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Abstract 11 

 12 

1. Observed data are often dependent on a measure of sampling effort, such as counts 13 

measured per unit area. A common tool to account for differences in effort is the ‘offset term’ 14 

in a generalized linear model, which allows for a fixed proportional relationship between 15 

effort and the response variable. However, there is limited detailed guidance on the 16 

application of offsets and transformations or when an estimated effort covariate might be 17 

more appropriate. 18 

 19 

2. This article explores the parametrisation and implementation of the offset term, plus 20 

additional methods to account for sampling effort in regression models. We evaluate the 21 

performance of offsets and covariates across various data characteristics through simulation. 22 

 23 

3. When uncertainty regarding the effort–response relationship exists, modelling sampling 24 

effort as a log-transformed covariate, ideally as a constrained smoother, is ideal because it 25 

covers most scenarios: a proportional relationship, a non-linear (e.g. saturated) relationship, 26 

and flexibility in multi-species or hurdle models (e.g. allowing effort to influence detection 27 

probability in a binomial model). I show that parameter recovery in effort-as-covariate 28 

models is generally robust in simple models, so a log-transformed offset is only advantageous 29 

when: a proportional relationship is well-supported, model complexity or data availability 30 

hinders covariate estimation, or non-linearity at data limits is uncertain. 31 

 32 

4. Although our simulation showed reasonable performance of all sampling effort 33 

parameterisations, how to model effort remains a key decision, and one that benefits from 34 

considered thought before modelling occurs. The nature of the effort–response relationship 35 
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(i.e. proportional, otherwise linear on the link or original scales, or non-linear), and how 36 

multiple effort variables could be included in the same model, will benefit from both 37 

statistical and practical contexts and experience. 38 

 39 

Keywords: offset, generalized linear models, sampling effort, survey effort, catch 40 

standardisation 41 

 42 

Code available at: https://github.com/smithja16/Effort_Offset_Simulation  43 

https://github.com/smithja16/Effort_Offset_Simulation
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1. Introduction 44 

Survey programs and related data often have variation in sampling effort, such as differences 45 

in hours searched or areas surveyed. Accurately accounting for this variation is crucial when 46 

modelling response variables like abundance (e.g., counts or biomass) to ensure unbiased 47 

estimates of both the response and other predictor variables (e.g., environmental or 48 

spatiotemporal covariates). One common approach is to transform the response variable 49 

before modelling, such as calculating counts per unit of sampling effort. However, this 50 

approach can introduce statistical issues, such as violating the assumptions of count or 51 

biomass data distributions or misrepresenting the variance structure (Zuur et al 2009).  52 

 53 

An alternative and often preferred method is to use a generalized linear model (GLM) that 54 

includes sampling effort as a transformed offset term or covariate (Maunder and Punt 2004, 55 

Zuur et al 2009). This approach models the response variable on its original scale while 56 

standardizing it to sampling effort. Effort variables, sometimes called 'detectability covariates' 57 

(Buckland et al. 2009; Thorson and Kristensen 2024) or 'catchability covariates' (Thorson 58 

2019), influence only the observed magnitude of the response without altering the underlying 59 

variable. Many studies have included effort as an offset, for effort variables such as the 60 

number of trap nights (Kammerle et al 2018), distance walked (O’Kelly et al 2018), number 61 

of survey points (Ausprey et al 2023), and area trawled (Thorson et al 2020). However, there 62 

remain numerous decisions to make, and pitfalls to avoid, when including sampling effort in 63 

a GLM. These include understanding the assumed relationship between effort and the 64 

outcome variable, and the extent to which a fitted covariate can model potential relationships. 65 

 66 

A variable included as an offset is used to adjust the expected value of the response without 67 

having an estimated parameter. This means the offset variable has a fixed coefficient value = 68 
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1. A sampling effort offset is typically only used when a GLM uses a log link function, which 69 

encompasses the common statistical distributions for abundance data: Poisson, negative 70 

binomial, and Tweedie, but also lognormal and gamma in delta (hurdle) models (Zuur et al 71 

