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Abstract. The classification of toxic and non-toxic plants plays an important role in ensur-
ing public safety, especially in agriculture, food safety, and health. Correct identification of 
these plants can prevent accidental poisoning and promote ecological protection. In this paper, 
we investigate the application of the ResNet-50 model for the classification of toxic and non-
toxic plants. Leveraging the powerful feature extraction techniques of the ResNet-50 architec-
ture, the model achieved 89.6% accuracy, 87.4% precision, 91.1% recall, and an 89.2% F1 
score, demonstrating the model’s effectiveness. Transfer learning proved effective with limited 
data while maintaining high performance metrics in the classification task. Future research 
could focus on expanding the dataset to include more plant species and exploring other state-of-
the-art models to improve classification accuracy. Additionally, integrating these models with 
mobile applications or monitoring systems could provide solutions for business and public use, 
enhancing environmental protection and public safety. 
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1 Introduction 

It is essential to classify plants as toxic or non-toxic for public health and environ-
mental protection. Toxic plants pose significant risks, especially in agriculture, food 
safety, and foraging, where accidental ingestion or exposure may sometimes result in 
severe health complications or death. Accurate identification of plants is thus crucial 
to avoid poisoning incidents. With the advancements in computer vision and deep 
learning, it is now possible to automate plant identification in great detail. Direct clas-
sification of toxic versus non-toxic plants has more than just academic interest; it 
contributes directly to public safety and environmental stewardship. For instance, the 
mistaken identification of toxic plants constitutes a severe public health risk, as expo-
sure rates are high due to plant foraging practiced in rural regions. Additionally, un-
checked propagation of toxic species may damage agricultural or ecological systems 
by poisoning animals or altering indigenous ecosystems (Wendt et al., 2022). 

 
Recent advancements in machine learning and deep neural networks have enabled 

the automation of plant classification with unprecedented accuracy. This is beneficial 
not only for professionals but also for the general public (Noor et al., 2022). Among 
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deep learning models, Convolutional Neural Networks (CNNs) have proven very 
promising for image classification, and transfer learning using pre-trained models 
such as ResNet-50 has emerged as the most efficient way to obtain reliable results for 
plant classification. 

 
The deep residual network, ResNet-50, is widely used because it helps reduce the 

problem of vanishing gradients and extracts hierarchical features from images. This 
enables the model to have a deep architecture without causing gradient degradation, 
making it one of the most powerful models for plant classification, where small visual 
differences are important. This model adapts well to tasks with limited labeled data, 
utilizing the technique of transfer learning, where a model pre-trained on a large da-
taset such as ImageNet is fine-tuned for specific classifications. The application of 
ResNet-50 in classifying poisonous and non-poisonous plants allows for excellent 
feature extraction from plant images, capturing complex visual details such as leaf 
shape, texture, and color patterns that are critical for distinguishing between species 
(Zuhri et al., 2022). This computationally efficient and training-time expedient ap-
proach also increases classification accuracy through the use of pre-trained 
knowledge from a more comprehensive dataset. 

 
Using ResNet-50 provides several advantages for this task. For one, its deeper ar-

chitecture allows the model to capture and learn complex patterns that traditional 
approaches may struggle to identify. An example of this is plant classification based 
on leaf texture and patterns, which has traditionally been challenging due to variations 
in lighting and seasons (Hassoon and Hantoosh, 2023). The generalization capability 
of ResNet-50 in handling such variations has made it a preferred choice for plant 
identification tasks, particularly in differentiating between poisonous and non-
poisonous species. Furthermore, this model can efficiently handle large datasets with 
fewer parameters than its deeper counterparts, ensuring an optimal balance between 
computational cost and performance (Mezzasalma et al., 2017). 

2 Literature Survey 

Several studies have used machine learning and deep learning techniques to ad-
dress the problem of plant classification. H et al. (2024) reviewed the use of machine 
learning to detect poisonous plants, as such models are capable of identifying minute 
differences that the human eye may not be able to spot. Similarly, Azadnia et al. 
(2024) proposed the use of computer vision to identify medicinal and toxic plants 
based on leaf characteristics, using a deep neural network to improve classification 
accuracy. These studies highlight the necessity of using advanced neural architectures 
like ResNet-50 to handle the complexities involved in plant classification tasks. 

