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Abstract 28 

 29 

 Conservation scientists have long used population viability analysis (PVA) on species 30 

count data to quantify trends and critical decline risk, thereby informing conservation actions. 31 

These assessments typically focus on single species rather than assemblages and assume that 32 

risk is consistent within a given life stage (e.g., across the different seasons or months of a 33 

year). However, if risk is assessed at too broad a temporal or spatial scale, it may overlook 34 

diverging population declines between predators and prey that disrupt biotic interactions. In this 35 

study, we used time-series based PVA for age-0 forage fishes and their potential zooplankton 36 

prey for each month of the year in the San Francisco Estuary, over 1995-2023 (N = 175 time 37 

series). We used Multivariate Autoregressive (MAR) models that estimate long-term population 38 

trends and variability (i.e., process error) for each population. We found widespread negative 39 

population trends across fish species (56.6%) and observed that critical decline risk is often 40 

higher in months when species abundances peak compared to ‘shoulder’ months. Although 41 

current decline risk is somewhat balanced between predators and their prey (mean 21.8% for 42 

fish and 21.4% for zooplankton), our time-series models indicate trophic levels are poised to 43 

diverge over the next 10 years, with fish generally accumulating risk faster than their prey. 44 

Additionally, zooplankton showed 11.5% higher uncertainty about their near-term critical decline 45 

risk relative to fish. These observations suggest strong, previously unreported potential for 46 

future trophic mismatches. Our results underscore the need to assess risk over finer temporal 47 

scales within and across trophic levels to better understand vulnerability, and thus inform 48 

conservation of imperiled species. Our approach is transferable and highlights the benefits of 49 

time-series based PVA to understand risk of food-web collapse in the face of climate-induced 50 

phenological shifts.  51 
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Introduction 52 

 53 

Global climate change challenges current efforts to conserve and manage biodiversity 54 

(IPBES 2019). Severe population declines and local extirpation can drive permanent shifts in 55 

community composition and destabilize whole food webs (O'Gorman and Emmerson 2009, 56 

Seifert et al. 2015). Though conservation actions attempting to bolster population recovery are 57 

widespread geographically across both animal and plant systems (Swaisgood et al 2007, 58 

Mawdsley et al. 2009, Havens et al. 2014), quantifying extinction risk in species with complex 59 

life cycles remains challenging (e.g., Sánchez‐ Hernández et al. 2019, Daly et al. 2021). For 60 

instance, determining the effects of a given stressor (e.g., temperature, salinity) on individual 61 

survival or performance must account for the differential sensitivities across life stages 62 

(Komoroske et al. 2014). Additionally, species phenology (e.g., the timing of migration, 63 

breeding, or niche shifts) can cause the strength of important biotic interactions to vary through 64 

time and across space (Werner and Gillam 1984). Thus, accounting for community-level 65 

dynamics, including how predators and prey coexist in space and time, is essential for 66 

improving conservation outcomes of at-risk species. 67 

Population viability analysis (PVA) is a widely used tool to assess threats to species 68 

persistence, forecast population trends, and guide recovery (Akçakaya and Sjögren-Gulve 69 

2000). Historically, these models have taken many forms–from demographic assessments, to 70 

estimation of minimum viable population sizes, or mechanistic covariate-driven simulations 71 

(Gerber and González-Suárez 2010). PVA allows conservation practitioners to assess 72 

population performance by estimating the cumulative probability of exceeding a critical decline 73 

threshold, often termed ‘quasi-extinction’ (Fagan and Holmes 2006). However, these models 74 

generally have strict data requirements and are difficult to effectively parameterize without 75 

robust understanding of demographic and environmental processes (Chaudhary and Oli 2020). 76 

To circumvent this shortcoming, statistical methods were developed that estimate the 77 

convergent properties of stochastic systems and allow for quasi-extinction forecasting even 78 
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when the underlying mechanistic processes are poorly understood (Holmes et al. 2007). Such 79 

models use repeated sampling of a population (i.e., a time series of count data) to assess 80 

inherent growth rates and process-driven population variability. In addition to applications 81 

estimating quasi-extinction probabilities under different scenarios (e.g., Ruhi et al. 2016, Ruhi et 82 

al 2018), these methods can also infer metapopulation spatial structure and associated risk 83 

(e.g., Holmes and Semmens 2004, Ward et al. 2010). Given the increasing availability of long-84 

term biomonitoring data sets, understanding the potential and limitations of statistical 85 

approaches to species extinction forecasting is an important endeavor of conservation science. 86 

Despite advances in time series-based PVA, current approaches primarily use annual 87 

data (Hampton et al. 2013, Holmes et al. 2014). As such, species with sub-yearly phenological 88 

patterns (e.g., hatching dynamics, age-0 migrations; Bogner et al. 2016) might display temporal 89 

patterns of critical decline risk not captured by a coarser-scale approach. Moreover, while it is 90 

possible to examine species interactions using multivariate time series models (e.g., Hampton 91 

et al. 2006, Peterson et al. 2017), estimation of interaction strengths often conflicts with 92 

estimation of PVA parameters (i.e., intrinsic growth rate or “lambda”, Holmes et al. 2014). 93 

However, food-web dynamics that might be critical to population performance can be assessed 94 

indirectly–for instance, by comparing fine-scale patterns of risk of a predator vs that of its prey. 95 

While statistically challenging, it is ecologically important to consider decline risk within the 96 

context of community-level interactions, especially in environments where population 97 

persistence may be influenced by climate-induced changes in species phenology. 98 

