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Abstract 13 

Masting, i.e. interannually variable and synchronized seed production, plays a crucial role in forest 14 

ecosystems, influencing wildlife dynamics, pathogen prevalence, and forest regeneration. Accurately 15 

capturing masting variability is important for effective forest management, conservation efforts, and 16 

predicting ecosystem responses to environmental changes. The adoption of low-cost methods facilitates the 17 

large-scale data acquisition needed in this time of unprecedented environmental upheaval, but it is 18 

important to understand the reliability of such methods. We investigated the relationship between the timed 19 

count method and the quadrat-based method for monitoring seed production in European beech (Fagus 20 

sylvatica). The timed count method is fast, cost-effective, and suitable for areas with public access. These 21 
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characteristics make time counts a practical choice for large-scale seed monitoring. However, the method has 22 

not been cross-calibrated with more traditional ground-based methods like quadrat sampling, which 23 

involves exhaustive seed collection from designated plots under tree canopies. Our research reveals a 24 

loglinear relationship between seed counts obtained by the two methods, and shows that the timed count is 25 

an effective method of estimating seed production. We also found that seed production exhibits greater 26 

dispersion in patchiness at lower levels of seed fall, which explains why the timed count method, covering a 27 

larger area, captures greater variability in seed fall compared to the quadrat method in such contexts. This 28 

highlights the importance of choosing an appropriate sampling strategy to accurately assess seed fall. The 29 

differences between the two methods introduce variability into derived masting metrics, such as the 30 

coefficient of variation and synchrony, with individual-level seed production variability metrics being more 31 

affected than population-level ones. The findings underscore the importance of understanding how 32 

different sampling methods can impact long-term ecological studies, particularly those focused on masting 33 

behaviour. 34 

Introduction 35 

Researchers have long been counting seeds to estimate the interannual variability of seed production in a 36 

population (i.e. masting), since this seed production variability has important applied and ecological 37 

consequences (Ascoli et al., 2017a; Hilton and Packham, 2003; Koenig, 2021). For instance, the resource 38 

pulses associated with high seeding years affect the population dynamics and behaviour of wildlife including 39 

insects, rodents, larger mammals, and birds (Jones et al., 1998; Maag et al., 2024; Ostfeld and Keesing, 2000; 40 

Touzot et al., 2020). Via cascading effects, masting also influences the prevalence of pathogens, including 41 

Lyme disease, and haemorrhagic fever (Bregnard et al., 2021; Clement et al., 2009; Reil et al., 2016; Tersago 42 

et al., 2009). Moreover, masting dictates seedling emergence, recruitment and forest regeneration (Maringer 43 



 

 3 

et al., 2020; Zhang et al., 2022; Zwolak et al., 2016). Effective management of natural systems therefore relies 44 

on our understanding of masting (Pearse et al., 2021). 45 

Our grasp of the spatio-temporal variability in masting, and its effects on the ecosystem, depends on the 46 

availability of extensive records of both seed quantity and quality. Increasing seed sampling across climate 47 

change gradients, for instance, is particularly important as it can reveal the drivers of changes in masting and 48 

help to predict the response of masting to further environmental change (Foest et al., 2024; Hacket-Pain and 49 

Bogdziewicz, 2021). Moreover, unpredictable seed supply is a challenge for forest restoration and 50 

afforestation projects (Kettle, 2012; Pearse et al., 2021; Whittet et al., 2016). Models which forecast masting, 51 

built on seed monitoring data, can help improve the timing of seed sourcing for such projects (Journé et al., 52 

2023b; Pearse et al., 2021). Thus, there is a demand for reliable, well-understood and cost-effective seed 53 

production monitoring methods. 54 

The adoption of low-cost methods can improve large scale data acquisition, and support the longevity of 55 

seed monitoring projects (Koenig et al., 2020, 1994b). Yet, it is important to understand the reliability of 56 

such methods, and cross-calibrate them with reference methods. One easy to implement, time-effective, and 57 

low-cost monitoring method which requires no infrastructure is the timed count used to monitor seed 58 

production in European beech (Fagus sylvatica) since 1980 in the United Kingdom (Packham et al., 2008). 59 