2009, Thorson 2018). Because the offset term is used to standardize the response (i.e. 72 

abundance per unit sampling effort), the response and effort variables need to be on the same 73 

scale, which means log-transforming effort to match the link function. In other words, the log 74 

link function allows the offset to scale the expected value of the response in a proportional 75 

way on the original scale, i.e. a 50% increase in effort means a 50% increase in abundance, 76 

all else being equal.  77 

 78 

A general log link GLM can be written:  79 

 𝑌~𝐹(𝜇, 𝜃), E(𝑌) = 𝜇  

 log(𝜇) = 𝛽0 + 𝛽1𝑋1 +  𝛽2 log(𝑇) (1) 

 𝜇 = 𝑒(𝛽0+𝛽1𝑋1) × 𝑇𝛽2 (2) 

The response variable Y is a random variable with statistical distribution 𝑌~𝐹(𝜇, 𝜃), and the 80 

log link function determines the relationship between the expected value of abundance 81 

E(𝑌) = 𝜇 and the predictor variables (the linear predictor). β0 is the intercept, β1 is the 82 

estimate (coefficient) for the first predictor variable X1, and β2 is the coefficient of the 83 

sampling effort term T. GLMs model the expected value of Y, not Y itself, and the GLM can 84 

be written on the link scale (equation 1), or the original ‘response’ scale (equation 2). 85 

Equation 2 shows that when log-transformed T is included in the GLM as an offset term, β2 = 86 

1 (the parameter is not estimated), so effort is proportional to expected abundance, i.e. we are 87 

essentially modelling 
𝜇

𝑇
. 88 

 89 
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When modelling abundance (including outcome variables such as fishing catches) the options 90 

to 1) include sampling effort as an offset or 2) include it as a covariate, are often presented as 91 

equally able alternatives (Maunder and Punt 2004, Thorson 2019). The second option is often 92 

considered more flexible than an offset term – capable of fitting a proportional relationship as 93 

well as deviations from it – with deviations possible due to processes like the saturation of 94 

fishing gear (Kuriyama et al 2019). Non-linearity of the effort–abundance relationship may 95 

not be uncommon, especially for ‘capture’ sampling methods (Thorson 2019, Smith et al 96 

2020, Smith & Johnson 2024). For this flexibility to be true, the effort variable included as a 97 

covariate must also be able to represent the proportional effort–abundance relationship 98 

implied by an offset (i.e. β2 can be = 1 in equation 2). This depends on model structure and 99 

likely on the collinearity among covariates. One obvious pitfall is when effort T is not log-100 

transformed before inclusion as a covariate: 101 

log(𝜇) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑇 102 

𝜇 = 𝑒(𝛽0+𝛽1𝑋1+𝛽2𝑇) 103 

In this case, effort is no longer proportional to expected abundance and the relationship 104 

between effort and abundance is non-linear, even if β2 = 1 (Fig. 1a). This model is only 105 

wrong if the user was assuming the model could act like an offset term and fit a proportional 106 

effort–abundance relationship if it existed.  107 

 108 

The goal of this article is to provide guidance on the appropriate model structures for 109 

accounting for sampling effort in GLMs, helping researchers avoid common pitfalls and 110 

understand the implications of different modelling choices. I achieve this by generating data 111 

with different effort-abundance relationships and levels of collinearity among covariates, and 112 

by evaluating which approach for including sampling effort in a model is most robust to these 113 

different relationships. Given that the effort–abundance relationship is not usually known, a 114 
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specific aim is to identify whether there is one model structure that is generally robust for 115 

modelling an unknown effort–abundance relationship that could be either proportional or 116 

non-linear. I end by highlighting some issues that are easily overlooked when accounting for 117 

the wide variety of sampling effort variables in statistical models. 118 

 119 

 120 

 121 

 122 

Figure 1. Example effort-abundance relationships and various effort parameterizations. 123 