 Estuaries are dynamic ecosystems with levels of biological productivity comparable to 99 

tropical rainforests and coral reefs (Cai 2011). Estuarine systems provide high socioeconomic 100 

value, facilitate important ecosystem services, and govern many nearshore physical and 101 

biological processes (Barbier et al. 2011, Robins et al. 2016). For many taxa, estuaries often 102 

represent important nursery grounds (Beck et al. 2001, Colombano et al. 2020), refuge habitats 103 

(Simenstad et al. 1982), and migration corridors (Koeller et al. 2009, Otero et al. 2014). 104 
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However, the transitional nature of estuaries makes them highly vulnerable to environmental 105 

change, as degradation to both the marine and freshwater bookends have the potential to 106 

disrupt estuarine communities (Gillanders et al. 2011, Lauchlan and Nagelkerken 2020). Indeed, 107 

many estuarine systems globally are experiencing climate-induced shifts in temperature and 108 

salinity regimes that can strongly impact population dynamics (Scanes et al. 2020, Langan et al. 109 

2021, Ghalambor et al. 2021). As estuaries often act as temporary or transitional habitats for 110 

key life stages, many taxa have developed population cycles that maintain historical synchrony 111 

between interacting species (Marques et al. 2006). However, warming and salinization appear 112 

to be altering phenological patterns in estuarine food webs–with the potential to disrupt 113 

historically synchronous population cycles between predators and prey (Chevillot et al. 2017, 114 

Asch et al. 2019, Fournier et al. 2024). This is especially important for juvenile fishes, as global 115 

change drivers that disrupt community compositions could lead to recruitment failures that erode 116 

the nursery function of estuarine ecosystems (Colombano et al. 2022).  117 

The San Francisco Estuary is one of the largest and most ecologically significant 118 

estuaries in North America, draining approximately 40% of California’s fresh waters (Cloern and 119 

Jassby 2012). The estuary spans a wide salinity gradient from the Pacific Ocean to the 120 

confluence of the Sacramento and San Joaquin rivers, and is highly affected by both 121 

hydroclimatic variability and large-scale water diversions for agricultural and municipal use (Reis 122 

et al. 2019). In the past decade, the estuary has experienced steadily increasing water 123 

temperatures (Bashevkin et al. 2022), and long-term droughts have decreased freshwater 124 

inputs into the Delta, resulting in increased salinity levels in the upper estuary (Barros et al. 125 

2024). Additionally, invasions of Asian clams (Potamocorbula amurensis and Corbicula 126 

fluminea) in the late 1980’s dramatically eroded planktonic populations (Kimmerer et al. 1994), 127 

leading to dietary shifts of planktivores (Feyrer et al. 2003). These and other environmental 128 

changes have resulted in large-scale collapses of pelagic fish populations throughout the 129 

estuary (Cloern and Jassby 2012, Quiñones and Moyle 2014). Often referred to as the “pelagic 130 



 

6 

organism decline”, forage fish populations have shown precipitous drops even during periods of 131 

relatively moderate abiotic stress (Sommer et al. 2007). Though the mechanistic causes of this 132 

decline remain poorly understood, recruitment failure, increased mortality, habitat degradation, 133 

and limited food availability have been identified as main drivers–especially for juvenile forage 134 

fish (Sommer et al. 2007, Feyrer et al. 2007, Mac Nally et al. 2010). These concerning trends 135 

underscore the need to better understand the dynamics of forage fishes in the first year of their 136 

life (i.e., age-0), as well as of their food sources. 137 

 Here, we sought to assess spatial and temporal patterns of critical decline risk of fish, 138 

and their suite of potential prey in the San Francisco Estuary. As age-0 estuarine fishes display 139 

seasonally varying abundance patterns that might coincide with periods of population 140 

vulnerability, we sought to examine critical decline risk at sub annual scales. To that end, we 141 

used long-term monitoring data to conduct time-series based PVA for each month of the year 142 

for age-0 forage fishes and zooplankton taxa across different regions of the San Francisco 143 

Estuary spanning a broad environmental gradient. We hypothesized that: 1) Long-term 144 

population trends and variability around those trends would vary across fish species, creating 145 

ample variation in the probability of them crossing critical decline thresholds (hereafter, critical 146 

decline risk); 2) Critical decline risk in a given species would also vary across the year, with 147 

months that historically concentrated high abundance of age-0 being relatively safer than 148 

“shoulder” months when species have historically shown lower abundances; 3) Patterns of 149 

critical decline risk–and uncertainty around risk estimates–during high abundance windows 150 

might differ between fish predators and their potential suite of prey, and this risk might 151 

accumulate at different rates over the next decade as steep population declines in fishes might 152 

cause risk to outpace zooplankton taxa; And 4) Different regions of the estuary may vary in 153 

community-level risk trends, with variation likely being associated with the longitudinal estuarine 154 

gradient (i.e., higher in more variable, seawards regions than in more stable, landwards 155 

regions). By examining these questions, we aimed to understand how critical decline risk of 156 
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estuarine fishes may vary intra-annually and over space–a critical step to anticipate vulnerability 157 

of predator-prey interactions along environmental gradients.  158 

 159 

Methods 160 

Fish and plankton surveys 161 

 We gathered long-term monitoring data for fishes and zooplankton in the San Francisco 162 

Estuary. For fishes, we used data provided by the California Department of Fish and Wildlife 163 

Bay Study (CDFW 2024a). This program has conducted monthly sampling of fishes at fixed 164 

stations throughout the estuary since 1980. Fish sampling is conducted using two tow nets: an 165 

otter trawl to target benthic species and a midwater trawl to target pelagic species. During each 166 

sampling event, captured individuals are counted, identified, and measured. Additionally, 167 

sampling effort is quantified to standardize catch metrics. Our analysis focused on age-0 fishes 168 

captured in the midwater trawl. For zooplankton, we used data collected by the Interagency 169 