This time-efficient method is easily learned and takes only 3.5 minutes per tree. Moreover, it is suitable for 60 

monitoring in areas with public access and areas where seed traps cannot be deployed. Its low cost and speed 61 

facilitate the acquisition of large sample sizes – a trait especially important when seed production is variable 62 

between years and individuals, as is the case for masting seeding (Koenig et al., 1994b). In contrast to another 63 

well established and efficient method, namely the 30-second binocular count of fruit in the canopy (the 64 

‘Koenig method’; Koenig et al., 1994a; Touzot et al., 2018), the timed count method can be used when 65 

branches are difficult to see (including in closed canopy forest), and allows for further assessment of seed 66 

quality post-sampling. This is highly relevant as, for example, UK beech seeds collected with the timed count 67 
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can be examined to measure rates of seed predation and pollination. Such efforts have revealed that due to 68 

temporal changes in masting associated with climate warming, the number of viable seeds declined by up to 69 

83% over the last four decades, despite increasing total seed production (Bogdziewicz et al., 2023, 2020). 70 

Crucially, the joint monitoring of seed quantity and quality uncovered a highly concerning process that 71 

would have otherwise remained hidden, and opened further research avenues to mitigate the impacts of 72 

decreased viable seed supply (Bogdziewicz et al., 2024). Here, we investigate how this timed count method 73 

relates to a more traditional ground-plot method, which is performed by collecting all seeds from quadrats 74 

placed under the tree canopy. 75 

We predicted that the relationship between timed and quadrat seed counts is loglinear because a degree of 76 

saturation can occur when using effort-based methods such as timed counts. That is, there are physical limits 77 

to how many seeds can be collected within a certain time frame (Koenig et al., 1994a; Touzot et al., 2018). 78 

Exhaustive counts within quadrats would not feature such saturation. Although logarithmic functions do 79 

not include a plateau parameter for the maximum number of seeds collected with the timed count, they are 80 

particularly useful to describe processes where the rate of change slows down as the quantity being measured 81 

increases. In contrast to more complex nonlinear models, logarithmic transformations within the context of 82 

linear models are versatile and can easily be incorporated regardless of the directionality (i.e. from timed 83 

counts to quadrat counts or vice versa). 84 

Another reason we anticipated nonlinearity arises from the potential impact of seed fall patchiness on seed 85 

count estimates derived from the two methods. Generally, comparing estimates obtained with different 86 

methods can improve insights on the properties of the system in which we obtain data. Touzot et al. (2018), 87 

for instance, found evidence of predation satiation by contrasting estimates obtained with exposed ground 88 

plots and seed trap nets (which offer some protection against predation). Here, we expected to observe 89 

differences related to sampling area. The timed count method covers a larger sampling area than is typical for 90 

an area-based count (whole or large canopy nets can be used but such nets are highly intensive; (Fleurot et 91 
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al., 2023; Touzot et al., 2018), and seeds are picked up from multiple locations under the crown of each 92 

individual. Where the observer collects seeds from is unlikely to be random – while care is taken to sample 93 

from multiple areas, the observer could be drawn to patches of seeds. In plants which produce clusters of 94 

heavy fruits, the comparatively small seed shadow can feature strong aggregation (Cousens et al., 2008). 95 

When seed production is patchy, the observer might sample more seeds from seed fall patches that would be 96 

missed by the quadrat sampling method as this method samples only a fraction of the surface area. Possibly, 97 

seed fall is patchier at lower levels of seed fall than at higher levels. At low seed fall levels only some branches 98 

may produce seeds (resulting in patchiness), while at higher seed fall, more or most branches participate 99 

(resulting in random to uniform seed fall). However, it is also possible that total seed fall affects the 100 

dispersion of patchiness. For example, at low seed fall levels, the seed fall distribution may be uniform (in the 101 

extreme: there are zero seeds, falling in zero plots) or random (i.e. there are a few seeds falling randomly from 102 

across the canopy), but in some trees, a limited number of branches produce a relatively large seed crop, 103 

resulting in a patchy distribution of seed fall. 104 

Alongside the need to cross-calibrate seed sampling methods, it is important to investigate how the use of 105 

different sampling methods translates into measures of masting variability. Long-term seed production 106 

records are becoming increasingly available (Hacket-Pain et al., 2022), and seed sampling methods vary 107 

among time series. This is unsurprising, as methods vary in terms of collecting effort (i.e. time), required 108 

infrastructure, and their usefulness for particular species and habitats (e.g. small or large seeded species, 109 

closed canopy or savanna). Masting research increasingly uses integrated datasets which combine multiple 110 

methods (e.g. Ascoli et al., 2017b; Dale et al., 2021; Journé et al., 2023a; Lobry et al., 2023; Pearse et al., 111 

