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Abstract 14 

Boreal forests are important carbon sinks and host a diverse array of species that provide important 15 

ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged 16 

management with clear-cutting has been the dominating harvesting practice for the past 50–80 17 

years. As a second cycle of clear-cutting is emerging, there is an urgent need to review the effects 18 

of repeated clear-cutting events on biodiversity. Clear-cutting has led to reduced numbers of old 19 

and large trees, decreased volumes of dead wood of varied decay stages and diameters, and altered 20 

physical and chemical compositions of soils. The old-growth boreal forest has been fragmented 21 

and considerably reduced. Here, we review short- and long-term (≥50 yrs) effects of clear-cutting 22 

on boreal forest biodiversity in four key substrates: living trees, dead wood, ground and soil. We 23 

then assess landscape-level changes (habitat fragmentation and edge effects) on this biodiversity. 24 

There is evidence for long-term community changes after clear-cutting for several taxa: epiphytic 25 

lichens; saproxylic fungi, bryophytes and insects; epigeic bryophytes; soil snails, bacteria, and 26 

ectomycorrhizal fungi. Long-term declines in species richness were found for saproxylic fungi, 27 

bryophytes and true flies. Still, for the majority of taxa, long-term effects of clear-cutting are not 28 

well understood. On the landscape level, reduced connectivity to old-growth forests has negative 29 

effects on several species of fungi, lichens, bryophytes and insects, notably among red-listed 30 

species. Furthermore, altered microclimate near clear-cut edges negatively affect epiphytic lichens 31 

and epigeic arthropods, implying complex effects of habitat fragmentation. Repeated cycles of 32 

clear-cutting might pose even stronger pressures on boreal forest biodiversity due to continued 33 

fragmentation of old-growth forests and accumulation of extinction debts. Examining the broad 34 

effects of forestry on biodiversity across the boreal biome is crucial. First, to increase our 35 

knowledge of long-term and landscape-level effects of former clear-cutting. Second, to gain a 36 

better understanding of how forestry will affect biodiversity and, subsequently, ecosystem 37 

functioning, with repeated cycles of clear-cutting. 38 
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 82 

I. Introduction 83 

Boreal forests stretch from Eurasia to North America along the northern hemisphere. This biome 84 

is home to diverse assemblages of organisms, including plants, fungi, lichens and invertebrates. In 85 

Canadian boreal forests alone, 32 000 species of insects have been described (Kayes & Mallik, 86 

2020). The forests are dominated by coniferous trees (mainly Pinus, Abies, Picea and Larix), with 87 

varying proportions of broadleaved trees (Populus, Betula, Alnus, Sorbus and Salix). Boreal forests 88 

are characterized by short growing seasons, harsh winters, low annual mean temperatures, and 89 

subsequently, slow decomposition and large amounts of accumulated carbon (Burton, 2013). 90 

Indeed, around 32% of the terrestrial global carbon stock is found in boreal forests (Mayer et al., 91 

2020; Scharlemann et al., 2014; Pan et al., 2011), the largest stocks being located in soils 92 

(Bradshaw & Warkentin, 2015). 93 

Boreal forests are important providers of ecosystem functions, i.e. the ecological processes that 94 

support and maintain ecosystems: primary production, water supply, climate regulation and habitat 95 

provisioning, to name a few (Brockerhoff et al., 2017). Ecosystem functions are driven by 96 

environmental factors, such as climate and nutrient availability, but also by biodiversity (Tilman, 97 

Isbell & Cowles, 2014; van der Plas, 2019). For instance, both above- and belowground species 98 

diversity (Table 1) can have complementary positive effects on multiple ecosystem functions 99 

(Yuan et al., 2020; Delgado-Baquerizo et al., 2020; Li et al., 2019; Sasaki et al., 2022). Boreal 100 

forests’ variety of species interactions, tree characteristics and disturbance dynamics maintain 101 

resilient and spatiotemporally complex ecosystems (Burton, 2013).  102 

In this review, we summarize current knowledge and discuss how clear-cutting affects boreal 103 

forest biodiversity. We first provide an overview of boreal forest history and how clear-cutting has 104 

affected the physical forest environment. Then, we evaluate how these changes influence the forest 105 

biodiversity associated with four major substrates: living trees, dead wood, ground and soil. We 106 

then consider responses to landscape fragmentation across all substrates. In the end, we discuss 107 

future threats by evaluating how continued clear-cutting and repeated clear-cutting events may 108 

affect boreal forest biodiversity. 109 

The review is based upon studies from the entire boreal biome, with inherent geographic bias due 110 

to uneven coverage by relevant studies; most research has been done in Fennoscandia and Canada 111 

(Table 2). Throughout this review, we address other major uncertainties, such as 112 



underrepresentation of taxa, lack of long-term studies and comparative challenges between studies 113 

with different types of forest management and histories (Table 2). We do not consider vertebrates 114 

or aquatic species groups. First, because we focus on the hyperdiverse taxa that have received less 115 

attention in forest management, and second, because they respond to forestry either indirectly or  116 

at different scales than what is relevant for this review. The literature selection has mainly been 117 

based on identifying a set of key papers in each field, then selecting relevant literature from the 118 

key paper’s reference list (“backward snowballing”) or literature that has cited that paper (“forward 119 

snowballing”). 120 

 121 

II. Boreal forest history 122 

Boreal forests are historically shaped by mixed-severity disturbances acting over a range of spatial 123 

and temporal scales, thus creating a dynamic mosaic landscape. Regional and local factors of 124 

climate, soil properties, vegetation and topography determine the prevailing disturbance regime 125 

(Kuosmanen et al., 2014; Shorohova et al., 2011). Disturbance agents include natural large-scale 126 

events like forest fires, windstorms and insect outbreaks, as well as a continuous and complex 127 

interplay of smaller windthrow, insect outbreaks, flooding events, or other factors creating small-128 

scale disturbances (Kuuluvainen & Aakala, 2011; Angelstam & Kuuluvainen, 2004; Schaetzl et 129 

al., 1988). These disturbance dynamics result in different types of primary forests (Table 1) that 130 

are unequally distributed across the boreal zone (Shorohova et al., 2009; Kuuluvainen & Aakala, 131 

2011; Shorohova et al., 2011): 132 

(1) even-aged forests resulting from stand-replacing disturbances, typically crown fires or 133 

insect outbreaks, with short return intervals. These forest types characterize central and parts of 134 

western Canada, as well as nutrient-rich areas in Europe. Examples of dominating tree species in 135 

these forests are black spruce (Picea mariana) and jack pine (Pinus banksiana). Additionally, these 136 

regions contain more forest areas in early and mid successional stages with higher proportions of 137 

broadleaved trees such as birch (Betula sp.) and aspen (Populus sp.);  138 

(2) cohort-type forests resulting from recurrent partial disturbances, leaving the older tree 139 

generation. These are found in European Scots pine (Pinus sylvestris) forests where surface fires 140 

prevail, central and eastern Siberia which also experience silk moth outbreaks, and sloping stands 141 

that are exposed to periodic windthrow. Cohort-type forests are, however, not catalogued in North 142 

America ; and  143 

(3) old, multilayered forests characterized by recurrent small-scale disturbances (gap 144 

dynamics) causing mortality of individual trees. These forests are usually dominated by shade-145 

tolerant tree species of spruce (Picea sp.) or fir (Abies sp.). They are found in western and eastern 146 

North America, northeastern Siberia and Fennoscandia. However, the old-growth stage typically 147 

arrives earlier in North America compared to Eurasia due to differences in the life span of the 148 

different tree species. 149 

Acting over various spatial and temporal scales, these disturbance dynamics contribute to creating 150 

a heterogeneous landscape mosaic with large divergences in age and tree species distributions. 151 



. 152 

Boreal forests have a long history of human influence, particularly in Europe (Hjältén et al., 2023; 153 

Angelstam, 1996). While early forest dwellers had local and mostly low-impact effects, growing 154 

human populations as well as technical developments in forestry led to increased impacts in the 155 

boreal biome. This included both slash-and-burn agriculture and several forms of selective 156 

logging, like harvesting of large-diameter trees. The originally fire-influenced primary forest 157 

landscape of Fennoscandia and European Russia was gradually transformed by human activities 158 

into a regulated production forest landscape (Angelstam, 1996).  159 

Even-aged management was introduced around 1900 and, by the 1950s, clear-cutting had become 160 

the most common harvesting practice in boreal forests (Lundmark, Josefsson & Östlund, 2013; 161 

Angelstam, 1996). Practices include cycles of stand-replacing clear-cutting, usually followed by 162 

planting of tree seedlings and/or scarification to facilitate seedling establishment. The forests may 163 

be managed by thinning and nitrogen fertilization. Rotation times vary from 50–150 years, 164 

depending on forest type and geographical location (Gauthier et al., 2023). Intensive use of the 165 

boreal forest, first by selective logging and then by clear-cutting, has led to a decrease in both 166 

primary and old-growth forests (Table 1). 167 

Although clear-cutting is common also in Canada and Asian Russia, there are still large tracts of 168 

primary forests (Gauthier et al., 2023), in particular in the more remote northern areas. Forest 169 

management in these regions is overall more extensive and less intensive than in Fennoscandia 170 

(Naumov, Angelstam & Elbakidze, 2016; Hytteborn et al., 2005; Gauthier et al., 2023). 171 

Consequently, less emphasis is put on planting and the close tending of the regenerating stands. 172 

However, even in Fennoscandian countries, the intensity of management related to clear-cutting 173 

can vary between countries and within regions. 174 

Today, we are facing a decisive situation: the first clear-cut forests have grown to maturity and 175 

will undergo another cycle of clear-cutting in the next decades. In fact, this repeated clear-cutting 176 

has already begun in some areas, notably in Fennoscandia (Kuuluvainen & Gauthier, 2018). 177 

Although land-use change and direct exploitation are stated as the strongest drivers of biodiversity 178 

change by the IPBES (Díaz et al., 2019), no exhaustive review has been conducted on long-term 179 

effects of the first cycle of clear-cutting on biodiversity for the whole boreal biome (but see Grove, 180 

2002; Siitonen, 2001; Savilaakso et al., 2021; Venier et al., 2014; Esseen et al., 1997; Niemelä, 181 

Koivula & Kotze, 2007; Tomao et al., 2020 for reviews on specific boreal regions and/or species' 182 

groups). Adding fragmentation of old-growth forests and reports of extinction debts (e.g. Hanski 183 

& Ovaskainen, 2002), we may be approaching a tipping point for biodiversity (Barnosky et al., 184 

2012). 185 

Table 1. Definition of terms used in this review (alphabetical order). 186 

Terms Definition 

Connectivity Measure of the proximity of a habitat or forest patch to other habitats or forest patches; 

the opposite of isolation. 