Ecological Program’s Environmental Monitoring Program, EMP (CDFW 2024b). The EMP has 170 

been sampling zooplankton at fixed stations monthly since 1971, using three types of sampling 171 

gear: a macrozooplankton net (505 µm mesh), a mesozooplankton net (160 µm mesh), and a 172 

teel pump with 43 µm mesh. In order to target taxa that might be readily consumed by age-0 173 

forage fishes, we limited our analysis to zooplankton captured in the mesozooplankton net. We 174 

filtered each time series to include only monthly surveys after January 1995, as this period 175 

maximizes overlap in consistent sampling of fish and zooplankton. 176 

 177 

Data screening 178 

We assessed data completeness iteratively, to achieve an optimal tradeoff between 179 

maximizing data density in the species-stations retained, and avoiding exclusion of transient or 180 

migratory fishes that are only seasonally present in parts of the estuary. We ultimately retained 181 

time series with 234 and 50 non-zero detections for zooplankton and fishes, respectively. We 182 
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then calculated high abundance for each fish species by identifying the months that represent 183 

most of the mean annual catch for that species in a region (≥80%). In situations where critical 184 

periods contained gaps of no more than one month, we also included the ‘skipped’ month to 185 

obtain an uninterrupted window. Next, for each species-station strata, we used seasonal 186 

autoregressive integrated moving average (sARIMA) models fitted with a Kalman filter to 187 

interpolate missing monthly data points (as in Comte et al. 2021), using the ‘forecast’ package in 188 

R (Hyndman et al. 2024). Interpolated data represented an average of 20.3% data points for fish 189 

taxa and 3.1 % for zooplankton. This process resulted in 7 fish species being retained across 52 190 

stations, and 10 zooplankton genera at 16 stations. Fish and zooplankton stations were 191 

assigned to predefined estuarine regions that have been commonly used for research and 192 

management purposes, encompassing from the marine to the freshwater bookend (CDFW 193 

2024a, Colombano et al. 2022). In four of the estuarine regions (i.e., Delta, Confluence, Suisun, 194 

San Pablo), both fish and potential zooplankton prey were retained. Finally, we broke each year 195 

into its constituent months to create twelve annual-scale, month-specific time series for each 196 

species/station pair (i.e., one time series representing all January data for each year, one 197 

representing February data, etc.). For subsequent analysis on phenology-informed risk (see 198 

below), we kept all species-station-month strata as long as a species was historically present 199 

with some regularity (i.e., in ≥30% of the years), achieving higher retention rates than in past 200 

work (e.g. Colombano et al. 2021, Pak et al. 2022). Ultimately, we ended up with 129 time 201 

series of fish and 46 of zooplankton, each relevant to a specific station and month. 202 

 203 

Time series modeling and risk calculation 204 

 With these time series, we fitted Multivariate Autoregressive (MAR) models on CPUE 205 

estimates using the R “MARSS” package (Holmes et al. 2014). Here, we used the multivariate 206 

structure of MAR models to describe population trajectories within regions. Thus, after grouping 207 
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the 62 stations into 6 regions, we built a MAR model for each species-region-month strata. MAR 208 

models, unlike state-space variations of them (e.g. MARSS), do not account for observation 209 

error. We acknowledge that observation error is prevalent in biomonitoring data, and metrics 210 

dependent on process error might be inflated if process error is forced to absorb observation 211 

error (Knape and De Valpine 2011). However, variation in data density prevented more complex 212 

(MARSS) models from converging for some species. Thus, we sought to maintain consistency 213 

in bias rather than accounting for observation error in some species, which could bias some (but 214 

not all) risk estimates and thus mismatch potential. The general structure of our MAR models, in 215 

matrix notation, followed: 216 

𝑋𝑡 = 𝑋𝑡−1 + 𝑈 + 𝑊𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑊𝑡  ~ 𝑀𝑉𝑁(0, 𝑄), (Eq. 1) 217 

where 𝑋𝑡 is log x+1 transformed CPUE for that species (one time series per station, 218 

univariate or multivariate depending on how many stations are represented in that region); U 219 

captures the long-term trend of that regional population, and Wt is an error term drawn from a 220 

multivariate normal distribution of mean 0 and process error variance/covariance Q. For all 221 

models, we estimated a single U across stations within a region. Similarly, we assumed process 222 

error variance to be equal across stations, and we allowed process error covariance given that 223 

nearby stations are subject to similar environmental fluctuations that could drive synchronous 224 

population dynamics within a region. After estimating U and Q via maximum-likelihood (and 225 

obtaining 95% confidence intervals for each parameter), we calculated the risk of a species 226 

experiencing a 90% population decline (𝑎) over a given time horizon (T) up to 10 years from 227 

present. This quasi-extinction probability (Pe), hereafter referred to as ‘critical decline risk’, is 228 

estimated by using the inverse Gaussian distribution of first passage times for Brownian motion 229 

with drift (Dennis et al. 1991, Fieberg and Ellner 2000, See and Holmes 2015), where: 230 

𝑃𝑒 = 𝜙(𝜇 −  𝑉)  +  𝑒𝑥𝑝(2𝜇𝑉)𝜙(−(𝜇 − 𝑉)), (Eq. 2) 231 

𝜇 = −𝑈√𝑇/𝑄, (Eq. 3) 232 

𝑉 = 𝑎/𝑄√𝑇, (Eq. 4) 233 
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with 𝜙 representing the standard normal cumulative distribution function (notation in the 234 

above equations have been modified to maintain consistency with MAR parameter notation). 235 