2020), but we have a limited understanding of the effects of such collation; seed collection methods can 112 

affect seed production estimates (Koenig et al., 1994a; Touzot et al., 2018), which may translate into metrics 113 

derived from such data. 114 
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The aim of this study was to establish the relationship between the timed count and a reference method, i.e. 115 

quadrat counts. Subsequently, we aimed to test how the choice of method influences masting metrics. 116 

Specifically, we examined (1) if the relationship between timed counts and area-based counts is loglinear in 117 

nature, rather than linear, (2) if patchiness and the dispersion of patchiness vary as a function of total seed 118 

fall, and (3) the effect of sampling method on masting metrics at the individual and population level. 119 

Methods 120 

To test how estimates of seed fall obtained with a timed count and a quadrat-based count relate to each 121 

other, we collected seeds from European beech (Fagus sylvatica) in early October in 2022 and 2023. We 122 

subsequently used this relationship between the two methods to test the effect of the collection method on 123 

individual and population-level masting metrics using a dataset spanning 43 years of observation (the 124 

English Beech Mast Survey dataset, EBMS; Packham et al., 2008). 125 

Species and sites 126 

We sampled seed production under 59 beech canopies in early October of 2022 (N = 30) and 2023 (N = 29), 127 

across 5 sites. The sampled individuals are part of the English Beech Mast Survey, and grow at sites near 128 

Woodbury, Killerton, Buckholt, Painswick, and Portway. A detailed description of sites can be found in 129 

Packham et al. (2008), and an overview of the EBMS sites can be found in Fig. S1. 130 

Sampling designs 131 

To limit interference between sampling methods, quadrats were laid out before the timed count was 132 

conducted, and seeds found inside quadrats were not collected with the timed count method. Typically, the 133 

quadrats covered between 0.2 – 3% of the projected crown area, so the timed count was not significantly 134 

affected by the presence of the quadrats. Collected seeds were counted in the lab. 135 
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Quadrat count 136 

Figure 1: Graphical example of sampling layout under a tree canopy (dashed line). Quadrats were sampled 137 

along three transects, and a representation of a timed count sampling path is shown in a white dotted line. The 138 

black circle represents the tree trunk. Figure not to scale. Increasing canopy size reduces the relative sampling 139 

area covered by the methods, particularly when using the quadrat sampling method. 140 

Under each tree, 9 quadrats (surface area: 1/9 m2 each) were laid out along three transects, 120° apart (Fig. 141 

1). Along each transect, three quadrats were placed at 1/6th, 1/2nd and 5/6th of the distance between the 142 

tree trunk and the canopy edge, starting at the tree trunk. All current-year seeds were collected from each 143 

quadrat by one observer, and another observer then checked that no seeds were missed.  144 

Timed count 145 

The timed count method was performed by collecting seeds under a tree for 3.5 minutes, and doubling the 146 

number of collected nuts (to obtain a 7-minute count for historical reasons; doubling may theoretically 147 

inflate counts, particularly during low-seeding years, but also increase the frequency of zeros. It was 148 

implemented to reduce fieldwork time, ensuring the feasibility of this long-term, large-scale study). This 149 

effort-based method has been used since 1980 in the EBMS (Packham et al., 2008). When performing the 150 

timed count, particular attention is paid to searching as much of the below-canopy area as possible, instead 151 
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of sampling in a particular area. Moreover, when sampling, each seed is picked up and placed in the sample 152 

bag separately. 153 

Statistical analyses 154 

Analyses were performed in R (v. 4.4.1; R Core Team, 2023). Regression models were constructed with 155 

glmmTMB (v. 1.1.9; Brooks et al., 2017), unless differently indicated. Models were validated with 156 

DHARMa (v. 0.4.6; Hartig and Lohse, 2022). 157 

Comparing seed count estimates 158 

We tested the nature of the relationship between seed counts obtained with the two methods by 159 

constructing two linear mixed models and comparing their fit with AICc.  The input consisted of raw seed 160 

count observations (Xij), where each observation represented counts from a specific tree ( i) in a given year (j). 161 

