conservation interventions 

in PAs across the Amazon. While we cannot assume that the patterns observed in our case study 
sites hold uniformly across the region, the common trends across sites with diverse geographies 

and social, economic, and political contexts suggests that these factors – slope, fire activity, 

PADDD proposals, and proximity to roads, agriculture, and other non-forest land uses – may be 
important in other locations as well. However, some variables that are commonly included in 

Amazon land-use change models did not have consistent relationships with deforestation across 
the three sites, again illustrating the limitations of large- and global-scale analysis. 

 

While our integrated models supported many of the relationships between explanatory variables 
and deforestation that would be predicted given existing literature and conservation discourses 

(Rosa et al., 2015, 2013; Soares-Filho et al., 2006), we observed some unexpected relationships. 
In all sites, higher population densities were associated with lower forest conversion probability; 

this may reflect the underlying data’s coarse spatial scale, but it also aligns with findings that 

areas of the Brazilian Amazon where smallholder farmers have been replaced by ranchers and 
industrial farmers have both high deforestation rates and low population density (Tritsch and Le 

Tourneau, 2016).  



 
In Amboró-Carrasco, areas with formalized land tenure had increased deforestation probabilities, 

reflecting the mixed evidence about the link between formalized land tenure and deforestation 
globally (Busch and Ferretti-Gallon, 2023): land tenure protects against encroachment and 

appropriation, but rightsholders may not choose land uses that align with conservation priorities 

(Robinson et al., 2018). In Jamanxim, forests located further from rivers and mining concessions 
had increased conversion probabilities, and neither proportion of unallocated public land nor 

presence of agricultural reform settlements had a significant relationship with forest conversion 
probability, contrary to our expectations (Pereira et al., 2022; Reydon et al., 2022). Finally, in 

Tambopata-Bahuaja-Sonene, forests located within the PAs or in REDD+ projects did not have 

reduced deforestation relative to unprotected or non-REDD+ forests. Distance to unauthorized 
mines was also not a significant explanatory variable, despite a strong emphasis on this dynamic 

in discourses and published literature (Asner and Tupayachi, 2017; Nicolau et al., 2019; 
Sánchez-Cuervo et al., 2020; Vuohelainen et al., 2012). 

 

4.2. The role of discourses in explaining deforestation and constraining conservation 

responses 

Analysis of conservation discourses identified significant regional and site-specific factors. 
Discourses across all sites stressed the role of fires in facilitating the spread of deforestation. In 

our models, we found that proximity to and high density of past fires were associated with 

increased likelihood of forest conversion, supporting dominant conservation discourses. The 
discourse analysis also identified PES programs and migration and settlement patterns as 

important factors in Amboró-Carrasco, proposed infrastructure and PADDD events in Jamanxim, 
and tourism and enforcement in Tambopata-Bahuaja-Sonene, and our models quantitatively 

supported these qualitative findings. 

 
Our findings also demonstrate the potential for dominant conservation discourses to constrain 

our understanding of the drivers of and solutions to PA deforestation. The site-specific variables 
identified through the discourse analysis were not always quantitatively supported by our 

models. For example, in Amboró-Carrasco, the discourse analysis indicated that poverty was a 

driver of deforestation, but our models found the opposite relationship: higher poverty rates 
correlated to lower forest conversion (Figure 3). Conservation discourses associating the rural 

poor with deforestation are persistent and prevalent in the Amazon and beyond (Duraiappah, 
1998; Peprah et al., 2017; Rai, 2019), even when data do not support these claims (Ravikumar et 

al., 2017). These discourses have shaped past policy responses, with ineffective and at times 

unethical outcomes (Green et al., 2022). Thus, while conservation discourses provide a window 
into potentially important factors related to deforestation in PAs, they may also reproduce power 

dynamics and recycle old tropes. We thus suggest that while qualitative methods and data can 
enrich land-use change modeling – and thus deepen our understanding of the drivers of and 

potential solutions to deforestation – quantitative modeling can in turn illuminate conservation 

discourses’ oversights.  
 

4.3. Limitations and nuances 

There were additional, qualitatively significant themes that we identified through the discourse 

analysis that we were unable to integrate into our quantitative models. In some cases, this was 
due to lack of spatial variation in the themes across an individual site (e.g., agricultural policies, 



which apply at coarser spatial scales). Other themes lacked spatial, quantitative proxies with 
available data, as was the case for “level of local participation and inclusion” in Amboró-

Carrasco and “lack of commodity traceability” in Jamanxim (Table B.2). In addition, there were 
scale mismatches for some variables in our models (e.g., cattle density, poverty rate, and 

population density were available at the municipal level, so the relationships between those 

variables and forest conversion may reflect municipal-level confounding variables). Finally, 
while we attempted to identify appropriate proxy variables to include the discourse analysis 

themes in the land-use change models, our ability to make this translation depended on data 
availability, so we were not always able to use the optimal proxy variable.  

 

4.4. Conclusions 

Through integration of qualitative analysis of conservation discourses with quantitative land-use 

change modeling, we identified factors related to deforestation in three protected areas in 
Amazonian agricultural frontiers. We found that land-use change models informed by qualitative 

discourse analysis better explained patterns of forest conversion to agriculture from 2008-2018 

across a diverse region, highlighting the potential for conservation discourses to inform land-use 
change modeling and potential limitations of modeling at large spatial scales. Simultaneously, 

our results emphasize the need to critically consider dominant conservation discourses, as they 
may reflect the priorities of powerful actors rather than on-the-ground dynamics. 
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