This shows how different effort parameterisations can fit a proportional (a) or thresholding 124 

(b) effort–abundance relationship for simulated count data (a generalized additive model, 125 

GAM, is considered a special cased of GLM). In this simple case, the fit is poor when effort 126 

is not log transformed (a), and only a smoother can accurately estimate this thresholding 127 

relationship (b), although the +log(effort) option can be non-linear. See Table 2 for these 128 

model’s equations. Code for generating this figure is shared in the GitHub repository.  129 
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2. Testing different model structures 130 

 131 

2.1 Data scenarios 132 

Eight data scenarios and six model structures were tested, with R code (R Core Team 2024) 133 

available at https://github.com/smithja16/Effort_Offset_Simulation. Abundance data 134 

consisted of 1000 counts from a negative binomial distribution (theta = 3.0), generated from 135 

specified relationships with three predictors: sampling effort (arbitrary units), site 136 

(categorical, 3 levels), and temperature. These specified relationships allowed me to measure 137 

model success by the recovery of known patterns. Data scenarios varied across three factors: 138 

1) the relationship between effort and abundance (none, proportional, threshold), 2) the 139 

collinearity among effort and the other predictor variables (collinear or not), and 3) the shape 140 

of the temperature effect (linear or domed on the scale of the linear predictor). The eight data 141 

scenarios are summarised in Table 1 and cover sufficient combinations of the three factors to 142 

evaluate their influence. 143 

 144 

The effort–abundance relationship determines whether an offset term is appropriate, i.e. when 145 

it is ‘proportional’ an offset term would be expected to perform well, but when it is not a 146 

more flexible approach may be better. The collinearity between predictors evaluates whether 147 

certain model structures are more accurate when effort is correlated to other variables (e.g 148 

more sampling occurs at certain sites or at specific temperatures). It is possible that a 149 

collinear effort covariate may lead to less accurate recovery of a proportional effort–150 

abundance relationship than an offset term. The shape of the temperature effect (linear or 151 

domed) evaluates whether misspecifying one covariate (e.g. fitting a domed effect with a 152 

linear term) influences the accuracy of the effort term, especially if the two terms are 153 

https://github.com/smithja16/Effort_Offset_Simulation
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collinear. Collinearity was induced using a multivariate normal distribution, and the domed 154 

temperature relationship was generated using a normal distribution. 155 

 156 

2.2 Model structures 157 

Seven model structures that differ primarily in how they model effort are shown in Table 2. 158 

Model 1 is the typical ‘effort as offset’ structure, and the others include effort as a covariate 159 

(Models 2-6), specifically as a smoother (Models 4-6) in a GAM to allow more flexibility. 160 

Model 7 is a log-linear model and was added for interest due to its occasional use (e.g. Shono 161 

2008). For this analysis I tested models M1-M6, where I included two additional covariates, 162 

Site as a fixed factor and Temperature as a continuous variable. The log-linear M7 is largely 163 

identical to M1 so was not tested here. M6 was added to explore the misspecification data 164 

scenario described above, but it is identical to M4 in how it models effort. All models were fit 165 

using the ‘mgcv’ R package (Wood 2017).  166 

 167 

2.3 Performance metrics  168 

I evaluated success of our models across data scenarios by looking primarily at the 1) 169 

diagnostics of residuals, 2) model goodness of fit, and 3) parameter recovery and the effort 170 

marginal effect. Residuals (vs fitted values and vs the offset term) should be pattern free, 171 

indicating a well specified model. I used simulated residuals generated by the ‘DHARMa’ R 172 

package (Hartig 2022). For goodness of fit I calculated the similarity of simulated and fitted 173 

abundance counts using mean absolute error (MAE), and calculated MAE for: a) all data, b) 174 

for data at large effort values, c) for data at low effort values. MAE at large and small effort 175 

values test whether an effort–abundance relationship fits well throughout the data. 176 