 
The ResNet-50 model has gained widespread usage for image classification tasks, 

including the classification of plants. Residual learning allows the network to learn 
even more complex representations without a degradation in accuracy with increasing 
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depth, making it ideal for distinguishing between toxic and non-toxic plant species, 
which may exhibit only minute visual differences. Noor et al. (2022) found that 
CNNs, such as ResNet-50, can be very effective when combined with support vector 
machines (SVMs) in predicting poisonous plant species. Combining features learned 
by CNNs with the classification power of SVMs produced better results, demonstrat-
ing how method combinations can lead to more robust outcomes in plant classifica-
tion. 

 
Furthermore, Chamidullin (2022) explored the use of fine-grained recognition 

techniques that utilized side information to enhance the classification process. When 
more information, such as the habitat or growth conditions of a plant, accompanies 
the image, the model can adjust its output accordingly. This shows that when toxic 
and non-toxic plants appear visually similar, deep learning models that incorporate 
contextual data may yield more accurate classifications. 

 
Leaf patterns and venation are two features that can help identify whether a species 

is toxic or safe. Bhatt and Greenberg (2023) emphasized the importance of image-
based toxicity classification, classifying plants based on their characteristics. Tasks 
like these are well-suited to the ResNet-50 model, as it can detect fine-grained visual 
details that allow it to differentiate between species based on subtle differences. This 
is particularly important for plant species in which slight variations in shape and tex-
ture indicate toxicity. 

 
Color is another crucial characteristic for plant classification. Toxic plants often 

exhibit distinct color patterns on their leaves, flowers, or stems as indicators of toxici-
ty. The ResNet-50 model, with its deep architecture, can classify plant species by 
capturing complex color variations at different levels of abstraction. Researchers have 
even attempted to identify and classify medicinal plants using deep learning models. 
Prasad (2024) discussed the use of deep learning models, emphasizing that color fea-
tures contribute significantly to the accuracy of such systems. ResNet-50 is particular-
ly well-suited to handling high-dimensional image data and performs exceptionally 
well when minute color differences must be identified. 

 
Recent advancements in data augmentation and transfer learning have further im-

proved models like ResNet-50 for plant classification tasks. By artificially expanding 
the training dataset through techniques such as rotation, scaling, and flipping, re-
searchers can increase the model's ability to generalize to unseen plant species. This is 
especially beneficial in toxic plant classification, where large, well-labeled datasets 
are often unavailable. Alobeidli et al. demonstrated the effectiveness of transfer learn-
ing in classifying toxic and non-toxic plant species in the UAE by fine-tuning a pre-
trained ResNet-50 model on a smaller, domain-specific dataset. Transfer learning 
reduces the need for extensive labeled data while maintaining high accuracy, making 
it a practical approach for real-world applications. 
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When applying the ResNet-50 model to real-world scenarios, it is likely that the 
model will encounter plant species it has not seen during training. Fine-tuning the 
model with domain-specific data allows it to retain the robustness of the pre-trained 
weights while adapting to the peculiarities of poisonous and non-poisonous plants in 
different regions. This is important for global biodiversity, as plant species can vary 
significantly in appearance depending on their geographic location. Jahan et al. (2023) 
demonstrated a similar approach for categorizing toxic frogs, revealing that achieving 
high precision requires regional fine-tuning. This approach can be applied to plant 
classification, where pre-trained models like ResNet-50 serve as a starting point for 
specific applications across different ecosystems. 

 
Real-time applications, such as mobile-based plant identification systems, are gain-

ing more attention. Using lightweight versions of deep learning models or model 
compression, it is possible to build systems that are both accurate and computationally 
efficient. This could have relevant applications in agriculture, forestry, and environ-
mental monitoring, where rapid and reliable identification of toxic plants can prevent 
harm to humans and animals. The scalability of ResNet-50 for such tasks, and its 
proven ability to classify fine-grained details, makes it well-suited for practical use in 
these areas. 