Dead wood 

characteristic 

A type of dead wood substrate or niche; e.g. standing, kelo, late-decay or large-diameter 

dead wood. 



Edge effect Abiotic and biotic processes that affect communities or species near a forest edge (Harper 

et al., 2005); also termed edge influence. 

Epigeic Species growing or dwelling on the forest floor. 

Epi-/endophytic Species growing on or developing inside living plants. 

Epi-/saproxylic Species growing on or developing in dead wood. 

Forest edge A transition zone from a forest to a more open area, such as a clear-cut; experiences 

altered microclimate compared to the forest interior. 

Kelo tree Scots pine tree (Pinus sylvestris) that died standing at a very high age (300-500 yrs) and 

decays slowly, often standing (Niemelä, Wallenius & Kotiranta, 2002); dry, debarked 

dead wood with silvery stem and large proportion of heartwood; hosts niches for many 

specialized species. 

Managed forest Forest that is subjected to forest management or with high disturbance by human 

activities; managed with intensive selective logging, other harvesting and post-harvesting 

regimes and/or clear-cutting; specifications such as ‘clear-cut’ or ‘previously clear-cut’ 

are preferred in cases when this is known. However, sufficient information about forest 

history is sometimes lacking; general term for different management regimes if they have 

been grouped together for analysis. 

Old-growth forest Relatively old forest (mature or late forest succession) with only limited human 

disturbance (not clear-cut) in recent times (~100 yrs); characterized by high vertical and 

horizontal structural complexity, presence of many old and large trees, and dead wood of 

all decay stages (structural old-growth sensu Martin, Shorohova & Fenton (2023)); if 

management history is not described in a study, we assume some form of logging has 

taken place, thereby being an ‘old-growth forest’ and not a ‘primary forest’. 

Primary forest Naturally regenerated forest of native tree species, where there are no clearly visible 

indications of human activities and the ecological processes are not significantly 

disturbed (follows EU and FAO definition). Related terms with similar definitions are 

primeval, pristine or virgin forest. 

Retention forestry Forest management model of retaining trees or dead wood after logging to preserve more 

structural complexity in the forest stand, permanently or for an extended time period; also 

termed variable retention and tree retention. 

Rotation time Length of time between stand-replacing harvesting cycles in a forest, for example from 

one clear-cutting event to the next. 

Species diversity All diversity measures based on species or species hypotheses (e.g. OTU or ASV data); 

includes both α- and β-diversity, richness, evenness and diversity indices combining the 

two (e.g. Shannon); when describing results from studies, the terms ‘richness’ or 

‘evenness’ are preferred when this was tested. 

Stand age Chronological age of a forest stand, i.e. an adjoining group of trees of similar age and 

size. In managed forests, this represents the time since the forest stand was established, 

by planting or sowing. 

Structural element Substrates or habitats of high importance to forest species; provides niches for species; 

includes the term ‘key habitat’. 

  

III. Clear-cutting effects on the physical forest environment  187 

To assess the physical changes that occur after clear-cutting, we would ideally compare it to a 188 

forest untouched by human activities (“primary forest”; Table 1), which correspond to the 189 

landscapes the species have adapted to. However, as boreal primary forests are very rare, especially 190 

in Europe, effects of clear-cutting are also compared to forests with minimal human disturbance 191 

(“old-growth forest”; Table 1; Figure 1C); they have never been clear-cut, but may have been 192 

subjected to selective logging of varying intensity in the past. These primary and old-growth 193 

forests are characterized by high structural complexity, with the presence of many old and large 194 

trees and high amounts of dead wood in all decay stages (Martin et al., 2023). Under natural 195 



conditions, stand-replacing disturbances such as forest fires occur intermittently. Unlike clear-196 

cutting, which involves removal of all or almost all trees (Figure 1A), stand-replacing natural 197 

disturbances create large and diverse amounts of sun-exposed dead wood, which contributes to the 198 

structural complexity of the regenerating stand (Swanson et al., 2011; Winter et al., 2015). 199 

Furthermore, a number of structural elements that provide niches for specialized species need 200 

centuries to develop, such as old trees, kelo trees, large-diameter or late-decay dead wood 201 

(Siitonen, 2001). These elements are normally absent in managed forests (e.g. mature clear-cut; 202 

Figure 1B). 203 

Clear-cutting alters the physical environment of boreal forests in ways that inherently affect the 204 

organisms living there. In addition to altering the microclimate and the distribution of habitats, at 205 

both the local and landscape scale, clear-cutting has a distinct impact on each of the four major 206 

substrates of forest species: living trees, dead wood, ground and soil (Nordén et al., 2014). 207 

 208 
Figure 1. Scots pine (Pinus sylvestris)-dominated forests with different management histories: A) recent 209 
clear-cut, northern Sweden, B) mature clear-cut, southern Norway, and C) old-growth forest, southern 210 
Norway. In this review, recent clear-cuts represent short-term effects and mature clear-cuts (≥ 50 yrs) 211 
represent long-term effects of clear-cutting, as compared to old-growth forests. Photos by Anne Sverdrup-212 
Thygeson. 213 

(1) Living trees 214 

Clear-cutting is characterized by removal of most of the living trees in the forest stand. After 215 

cutting, eventual remaining trees in the clear-cut, but also trees on the edges between the clear-cut 216 

and the forest, suffer high mortality due to exposure to wind and drought (Jönsson et al., 2007; 217 

Stokland, Siitonen & Jonsson, 2012). Planting or natural regeneration is typically followed by a 218 

young forest phase with high tree density. Thinning, that is, removal of some trees to increase 219 

growth of remaining trees, is often carried out during this phase. Succession (i.e. reforestation) 220 

usually happens much faster in recent clear-cuts compared to early successional habitats after 221 

natural disturbances (Swanson et al., 2011). 222 

With increasing stand age, a canopy with more or less uniform vertical and horizontal vegetation 223 

develops, with less variation in light availability at the ground level than in old-growth forests 224 

(Messier et al., 2009; Asplund et al. in preparation). The result is a homogeneous forest, in which 225 

both the average and variation of tree age, height and diameter are low compared to old-growth 226 

forests (Bouchard & Pothier, 2011; Esseen et al., 1997; Hämäläinen et al., 2023).  227 

Forests that originate after clear-cutting often resemble monocultures, especially in Fennoscandia 228 

where post-harvest sowing or planting of seedlings is common (Solvin & Fløistad, 2023). One of 229 



the most pronounced differences between managed and old-growth forests is the much lower 230 

frequency of large-diameter trees in the former, as was shown in a forest landscape in Sweden: 231 

over 100 years, the number of large trees declined by 90% after the introduction of clear-cutting 232 

(Linder & Östlund, 1998). A subsequent increase in large-diameter trees was reported over the last 233 

30 years in southern Sweden, but not in the north where the history of intensive logging is shorter 234 

(Kyaschenko et al., 2022). Across the boreal biome, the clear-cutting regime has resulted in 235 

fragmentation and loss of trees that are both large and old (Lindenmayer, Laurance & Franklin, 236 

2012; Henttonen et al., 2019), and of the species-rich microhabitats associated with such trees (e.g. 237 

Michel & Winter, 2009).  238 

(2) Dead wood 239 

After clear-cutting, both standing and downed dead wood are sparse. New input is halted as living 240 

trees have been harvested and smaller dead wood residues are decomposed within a few years. 241 

With short rotation times, low volumes of dead wood will be a persistent feature of formerly clear-242 

cut forests (Stokland et al., 2012; Jonsson et al., 2016). In Fennoscandia, dead wood volume in 243 

intensively managed forests is about 2–10 % of the volume in old-growth forests (Siitonen, 2001; 244 

Stokland et al., 2012)  245 

In addition to reduced quantity of dead wood, former clear-cut forests host a lower quality of dead 246 

wood, i.e. low variation of dead wood characteristics. Studies show that intensively selective 247 

logging greatly reduces mid- and late-decay stages of dead wood (Siitonen et al., 2000; Storaunet 248 

et al., 2005). Large-diameter dead wood is also rare in managed forests, both from mid- (Jönsson, 249 

Fraver & Jonsson, 2009) and late-decay (Siitonen et al., 2000) stages. In particular, this is the case 250 

for large-diameter standing dead wood (Linder & Östlund, 1998). Dead wood characteristics 251 

common to primary boreal forests are almost completely lacking in forests subjected to clear-252 

cutting. An example of such rare habitats are kelo trees, which probably depend on natural 253 

disturbances (fire) and need centuries to develop (Rouvinen, Kuuluvainen & Siitonen, 2002; 254 

Niemelä et al., 2002).  255 

(3) Ground and soil 256 

Trees supply most of the photosynthates that are allocated belowground to support roots, 257 

mycorrhizal associations and soil microbial food webs (Prescott & Grayston, 2023; Gill & Finzi, 258 

2016). Mycorrhizal and saprotrophic fungi drive the biological stability of soil organic carbon 259 

(SOC) through various processes (Clemmensen et al., 2013; Ekblad et al., 2013).  260 

Clear-cutting breaks, to a large extent, the supply chain of photosynthates from the trees to the 261 

root-associated fungi (Prescott & Grayston, 2023). The inputs of harvest residues trigger an 262 

immediate pulse of carbon enrichment to the soil and forest floor. This leads to a fungal community 263 

shift and increased decomposition, which together with reduced photosynthate input from trees, is 264 

expected to result in a significant reduction of soil carbon (James & Harrison, 2016; Bödeker et 265 

al., 2016). Studies on SOC changes following harvesting show, however, contrasting results. 266 

Podosols, one of the most common soil types in boreal forests, were among the soils with the 267 

greatest SOC losses both from the forest floor and the mineral soil in a global meta-analysis (James 268 

& Harrison, 2016). Other studies suggest that reductions in SOC stocks from logging mainly relate 269 

to removal of harvest residues (Mäkipää et al., 2023; Clarke et al., 2021). Harvesting impacts on 270 