Differences in collinearity and the temperature effect among data scenarios cause differences 177 

in mean abundance, so MAE should only be compared among models within each data 178 
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scenario. Parameter recovery refers to the similarity in the specified and estimated values of 179 

the variable effects (i.e. coefficients or non-linear shapes) and dispersion, and a well specified 180 

model will have accurate parameter recovery. And the effort marginal effect refers to the 181 

shape of the estimated effort–abundance relationship (Fig. 1). 182 

 183 

 184 

Table 1. Summary of the eight data scenarios (D1 to D8). Collinearity was induced with a 185 

covariance of 0.5 (effort–temperature) or -0.5 (effort–site). The threshold effort–abundance 186 

relationship was proportional up until max(effort)/2 and then constant at larger effort values. 187 

No. Effort–abundance 

relationship 

Collinearity of predictors Temperature 

effect 

D1 Proportional None Linear 

D2 Proportional Effort–temperature Linear 

D3 Threshold None Linear 

D4 Threshold Effort–temperature Linear 

D5 Proportional Effort–temperature Domed 

D6 Proportional Effort–temperature and effort–site Linear 

D7 None None Linear 

D8 Threshold Effort–temperature and effort–site Domed 

 188 

 189 

Table 2. Syntax (using the R software language) and equations for common ways to 190 

specify effort in a GLM. All models have a log-link, except the last which has an identity 191 

link. For all models, abundance Y is a random variable with statistical distribution 𝑌~𝐹(𝜇, 𝜃), 192 

and the link function determines the relationship between the expected value of abundance 193 

E(𝑌) = 𝜇 and the predictor variable(s). β0 is the intercept, β1 is the estimate (coefficient) for 194 

the first predictor variable X, and T is sampling effort. s indicates a smoother of function f. 195 

For the final model, c is a constant (< min(Y/T)) to avoid log(0), and σ2 is the variance of the 196 
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residuals on the log scale. The offset function in R ensures that no parameter is estimated 197 

for that variable (Zuur et al 2009). 198 

No. R syntax and Equation Implied effort–abundance 

relationship 

M1 glm(Y ~ X + offset(log(effort))) 

log(𝜇) = 𝛽0 + 𝛽1𝑋 + log(𝑇) 

𝜇 = 𝑒(𝛽0+𝛽1𝑋) × 𝑇 

Abundance is proportional to effort on the 

original scale, i.e. 10% higher effort means 

10% higher mean catch; this is the typical 

model structure for an effort offset; 

transforming in the model formula 

offset(log(effort)) or using a 

transformed effort variable 

offset(log_effort) are equivalent  

M2 glm(Y ~ X + log(effort)) 

log(𝜇) = 𝛽0 + 𝛽1𝑋 + 𝛽2 log(𝑇) 

𝜇 = 𝑒(𝛽0+𝛽1𝑋) × 𝑇𝛽2 

Abundance is proportional to effort when β2 

= 1 (as above), otherwise the relationship 

follows a power law, e.g. when β2 = 2 if 

effort doubles mean abundance increases by 

a factor of 4  

M3 glm(Y ~ X + effort) 

log(𝜇) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑇 

𝜇 = 𝑒(𝛽0+𝛽1𝑋+𝛽2𝑇) 

Abundance is non-linear with effort on the 

original scale; effort has a consistent 

multiplicative effect on the outcome, i.e. for 

every unit increase in effort abundance 

increases by a factor of exp(β2) 

M4 gam(Y ~ X + s(log(effort))) 

log(𝜇) = 𝛽0 + 𝛽1𝑋 + 𝑓(log(𝑇)) 

𝜇 = 𝑒(𝛽0+𝛽1𝑋+𝑓(log (𝑇)) 

 

The function f can create a variety of non-

linear relationships, but when this is a 

straight line of slope = 1 it is equivalent to 

M1 with a proportional effort–abundance 

relationship 

M5 gam(Y ~ X + s(effort)) 

log(𝜇) = 𝛽0 + 𝛽1𝑋 + 𝑓(𝑇) 