Here, we calculated three different types of critical decline risk: 1) baseline risk, using the 236 

maximum likelihood estimates for U and Q; 2) best case-scenario risk, using the upper end of 237 

the bootstrapped confidence interval for U, and the lower end of the confidence interval 238 

surrounding Q (i.e., high growth rate and low process error variance), and 3) worst-case 239 

scenario risk, using the lowest end of the confidence interval surrounding U and the highest end 240 

of the confidence interval surrounding Q (i.e., low or negative intrinsic growth, high process error 241 

variance).  242 

 243 

Hypothesis testing 244 

To test the hypothesis that long-term population trends (U) and variability around those 245 

trends (Q) would vary across fish species, we plotted U and Q values estimated by MAR models 246 

and tested whether systematic differences existed across fish species and regions, using 247 

analysis of variance (ANOVA). We also examined the correlation (Pearson’s R) between these 248 

two parameters to understand whether species with declining trends tended to also be more 249 

variable, or if on the contrary, U and Q varied independently across species and regions.  250 

To test the hypothesis that critical decline risk in a given species would also vary across 251 

the year, we assessed the “phenology” of critical decline risk throughout the year for age-0 252 

forage fishes by plotting monthly risk estimates for each species in each region. We then 253 

performed Pearson correlation tests between decline risk and mean population size for each 254 

species, pooling data across regions, to assess if these two variables were related–and if so, 255 

whether ‘shoulder’ months tended to be safer than months when species have historically 256 

shown higher abundances (or vice versa). 257 

To compare how critical decline risk compares between fish (predators) and their suite of 258 

zooplankton prey, we examined current critical decline risk during key months of the year (i.e., 259 
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the months that collectively concentrate 80% of a species’ abundance). To this end, we 260 

calculated the mean risk for all months identified as high abundance windows for each region. In 261 

addition, we calculated the mean decline risk for each zooplankton during the high abundance 262 

window of each fish predator–creating paired predator/prey probabilities in each region. To 263 

assess if predator and prey risk during high-abundance windows differed, we used ANOVA, 264 

using “current” critical decline risk (that is, the probability of crossing an 90% decline threshold) 265 

as a response variable, and taxonomic group (fish or zooplankton) and region (if present in 266 

more than one region) as predictors. We ran an ANOVA model for each fish species and its 267 

paired assemblage of potential zooplankton prey.  268 

To test whether risk is predicted to accumulate at different rates between fish and 269 

zooplankton over the next decade, we calculated predator-prey risk divergence into the future 270 

for each predator and their set of prey (as previously) across a 10-year projection. Using 271 

analysis of covariance (ANCOVA), we tested whether log-transformed risk was explained by 272 

taxonomic group (fish vs. zooplankton) and/or region, using time into the future as a covariate 273 

(i.e., number of years, 1-10). We also considered potential interactions between these terms. A 274 

significant interaction between time and group would indicate a widening (or closing) gap 275 

between predator and prey risk—implying mismatch potential. Triple interactions between time, 276 

group, and region allowed testing whether diverging gaps in risk between fish and their prey 277 

were region-specific. This analysis also allowed assessing how trends might scale up to the 278 

broader regional food webs across the estuary, by modeling risk estimates for the whole 279 

community as a function of taxonomic group, time, region, and predator identity (to cluster 280 

individual food webs). Finally, we used the same ANCOVA model structures to estimate the 281 

difference in risk between “best case” and “worst case” scenarios. This last analysis allowed for 282 

assessing the implications of assuming trends (U) and process error (Q) on the lower or higher 283 

ends that the data supported–and thus the conservation implications of population uncertainty. 284 

 285 
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Results 286 

Quantifying population trends and variability 287 

Maximum-likelihood estimates of fish intrinsic growth rates (or long-term population 288 

trends, U), and of process error variance (or variability around the long-term trends, Q) revealed 289 

a wide diversity of trajectory types across species (Figure 3). These variables showed no strong 290 

association with each other (Pearson’s R: 0.133, p=0.053). We tended to see negative growth 291 

rates (mean ± SD: -0.009 ± 0.0763) that varied by species (F6,26.535, p<0.001) and by region 292 

(F5,2.715, p=0.021). However, positive population trajectories were also possible (positive: 42.4%, 293 

negative: 56.6%, range: -0.210 to +0.176). Process error variance, which measures the inherent 294 

variability of the population associated with environmental stochasticity, varied strongly by 295 

species (F6,49.994, p<0.001), region (F5,18.761, p<0.001), and the interaction between species and 296 

region (F10,5.364, p<0.001). Notably, Longfin Smelt (Spirinchus thaleichthys) displayed nearly 297 

ubiquitous declining trajectories and had relatively small levels of process error variance. 298 

Conversely, Northern Anchovy (Engraulis mordax) showed more positive population growths, 299 

but did so with very high levels of process error variance (Figure 3). Overall, in agreement with 300 

our hypothesis, we observed wide variation in population risk, driven by both spatial variation 301 

(regions) and individual species characteristics. 302 

 303 

Phenology of risk 304 

Fishes showed fluctuating patterns of critical decline risk throughout the year, despite 305 

critical decline risks being low overall (mean: 20.6%) (Figure 4). Moreover, taxa in regions at the 306 

high end of the salinity gradient (i.e., San Pablo Bay) often were at higher mean risk (San Pablo 307 

Bay = 21.6%) than those in lower salinity zones (Delta=16.1%, Confluence = 16.8%, Suisun 308 

Bay = 14.0%). We also modeled risk dynamics in the high-salinity zones of the Central and 309 

South Bays, and found high mean risk probabilities (Central 30.4%, South 25.6%, 310 