SOC stocks are most likely context-dependent (Nave et al., 2024). Estimates of the recovery time 271 

of the carbon balance after clear-cutting can be highly variable according to site characteristics, 272 

climate and productivity (Peichl et al., 2023b; Peichl et al., 2023a). The amount of forest floor 273 

carbon is expected to slowly build up and return to pre-harvest levels during the first century (Nave 274 

et al., 2010), in parallel with the tree-layer regrowth. Other immediate responses to harvesting may 275 

include reductions in soil nitrogen content, water-holding capacity and soil compaction (Jurgensen 276 

et al., 1997; Bock & van Rees, 2002). 277 

The stability of SOC is also mediated by a broad set of environmental drivers, in particular 278 

temperature and soil moisture content (Soucémarianadin et al., 2018). Like natural large-scale 279 

disturbances, the open patches created by clear-cutting alter the climate at a microscale, as the 280 

ground level warms, and also potentially dries up (Stoutjesdijk & Barkman, 1992). This results in 281 

warmer days with higher temperatures above ground level in clear-cut relative to primary forests 282 

(Blumroeder et al., 2019). Densely planted production forests may, on the other hand, potentially 283 

give lower soil temperatures relative to more open forest systems (e.g. Kjønaas et al., 2021).  284 

(4) Landscape patterns 285 

Extensive clear-cutting has led to loss and fragmentation of old forests in boreal landscapes 286 

(Kuuluvainen & Gauthier, 2018; Boucher & Grondin, 2012). Concomitantly, the percentage of 287 

young forest has increased, especially in cohort- and gap dynamic-type forests (Kuuluvainen & 288 

Gauthier, 2018). These early successional forests are, furthermore, more homogeneous than those 289 

that occur after natural disturbances (Swanson et al., 2011). In eastern Canada, the proportion of 290 

forests older than 100 years was reduced from 75% in 1930 to 15% in 2000 (Boucher et al., 2009). 291 

Forest age has reduced also in central Sweden, with a notable shift towards more even-aged Scots 292 

pine forests (Axelsson & Östlund, 2001; Linder & Östlund, 1998). The remaining old-growth 293 

forest is mostly small and isolated (Axelsson & Östlund, 2001). Such fragmentation also increases 294 

the length of forest edges which in turn may alter microclimatic conditions (Lindenmayer & 295 

Fischer, 2013; Harper et al., 2005).  296 

Forest landscapes are typically polarized, with large contrasts between forests that have been clear-297 

cut and old-growth forests. Still, old-growth forests are poor representations of natural conditions 298 

because (1) they might bear traces of former forestry, (2) the most productive sites are 299 

underrepresented, and (3) forest fires are supressed (Siitonen, 2001; Jönsson et al., 2009). Further, 300 

early successional forests resulting from natural disturbances, which are more structurally complex 301 

than clear-cuts, are lacking in the landscape (Swanson et al., 2011; Kuuluvainen & Gauthier, 302 

2018). 303 

IV. Clear-cutting effects on forest biodiversity 304 

The transition to clear-cutting forestry has brought physical changes to the boreal forest, such as 305 

reduced structural complexity and connectivity of old-growth forests. This, in turn, impacts 306 

biodiversity. Almost half of all species on the national red lists in Fennoscandia live in boreal 307 

forests, and the majority of these are associated with old-growth forests and/or are threatened by 308 

clear-cutting (Junninen & Komonen, 2011; Larsson et al., 2011; Artsdatabanken, 2021; Tikkanen 309 



et al., 2006). A meta-analysis by Savilaakso et al. (2021) revealed an overall negative effect of 310 

even-aged forest management on species richness in European boreal forests. 311 

Ideally, long-term effects of clear-cutting should be studied with permanent plots, established 312 

before the first clear-cutting and maintained for at least one tree generation (BACI; Smith, 2002). 313 

However, such infrastructure is largely absent. Further, clear-cutting has only been in regular use 314 

for 50–80 years and these forests have therefore only recently reached maturity (Table 2). Some 315 

comparative studies on the biodiversity of mature clear-cut and old-growth forests with similar site 316 

conditions have been conducted (Table 3). Short-term studies are more common. Additionally, 317 

studies on other intensive forestry operations, for example retention forestry, are sometimes 318 

relevant for understanding species’ responses to clear-cutting. Numerous reviews have addressed 319 

how tree retention impacts boreal forest biodiversity (e.g. Koivula & Vanha-Majamaa, 2020; 320 

Seibold et al., 2015; Beese et al., 2019). On the landscape level, forestry-induced habitat 321 

fragmentation may impact boreal forest biodiversity. 322 

In the following, we review how different species groups associated with living trees, dead wood, 323 

ground and soil (Figure 2) are affected by clear-cutting and landscape-level habitat fragmentation, 324 

including edge effects. Short- and long-term effects of clear-cutting, i.e. responses observed before 325 

or after 50 years (Figure 1), will be distinguished in the text and summarized in Table 3. We will 326 

discuss responses to the observed changes in the physical forest environment (reviewed above) 327 

where it is relevant. In a few cases, where studies on effects of clear-cutting are scarce, we discuss 328 

responses to other intensive logging methods. 329 

Table 2. Major knowledge gaps and uncertainties identified with regards to impacts that clear-cutting have 330 
on boreal forest biodiversity. 331 

Knowledge gaps Explanation 

Geographic bias • The direction and severity of the changes we observe differ with boreal regions. 

Considering whole regions, very little data exist from Asian boreal forests, and 

relevant studies may exist in non-English languages. 

• Some forest types are underrepresented, namely early successional stages following 

natural disturbances and high-productivity old-growth forests. 

Underrepresented 

taxa/functional 

groups 

• Almost no data exist on the following groups’ responses to forest management: 

archaea, bacteria, protists – invertebrates other than beetles and spiders – 

microfungi (e.g. endophytes) – epiphytic bryophytes 

Long-term 

responses to clear-

cutting 

• Long-term (≥ 50 yrs) studies of clear-cutting are lacking because it has only been 

common for 50–80 years and absence of BACI designs.  

• Community-level recovery potential from natural and anthropogenic disturbances 

are poorly understood, including how recovery potential differs after clear-cutting 

and natural stand-replacing disturbances. 

• Responses seem to differ across species groups. Long-term data is missing or scarce 

for most groups. 

Management 

regimes and forest 

history 

• Effects of clear-cutting depend on former management history, thereby impeding 

interpretations. Further, this information is lacking from many studies. 

• ‘Clear-cutting’ is done differently across countries, including degree of retention, 

site preparation, fertilization, regeneration and thinning. 

Landscape-level 

responses to clear-

cutting 

• Species’ abilities to avoid regional extirpation are not well understood, nor how 

these responses differ across taxa.  

• Edge effects are complex and not well understood (Harper et al., 2005). 



Diversity metrics • Most studies have looked at the effect of forestry on species richness. However, it 

is also important to investigate species evenness, beta diversity, gamma diversity, 

genetic diversity and functional diversity. 

Publication bias • Studies of no effect are rarely reported. 

 332 

(1) Living trees 333 

(a) Lichens 334 

Several studies, as well as national red-list assessments, indicate that epiphytic lichens (Table 1) 335 

are currently facing severe population declines (Esseen et al., 2022; Lommi et al., 2010). Using 336 

data from comprehensive field surveys over 10 years, Esseen et al. (2022) reported annual loss 337 

rates of pendulous lichens across managed Norway spruce (Picea abies) forests in Sweden. The 338 

rates ranged from 1.7% in the genus Alectoria to 0.5% in Bryoria. Declines are driven by logging 339 

of forests with long continuity of tree cover, short rotation times, substrate limitation and low light 340 

availability in dense forests (Esseen et al., 2022; Dettki & Esseen, 2003). 341 

Clear-cutting ultimately removes the host trees of epiphytic lichens. Their recovery is thus 342 

dependent on dispersal and reestablishment of lichen propagules, dictated by the substrate 343 

availability and microclimatic suitability throughout succession. Few studies, however, have 344 

investigated the effects of clear-cutting on epiphytic lichen diversity. In one exception, lichen 345 

species were surveyed in hemiboreal forests of Estonia on any substrate, where old-growth were 346 

compared with mature (65–95 yrs) and young (4–19 yrs) clear-cut forests (Lõhmus & Lõhmus, 347 

2019). Overall community composition differed between all forest types. Old-growth forests had 348 

similar richness of management-tolerant species, slightly higher richness of management-sensitive 349 

species, and significantly higher richness of old growth-dependent species, compared to mature 350 

clear-cut forests. In another study, red-listed lichens showed reduced species richness in mature 351 

(30–70 yrs) clear-cut compared to old-growth Norway spruce forests (Rudolphi & Gustafsson, 352 

2011). However, the effect was only significant in forests with south-facing edges, and no 353 

difference was observed when accounting for the number of broadleaved trees. 354 

Old trees are particularly important for the epiphytic lichens because of their long lifespan and 355 

high diversity of microhabitats, such as rough bark with furrows (Holien, 1996). Accordingly, tree 356 

age is a strong predictor of lichen species richness (Lie et al., 2009; Uliczka & Angelstam, 1999). 357 

In his review on epiphytic lichens in boreal forests, Johansson (2008) revealed that old-growth 358 

forests host more species than younger, clear-cut forests. As much as 150-300 years are needed 359 

for recovery of the epiphytic lichen diversity, especially of rare species. 360 

Retention of host trees after clear-cutting may serve as lifeboats for epiphytic lichen species 361 

(Johansson, 2008; Lundström et al., 2013; Hedenås & Hedström, 2007; Ranlund et al., 2018; 362 

Nirhamo et al., 2024). Lundström et al. (2013) showed that the total lichen species richness on 363 

retained European aspen (Populus tremula) trees increased with time since clear-cutting with 364 

retention, including forest that were cut 0–16 years before. However, whether these responses to 365 

tree retention prevail in dense production forests (30–40 yrs after cutting) are not known. 366 



(b) Bryophytes and fungi 367 

Epiphytic bryophytes (mosses and liverworts) are also removed during clear-cutting. Little is 368 

known about the reestablishment of this group during forest succession. In a study from Canada, 369 

no differences were found in neither species richness nor composition between 35–45 year old 370 

forests regenerating after clear-cutting, forest fire and insect outbreak, and mature managed (>75 371 

yrs old) forests (Schmalholz, Hylander & Frego, 2011). In another study from Canada, bryophyte 372 

richness increased with higher levels of canopy retention and was positively correlated with local 373 

abundance of coniferous trees (Caners, Macdonald & Belland, 2010; Bartels et al., 2018). The 374 

sparse results may suggest that clear-cutting with tree retention may function as lifeboats to some 375 

epiphytic bryophytes.  376 

A myriad of endophytic fungi (Table 1) live inside plants (Porras-Alfaro & Bayman, 2011), but 377 

how this largely hidden diversity is affected by forest management is scarcely addressed. Helander 378 

et al. (2006) compared endophytic fungi associated with silver birch (Betula pendula) in Finland. 379 