𝜇 = 𝑒(𝛽0+𝛽1𝑋+𝑓(𝑇)) 

 

This lies somewhere between M3 and M4 

due to the flexibility of function f. But 

because most GAM smoothers s have the 

same degree of smoothness across a 

variable, the smoothness will change as µ 

changes, so this may not be capable of a 

fitting a perfectly proportional relationship 

(unlike M4) 

M6 gam(Y ~ s(X) + s(log(effort))) 

log(𝜇) = 𝛽0 + 𝑓(𝑋) + 𝑓(log(𝑇)) 

𝜇 = 𝑒(𝛽0+𝑓(𝑋)+𝑓(log (𝑇)) 

Identical to M4 but with a smoother for 

temperature, so that the domed temperature 

effect of scenarios D5 and D8 could be fit 

properly; explores whether the effort 

covariate is less accurate due to 

misspecification of a collinear term (M4 vs 

M6 for D5) 

M7 glm(log(Y/effort + constant) ~ X, 

family=gaussian(link=”identity”)) 

log (
𝑌

𝑇
+ 𝑐) = 𝛽0 + 𝛽1𝑋 

𝑌 = (𝑒
(𝛽0+𝛽1𝑋+

𝜎2

2
)

− 𝑐) × 𝑇 

Equivalent to a linear model with log-

transformed response, the relationship 

between abundance and effort is 

proportional by design; predictions of mean 

Y require bias-correcting the linear predictor 

with +
𝜎2

2
, assuming that Y is log-normally 

distributed on the original scale (Duan 

1983) 
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3. Model performance 199 

 200 

3.1 Residuals and dispersion 201 

All models showed sufficiently pattern-free residuals, except for D7 (no effort effect) for the 202 

one model which used an offset and thus assumed a proportional relationship (M1). Not 203 

accurately modelling a threshold effort relationship (e.g. M1 for D8) did not significantly 204 

affect the residuals or dispersion.  205 

 206 

3.2 Goodness of fit 207 

Models with effort included as a smoother (M4-M6) were better fitting, regardless of whether 208 

the effort–abundance relationship was proportional or thresholding (Table 3; raw values 209 

Table S1). As expected, this difference was larger for thresholding effort–abundance 210 

relationships. These models were also more accurate at high and low effort values, though 211 

this may represent some overfitting to noise (so predictive performance would also be a 212 

useful for model selection). The inaccuracy from using an untransformed effort variable (M3) 213 

was largest at high and low effort values (Table 3). 214 

 215 

The difference in MAE among models was often small (Table 3), especially for proportional 216 

relationships, showing that most parameterizations fit the bulk of the data well (Fig. 2). This 217 

was somewhat a feature of our data generation, where there were fewer high and low effort to 218 

fit. The difference in MAE among models is also a function of the unexplained information 219 

or noise; e.g. when a Poisson distribution is used for data generation instead of a negative 220 

binomial the percentage differences among models more than doubles due to the higher 221 

signal-to-noise ratio. 222 

 223 



13 
 

3.3 Parameter recovery and Effort marginal effects 224 

Parameter recovery was generally good (Table S2, Fig. S1), as seen in the true and estimated 225 

effort marginal effects (Fig. 2). All models accurately recovered the relevant temperature 226 

effects and site effects for all data scenarios. However, the intercept (representing reference 227 

site A) was poorly recovered by most models, especially when the model contained a 228 

smoother (M4-M6) or untransformed effort term (M3). The poor recovery would be typical 229 

of such data, due to the intercept representing a reference far from the simulated data (i.e. 230 

when effort or log(effort) and temperature = 0), and due to the compounded parameter 231 

uncertainty. Poor recovery was sometimes expected (e.g. a linear effort could not recover a 232 

thresholding relationship), but some cases were unexpected: M1 failed to recover the 233 

temperature effect when an offset was used to represent a thresholding effort–abundance 234 

relationship (D4), and M5 sometimes failed to recover the proportional effort relationship 235 