 
The application of the pre-trained ResNet-50 model enables it to inherit the depth 

and accuracy of advanced neural networks with the flexibility of transfer learning and 
hybrid models. Studies by Azadnia et al. (2024) and Noor et al. (2022) have demon-
strated that the model can efficiently identify plant species based on visual features 
such as leaf texture, shape, and color. 

3 Proposed Model 

On the basis of literature survey, we proposed a model for classification of toxic and 
non-toxic plants using ResNet-50 model that is shown in figure 1. 
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Figure 1: Proposed model 

3.1 Phase 1: Data Collection 

At this stage, images of toxic and non-toxic plants are downloaded from public da-
tasets. The dataset contains an array of plant images to be classified accurately. Each 
image is labeled based on whether it contains a toxic plant or not. The dataset ensures 
sufficient diversity, quality, and quantity to support the classification task. This varia-
tion helps make the model more robust, enabling it to generate accurate results on 
unseen data as well. 
3.2 Phase 2: Dataset Preparation 

After gathering the data, we clean the dataset by organizing and structuring it 
properly for further processing. This involves carefully sorting and labeling the imag-
es of toxic versus non-toxic plants. A structured directory, with folders separating 
toxic and non-toxic plants, is developed. The dataset is then cleaned by removing 
duplicate entries, incomplete records, and any mislabeled images, ensuring that the 
dataset is accurate and ready for further processing. 
3.3 Phase 3: Data Preprocessing 

Once the dataset is ready, we begin the data preprocessing stage. In this stage, we 
employ several methods to prepare the data for training the model. Segmentation is 
used to isolate the plant from the background in the images, improving the focus on 
relevant features. This allows the model to better understand the plant's features while 
ignoring irrelevant background noise. 

 
Next, we normalize the pixel intensities of the images to fall within a universal 

scale, typically between 0 and 1. This normalization ensures stable learning and re-
sults in faster convergence during training. The images are resized to 224x224 pixels 
to align with the input size required by ResNet-50, making all images uniform in size. 

 
Additionally, filtering and cropping methods are applied to eliminate unwanted el-

ements, ensuring the plant remains the focal point of the image. Another critical ele-
ment of this step is data augmentation, where the dataset is artificially expanded by 
applying transformations such as rotations, flips, zooms, and shifts. These augmenta-
tions make the model more robust to variations in the input images, enhancing its 
generalization capability in real-world environments. 

 
3.4 Phase 4: Data Splitting 

After preprocessing the dataset, we divide it into training and testing data. This is 
done to assess the actual performance of the model. Typically, the dataset is split with 
80% allocated for training and 20% for testing. The majority of the images are in the 
training set, allowing the model to learn from a wide variety of examples, while the 
testing set is reserved for evaluating the model's performance on unseen data. 
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During the split, we ensure that both the poisonous and nonpoisonous plant catego-
ries have equal representation in the training and testing phases to avoid any bias 
toward one category. This ensures the model's performance is as balanced as possible. 
The test set represents real-world data, simulating the behavior expected of the model 
when it encounters new images of plants after deployment. 
3.5 Phase 5: Model Building 

In this stage, we rely on the ResNet-50 pre-trained model. As a well-established 
deep convolutional neural network, ResNet-50 works effectively with transfer learn-
ing. We fine-tune the pre-trained ResNet-50 model by replacing its top layers with a 
custom classifier tailored to the task of toxic and non-toxic plant classification. This 
approach reduces training time and increases accuracy because ResNet-50 has already 
learned useful features from a large amount of image data during its initial training on 
ImageNet. 

 
We freeze the early layers of ResNet-50 to preserve the learned low-level features, 

such as edges, shapes, and textures. We then train the upper layers of the network on 
our dataset, allowing the model to adapt specifically to distinguishing poisonous from 
non-poisonous plants. We also apply dropout layers and regularization techniques to 
prevent the model from overfitting. 