In the first model, the dependent variable ‘Timed seed count’ was modelled as a function of ‘Quadrat seed 162 

count’. In the second model, the dependent variable was considered to be a function of ln(1 + Quadrat seed 163 

count). 164 

To account for non-independence, we included tree ID nested with site as random intercept. To test if 165 

sampling year should be included in the model, we added year as a predictor, as well as a two-way interaction 166 

term of year with the quadrat seed count. Neither additive and interaction terms were significant, thus we 167 

removed the sampling year from the final model. 168 

To convert timed count estimates into quadrat count estimates (i.e. seeds/m2), we constructed a third 169 

model, with the natural log of 1 + ‘Quadrat seed count’ as the dependent, and ‘Timed seed count’ as the 170 

independent variable. The same random intercepts were included in this model. 171 

Using a linear model, we tested if seed fall is patchier at lower levels of seed production (i.e. lower tree level 172 

quadrat count), and if seed fall levels affect the dispersion of patchiness. Patchiness was calculated with 173 
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Lloyd’s index of patchiness (Ip; Lloyd, 1967; Wade et al., 2018), using nine quadrats for each sampled 174 

canopy. It is obtained as follows (Lloyd, 1967; Wade et al., 2018): 175 

𝐼𝑝  =  
𝑚 +  (

𝑉
𝑚  −  1)

𝑚  
=  1 +  

(𝑉 −  𝑚)

𝑚2  176 

where ‘m’ is the mean seed count across samples (i.e. quadrats) and ‘V’ is the variance of seed counts. An 177 

index of 1 signifies that seed fall across quadrats follows a random distribution, values below one signify 178 

uniformity, and values over 1 indicate a patchy distribution. 179 

Effects on masting metrics 180 

Since calculation of masting metrics requires many years of observation, it is not possible to use the two years 181 

of data we collected to calculate and compare the timed- and ground-based derived masting metrics. 182 

Therefore, we used the relationship between timed seed counts and quadrat counts derived from the linear 183 

mixed model described under ‘Comparing seed count estimates’ to convert timed seed counts to quadrat 184 

seed counts. These estimated quadrat seed count and observed timed seed count series were then used to 185 

investigate how individual and population-level estimates of masting metrics (specifically, CV, kCV, AR(1), 186 

Psd, and S; see below) would differ between methods, using data from the EBMS (3663 annual observations; 187 

15 sites with sample sizes > 3 individuals; Packham et al., 2008). Loess models were fitted with the 188 

‘geom_smooth’ function of the ggplot2 package (v. 3.5.1) to aid visual interpretation of the relationships 189 

between metrics (Wickham, 2016), and for each metric (obtained with two methods) the Spearman rank 190 

correlation was calculated. 191 

CV is the coefficient of variation of seed production and is the most used metric to describe masting (Kelly 192 

and Sork, 2002). It is the standard deviation divided by the mean of seed production. kCV is a newly 193 

proposed bounded alternative to CV (Lobry et al., 2023). The kCV can be obtained by dividing CV2  by 1 + 194 

CV2, and subsequently taking the square root (Lobry et al., 2023). AR(1) captures the temporal 195 
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autocorrelation of seed production at lag 1 year, and can be considered as a deterministic component of year-196 

to-year variability (Bogdziewicz, 2022; Schermer et al., 2020). It was obtained with the ‘Acf’ function in the 197 

forecast package (v. 8.23; Hyndman and Khandakar, 2008). The Psd is calculated by taking the proportion 198 

of high seed years to all years, as proposed by LaMontagne and Boutin (2007) (note that we use ‘high seed 199 

years’ rather than ‘mast years’ as recommended by the Bogdziewicz, et al. (2024) review on masting). High 200 

seed years are the years where the standardised annual deviate of reproductive effort exceeds the absolute 201 

magnitude of the largest deviate below the mean. Synchrony of seed production (S) captures the average 202 

synchrony between an individual tree and conspecifics at a site at the individual level (Si), and at the 203 

population level (Sp), it describes the site-level average between-individual synchrony. Synchrony was 204 

calculated at the individual level (i.e. Si) with the average Pearson correlation between a tree’s seed 205 

production and the seed production of all other trees at a site. The population-level estimate of synchrony 206 