(D1, D5; Fig. 2). 236 

 237 

 238 

Table 3. Percentage difference in mean absolute error (MAE) among models. This 239 

compares the models’ relative ability to explain the data. The percent difference is relative to 240 

the model with the lowest MAE in each data scenario, e.g. M1 had an MAE on average 241 

0.26% higher than the lowest MAE over the four proportional data scenarios. M6 is not 242 

included in this comparison because it models temperature differently, and it otherwise 243 

identical to M4. 244 

 % MAE % MAE high % MAE low 
Proportional Threshold or 

constant 

Proportional Threshold or 

constant 

Proportional Threshold or 

constant 

M1 0.26 3.41 1.79 23.35 1.77 2.28 

M2 0.2 1 1.48 7.85 2.04 7.9 

M3 0.81 1.58 4.68 9.01 10.38 17.53 

M4 0.07 0.04 0.58 0.52 0.93 0.08 

M5 0.01 0 0.23 0 1.2 0.31 
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 245 

 246 

Figure 2. The true and estimated marginal effort–count relationships for the eight data 247 

scenarios (a-h) and six model structures. The true relationships used to generate the data 248 

are shown as thick grey lines (this marginal is approximate in any scenario with collinear 249 

variables). The generated data are shown in a), highlighting the noise inherent in the negative 250 

binomial distribution as well as variation in the temperature and site effects. In b) is shown 251 

the effort marginal estimated by a version of M2 without the temperature covariate (grey 252 

dotted line); this illustrates that inducing collinearity between temperature and effort does 253 

influence the estimated effort effect.  254 
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4. What this simulation says about offsets vs covariates 255 

 256 

The data scenarios and model structures allowed me to evaluate the following questions: 1) 257 

Which models failed to fit a proportional effort–abundance relationship? Only the models 258 

with untransformed effort covariates (M3 and M5). 2) Was a proportional relationship better 259 

estimated by an offset than a covariate when there was collinearity among covariates? No, 260 

there was no evidence of this given the moderate collinearity in this simulation – provided 261 

that all collinear variables were included in the model (Fig. 2b). The issues of collinearity 262 

and parameter estimation are well discussed elsewhere and apply equally here (Zuur et al 263 

2010, Dormann et al 2013). 3) Was an effort smoother affected by the misspecification of the 264 

non-linear but correlated temperature covariate? Yes, a small amount. This is seen 265 

comparing M4 and M6 for D4 and D8. When temperature was correctly specified (M6) the 266 

model seemed to better recover the shape of the effort–abundance relationship (Fig. 2), but 267 

the change was small. 4) Were there any limitations to using an effort smoother? There was 268 

some overfitting at the edges due to fewer data and less certainty estimating the expected 269 

value (Fig. 2), but otherwise no. For scenarios with fewer observations, or high model 270 

complexity, having additional parameters and increased estimation uncertainty could be 271 

considered a limitation. 5) Are there limitations to an offset term? Only when there is non-272 

proportionality in the effort–abundance relationship, which when unmodelled can also affect 273 

the accuracy of other estimates (e.g. poor recovery of temperature for M1 in D4). 274 

 275 

5. Recommendations 276 

 277 

Based on this analysis and other studies, I suggest the following recommendations and 278 

guidance for the modelling of sampling effort and the use of offset terms: 279 
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• Including effort as either an offset +offset(log(effort)) or covariate 280 

+log(effort) appear equally suitable for modelling a proportional effort–abundance 281 

relationship, provided that the effort covariate is log-transformed (for a log-link GLM). 282 

Only the offset guarantees proportionality, so is preferred when proportionality is highly 283 

likely; this avoids deviations form proportionality due to measurement error or model 284 

misspecification. Effort variables likely to be proportional would be the area or duration 285 

surveyed by observational methods. 286 

• If some non-proportionality is possible (e.g. through gear saturation) include effort as a 287 

covariate, as this can model a proportional relationship plus deviations from it; and using 288 

a smoother +s(log(effort)) term when possible seems most useful due its flexibility 289 

and robust shrinkage (the log-transformation of effort is important even for smoothers). 290 