They observed that endophyte abundance and species composition significantly differed among 380 

leaves from seedling stands, mature managed (90-130 yrs) and old-growth (122-184 yrs) forests. 381 

Species richness was similar between the forest types. 382 



 383 

Figure 2. We focus on boreal forest biodiversity in four major substrates: living trees, dead wood, ground 384 
and soil. Some species groups that are reviewed in regards to their responses to clear-cutting are highlighted 385 
– epiphytic lichens, canopy spiders, saproxylic fungi and epixylic bryophytes, epigeic beetles and 386 
ectomycorrhizal fungi. 387 

(c) Arthropods 388 

Clear-cutting has an immediate effect on arthropods in tree canopies, e.g. mites, spiders and 389 

herbivorous insects, by direct removal of their habitat. However, the ability of arthropod 390 

communities to reestablish during forest succession has rarely been studied. In mixedwood forests, 391 

spider communities did not differ nine years after clear-cutting with 20% tree retention compared 392 

to primary forests (Pinzon, Spence & Langor, 2011). In western Canada, Behan-Pelletier & 393 

Winchester (1998) collected oribatid mites from the forest floor and trees of six-year-old clear-394 

cuts and old-growth Sitka spruce (Picea sitchensis)-dominated forests. Only 16 out of 34 recorded 395 



species were found both in the old-growth canopy and the clear-cut. Furthermore, the old-growth 396 

forest had higher oribatid species richness compared to the clear-cuts.  397 

No study of long-term effects of clear-cutting on canopy arthropods is known to us. However, old 398 

trees of high naturalness seem to be important. Pettersson et al. (1995) found five times as many 399 

arthropod individuals per Norway spruce branch in the primary than old-growth forests (80-128 400 

yrs) subjected to selective loggings and thinning in northern Sweden. This was attributed to 401 

differences in epiphytic lichen abundance, which provide shelter, food and hunting grounds for 402 

arthropods. Indeed, larger and more web-building spiders were found in the lichen-rich primary 403 

forests (Pettersson, 1996). In coastal boreal forests in Norway with a history of selective logging, 404 

Thunes, Skarveit & Gjerde (2003) found large differences in species composition of canopy 405 

arthropods from old (>250 yrs old) and mature (60-120 yrs old) Scots pine trees. No difference 406 

was found in species richness. 407 

As many caterpillars (Lepidoptera) feed on tree foliage, their communities are structured by the 408 

identity of the dominating tree species (Franklin et al., 2003). In a review, Summerville & Crist 409 

(2008) found strong effects of clear-cutting on moth communities and declines in species richness 410 

in northeastern North America. Although most reviewed studies were from temperate forests, one 411 

found decreased species richness and altered compositions of geometrid moths in clear-cut 412 

compared to unlogged red spruce (Picea rubens)-dominated forests (Thomas, 2002). 413 

(2) Dead wood 414 

(a) General patterns 415 

Dead wood is a substrate with a high number of associated species, mainly due to the many niches 416 

that it provides (Stokland et al., 2012). Essentially, the dead wood characteristics which provide 417 

different habitats for species and that have been addressed in different studies include: tree species, 418 

decay stage, wood diameter, cause of tree death, whether the logs are standing or downed, bark 419 

cover and moisture content (Hagge et al., 2019; Löfroth et al., 2023; e.g. Langor et al., 2008; 420 

Stokland et al., 2012).  421 

Since the volume and the variation in dead wood characteristics differ between old-growth and 422 

managed forests, we can expect a difference in the diversity of saproxylic and epixylic (Table 1) 423 

species (Stokland et al., 2012; Siitonen, 2001; Hekkala et al., 2023; Löfroth et al., 2023; Hagge et 424 

al., 2019). This is supported by Siitonen (2001), who found that 8 of 13 reviewed studies reported 425 

18-75% higher richness in old-growth than in mature managed forests, while two studies showed 426 

no difference.  427 

(b) Fungi  428 

Along with beetles, fungi are the most diverse and well-studied groups of saproxylic species. In a 429 

synthesis combining 76 studies of saproxylic fungi, 72-100% more species were found in old-430 

growth than in mature managed forests, a pattern that was even more pronounced for red-listed 431 

fungi (Junninen & Komonen, 2011). Indeed, results from fruit body surveys in Finland and 432 

northern Russia have shown lower fungal richness in mature managed or younger clear-cut forests, 433 

compared to old-growth forests (Juutilainen et al., 2014; Nordén et al., 2013; Purhonen et al., 434 

2021; Ylisirniö et al., 2012; Penttilä, Siitonen & Kuusinen, 2004). Fungal communities differed 435 



both between formerly clear-cut (up to 44 yrs old) and old-growth forests (Ylisirniö et al., 2012; 436 

Juutilainen et al., 2014). In other studies, community composition was driven by management 437 

intensity (number of cut stumps) (Penttilä et al., 2004; Purhonen et al., 2021). Runnel & Lõhmus 438 

(2017) studied saproxylic fungal communities in hemiboreal forests of Estonia that had been clear-439 

cut 65-95 years ago, then naturally regenerated and supplied with dead wood. Mature clear-cut 440 

forests could host old-forest species if dead wood volumes were high. Despite this, fungal species 441 

richness was lower (except dry oligotrophic Vaccinium idaea-type sites), and community 442 

composition altered, in formerly clear-cut compared to old-growth forests (Runnel & Lõhmus, 443 

2017).  444 

Suominen, Junninen & Kouki (2019) observed that dead wood harvest residues in clear-cuts could 445 

host species-rich assemblages of fungi. Indeed, dead wood volume is a strong predictor of species 446 

richness of saproxylic fungi in boreal forests (e.g. Hottola, Ovaskainen & Hanski, 2009; 447 

Juutilainen et al., 2014). Moreover, variation in dead wood decay stages, sizes and tree species are 448 

also drivers of saproxylic fungal diversity (Tomao et al., 2020; Küffer & Senn-Irlet, 2005; Hart et 449 

al., 2023; Nordén et al., 2013). Rare and red-listed fungi respond particularly strongly to the 450 

abundance of large dead wood logs (Hottola et al., 2009; Nordén et al., 2013). Species that are 451 

specialized to grow on rare structural elements, such as kelo trees (Niemelä et al., 2002), are 452 

declining along with their substrate. 453 

(c) Beetles 454 

Clear-cutting also affects saproxylic beetle communities. Several studies have observed different 455 

species compositions between old-growth and clear-cut forests, both in the short- (Stenbacka et 456 

al., 2010; Sippola, Siitonen & Punttila, 2002; Jacobsen et al., 2020) and long-term (Jacobsen et 457 

al., 2020; Stenbacka et al., 2010; Bishop, 1998) after cutting (Table 3).  458 

Red-listed saproxylic beetle species are more common in old-growth than in former clear-cut 459 

forests (Jacobsen et al., 2020; e.g. Stenbacka et al., 2010). The effect of clear-cutting on overall 460 

saproxylic beetle richness, however, is inconclusive, and this might reflect limitations in sampling 461 

methods. Relative to traps in old-growth forests, Jacobsen et al. (2020) found higher species 462 

richness in traps on recent clear-cuts and lower richness in traps in mature clear-cuts. Stenbacka et 463 

al. (2010) observed a richness decrease 30 years after clear-cutting in unthinned forests relative to 464 

old-growths, but no effect after 53 years in thinned forests. Two other studies found no change in 465 

species richness after clear-cutting (Bishop, 1998; Sippola et al., 2002). Overall, responses to 466 

forestry may be especially difficult to detect for beetles, as a coverage of 400 species per sample 467 

may be necessary to represent rare species (Martikainen & Kouki, 2003). Sampling of saproxylic 468 

beetles is usually done by window traps, a sampling method influenced by ambient temperature 469 

and ease of flight of adult beetles. Thus, a higher species richness in the warmer and more open 470 

clear-cuts does not necessarily represent breeding populations in the stand, nor larvae in their main 471 

habitats. It will likely include species searching for dead wood units that might not be present. 472 

Saproxylic beetles from window traps show marked differences in species composition between 473 

sun-exposed and shaded dead wood habitats (Seibold et al., 2016; Hjältén et al., 2012; Vindstad 474 

et al., 2020). Many species are adapted to open areas with high volumes of dead wood, mimicking 475 



the early successional habitats that appear after natural disturbances (Vindstad et al., 2020; Jonsell, 476 

Weslien & Ehnström, 1998).  477 

Dead wood volume increases the species richness of saproxylic beetles (Stenbacka et al., 2010; 478 

Gibb et al., 2013; Martikainen et al., 2000), but dead wood characteristics are as important. For 479 

instance, beetle richness differs strongly between dead wood from coniferous and broadleaved 480 

trees (Seibold et al., 2016; Langor et al., 2008). The importance of tree species decreases later in 481 

the decay process, thus variation in decay stage, diameter and type (standing vs downed) are other 482 

important drivers of saproxylic beetle richness (Ehnström & Axelsson, 2002; Stokland et al., 2012; 483 

Hjältén et al., 2012; Lee, Spence & Langor, 2014). Saproxylic beetle communities also depend on 484 

the fungal community composition (Weslien et al., 2011; Birkemoe et al., 2018). 485 

(d) True flies and wasps 486 

While wasps (Hymenoptera) and true flies (Diptera) are extremely abundant and important in the 487 

dead wood ecosystems, their responses to forest management have been poorly addressed. In one 488 

notable exception, Økland (1994) found altered species assemblages of fungus gnats (Diptera: 489 

Sciaroidea) in old-growth Norway spruce forests to forests that were clear-cut 70-120 years earlier. 490 

He observed lower richness of saproxylic, as well as soil-dwelling, species of fungus gnats, both 491 

in mature and in recent clear-cut forests. Fungus gnat richness increased with continuous presence 492 

of tree cover and dead wood over the whole range of decay stages (Økland, 1996). 493 

For saproxylic parasitoid wasps, species richness increases with increasing dead wood volume 494 

(Gibb et al., 2008; Hilszczański, 2018; Jonsell et al., 2023). While species richness does not seem 495 

to be affected by management history, species composition is structured by this factor 496 

(Hilszczański, 2018), reflecting that different parasitoid assemblages have different developmental 497 

strategies. 498 

Many species of hoverflies (Diptera: Syrphidae), bees and stinging wasps (Hymenoptera: 499 