 
The model uses a hybrid loss function, combining categorical cross-entropy with 

Adam optimization for efficient gradient descent. During the training process, we 
track key metrics such as accuracy, precision, recall, and F1 score to ensure that our 
model generalizes well. 
3.6 Phase 6: Model Inference 

Once the model is trained and tested, we save the final version for inference pur-
poses. The saved model is used to predict whether a given plant image is toxic or non-
toxic. During inference, the model takes in new, unseen images and classifies them 
based on the features learned during the training phase. 

 
The inference process works by passing the input image through the model, which 

then produces a probability score for each class: toxic or non-toxic. After applying a 
threshold, the final decision on whether a plant is toxic or not is made. This phase is 
heavily optimized so that predictions can be made quickly and efficiently, even when 
working with high-resolution images. 

 
The accuracy of future inferences depends largely on how well the model was 

trained and tested in previous phases. Ensuring robust preprocessing, training, and 
evaluation will result in a well-generalized model that performs reliably in real-world 
scenarios. 
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4 Pseudocode: Proposed Model 

The pseudocode for the above proposed model is shown below. 
 

BEGIN 
  # Phase 1: Data Collection 
  FUNCTION collect_data(): 
    data ← collect_images_from_sources() 
    label_data(data, "poisonous", "non-poisonous") 
    RETURN data 
 
  # Phase 2: Dataset Preparation 
  FUNCTION prepare_dataset(data): 
    organized_data ← organize_data_into_folders(data) 
    cleaned_data ← check_and_remove_duplicates(organized_data) 
    resized_data ← resize_images(cleaned_data, 224x224) 
    RETURN resized_data 
 
  # Phase 3: Data Preprocessing 
  FUNCTION preprocess_data(data): 
    segmented_data ← segment_images(data) 
    normalized_data ← normalize_pixel_values(segmented_data, 0, 1) 
    augmented_data ← augment_data(normalized_data) 
    RETURN augmented_data 
 
  # Phase 4: Data Splitting 
  FUNCTION split_data(data): 
    training_data, testing_data ← split(data, ratio=0.8) 
    RETURN training_data, testing_data 
 
  # Phase 5: Model Building (ResNet-50 Pretrained) 
  FUNCTION build_model(): 
    model ← load_pretrained_resnet50() 
    freeze_initial_layers(model) 
    add_custom_classification_layer(model, output_classes=2) 
    compile_model(model, loss_function="categorical_cross_entropy", 

optimizer="Adam") 
    RETURN model 
 
   
  FUNCTION train_model(model, training_data): 
    model ← train(model, training_data, epochs=NUM_EPOCHS) 
    RETURN model 
 
FUNCTION evaluate_model(model, testing_data): 
    accuracy ← calculate_accuracy(model, testing_data) 
    precision, recall, f1_score ← calculate_precision_recall_f1(model, testing_data) 
    confusion_matrix ← generate_confusion_matrix(model, testing_data) 
    IF performance_needs_improvement: 
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        fine_tune_model(model) 
    RETURN accuracy, precision, recall, f1_score 
 
  # Phase 6: Model Inference 
  FUNCTION infer(model, new_image): 
    prediction ← model.predict(new_image) 
    IF prediction_score(poisonous) > threshold: 
        RETURN "Poisonous" 
    ELSE: 
        RETURN "Non-Poisonous" 
 

 
  # Main Workflow 
  data ← collect_data() 
  prepared_data ← prepare_dataset(data) 
  processed_data ← preprocess_data(prepared_data) 
  training_data, testing_data ← split_data(processed_data) 
   
  model ← build_model() 
  trained_model ← train_model(model, training_data) 
   
  evaluation_metrics ← evaluate_model(trained_model, testing_data) 
   
END 

5 Result & Discussion 

5.1 Dataset Description 

The "Toxic Plant Classification" dataset is used for the implementation of the pro-
posed model. It contains a diverse collection of plant images, specifically focused on 
the classification of toxic and non-toxic plants. The dataset includes 4,928 high-
resolution images, divided into two main classes: (i) toxic and (ii) non-toxic plants, 
making it suitable for training the models. This dataset is well-structured, offering a 
balanced number of images across both classes, ensuring that models trained on it can 
generalize well without being biased toward a particular class. 