• Consider constraining the wiggliness of the effort smoother to avoid unlikely 291 

relationships, e.g. using parameter ‘k’: +s(log(effort),k=4), stronger penalization 292 

using the ‘select’ and ‘gamma’ arguments (Wood 2017), and additional shape 293 

constraints if necessary (Pya and Wood 2015). 294 

• Using an effort covariate is an obvious choice for including effort in both parts of a hurdle 295 

model, as offsets have a different use in binomial models and are typically only used in 296 

the positive component (Thorson 2019; but see Shelton et al 2014), although there are 297 

related alternatives to delta models (Thorson 2018). However, the effort–probability 298 

relationship has less theoretical basis and cannot be proportional. Adding an 299 

untransformed effort variable (to a logit-link model) assumes that absolute changes in 300 

effort have a consistent effect on the log-odds of sampling, which is probably more 301 

realistic than a log-transformed effort variable (Fig. S2). 302 

• For most machine learning methods, effort must be included as a covariate or the 303 

response changed to Y/effort (Leathwick et al 2006, Li et al 2015, Smith et al 2020). 304 
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Given that the lack of link function, log-transforming the covariate is no longer essential 305 

but is probably still useful, especially for methods like Bayesian additive regression trees 306 

which have more constraints on their fitted responses (Chipman et al 2010) compared to 307 

methods like random forests. 308 

• Understanding the data is essential: consider whether your measure of effort is likely to 309 

be proportional based on controlled experiments or expert advice, e.g. a doubling of trawl 310 

area can double abundance, but a doubling of underwater viewing distance of a camera 311 

probably does not (Smith et al 2017) and should be converted to viewing volume. 312 

• Understanding the data is essential: evaluate aspects such as interactions between effort 313 

and other variables, e.g. imagine catches of fish are highest at dusk and dawn but nets can 314 

be left overnight for practical purposes – the effort–abundance relationship would vary 315 

across a ‘duration’ variable; in this case a smoother covariate would be ideal, and a 316 

categorical effort covariate (< 6 h, > 6 h) worth exploring. Evaluate cautiously a plot of 317 

effort vs abundance to evaluate the relationship as it is likely conditional on other effects. 318 

• Multiple offsets can be used if there is more than one detectability covariate (e.g. Kortello 319 

et al 2024) but this is the same as using their product: Y/(effort1×effort2). Calculating this 320 

product can evaluate whether this model structure is logical. Otherwise use either one 321 

offset term and additional variables as covariates, or all terms as covariates (Maunder and 322 

Punt 2004), although care should be taken to note which covariates are assumed 323 

multiplicative and which proportional (Grüss et al 2019). 324 

• Like with any covariates, very strong collinearity will likely bias estimation of parameters 325 

and their errors, so remove such covariates when inference of the effort effect is 326 

important. Including effort as an offset vs a covariate does somewhat delineate an interest 327 

in standardisation (an offset) or inference (covariate). 328 

 329 
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6. Additional considerations 330 

 331 

Additional points to consider when modelling effort include: 332 

• In multi-species models, should all species be considered to have the same effort–333 

abundance relationship? Perhaps, although an effort covariate could be fitted for each 334 

species in case of species differences (Smith et al 2024). An offset may be more robust for 335 

rare species for which a covariate may have considerable uncertainty. 336 

• A similar alternative to M7 (Table 2) is modelling abundance per unit effort (Y/effort) but 337 

avoiding pre-model transformation by using a delta model combining binomial and 338 

(commonly) gamma components (e.g. Panzeri et al 2024). 339 

• What do our GLMs assume about zeros in the data? Is a zero from (say) 2 hours effort 340 

equivalent to a zero from 24 hours effort? Probably not, and such an occurrence would 341 

have no influence on a model with an effort offset term. This would, however, influence 342 

an estimated effort covariate. These patterns could also influence a binomial model by 343 

including effort as a model ‘weight’ if a covariate is deemed inappropriate. 344 

• Treating an effort as a factor is also possible (Grüss et al 2019), e.g. soak time with four 345 

levels (Groeneveld et al 2003), which could be useful when there are clusters of effort 346 

values or insufficient data, and such variables could estimate flexible relationships, with 347 

each level estimated separately.  348 
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Supplementary Material 460 