Aculeata) use dead wood holes and crevices as nesting sites (Bogusch & Horák, 2018). Suitable 500 

nest holes appear 9–13 years after logging (Westerfelt et al., 2015). In a Finnish field experiment 501 

in which forest complexity was manipulated, both bee and hoverfly richness increased with a 502 

higher variation of dead wood and floral food resources 13 years after harvesting (Rodríguez & 503 

Kouki, 2017). Interestingly, richness was higher in harvested sites compared to old-growth 504 

controls. Species richness of wood-dwelling hoverflies was also higher in recent clear-cuts and 505 

retention plots than in unharvested controls in Canada (Deans et al., 2007). Early successional 506 

forest with high flower abundance may benefit wood-dwelling pollinating insect species as long 507 

as dead wood is available. 508 

(e) Lichens and bryophytes 509 

Numerous lichen species are found exclusively on dead wood, named epixylic lichens, each with 510 

preferences for specific dead wood characteristics (Spribille et al., 2008). Three studies indicate 511 

long-term changes in community composition of this group due to logging, though the trajectory 512 

of these changes remains uncertain (Lommi et al., 2010; Söderström, 1988; Bell-Doyon et al., 513 

2024). Söderström (1988), studying epixylic bryophytes and lichens of Norway spruce forests in 514 

northern Sweden, found that the lichen species were divided according to their preferences for 515 



either old-growth forests or an adjacent site that was clear-cut 50–60 years earlier and then thinned 516 

on several occasions. While only one species preferred the old-growth, eight (mainly Cladonia 517 

spp.) preferred the formerly clear-cut forest. Söderström (1988) attributes this to the preference of 518 

most epixylic lichens for drier, more open forests. Bunnell et al. (2008), studying epixylic lichens 519 

in mixedwood forests of western Canada, observed a shift in community composition towards 520 

crustose lichen species in old-growth compared to 20– to 30–year-old formerly clear-cut forests. 521 

No difference in species richness was found. These results suggest that clear-cutting has different 522 

effects on epixylic lichens in open, drier pine forests than in more closed, mesic spruce forests. 523 

For epixylic bryophytes, several studies have found reduced species richness and/or altered 524 

community composition 35–70 years after clear-cutting as compared to old-growth forests 525 

(Dynesius et al., 2021; Andersson & Hytteborn, 1991; Schmalholz et al., 2011; Söderström, 1988; 526 

Rudolphi & Gustafsson, 2011; Dynesius, 2015; Bell-Doyon et al., 2024). However, the differences 527 

may weaken when dead wood volume is taken into account (Rudolphi & Gustafsson, 2011). A 528 

comparison between 28 coniferous forests (1 ha) in northern Sweden, of which one half was old-529 

growth and the other half formerly clear-cut (40–60 yrs ago), revealed higher epixylic bryophyte 530 

richness and cover in the old-growth forests (Dynesius et al. 2021). The difference was attributed 531 

to the availability of dead wood habitats. In his study of spruce forests in the same region, 532 

Söderström (1988) found that six liverwort species clearly preferred or were confined to old-533 

growth forests while none preferred the mature clear-cut forests. For mosses, no clear difference 534 

was found. Studies of epixylic bryophytes clearly indicate that several species are disfavoured by 535 

clear-cutting, in particular drought-sensitive liverworts. 536 

(3) Ground 537 

(a) Vascular plants, bryophytes, lichens and fungi 538 

Epigeic vascular plants (Table 1), bryophytes and lichens form the understory vegetation of boreal 539 

forests that varies regionally and locally along several environmental gradients (Halvorsen et al., 540 

2020; Tuhkanen, 1984). Vascular plant richness increases from dry-and-poor pine forests to mesic-541 

and-rich spruce (and broadleaved) forests (Esseen et al., 1997). Bryophytes are replaced by lichens 542 

as the dominating group in drought-exposed sites. Successional patterns of boreal forest plant 543 

communities after clear-cutting are well known: vascular plant richness increases in the short term 544 

after cutting and peaks during mid-succession (Hart & Chen, 2006).  545 

Long-term effects of clear-cutting on vegetation have been addressed in very few studies. Økland 546 

et al. (2003) investigated the understory vegetation in Norwegian boreal forests with different 547 

forest histories (clear-cut 60 yrs ago, selectively logged, primary). Weak differences in the 548 

responses of vascular plants, bryophytes and lichens were observed. The authors concluded that 549 

former logging had a very weak long-term impact on vegetation, operating mainly via effects on 550 

tree-layer structure during forest regrowth. Interestingly, a recent resurvey of the south-facing plots 551 

revealed that the vegetation community composition had converged to the primary forest state 86 552 

years after clear-cutting (Knapstad, 2024). In the eastern part of European Russia, Likhanova et 553 

al. (2023) compared the vegetation of primary Siberian spruce (Picea obovata)-dominated forests 554 

to areas that were clear-cut 2, 18 and 50 years earlier (winter clear-cutting). Their sparse material 555 

indicate that the richness of understory vascular plants recovered rapidly after clear-cutting while 556 



the richness of bryophytes and lichens were still lower in the formerly clear-cut forest after 50 557 

years of succession. The mature clear-cut communities had converged towards the primary forest 558 

state, although slight differences were still seen in community composition (Likhanova et al., 559 

2021). 560 

Long-term effects of clear-cutting on epigeic lichens appear not to have been specifically studied. 561 

Lafleur et al. (2016) observed no differences between Cladonia lichen species 4–13 yrs after clear-562 

cutting and fire. The slow growth of the dominating  Cladonia lichens (e.g. Scotter, 1963) suggests 563 

locally slow recovery of the lichen cover if physically disturbed, while a more open tree layer is 564 

not expected to have a negative effect as such on epigeic lichens. 565 

For epigeic bryophytes in particular, studies indicate long-term effects on community composition, 566 

while effects on species richness are inconclusive (Paquette et al., 2016; Dynesius et al., 2021; 567 

Økland et al., 2003; Dynesius, 2015; Schmalholz et al., 2011; Likhanova et al., 2023; Bell-Doyon 568 

et al., 2024). However, the abovementioned resurvey from Norway (Knapstad, 2024) show that 569 

communities could recover 86 years after clear-cutting (epigeic bryophytes constituted ⅔ of the 570 

species community). Microclimate may, furthermore, be important for bryophyte resilience to 571 

clear-cutting. In northern Sweden, Dynesius (2015) observed reduced species richness in upland, 572 

but not in streamside forests, 30–50 years after clear-cutting; bryophyte richness had still not 573 

recovered in upland forests during a resurvey 15 years later (45–65 yrs after cutting). 574 

Davey, Kauserud & Ohlson (2014) compared fungal communities associated with a moss species 575 

(Hylocomium splendens) in four different successional forest age classes, ranging from clear-cut 576 

sites to old-growth forests. Fungal richness was slightly higher in the old-growth forests. 577 

Furthermore, a distinct difference in fungal community composition was observed between forest 578 

ages, indicating that mosses in different forest ages host different fungal communities (Davey et 579 

al., 2014). 580 

(b) Arthropods 581 

Long-term effects of clear-cutting on epigeic arthropods have been addressed in several studies, 582 

in particular from Canada, where communities have been studied more than 50 years after clear-583 

cutting (Koivula, Kukkonen & Niemelä, 2002; Belluz et al., 2022; Johansson et al., 2016; Le 584 

Borgne et al., 2018; Venier et al., 2017). The most thoroughly studied groups are spiders, ground 585 

(Carabidae) and rove (Staphylinidae) beetles, which are highly abundant predatory groups on the 586 

boreal forest floor. 587 

Following clear-cutting, epigeic beetle and spider richness increase. Moreover, the community 588 

compositions are highly altered due to immigration of open-habitat and generalist species, and 589 

disappearance of many forest species (Niemelä et al., 2007; Koivula et al., 2019; Larrivée, Fahrig 590 

& Drapeau, 2005; Buddle, Spence & Langor, 2000). The successional trajectories of epigeic beetle 591 

communities follow those of the vegetation. In particular, the communities start to converge 592 

towards the predisturbance (i.e. old-growth forest) state when the canopy closes, typically two or 593 

three decades after the disturbance took place (Koivula et al., 2002; Niemelä et al., 2007). Several 594 

studies have documented that epigeic beetle communities continue towards recovery in the long-595 



term (53–66 yrs after cutting; Table 3), both from Fennoscandia (Koivula et al., 2002; Johansson 596 

et al., 2016) and Canada (Belluz et al., 2022; Le Borgne et al., 2018). 597 

Long-term responses of epigeic spider communities are less clear. In Canada, two studies of spider 598 

assemblages in trembling aspen (Populus tremuloides)-dominated (Buddle et al., 2000) and 599 

coniferous (McIver, Parsons & Moldenke, 1992) forest floors, show signs of convergence with 600 

pre-harvest compositions 30 years after clear-cutting. In contrast, in jack pine-dominated forests, 601 

spider, ground and rove beetle communities were more similar 3 and 51 years after clear-cutting, 602 

than 92 years after a forest fire (Venier et al., 2017). Successional rates might, however, depend 603 

on soil moisture content. McIver et al. (1992) found a higher rate of epigeic spider succession in 604 

wet than dry sites after clear-cutting. 605 

Although the overall epigeic beetle and spider communities may recover over time, species 606 

confined to old-growth forests may not. Several ground beetle species are more commonly 607 

observed in old-growth than in previously clear-cut forests (Niemelä et al., 2007; Buddle et al., 608 

2006; Johansson et al., 2016). Moreover, many species of rove beetles struggle to recover after 609 

clear-cutting due to low amounts of dead wood (Venier et al., 2017; Klimaszewski et al., 2018). 610 

For spiders, no old-growth specialists have yet been identified, but such forests apparently host 611 

unique assemblages: more web-building spider families are found in old-growth than in managed 612 

forests (Pajunen et al., 1995; Larrivée et al., 2005). 613 

Mound-building wood ants (red wood ants) are keystone species and ecosystem engineers in boreal 614 

forests (Wardle et al., 2011; Stockan & Robinson, 2016). Species that build long-lived and large 615 

nests with a connected network of mounds, such as Formica aquilonia, have higher densities in 616 

older forests, whereas species with single and smaller nests, such as F. lugubris, dominate in 617 

younger forests (Punttila, 1996). Clear-cutting likely has negative short-term effects on all wood 618 

ant species (Stockan & Robinson, 2016), which may be because ants depend on large amount of 619 

honeydew from aphids in tree canopies. In central Finland, more than 50% of all F. aquilonia nests 620 

were abandoned four years after clear-cutting, compared to 2% in unlogged controls (Sorvari & 621 