(Sp) was obtained by calculating individual-level synchrony for all trees in a site, and then taking the average. 207 

For all metrics other than synchrony, individual-level and population-level estimates were obtained by using 208 

individual-level and population-level average seed production time series respectively.  209 

When quadrat counts show a loglinear relationship with timed counts, small differences in timed counts at 210 

high seed fall levels can be transformed into unrealistically large quadrat counts. Therefore, we refrained 211 

from extrapolating beyond the maximum value on which the relationship between methods is based. Years 212 

in individual-level time series which had seed count values larger than the largest observation in our field 213 

study (i.e. 270 seeds; 4% of observations in the UK beech dataset) were excluded from the analyses 214 

comparing the masting metrics from the timed-and quadrat count data. Since individual-level time series 215 

were used to calculate population-level time series (i.e. by taking the average timed count per site per year), 216 

these large observations were also removed prior to the calculation of population-level time series. 217 

Individual-level time series were split into 10-year segments to increase sample sizes and capture more 218 

variation, starting from the first year of observation. Since masting behaviour in UK beech has changed over 219 
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time due to climate warming, dividing long time series into shorter segments is also justified biologically 220 

(Bogdziewicz et al., 2020). Any years where fewer than three individuals were sampled at a site were removed 221 

from population-level time series. Individual or population time series segments comprising fewer than six 222 

annual observations were excluded from the analysis. This approach resulted in 359 individual-level 223 

segments (3116 annual observations), and 45 population-level segments (446 annual observations).  224 

Results 225 

We collected a total of 11,109 seeds with the quadrat seed count (average: 188.3 seeds/m2, range: 12-886 226 

seeds/m2). A total of 8,312 seeds were collected with the timed count (average: 140.9 seeds/individual, range: 227 

12-270 seeds/individual). We found that the relationship between the two sampling methods was loglinear 228 

and had a good fit across sites (Fig. 2). Additionally, collected evidence supports the prediction that seed fall 229 

can be patchier at lower levels of seed production (Fig. 3). Lastly, we show that seed collection methods 230 

result in variation in masting metrics, particularly for individual-level metrics (Fig. 4). 231 

Comparing seed count estimates 232 

Nature of the relationship 233 

In both the linear and loglinear model predicting timed seed counts using quadrat counts, the quadrat seed 234 

count predictor was statistically significant (linear model: 0.27 ± 0.03 SE, z = 8.88, p < 0.001; natural log 235 

model: 56.63 ± 4.23 SE, z =13.39, p < 0.001). Nonetheless, the model with a logarithmic relationship better 236 

fit the data (ΔAICc: -33.57; Model fit of natural log model of timed counts: marginal R2 = 0.74, conditional  237 

R2 = 0.79), matching our predictions. Timed counts (T) can be estimated from quadrat seed counts (Q) 238 

using this formula: 239 

𝑇 ≈  −130.374 +  56.632 ×  𝑙𝑛(1 + 𝑄) 240 
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Similarly, the model estimating quadrat seed counts using timed counts showed a significant relationship 241 

with timed seed counts (Table 1, Fig. 2), and a good model fit (marginal R2 = 0.77, conditional R2 = 0.78). 242 

Estimated quadrat seed counts can be obtained from timed counts (T) as follows: 243 

𝑙𝑛(1 + 𝑄)  ≈  2.95 +  0.013 × 𝑇 244 

Therefore, 245 

𝑄 ≈  𝑒2.955 +0.013×𝑇  − 1 246 

The minor differences between the marginal and conditional  R2 indicate that site and tree exerted little 247 

influence on the estimated quadrat seed counts. In the natural log model of timed counts, site and tree 248 

explained 2.135 × 102 and 1.857 ×10-7 of the variance respectively, and the residual variance was 9.983 × 249 

102. In the natural log model of quadrat counts, the variance explained by site and tree were 1.012 × 10-2 and 250 

6.504 × 10-10 respectively, with a residual variance of 2.446  × 10-1.  251 

 252 

Figure 2: Relationship between the two ground-based sampling methods, the timed count and the quadrat 253 

count method. Partial residuals of tree-level observations are shown as points. (a) The relationship is shown with 254 

the quadrat counts on a natural logarithmic (ln) scale, and (b) with back-transformed quadrat counts. The 255 
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dashed line shows the bisector. Prediction lines (blue) and shaded 95% confidence intervals were obtained with 256 

a linear mixed model.  257 

Figure 3: Seed production patchiness across levels of seed production. Points show tree-level partial residuals. 258 