Supplementary Figure S3). However, as these regions do not have zooplankton monitoring, we 311 
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excluded them from additional analysis. Critical decline risk was positively correlated with mean 312 

monthly abundance of age-0 American Shad (Alosa sapidissima), Pacific Herring (Clupea 313 

pallasii), Striped Bass (Morone saxatilis), Threadfin Shad (Dorosoma pretense), and Longfin 314 

Smelt populations (American Shad R=0.5792, T27,3.6926, p<0.001, Pacific Herring R=0.7642, 315 

T8,3.3517, p=0.01, Striped Bass R=0.5453, T33,3.7368, p<0.001, Threadfin Shad R=0.5887, T20,3.2573, 316 

p=0.004, Longfin Smelt R=0.6155, T20,3.4929, p=0.002). This result indicates that critical decline 317 

risk is often higher in months that concentrate higher abundances. In contrast, the Jack 318 

Silverside (Atherinopsis californiensis) and the Northern Anchovy did not show an association 319 

between month-specific risk and abundance. Notably, no species showed a negative 320 

association between monthly risk and abundance–the hypothesized pattern in which species 321 

would be safer in the months that concentrate more of their relative abundance, relative to the 322 

‘shoulder’ months.  323 

 324 

Implications for trophic dynamics in current and future scenarios 325 

 We found that critical decline risk was relatively low (mean 21.46%) when we examined 326 

paired predator-prey assemblages within their high-abundance windows one time step into the 327 

future (Figure 5). Though individual zooplankton taxa showed variable patterns of risk in the 328 

near term, only one predator, the Striped Bass, showed significantly lower decline risk than its 329 

corresponding prey assemblage (F1,17.320, p=0.0015), indicating potential for bottom-up 330 

destabilization. Additionally, American Shad predator/prey assemblages showed differential 331 

patterns by region, with lower critical decline risks associated with San Pablo Bay (F3,8.601, 332 

p=0.002).   333 

Despite this ‘balanced’ risk between fish and their prey currently, as we projected critical 334 

decline risk into the next decade we found widespread divergence between fishes and their 335 

zooplankton prey across different regions of the estuary (F3,4.068, p=0.006 for the 336 

Group*Time*Region interaction, see next section for community-level trends). Among individual 337 
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predators, all fish species except the Threadfin Shad displayed differential risk than their prey 338 

assemblages (Figure 6), but this often varied by region. Notably, Striped Bass also displayed an 339 

interaction between taxonomic group and years into the future, indicating that risk accumulates 340 

at different rates between this fish and its prey (F1,14.581, p<0.001). Throughout the 10-year 341 

projection, we also found strong regional differences in American Shad (F3,39.422, p<0.001), 342 

Northern Anchovy (F1,16.407 p<0.001), and Longfin Smelt food webs (F1,6.705 p=0.0109), as well as 343 

group by region interactions for all three of these predators (American Shad F3,8.132, p<0.001; 344 

Northern Anchovy F1,5.577, p=0.02; Longfin Smelt F1,5.932, p=0.016). Additionally, we found that 345 

American Shad food webs accumulate risk differentially by region (F3,10.060, p<0.001 for the 346 

region by time interaction). Overall, we saw support for our hypothesis that fishes display higher 347 

levels of risk than their zooplankton prey into the future, but these trends are largely region-348 

specific.  349 

 350 

Community-scale observations 351 

 Divergences between fish and zooplankton critical decline risks also manifested at the 352 

community level, with zooplankton assemblages throughout the estuary having lower mean 353 

decline risk than fishes (F1,7.022, p=0.008). However, these differences are predominantly driven 354 

by patterns in San Pablo Bay (Region effect F3,23.168, p<0.001, Figure 7). Moreover, we found 355 

the rate of divergence in trends through time was unique each region of the estuary (F3,4.068, 356 

p=0.006 for the group*time*region interaction), as well as unique to each predator/prey 357 

assemblage (F3,2.715, p=0.013 for the triple interaction between group, time, and predator 358 

identity). Despite the higher baseline critical decline risk in fish assemblages, uncertainty (i.e., 359 

the difference between risk from best-case and worst-case scenario projections) was higher for 360 

zooplankton relative to fish (F1,113.867, p<0.001), and accumulated differently between trophic 361 

groups (F1,17.060, p<0.001 for the group by time interaction). Moreover, uncertainty varied by 362 

region (F3,121.889, p<0.001), and groups in each region accumulated risk differentially through 363 
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time (F3,7.201, p<0.001 for the triple interaction between group, time, and region). This interaction 364 

indicates that a wider range of critical decline outcomes are possible for zooplankton across the 365 

estuary. Overall, these results suggest that patterns of risk can scale up from individual 366 

predator/prey assemblages to the community level. However, local conditions–notably the 367 

salinity gradient–control how these patterns might manifest into the future. For additional 368 

exploration and visualization of our results, see the companion ‘Bay Delta Data Explorer’ R 369 

ShinyApp: http://12022001delta.shinyapps.io/RFCT_Mismatches_2.  370 

 371 

Discussion 372 

Conservation scientists often quantify extinction risk to triage populations and prioritize 373 

the allocation of limited resources. However, these estimates often assume that decline risk is 374 

consistent within relatively small temporal and spatial scales (Coulson et al. 2001). Moreover, 375 

PVA are usually explored within the context of a single species, and assessments of risk across 376 

food webs is comparatively rare (Sabo 2008). Here, we sought to evaluate how critical decline 377 

risk for age-0 forage fishes and their potential prey varies throughout the year across the San 378 