Hakkarainen, 2007).  622 

Pollinating insect occurrence is driven by the availability of flowering plants, but also by warm 623 

microclimate and availability of nesting habitat, such as dead wood (see Section IV.2.d) and 624 

exposed soil (Milberg, Eriksson & Bergman, 2021; Willmer, 2011). Clear-cutting creates early 625 

successional habitat with tilled soil, increased temperatures and high light availability which 626 

increases the growth of flowering plants. In a heavily managed Norway spruce forest landscape in 627 

southeastern Norway, Nielsen & Totland (2014) found more species of flower-visiting insects 628 

(representing several orders) in recent clear-cuts than in old-growth controls. Species richness was 629 

highest in sites that were clear-cut 15–35 years earlier. Increased richness in the short term after 630 

clear-cutting have been shown for several groups of pollinating insects: hoverflies (Deans et al., 631 

2007; Rodríguez & Kouki, 2017), bees (Rodríguez & Kouki, 2017; Andersson et al., 2022; 632 

Korpela, Hyvönen & Kuussaari, 2015) and butterflies (Andersson et al., 2022; Korpela et al., 633 

2015). However, we are not aware of any studies looking at long-term effects of clear-cutting on 634 

the biodiversity of pollinating insects in boreal forests. 635 



(4) Soil 636 

(a) Ectomycorrhizal fungi 637 

Clear-cutting sever the symbiotic partners of ectomycorrhizal (ECM) fungi – living tree roots. 638 

Further, the following changes in soil temperature and chemistry after cutting are important drivers 639 

of ECM communities (Jones, Durall & Cairney, 2003). Several studies have documented a strong 640 

short-term effect of clear-cutting on the fungal community composition (Jones et al., 2003; 641 

Rodriguez‐Ramos et al., 2021) and declines in species diversity (Wilhelm et al., 2017; Rodriguez‐642 

Ramos et al., 2021; Sterkenburg et al., 2019). Survival, biomass and relative abundance of ECM 643 

fungi are also reduced (Kyaschenko et al., 2017; Parladé et al., 2019; Bååth, 1980). Some fungi 644 

may, however, survive in the soil for a few years after removal of their main hosts, either as mycelia 645 

cut off from their host plant, as dormant spores or by forming symbioses with other plants 646 

(Heinonsalo & Sen, 2007; Sterkenburg et al., 2019; Jones et al., 2003). 647 

Studies of the effect of tree retention on ECM fungi indicate that the most frequent species may be 648 

retained, while more infrequent species are lost with increasing levels of tree removal (Heinonsalo 649 

& Sen, 2007). Tree retention patches with 20 m in diameter were insufficient to ensure continuity 650 

of old-growth-dependent species (Kranabetter, De Montigny & Ross, 2013). Up to ~50% tree 651 

retention, and a maximum 15 m spacing between trees, may be needed to maintain the integrity 652 

between tree roots and their ECM fungal partners (Prescott & Grayston, 2023; Sterkenburg et al., 653 

2019). 654 

A few studies suggest that clear-cutting has long-lasting effects on ECM fungal communities. 655 

Varenius et al. (2016) compared ECM fungal communities in old-growth and in previously clear-656 

cut (50 yrs ago) Scots pine forests, and found no difference in the overall species richness. 657 

However, community composition differed between the two, both when using fruit body and 658 

DNA-based data (Varenius et al., 2016). In congruence, Bell-Doyon et al. (2022) observed altered 659 

compositions of ECM fungi in previously clear-cut (50 yrs ago) balsam fir (Abies balsamea)-660 

dominated forests. Species diversity was higher than in the old-growth forest, but the effect was 661 

not significant. This suggests an effect of clear-cutting on the community composition rather than 662 

on species richness per se. Still, these effects might differ between forests with shorter and longer 663 

histories of intensive forestry (Mielke, 2022), as mycorrhizal species richness is positively 664 

correlated with stand age (e.g. Peter, Buée & Egli, 2013). Many ECM species have strict 665 

preferences for old-growth forests, for example several species within the genus Cortinarius 666 

(Hasby, 2022; Varenius et al., 2016) and the iconic Tricholoma matsutake (Risberg, Danell & 667 

Dahlberg, 2004). 668 

(b) Other fungi and bacteria 669 

A few studies from North America have used DNA-based data to investigate the effects of clear-670 

cutting on the overall soil fungal community, as well as bacteria, and one has looked at long-term 671 

effects (Bell-Doyon et al., 2022). In the short term after clear-cutting, the immediate pulse of 672 

harvest residues and reduced photosynthate input from living trees, lead to a community shift of 673 

soil fungi favouring saprotrophic fungi (Rodriguez‐Ramos et al., 2021; Rähn et al., 2023). Two 674 

studies observed stronger effects of clear-cutting on the overall fungal community compared to 675 

bacteria (Hartmann et al., 2012; Leung et al., 2016). Still, general reponses are difficult to infer as 676 



they clearly differ between functional groups (Rodriguez‐Ramos et al., 2021). Responses of these 677 

groups may also depend on the techniques used during logging, as soil compaction is known to 678 

affect both fungal and bacterial communities in the soil (e.g. Hartmann et al., 2014). 679 

In contrary to ECM fungi (reviewed above), the response of the overall soil fungal diversity to 680 

clear-cutting is inconclusive. In balsam fir forests of eastern Canada, Bell-Doyon et al. (2022) 681 

observed altered fungal community compositions 50 years after clear-cutting. Although they 682 

observed increased alpha diversity, the effect was not significant. Two studies compared different 683 

intensities of clear-cutting (three tiers of organic matter removal), 10–15 years after logging 684 

(Hartmann et al., 2012; Wilhelm et al., 2017). They found increased alpha diversity of soil fungi 685 

and altered community composition. However, Rodriguez‐Ramos et al. (2021) did not find an 686 

effect on species richness nor composition, of saprotrophic, AM or pathogenic fungi, six years 687 

after clear-cutting.  688 

No effect has been observed on bacterial species evenness 10–15 years after logging (Hartmann et 689 

al., 2012; Leung et al., 2016) or alpha diversity 50 years after logging (Bell-Doyon et al., 2022). 690 

However, bacterial community compositon was signficantly altered in all cases. 691 

(c) Invertebrates 692 

Few studies address effects of clear-cutting on soil invertebrate diversity in boreal forests, partly 693 

due to difficulties with identification, and even less studies are available on effects more than five 694 

years after cutting. In Norway spruce forests of Finland, Siira-Pietikäinen & Haimi (2009) found 695 

strong declines in abundance, and altered species composition, of soil macroarthropods 10 years 696 

after clear-cutting; effects were not mitigated by 50% tree retention. Other studies, however, 697 

indicate that some faunal groups recover to pre-harvest levels over time (Kudrin 2023, Marshall 698 

2000). One such group is Enchytraeidae (Annelida) that quickly increases in abundance after 699 

cutting, then recovers to pre-logging levels in the first decade of succession (Siira-Pietikäinen & 700 

Haimi, 2009; Malmström et al., 2009; Kudrin et al., 2023; Huhta, Nurminen & Valpas, 1969). For 701 

springtails (Collembola), both positive (Malmström et al., 2009; Huhta et al., 1969) and negative 702 

(Bird & Chatarpaul, 1986) short-term abundance and richness responses to clear-cutting have been 703 

reported. Like enchytraeids, the effects of clear-cutting on springtails seem to weaken or level out 704 

after ten years (Malmström et al., 2009; Marshall, 2000; Siira-Pietikäinen & Haimi, 2009; Huhta 705 

et al., 1969). 706 

Several studies have observed negative short-term effects (≤10 yrs) of clear-cutting on oribatid 707 

mites, both when looking at the number of species and individuals (Malmström et al., 2009; 708 

Marshall, 2000; Kudrin et al., 2023; Huhta et al., 1969; Lóšková et al., 2013). Changes in 709 

microclimate have been mentioned among explanations (Marshall, 2000). A delayed response may 710 

be expected, either because oribatid mites develop slowly (Danks, 2006) or due to changes in 711 

availability of their fungal food (Marshall, 2000). Studies of Mesostigmata or Trombidiformes 712 

mites showed no effect of clear-cutting (Malmström et al., 2009; Huhta et al., 1969). 713 

Results for soil nematodes are inconclusive. Combining morphological and DNA-based data, 714 

George & Lindo (2015) did not detect an effect of recent clear-cutting on richness or community 715 

composition of soil nematodes. In line with this, Sohlenius (2002) found no difference in richness 716 



3–12 years after clear-cutting. In western Canada, Forge & Simard (2001) observed an overall 717 

increase in nematode alpha diversity after clear-cutting, but a decrease in the diversity of omnivore 718 

and predatory nematodes. Indeed, functional groups may be affected differently; low proportions 719 

of fungivores compared to bacterivores have been observed in previously clear-cut (3–12 yrs ago) 720 

forests (Sohlenius, 2002). 721 

Land snails (Mollusca) are rarely included in soil faunal inventories, but their responses to forestry 722 

have been addressed on some occasions. While one study found no difference in species richness 723 

nine years after clear-cutting and planting in central Canada (Hawkins et al., 1997), two studies 724 

found reduced richness 2–7 years after clear-cutting in Sweden (Hylander, 2011; Hylander, 725 

Nilsson & Göthner, 2004). However, snail species richness may recover in the long term (Remm 726 

& Lõhmus, 2016; Ström, Hylander & Dynesius, 2009). Ström et al. (2009) observed higher 727 

richness 40–60 years after clear-cutting compared to old-growth, based on 16 snail species. In 728 

hemiboreal forests, no difference was found in richness nor community composition (Remm & 729 

Lõhmus, 2016); the impact of clear-cutting on soil-dwelling snails may depend on moisture 730 

content and bryophyte cover (Hylander et al., 2004; Remm & Lõhmus, 2016).  731 

 732 

Table 3. Short- and long-term (less or more than 50 yrs) effects of clear-cutting to boreal forest species 733 
richness and community composition for species groups from four major substrates: living trees, dead 734 
wood, ground and soil. Arrows up/down = increase/decrease in alpha diversity or richness, horizontal arrow 735 
= altered community composition (beta diversity), 0 = recovery or no effect observed, and blank boxes = 736 
data missing or inconclusive evidence. Thicker symbols = stronger scientific support. Reviewed taxa not 737 
included due to lack of data: endophytic fungi, epiphytic bryophytes, epixylic lichens, epigeic lichens, ants, 738 
soil enchytraeids, soil nematodes, other soil fungi. 739 