Most canopies show a patchy seed production of seed fall (Ip > 1). The blue dashed non-significant prediction 259 

line and shaded 95% confidence interval were obtained with a linear model. 260 

Table 1: Summary of linear mixed model showing how logarithmic quadrat count estimates (i.e. ln(1 + 261 

quadrat count)) can be obtained from timed counts. 262 

Effect Group Term Estimate SE z P-value 

Random Residual sd Observation 0.495       

Random Site sd (Intercept) 0.101       

Random Tree: Site sd (Intercept) < 0.001       

Fixed   (Intercept) 2.955 0.166 17.752 < 0.001 

Fixed   Timed count 0.013 0.001 12.352 < 0.001 

N: 59, Sites: 5, Trees: 48, Marginal R2: 0.774, Conditional R2: 0.783, sd = standard deviation. 

  263 
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Patchiness of seed fall 264 

As is evident from Fig. 2b, the timed count detects more variation in seed production at lower levels of 265 

quadrat counts. Most canopies show a patchy seed production of seed fall (i.e. Lloyd’s index of patchiness 266 

exceeds 1; Fig. 3, For seed fall patterns per tree, see Fig. S2). While patchiness does not decrease with seed fall 267 

( -7.65 × 10-5 ± 8.43 × 10-5 SE, z = -0.91, p = 0.36), the decrease in the dispersion of patchiness is statistically 268 

significant (-2.07 × 10-3 ± 3.70  × 10-4, z = -5.59, p < 0.001). 269 

Effects on masting metrics 270 

Individual level 271 

Not all masting metrics are similarly sensitive to the seed collection method (Fig. 4). The spearman rank 272 

correlations range between 0.55 (Psd) and 0.94 (S). Moreover, loess regression lines cross the bisector, 273 

indicating that for lower levels of the timed count metrics, the timed count underestimates the reference 274 

metrics, and at higher levels they tend to overestimate them. However, this is less pronounced for Ari and Si 275 

than for the other metrics. 276 

Fig. 5 allows for a closer inspection of time series segments which differ substantially in their CVi values 277 

obtained with the two methods. The lower CVi can be explained by two processes, both associated with the 278 

shape of the estimated relationship between seed counts obtained via the two methods at the low levels of 279 

timed counts. Firstly, the maximal timed counts in these segments are relatively low (see Fig. 2, quadrat seed 280 

counts associated with timed counts ≤ 164 are below the bisector), and are therefore scaled down during the 281 

conversion to quadrat counts. Secondly, the model predicts some seeds in quadrats even if timed counts are 282 

zero, which decreases the number of very low-seeding years. Together, these processes decrease the 283 

amplitude of variation between high and low seeding years, resulting in lower CVi. In contrast, synchrony 284 

(Si) and temporal autocorrelation at lag 1 year (ARi(1)) are comparable between the two methods. 285 
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 286 

Figure 4: Relationships between metrics (CV, kCV, AR, Psd, S) obtained with two different methods, at the 287 

individual level (i). CV: coefficient of variation, kCV: Kvalseth coefficient of variation, AR(1): temporal 288 

autocorrelation at lag 1 year, Psd: proportion of high seeding years, S: synchrony. The thin black dashed line 289 

represents the bisector. The thicker blue loess regression lines and 95% confidence interval are added for visual 290 

interpretation. Points represent time series segments, where the colour indicates the site. The spearman rank 291 

correlation (R) is shown in the top-left of each subplot. 292 
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 293 

Figure 5: Illustration of differences between level of temporal variability measured with the CVi (coefficient of 294 

variation at the individual level) of timed count (CVi T) and quadrat count (CVi Q) time series. Nine time 295 

series segments (faceted by Site and Tree ID) are plotted over time, with colour specifying the counting method. 296 

These time series match the points which fall within the red rectangle in the top-left plot (i.e. the first subplot of 297 