Francisco Bay Estuary. Both forage fishes and their zooplankton prey were characterized by 379 

periods of concentrated abundance within years, emphasizing the importance of considering 380 

decline risk at sub-yearly scales. We found that many focal fish species showed negative 381 

population growth, and that critical decline risk was often higher in months with high historical 382 

abundances. Additionally, we found that predator and prey decline risk diverged across a 383 

10-year projection, suggesting a potential for future trophic mismatches. However, these 384 

divergent patterns were most pronounced in one region of the estuary (San Pablo Bay), 385 

indicating that local environmental factors might drive disruptions to the food web. Our findings 386 

underscore the need to consider fine-scale temporal and spatial variation in risk in estuarine 387 

taxa. The observed widening gaps in risk and uncertainty around risk between trophic levels 388 

advance the notion that phenological shifts and associated trophic mismatches are an 389 

http://12022001delta.shinyapps.io/RFCT_Mismatches_2
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emergent, yet largely underappreciated consequence of global change on ecological 390 

communities (Cohen et al. 2018, Fournier et al 2023). 391 

 392 

Widely declining fish population trajectories 393 

 There is growing evidence that the capacity of the San Francisco Estuary to support 394 

forage fish populations has substantially diminished in recent decades (Rosenfield and Baxter 395 

2011). The resulting pelagic organism decline (POD) has been marked by dramatic collapses in 396 

forage fish populations (Sommer et al. 2007), and these declining abundances are reflected 397 

across our MAR models (Figure 3). Previous applications of time series modeling in this system 398 

have identified strong negative trends at the population level driven by a variety of 399 

environmental factors, including water clarity and the variable position of the 2‰ isohaline zone, 400 

X2 (Mac Nally et al. 2010). Understanding the causes and consequences of these declines 401 

requires linking abundance trends to probabilistic estimates of extinction outcomes.  402 

Our critical decline risk calculations are based on two primary measures of population 403 

dynamics: intrinsic growth rates and process-driven variability. Over half of all fish time series 404 

(52.3%) displayed negative intrinsic growth rates, commonly resulting in increased critical-405 

decline risk—that is, a high near-term probability that the species will not be longer present, that 406 

month, in that region of the estuary. Notably, the Longfin Smelt, a native osmerid that was 407 

historically abundant in the San Francisco Estuary (Tempel et al. 2021), exhibited nearly 408 

ubiquitous patterns of negative growth across regions and months (Figure 3). Declines of 409 

Longfin Smelt are well established (Nobriga and Rosenfield 2016), and habitat degradation and 410 

successive recruitment failures have led to its recent Federal listing under the Endangered 411 

Species Act (USFWS 2024). In this case, the strongly negative growth rates identified by our 412 

models likely drive the observed patterns of critical decline risk. Conversely, taxa with highly 413 

variable population dynamics can still exhibit high decline risk even with positive growth trends. 414 

For instance, the Northern Anchovy often maintained positive growth rates but did so in a highly 415 
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variable manner (Figure 3). This predominantly marine species opportunistically uses estuarine 416 

habitats (Allen and Horn 2006). Populations tend to show boom-and-bust dynamics, with 417 

recruitment often tied to lower delta outflow, and juvenile abundance positively correlating with 418 

drought conditions that increase system salinity (Colombano et al. 2022). A strong reliance on 419 

environmental stochasticity to maintain abundance levels is reflected in high population 420 

variance, increasing the likelihood of a critical decline event. Overall, both the overall negative 421 

growth rates and high population variance identified by our time series models illustrate an 422 

assemblage in flux. 423 

 424 

Phenology of risk 425 

Fish recruitment to adult life stages (and fisheries) is often highly sensitive to fluctuations 426 

in early life survivorship (Hjort 1914, Winemiller and Rose 1992, Fournier et al. 2021), and our 427 

models revealed that age-0 critical decline risk was not uniform across months. The dynamic 428 

environmental conditions of estuaries can disproportionately impact juvenile fishes that rear in 429 

these nursery habitats (Morrongiello et al. 2014, Jenkins et al. 2022). For example, seasonal 430 

changes in delta outflow and salinity can alter resource availability during key growth periods 431 

(Reis et al. 2019). Additionally, widespread anthropogenic alteration of breeding and rearing 432 

habitats throughout the San Francisco Estuary has negatively affected early life stages of 433 

estuarine fishes (Cloern and Jassby 2012). Despite our expectation that critical decline risk 434 

would be higher during months with historically low abundances, we often observed the 435 

opposite pattern. American Shad, Longfin Smelt, Pacific Herring, Striped Bass, and Threadfin 436 

Shad all showed higher critical decline risks in months with historically high abundances. Low 437 

juvenile survivorship often leads increased fecundity, to buffer mortality (Winemiller and Rose 438 

1993), which likely explains the observed risk patterns. Moreover, density-dependent resource 439 

exploitation during high abundance windows might affect population performance more acutely 440 

than density-independent factors in other parts of the growth season (DeAngelis et al. 1993).  441 
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Spawning and hatching are key phenological events, the timing of which tends to be 442 

highly-sensitive to environmental change (Lawrence et al. 1997, Hovel et al 2017). Our analyses 443 

and risk estimates focused on these high-abundance windows. If environmental conditions 444 

during these periods become unsuitable, estuarine taxa might respond by advancing or delaying 445 

their life cycles their phenology (Chevillot et al. 2017, Asch et al. 2019). However, estuarine 446 

fishes might be limited in their abilities to phenologically track changing environmental 447 

conditions long-term (Fournier et al. 2024). Moreover, desynchronization between a population 448 

and its key resource base can destabilize food webs (Stenseth and Mysterud 2002, 449 