 740 

(5) Landscape dynamics – connectivity 741 

Clear-cutting changes the spatial distribution of habitats at the landscape scale. This fragmentation 742 

of continuous boreal forest landscapes has two main effects: reduced abundance of old-growth 743 

forest habitats and isolation of individual forest patches (see chapter II.4).  744 

According to metapopulation theory, local species extinctions are frequent while regional 745 

extinctions are prevented by dispersal between habitat patches within the landscape (Levins, 1969; 746 

Hanski, 1998). Clear-cutting might hinder such recolonizations by reducing the amount of, and 747 

connectivity among, habitats.  748 

Forest species with high dispersal abilities may persist in the landscape as long as suitable habitats 749 

are constantly present. On the other hand, species that have adapted to use relatively stable habitats, 750 

such as dead wood in late decay stages, generally have lower dispersal abilities (stability-dispersal 751 

model; Southwood, 1977; Percel, Laroche & Bouget, 2019). Consequently, these species could 752 

become dispersal-limited and face population declines. 753 



(a) Fungi 754 

Generalist species of saproxylic fungi are frequently present in fragmented forests and do not seem 755 

to be limited by connectivity to old-growth forests (Moor et al., 2021; Nordén et al., 2013). 756 

However, the opposite appears to be the case for specialist fungal species. The abundance of red-757 

listed saproxylic fungi in Fennoscandia, in general, respond positively to increased dead wood 758 

volume, forest age and habitat connectivity, and negatively to high logging intensity (basal area of 759 

cut stumps) (Nordén et al., 2018; Nordén et al., 2013; Moor et al., 2021; Jönsson, Edman & 760 

Jonsson, 2008; Sverdrup-Thygeson & Lindenmayer, 2003; Hottola et al., 2009). Nordén et al. 761 

(2013) showed that the expected number of red-listed species can be more than ten times higher 762 

in well-connected than in fragmented landscapes.  763 

The dead wood specialist, Phlebia centrifuga, has been shown to be dispersal-limited even within 764 

small spatial scales (Norros et al., 2012; Moor et al., 2021). Phellopilus nigrolimitatus, typically 765 

fruiting on large-diameter dead wood of late decay stages, has likely experienced a decline in 766 

population size due to a reduction in habitat quality (Stokland & Kauserud, 2004; Sønstebø et al., 767 

2022; Sverdrup-Thygeson & Lindenmayer, 2003). The occurrences of two other saproxylic 768 

species, Phellinus ferrugineofuscus and P. viticola, depend on the connectivity of old Norway 769 

spruce forests (Mair et al., 2017; Nordén et al., 2020). Surprisingly, the colonization rates of ten 770 

dead wood specialists were not related to landscape-scale connectivity of old growth forest in 771 

Finland (Moor et al., 2021). The authors argue that low statistical power and using a metric that 772 

was too coarse to detect connectivity of dead wood habitats may have hampered the results. 773 

(b) Lichens and bryophytes 774 

Observations from boreal forests indicate that dispersal is a limiting factor for establishment of 775 

lichens associated with old-growth forests (Hilmo & Såstad, 2001; Sillett et al., 2000; Esseen et 776 

al., 2023). In northern Sweden, dispersal limited reestablishment of epiphytic lichens in previously 777 

clear-cut forests (35–78 yrs old), even when adjacent old-growth forests served as sources of 778 

propagules (Dettki, Klintberg & Esseen, 2000). Bartemucci, Lilles & Gauslaa (2022) found 779 

recolonization of Lobaria pulmonaria 25 years after clear-cutting in western Canada. However, 780 

overall species richness of epiphytic lichens declined with increasing distance to old-growth 781 

forests and size of the clear-cut stand. The importance of dispersal limitation for lichens is 782 

inconsistent, and clearly vary between different species and regions (e.g. Gjerde et al., 2015; 783 

Bartemucci et al., 2022). 784 

Few studies have investigated the effect of fragmentation on boreal forest bryophytes. In a study 785 

on epixylic bryophytes, connectivity to old forest was positively related to the occurrence of five 786 

species (Löbel et al., 2018). Furthermore, the response to connectivity depend on reproductive 787 

traits: sexually reproducing species tend to be more strongly dispersal-limited than clonal species 788 

(Löbel et al., 2018; Löbel, Snäll & Rydin, 2006).  789 

(c) Insects 790 

Available evidence indicates that connectivity to dead wood habitat is important for insects, most 791 

notably for red-listed species (Sverdrup-Thygeson, Gustafsson & Kouki, 2014b). Species 792 

depending on early-decay dead wood, however, seem to be able to locate new resources at long 793 

distances, as predicted by ecological theory (Sverdrup-Thygeson et al., 2014a). 794 



Large-scale (> 100 km2) landscape connectivity was found to be the main driver of 260 fungal 795 

gnat species of different functional guilds in southeastern Norway (Økland, 1996). In western 796 

Canada, moth richness was negatively affected by forest fragmentation when measured at several 797 

different spatial scales, and the effect was strongest for tree- and shrub-feeding species (Schmidt 798 

& Roland, 2006). Forest fragmentation reduces ant population size and favours single-nest species 799 

such as F. lugubris (Punttila, 1996). 800 

Saproxylic insects may also differ in their responses to landscape features because they prefer 801 

different tree species (Jacobsen, Sverdrup-Thygeson & Birkemoe, 2015; Lindbladh et al., 2007). 802 

For example, Jacobsen et al. (2015) found that while habitat amount was important for beetles in 803 

a mixedwood forest, species associated with European aspen responded to habitat at a larger scale 804 

than spruce-associated species.  805 

Habitat fragmentation also shapes communities of insects associated with the fruit bodies of 806 

saproxylic fungi. The beetle fauna in Fomes fomentarius fruit bodies is negatively affected by 807 

reduced patch size and increased isolation (Rukke, 2000; Sverdrup-Thygeson & Midtgaard, 1998). 808 

Furthermore, food web length decreased with time since isolation in insect communities associated 809 

with the red-listed Fomitopsis rosea, irrespective of dead wood volume (Komonen et al., 2000). 810 

(6) Landscape dynamics – edge effects  811 

Clear-cutting creates forest edges which affect biodiversity through direct or indirect effects of 812 

edge creation, for example physical damage to trees leading to a change in canopy cover, and 813 

subsequently, altered species compositions (Harper et al., 2005). The magnitude of these effects 814 

on forest biodiversity depends on the contrast between the interior (old-growth) and exterior (clear-815 

cut) end of the edge (Lindenmayer & Fischer, 2013).  816 

(a) Fungi 817 

Strong edge effects close to clear-cut forests have been observed on saproxylic fungi, most notably 818 

for rare and red-listed species. Snäll & Jonsson (2001) observed that polypore fungi considered to 819 

be of high nature conservation value were less frequent near clear-cut edges than in the interior 820 

old-growth forests. Differences in microclimate could account for this finding. Similarly, 821 

occupancy of logs by old-growth indicator species was negatively affected by distance to clear-822 

cuts, while the more common species did not show such a response (Siitonen, Lehtinen & Siitonen, 823 

2005; Ruete, Snäll & Jönsson, 2016).  824 

An edge effect of clear-cutting has also been observed for ECM fungi. Hagerman et al. (1999) 825 

observed that, 2–3 years after clear-cutting, the numbers of active fine roots as well as the richness 826 

of ECM fungal species in clear-cuts were significantly reduced with distance from the forest edge. 827 

(b) Lichens, plants and bryophytes 828 

Epiphytic lichens respond to clear-cut edges because of altered microclimate and wind-induced 829 

physical damage, but the magnitude of this response varies significantly among species (Esseen & 830 

Renhorn, 1998; Hilmo & Holien, 2002). In their study of old-growth Norway spruce forests, 831 

Kivistö & Kuusinen (2000) found negative edge effects on species richness in sunny, south-facing 832 

edges, but not in north-facing edges. In an experimental study of Usnea longissima near Norway 833 

spruce forest edges to clear-cuts, Jansson, Palmqvist & Esseen (2009) found highest growth rates 834 



with intermediate edge contrast (saplings 3 m tall). They concluded that the species benefitted 835 

from the combination of better light availability and increased vegetation shelter. In central 836 

Sweden, number of lichen species of conservation concern decreased with edge contrast, while 837 

bryophytes were unaffected (Koelemeijer et al., 2022).  838 

In a study of urban forests in southern Finland, edge effects on the understory vegetation penetrated 839 

30 m into the forest interior (Hamberg, Lehvävirta & Kotze, 2009). Hylander (2005) demonstrated 840 

reduced growth and cover of two common feathermosses along a gradient from old-growth 841 

Norway spruce forest interior to edge to adjacent clear-cuts. The magnitude of the edge effect was 842 

larger at south-facing edges. 843 

(c) Invertebrates 844 

Edges created from logging have been shown to influence invertebrate communities in a number 845 

of ways. The majority of the existing studies focus on epigeic arthropods, although other 846 

invertebrate groups, like soil biota, may also be sensitive to the changes in microclimate that edges 847 

produce. Some overall patterns in responses can be related to life history traits. A general review 848 

concluded that soil-dwelling and social insects were more negatively affected by anthropogenic 849 

edges, while flying species could be favoured by them (Caitano et al., 2020).  850 

Several studies have documented that assemblages of epigeic arthropods, such as spiders and 851 

ground beetles, differ between boreal forest interior and open, harvested areas (Pajunen et al., 852 

1995; Larrivée, Drapeau & Fahrig, 2008). While generalist species easily cross the edge, it acts as 853 

a filter for interior-forest species of ground beetles (Pajunen et al., 1995; Niemelä, 1997). Wide 854 

buffer zones (e.g. 100 m) that reduce edge contrasts may be needed to mitigate the negative effects 855 

of edges on forest species. 856 

Pinksen et al. (2021) investigated nocturnal macromoth responses to edges in mature managed 857 

forests and recent clear-cuts in Canada. The species composition of the edges was intermediate 858 

between clear-cuts and mature forests, but differed significantly from adjacent habitats and 859 

included many unique species.  860 

V. Potential consequences of clear-cutting to forest biodiversity 861 

The second cycle of clear-cutting in boreal forests has already started, and the area of repeatedly 862 

clear-cut forests is expected to increase rapidly over the next few years. Furthermore, old-growth 863 

forests are targeted for (first cycle) clear-cutting in many regions, leading to more forest edges and 864 

reduced connectivity on the landscape level. Although the consequences of clear-cutting for boreal 865 

forest biodiversity are not yet understood, our present knowledge suggests that the outcome may 866 

become more severe for each rotation. The basis of this assumption: 867 

(1) Clear-cutting regimes that do not mimic natural disturbance regimes 868 

Boreal forest systems are slow and may be affected by past events for a long time (Kuuluvainen 869 