 461 

 462 

Table S1. Raw mean absolute error (MAE) values. Raw mean absolute error (MAE) values 463 

for the six models and eight data scenarios. Values should only be compared within data 464 

scenarios. 465 

 M1 M2 M3 M4 M5 M6 
D1 44.24 44.18 44.22 44.18 44.20 44.18 
D2 45.54 45.44 45.72 45.44 45.36 45.31 
D3 43.87 42.96 43.12 42.52 42.47 42.52 
D4 43.27 42.74 43.03 42.10 42.09 42.10 
D5 15.34 15.36 15.48 15.28 15.27 14.80 
D6 44.02 44.01 44.42 44.01 43.98 44.01 
D7 4.60 4.37 4.37 4.37 4.37 4.37 
D8 13.32 13.18 13.34 13.01 13.01 12.54 

  466 
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 467 

 468 

Fig. S1. Examples of how the success of effort and temperature smoothers were evaluated. In 469 

a-d) if the true effort–abundance relationship (red line) was within the 95% confidence 470 

interval for the estimated smoother (black lines), then the model was deemed successful at 471 

recovering the true effort–abundance relationship. In e-f) the same process was used but for 472 

the ‘linear’ temperature–abundance relationship. 473 



24 
 

Table S2. Summary table of parameter recovery for relevant models and data types; T = temperature, Int = intercept, SB = Site B, SC = Site C. 

Green cells indicate when the 95% confidence interval of an estimate encompassed the true value used to generate the data. Three results which 

reflect unexpected poor recovery of parameters are highlighted purple. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 T Int SB SC T Int SB SC E1 T Int SB SC E T Int SB SC E3 T Int SB SC E5 T4 Int SB SC E5 

D1              2                

D2              2                

D3         7     7                

D4         7     7                

D5 6    6     6    2 6     6     5     

D6              2                

D7                              

D8 6    6    7 6    7 6     6     5     
1 Parameter recovery for the ‘log(effort)’ variable in M2 was considered successful when the 95% interval for the slope included 1, or 0 (D7) 
2 It is not possible for the ‘effort’ variable in M3 to recover the correct parameter which is on the log scale, except for a slope = 0 for D7 
3 Parameter recovery for the ‘s(log(effort))’ variable in M4-M6 was considered successful for the proportional data scenarios (D1, D2, D5, D6) when a slope=1 (or slope=0 for D7) 

linear-predictor effort term was within the confidence interval for the smoother for the extent of effort values; likewise for the threshold data scenarios (D3, D4, D8; Fig. S1) 
4 Parameter recovery for the ‘s(Temperature)’ variable in M6 was considered successful for when a slope=0.1 linear-predictor temperature term was within the confidence interval for the 

smoother for the extent of temperature values (Fig. S1); when the temperature effect was non-linear (D5, D8) success was evaluated by eye (see 5) 
5 The temperature smoother for D5 was accurately symmetrical and correctly centred on Tmean = 20; the smoother for D8 was less symmetrical and centered on 18 
6 It was expected that linear temperature terms could not recover a domed effect (D5 and D8) 
7 It was expected that the linear effort terms could not recover the threshold effort relationship (D3, D4, D8) 
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 1 

 2 

Fig. S2. The difference in the assumed effort-probability relationship when effort is included 3 

as a log-transformed (red) or untransformed (blue) covariate in a binomial GLM. The 4 

untransformed covariate is linear with log-odds (b, link scale), whereas the log-transformed 5 

covariate is non-linear on both scales. These are simulated data, and code for generating this 6 

figure is shared in the GitHub repository. 7 