Zhemchuzhnikov et al. 2021). Our results highlight the need to closely monitor decline risk 450 

during the key periods when a species is present, as assuming risk consistency could mislead 451 

managers to overlook potentially impactful moments of heightened risk. 452 

 453 

A widening gap in risk, and risk uncertainty, between fishes and their prey 454 

 While PVA are generally considered within single species contexts, we sought to pair 455 

predators with their potential prey assemblage during important phenological windows. Though 456 

near-term patterns of decline risk were similar between predators and their prey, we observed 457 

that risk diverged when considering a 10-year time horizon. Predators and prey often fluctuate 458 

together in lagged cycles (Chesson 1978) and typically reach equilibrium over evolutionary 459 

timescales (Smith and Slatkin 1973). While predictable disturbances can stabilize trophic 460 

interactions (Vasseur and Fox 2009), strong environmental fluctuations driven by global change 461 

might disrupt these relationships (Bretagnolle and Gills 2010). Additionally, phenological shifts 462 

that decouple historically synchronous species can cause trophic mismatches that destabilize 463 

food webs (Varpe et al. 2010, Thakur 2020), and phenological trends between estuarine 464 

predators and prey could be diverging (Fournier et al. 2024).  465 

Our projections indicated that predators often exhibited higher rates of decline than their 466 

prey over a 10-year period. If predators are extirpated during key phenological windows while 467 
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their prey persist, the resulting trophic release of zooplankton taxa might increase the likelihood 468 

of harmful algal blooms (Jachowski et al. 2020). Conversely, Striped Bass, a non-native but 469 

well-established species in the San Francisco Estuary, often showed lower critical decline risk 470 

than its prey. Despite its high diet adaptability (Young et al. 2022), significant declines in prey 471 

assemblages during key phenological periods might still result in population declines (Nobriga 472 

and Freyer 2008). Indeed, altered patterns of prey availability are thought to be a significant 473 

driver of the estuary’s pelagic organism decline (Sommer et al. 2007). Importantly, we observed 474 

different levels of risk uncertainty (i.e., the difference between best-case and worst-case 475 

scenarios) between fishes and zooplankton throughout the estuary. In general, zooplankton 476 

exhibited a wider range of possible trajectories than fishes. The fast generation times and 477 

boom-and-bust cycles characteristic of many zooplankton taxa, including the widespread 478 

genera examined in our model, complicate precise estimates of decline risk (Lane 1975). 479 

Moreover, biotic controls on plankton populations not assessed by our models (e.g., grazing 480 

pressure by invasive bivalves, Carlton et al. 1990) might further destabilize zooplankton prey 481 

pools. Thus, while the aggregate stability of the assemblage might facilitate prey-switching 482 

(Potts et al. 2016), large-scale collapses predicted by our “worst-case” models would likely 483 

destabilize whole food webs.  484 

 In our study, we found that the strongly divergent trends (i.e., “widening risk gaps” 485 

between fishes and their prey) occurred in a single region of the estuary, San Pablo Bay. This 486 

region is near the Pacific Ocean and has the highest salinity levels in the study area. 487 

Consequently, long-term droughts that shift the salinity gradient upriver, coupled with the 488 

influence of recent marine heatwaves, might make this region especially vulnerable to 489 

hydroclimatic fluctuations (Sanford et al. 2019). As fishes and plankton have variable tolerances 490 

to environmental conditions such as increased temperature or salinity (Qasim et al. 1972, 491 

Beitinger et al. 2000), harsher conditions in this region might differentially influence decline risk. 492 

Although individual taxa might display variable levels of risk, a diversity of trends might promote 493 
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community-level stability (Ovaskainen et al. 2010). At the estuary-wide scale, the taxonomic 494 

richness of forage fishes appears to facilitate portfolio effects that enhance community resilience 495 

despite declines of individual taxa (Colombano et al. 2022). Additionally, spatial insurance may 496 

allow individual subregions to bolster the metapopulation when local conditions become 497 

unsuitable elsewhere. Indeed, previous time series analyses have been used to infer 498 

metapopulation structure and identify subpopulations that disproportionately impact regional 499 

decline risk (Ward et al. 2010, Sarremejane et al. 2021). Similarly, except for Striped Bass, the 500 

divergent patterns we observed in San Pablo Bay appear to be localized, as other subregions 501 

throughout the estuary show similar risk for fishes and their prey. Thus, management strategies 502 

that either mitigate risk in San Pablo Bay, or enhance the capacity of other subregions to serve 503 

as refuge habitats, might confer food-web stability throughout the region. 504 

 505 

Limitations and future directions 506 

 The increasing availability of biological monitoring data makes time series-based 507 

approaches a suitable alternative to traditional, mechanistic PVA (Holmes et al. 2007, 508 

Chaudhary and Oli 2020). Here, we leveraged long-term monitoring data for age-0 forage fishes 509 

and their zooplankton prey in the San Francisco Estuary to assess critical decline risk across 510 

multiple scenarios. Nonetheless, these methodologies have limitations. First, here we explored 511 

sub-annual trends by breaking the time series into its constituent months. While this fine-scale 512 

analysis revealed when in a given season a particular fish may be more likely to disappear, we 513 

did not explicitly model spawning and hatching events, niche shifts, or migrations. Additional 514 

work could build on our approach to mechanistically include life-history events that may be 515 

influencing, or driving, the observed patterns in risk phenology. Second, our critical decline 516 

metrics might be inflated because they are derived solely from process error while observation 517 

error is not assessed (Knape and De Valpine 2011). However, these estimates remain valuable 518 

because our modeling approach promotes bias consistency across fish species and their 519 
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potential prey. Furthermore, the probability of not detecting a species in a given month (i.e., 520 