& Aakala, 2011; Ibbe et al., 2011; Bergeron et al., 2017). Thus, some areas may potentially take 870 

several hundred years to reach late successional stages with species communities akin to old-871 

growth forests. The frequency (temporal scale), intensity and extent (spatial scale) of clear-cutting 872 

is commonly far beyond the range of natural variability in boreal forests. Based on this, and the 873 



findings presented in this literature review (Table 3), rotation times of 50–150 years is likely not 874 

sufficient for recovery of most boreal species communities. 875 

As another essential difference from natural disturbances, clear-cutting does not produce large 876 

amounts of dead wood (Swanson et al., 2011). The current form of forest management will not 877 

restore the structural complexity that is characteristic of old-growth boreal forests, including a 878 

variation of dead wood characteristics. On the contrary, key structural elements – such as old trees, 879 

kelo trees or large-diameter dead wood in late-successional stages – may become even rarer with 880 

repeated clear-cutting, imposing even stronger pressures on the species that are associated with 881 

these habitats.  882 

(2) Reduced area of old-growth/primary forests and increased area of early successional 883 

forests  884 

In fragmented forests, remnant old-growth and primary forests are important because they might 885 

act as refugia for species that emigrate from areas where their habitat is depleted. These may 886 

include specialist species in particular, as we show for saproxylic fungi (Section IV.5.a). 887 

Based on national databases from Fennoscandia, studies show that old-growth forest has, for the 888 

last two decades, been clear-cut, while protected areas have been further fragmented (Ahlström, 889 

Canadell & Metcalfe, 2022; Määttänen et al., 2022). Ahlström et al. (2022) estimated an annual 890 

loss of 1.4% old-growth (here defined as pre-dating 1880) boreal forest in Sweden. In eastern 891 

Canada, primary forests have been clear-cut over the last 30 years, in particular targeting the most 892 

productive forest areas (Martin et al., 2020). As we are not aware of any policy measure that aims 893 

to reduce this, and several countries have not mapped the locations of their remaining old-growth 894 

and primary forests, we do not expect these numbers to improve in the near future. 895 

As the area of old-growth forests decreases, it will be replaced by young forest areas (Kuuluvainen 896 

& Gauthier, 2018). The impact of this shift in age class distribution may vary depending on the 897 

forest history of specific regions. In parts of Canada, where stand-replacing crown fires were 898 

historically frequent (e.g. cycles of 39–96 years depending on vegetation type in northern Alberta 899 

(Larsen, 1997)), early successional forests were common (Shorohova et al., 2011). Hence, we 900 

could expect biodiversity in these regions to be more resilient to shifts in age class distributions. 901 

However, the proportion of old-growth forest in the landscape is still below historical levels 902 

(Shorohova et al., 2011), making it difficult to predict the future responses of species in these 903 

areas. 904 

Many forest species are adapted to the open and warm habitats of early forest succession. Indeed, 905 

our findings suggest increased species richness of vascular plants, epigeic arthropods and 906 

pollinating insects in the short-term after clear-cutting compared to old-growth forests (Table 3). 907 

However, the different legacies following natural disturbances and clear-cutting could mean that 908 

some species are excluded. Indeed, community composition of several taxa still differ in early 909 

successional stages after natural disturbances compared to clear-cutting (Niemelä et al., 2007; 910 

Larrivée et al., 2005; Johansson et al., 2020; Schmalholz et al., 2011). Emphasis on retaining 911 

natural legacies and variability after clear-cutting could be valuable for the conservation of species 912 

adapted to early succession (Rodríguez & Kouki, 2017).  913 



(3) Accumulation of extinction debts 914 

Fragmentation of habitat can, according to classical ecological models, lead to time-delayed 915 

extinction of species in remnant habitat patches – an extinction debt. Recurrent fragmentation in a 916 

landscape (Tilman et al., 1994) and potentially, repeated clear-cutting events, can accelerate this 917 

effect. According to Hanski & Ovaskainen (2002), extinction debts can be seen by the many rare 918 

species present in fragmented old-growth forests, such as beetles in northeastern Finland. 919 

Similarly, three out of four fungal species associated with dead wood in old-growth forests showed 920 

a time-lagged negative response to landscape changes in eastern Finland (Gu, Heikkilä & Hanski, 921 

2002). Berglund & Jonsson (2005) also found that fungal richness decreased in response to 922 

changes in forest and landscape structures in northern Sweden. Lichens associated with kelo trees 923 

may also be facing an extinction debt in central Sweden (Ekström et al., 2023).  924 

One underlying cause of these extinction debts can be a decline in genetic diversity. Habitat 925 

fragmentation will reduce the chances of sexual reproduction, increase inbreeding, and thus reduce 926 

genetic variation in populations. The saproxylic fungus P. nigrolimitatus was found to have the 927 

lowest levels of genetic diversity in the region with the longest history of intensive forestry 928 

(Sønstebø et al., 2022).  929 

(4) Possible aggravation of logging impacts by climate change 930 

As boreal forests are situated at high latitudes, the impact of climate change is expected to be 931 

strong (Kausrud et al., 2022). Climate models predict increases in average temperatures with large 932 

differences within the boreal biome (Constable et al., 2022). Notably, large shifts in natural 933 

disturbance regimes are expected as a result of altered climate, and such shifts have already been 934 

reported (e.g. Hanes et al., 2019; Safranyik et al., 2010). For example, in Canada, an increase in 935 

the number and severity of natural forest fires has been observed over the last 57 years (Hanes et 936 

al., 2019), and increased risk of windthrow is predicted in eastern balsam fir forests (Saad et al., 937 

2017). The effects of these changes on biodiversity, however, are unclear. 938 

Climate change and forest management are inherently linked because the forests’ resilience to 939 

natural disturbances depend on the complexity of the forest system (Filotas et al., 2014). Combined 940 

homogenization of biodiversity and forest structure may have reinforcing effects on ecosystem 941 

functionality (Mori, Isbell & Seidl, 2018). Monocultural forests often have weaker resistance to 942 

natural disturbances, such as windthrow, and more unstable year-to-year productivity (Jucker et 943 

al., 2014; Jactel et al., 2017; Depardieu et al., 2020). 944 



 945 

Figure 3. Species’ groups with documented long-term effects of clear-cutting on community composition. 946 
Each group is represented by one species that has been disfavoured by clear-cutting in literature used in this 947 
review. A) Epiphytic lichens (Usnea longissima by Johan Asplund), B) saproxylic fungi (Phellopilus 948 
nigrolimitatus by Sandy Maurice), C) saproxylic beetles (Xylechinus pilosus by Alexis Orion), D) epigeic 949 
bryophytes (Hylocomium splendens by Portulaca), E) ectomycorrhizal fungi (Cortinarius mucosus by 950 
Annie Weissman), F) saproxylic fungus gnats (Apolephthisa subincana by Janet Graham), H) soil bacteria 951 
(Roseiarcus fermentans from Kulichevskaya et al. (2014: Fig. 1a)), I) soil snails (Vertigo alpestris by O. 952 
Gargominy), and J) epixylic bryophytes (Neoorthocaulis attenuata by Youp van den Heuvel). 953 

VI. Conclusions 954 

(1) The imprint of clear-cutting on boreal forest ecosystems is conspicuous. Boreal 955 

forests, particularly in Europe, have been transformed into homogeneous 956 

landscapes in which old-growth forests, rich in structural complexity and key 957 

structural elements, are isolated as small patches. These impacts have led to short- 958 

and long-term (less or more than 50 yrs) changes in the species composition and 959 

richness of many species’ groups associated with four major substrates: living trees, 960 

dead wood, ground and soil. 961 

(2) Among communities that inhabit living trees, lichen species declines have been 962 

linked to reduced numbers of old trees, reduced connectivity to old-growth forests, 963 

and edge effects. Although some short- and long-term trends have been found, 964 

more studies are needed on the effects of clear-cutting on epiphytic bryophytes, 965 

endophytic fungi and canopy invertebrates.  966 

(3) Studies of saproxylic fungi and insects indicate long-term changes in community 967 

composition and decreased richness, in response to low volume and quality of dead 968 



wood following clear-cutting. Specialist fungal species show dispersal limitation. 969 

Epixylic bryophytes and lichens appear to be negatively impacted by clear-cutting, 970 

also in the long-term.  971 

(4) More research is needed to understand the long-term response of ground vegetation 972 

to clear-cutting, but some suggest long-term community changes to epigeic 973 

bryophytes. Studies on epigeic arthropods indicate that immediate increases in 974 

species richness after clear-cutting is followed by community convergence in the 975 

long-term. However, forest specialist species disappear after harvesting and have 976 

not been shown to recover, perhaps due to edge effects. 977 

(5) Among species groups in boreal soils, ectomycorrhizal fungal communities are 978 

strongly altered in the short term after clear-cutting. Two studies report altered 979 

community composition 50 years after cutting. For soil invertebrates, studies show 980 

signs of recovery in the short-term for springtails and enchytraeids, but not for 981 

oribatid mites. Land snails may recover in the long term, but no long-term data 982 

exist on other soil invertebrates. 983 

(6) Data on effects of clear-cutting is lacking for several abundant boreal species’ 984 

groups within the protists, invertebrates (except beetles), microfungi, and some 985 

lichen and bryophyte groups. 986 

(7) In this review, we show that many boreal forest species communities have local- 987 

and landscape-level responses to clear-cutting. Despite scarce to no data for many 988 

species groups, our observations show that rotation times up to 80 years seem not 989 

to be sufficient for the recovery of boreal forest communities. Such major changes 990 

in biodiversity are likely to affect the functioning of boreal forest ecosystems.  991 

(8) Emphasis must be put on conserving the natural variability of boreal forests by 992 

increasing rotation times, retaining different dead wood characteristics, old trees, 993 

heterogeneous forest structures and preserving sufficient old-growth forest area in 994 

the landscape. Importantly, the most efficient management procedures to conserve 995 

biodiversity may vary geographically depending on forest type and history. 996 

(9) Boreal forests have undergone large changes over the past century as a result of the 997 

transition to clear-cutting as the dominant harvesting regime. Available data is 998 

insufficient to paint the full picture of the effects. Our findings and discussion do, 999 

however, argue that clear-cutting may have accumulating effects on biodiversity 1000 

which may, eventually, push the forest ecosystem across a tipping point with major 1001 

species losses. 1002 
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