 
5.2 Performance Metrics 

For any classification problems, performance metrics play an important role in 
evaluating the effectiveness of a model. These metrics help assess how well the model 
is performing, not only in terms of overall accuracy but also in understanding the 
model’s ability to generalize, handle imbalanced classes, and make reliable predic-
tions across different classes.  

Four parameters of confusion matrix; True Positive (TP), True Negative (TN), 
False Positive (FP) and False Negative (FN); are used for the evaluation of model. 
Details of these parameters are given below: 
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1. TP: Both actual and model output classified are positive. 
2. TN: Both actual and model output classified are negative. 
3. FP: Actual classification is negative and model classified as positive. 
4. FN: Actual classification is positive and model classified as negative. 

The performance metrics based on above parameters are explained below: 
1. Accuracy: It is the ratio of correctly predicted instances to the total number of 

instances.  
2. Precision: It is the proportion of true positive predictions (correctly predicted 

positive instances) to the total positive predictions made by the model (true 
positives + false positives). 

3. Recall (Sensitivity or True Positive Rate): It is the ratio of correctly predicted 
positive observations to all actual positive observations. 

4. F1-Score: It is the harmonic mean of precision and recall. It provides a single 
metric that balances the two, especially in cases of imbalanced datasets. 

5.3 Model result 

The confusion matrix provides a detailed breakdown of the classification model’s 
performance across four key outcomes: TP, TN, FP and FN. 

 
Figure 2: Confusion Matrix 

Figure 2 showing confusion matrix that comes after the execution of proposed 
model on our dataset. Based on the above matrix the performance metrics are given 
below: 

1. Accuracy: Total number of records used for testing are 996 images and 
number of records for TP and TN are 430 and 462 images respectively. 

 
This indicates that the model correctly classifies approximately 89.6% of the in-

stances. 
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2. Precision: Total number of TP images are 430 and FP images are 62. Preci-
sion of proposed model is; 

 
This shows that 87.4% of the instances predicted as positive are actually positive. 

3. Recall: Total number of TP images are 430 and FN images are 42. Recall of 
proposed model is; 

 
This indicates that the model identifies 91.1% of the actual positive instances. 

4. F1-Score: F1 score is calculated by the following formula. 

 
This score reflects a good balance between precision and recall, suggesting the 

model performs well overall for the positive class. 
5.4 Discussion  

The performance metrics achieved by the proposed model highlight its suitability 
for classifying plants into toxic and non-toxic categories. In this study, the model 
achieved 89.6% accuracy, 87.4% precision, 91.1% recall, and an 89.2% F1-score. 
These results demonstrate the model’s high reliability in correctly identifying plant 
species, minimizing both false positives and false negatives. Precision is especially 
critical when dealing with toxic plants, as misclassification could have serious conse-
quences, including potential harm to humans or animals (Dwivedi et al., 2021). The 
high recall ensures that the model effectively identifies the majority of toxic plants, 
offering a robust solution for real-world applications such as mobile plant identifica-
tion tools or agricultural safety systems (Azadnia et al., 2024). 

6 Conclusion & Future work 

In conclusion, the application of ResNet-50 for the classification of toxic and non-
toxic plants offers a reliable, efficient, and scalable solution to a long-standing chal-
lenge in public safety and environmental monitoring. The model’s ability to accurate-
ly differentiate between these plant categories, combined with its strong performance 
metrics, underscores its potential for integration into practical, real-world applica-
tions. Future work in this domain should focus on enhancing model accuracy through 
larger datasets, hybrid architectures, and the exploration of other advanced neural 
networks. Such developments will significantly benefit fields like agriculture, 
healthcare, and ecological conservation, providing accessible tools for the timely 
identification and management of plant species. 
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