‘extinction’ from an observation standpoint) is still critical, as it may prompt management and 521 

conservation actions, even if the species was not detected due to imperfect observation rather 522 

than true absence (e.g., Delta Smelt, Rose et al. 2013). Third, direct biotic interactions are 523 

difficult to estimate. We sought to ameliorate this shortcoming by calculating average risk of 524 

prey within phenological windows bespoke to each predator. However, these indirect methods 525 

might not fully assess increases in decline risk due to prey availability, and altered prey pools 526 

are predicted to influence pelagic organism population collapses (Sommer et al. 2007, Cloern 527 

and Jassby 2012). Moreover, while we assumed fishes might consume any of the modeled prey 528 

species, we still know relatively little about how each fish predator might rely on a given prey 529 

item. Thus, diet and other trophic studies that directly link predator and prey would greatly 530 

improve our ability to assess mismatch potential. Finally, our models examined spatial dynamics 531 

by assessing decline risk at subregional scales. In doing so, we found that San Pablo Bay has 532 

elevated mismatch risk relative to other regions of the estuary. As migration through the estuary 533 

is common for many of our focal taxa, explicit examinations of metapopulation structure might 534 

enhance our understanding of whole-estuary ecological dynamics.  535 

 536 

Concluding remarks 537 

The richness and complex life cycles of estuarine biota often complicate management 538 

and conservation efforts in these dynamic ecosystems (Jha et al. 2008, Lauchlan and 539 

Nagelkerken 2020). Here, we used a novel quantitative approach to estimate critical decline risk 540 

in a community context. Contrary to what is typically assumed, we found that even within a 541 

given species and life stage, critical decline risk can be highly variable across months of the 542 

year–suggesting high potential for climate-induced trophic mismatches (Visser 2022). Because 543 

predator-prey dynamics and food limitation have been linked to the ongoing fish population 544 

declines in the San Francisco Estuary (Baxter et al. 2008, Cloern & Jassby 2012), our results 545 
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are directly relevant to conservation efforts in this system. Notably, our approach could be 546 

transferred to other estuaries with similar long-term on species abundances across trophic 547 

levels. A more robust understanding of fine-scale temporal dynamics within food webs should 548 

help design more effective conservation strategies for vulnerable populations undergoing 549 

climate-change induced phenological shifts. 550 

  551 
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Figures 819 

 820 

Figure 1: Map of the San Francisco Estuary, California, USA. Regions are shown as color-821 
coded polygons, with core fish and zooplankton sampling stations shown as black triangles and 822 
white circles, respectively. Along the longitudinal axis of the estuarine gradient, and depending 823 
on hydroclimatic conditions, salinity can range from polyhaline (18-30 PSU in the Central Bay, 824 
which is connected to the Pacific Ocean) to brackish and fresh (0-5 PSU in the Delta). 825 
 826 
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 827 
Figure 2: Flow chart of analyses. We illustrate the data inputs, series modeling steps, and 828 
critical decline risk outputs.  829 
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 830 
Figure 3: Diversity of population trajectories within and across species. The biplot 831 
represents Intrinsic growth rates (U), versus estimated process error variance (Q) estimated by 832 
the Multivariate Autoregressive (MAR) models. For growth rates, values below zero indicate 833 
year-to-year declines in  population estimates for that month and region, while values above 834 
zero indicate positive trends. For process error variance, higher values indicate stronger year-835 
to-year fluctuations in population estimates for that month and region. Each point represents a 836 
species in a given region for each month of the year. We fitted standard ellipses to each species 837 
to display the diversity of species-level trajectories. See Figure S2 in the supplementary for 838 
additional visualizations of these data.  839 
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 840 
Figure 4: Phenology of risk. Monthly risk that an age-0 fish species would experience a 90% 841 
population decline for that month in each region. Points are scaled by percentage of mean 842 
annual catch. High abundance windows–i.e., months that contain 80% of the mean annual 843 
catch–are in saturated tones while off-window months are desaturated. Gaps indicate that a 844 
species often had zero abundance for that month and region and were thus not modeled.  845 
 846 
 847 
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 848 
 849 
Figure 5: Mean critical decline risk of fish during their high-abundance windows paired 850 
with the potential suite of zooplankton prey within that same window. Points represent 851 
probabilities calculated from maximum likelihood parameter estimates. Lower bound represents 852 
“best case scenario” wherein decline risks are calculated with the most positive population trend 853 
and lowest amount of process error variance. Upper bound represents “worst case scenario” 854 
calculated with the most negative population trend and highest amount of process error 855 
variance. 856 
 857 
 858 
 859 
 860 
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 861 
Figure 6: Projection of critical decline risk 10 years into the future. We projected out 10 862 
years from present for fish predators (solid line) in their high population window and the mean 863 
risk of their zooplankton prey assemblage (dashed line) during that same window. Bands 864 
represent the range between best case and worst case scenarios. Asterisks represent 865 
significant differences between fishes and zooplankton (American Shad, F1,5.891, p=0.0161; 866 
Threadfin Shad, F1,0.145, p=0.710, Jack Silverside, F1,16.245, p<0.001; Pacific Herring, F1,8.435, 867 
p=0.0062; Northern Anchovy, F1,12.214, p<0.001; Striped Bass, F1,40.244, p<0.001; Longfin Smelt, 868 
F1,4.173, p=0.043).  869 
 870 
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 871 
Figure 7: Accumulation of community-wide risk across regions of the estuary. We display 872 
mean decline risk for all predators (orange, solid line) and their paired prey assemblages 873 
(green, dashed line) in each region during high abundance windows projected out for 10 years. 874 
Individual taxa are represented by desaturated lines. Bands represent the mean range between 875 
best case and worst case scenarios (see methods for details). 876 
 877 
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