Fig. 4). Note that missing values either represent missing data, or measured values from the timed count that 298 

fell beyond the range of values to develop the conversion model. 299 

Population level 300 

The differences between seed production variability metrics (i.e. CVp, kCVp) obtained with the two seed 301 

collection methods are less pronounced at the population level (Fig. 6). Spearman rank correlations range 302 

between 0.54 for Psd and 0.92 for S. Psd is the only metric with a relatively poor fit between metrics of the 303 

two seed collection methods at the population level. 304 
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 305 

Figure 6: Relationships between metrics (CV, kCV, AR(1), Psd, S) obtained with two different methods, at the 306 

population level (p). CV: coefficient of variation, kCV: Kvalseth coefficient of variation, AR(1): temporal 307 

autocorrelation at lag 1 year, Psd: proportion of high seeding years, S: synchrony. The thin black dashed line 308 

represents the bisector. The thicker blue loess regression lines and 95% confidence interval are added for visual 309 

interpretation. Points represent time series segments, where the colour indicates the site. The spearman rank 310 

correlation (R) is shown in the top-left of each subplot. 311 

Discussion 312 

The timed count has been used for multiple decades (Packham et al., 2008), and data obtained with this 313 

method has been used in several publications on the ecology of seed production in perennial plants 314 

(Bogdziewicz et al., 2023, 2020; Foest et al., 2024; Journé et al., 2024, 2023b). Until now, it remained 315 

unclear how this method relates to the more commonly used area-based methods. Our study showed that 316 

the relationship between seed counts obtained with the two methods is loglinear and has a good fit across 317 
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sites, allowing for translation between the two sampling methods. Since timed counts are considerably faster 318 

than quadrat counts, those interested in measuring seed production over time more efficiently might 319 

consider adopting this method. To illustrate, a single observer employing the timed count sampled around 320 

six trees per hour. This estimate includes conducting the seed count, labelling and storing bags, taking notes 321 

and moving between trees. To conduct the quadrat counts under the same canopies, two to three observers 322 

managed to sample around nine trees per 8-hour working day (~1.13 trees per hour). This equates to over a 323 

tenfold difference in sampling speed. Differences in seed counting time in the lab were also substantial; on 324 

average we counted 141 seeds per tree for the timed count, and 188 per tree for the quadrat count, resulting 325 

in a lab effort that was one-third greater for quadrat counts. 326 

While the presented formulas can be used to translate between timed and quadrat counts, some caution is 327 

warranted. Firstly, we advise recalibrating the loglinear relationship to local conditions (or, when site 328 

conditions have changed substantially over time) when seeking to convert timed seed counts into quadrat 329 

counts (Tattoni et al., 2021). This is because the exact relationship may differ between plant species (e.g. 330 

different seed sizes resulting in different ease of sampling with timed counts, and therefore, different 331 

counts), site conditions (i.e. we measured trees in mature, relatively open, limited understory stands, but 332 

timed counts may be lower in more challenging sites compared to quadrat counts), and possibly observers. 333 

Regardless, an important insight resulting from this work is that the timed count is broadly equivalent to log 334 

converted quadrat counts, and, by extension, ln(seeds/m2). Generally, caution is warranted when converting 335 

between methods which are characterised by a loglinear relationship (and extrapolating may yield unrealistic 336 

results). Namely, small changes in timed counts at high seed fall levels would be transformed into large 337 

changes in quadrat count estimates. Further work is required to expand the current dataset, incorporating 338 

timed seed counts > 270 seeds/7 minutes. 339 

When using timed counts to predict quadrat counts, the goodness of fit (i.e. marginal  R2  = 0.77) is 340 

comparable with another quick and easy referenced seed count method. Namely, Koenig et al. (1994a) and 341 
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Perry and Thill (1999), who compared the Koenig 30-second visual count method with seed traps found an 342 

R2 of 0.72 and 0.76 respectively. We could not contrast the timed count with seed traps (which are generally 343 

considered to be the ‘gold standard’ as they limit post-dispersal seed predation; Perry and Thill, 1999; 344 

Touzot et al., 2018), since these traps can easily be vandalised in publicly accessible stands. We therefore 345 

stress that to minimise bias from post-dispersal seed predation in estimating tree seed production from either 346 

quadrats or timed counts, sampling must be well-timed: too early, and few nuts will have fallen; too late, and 347 

seed consumers like squirrels may have removed many (Packham et al., 2008). However, the reference 348 

method we used, i.e. ground plots, have recently been compared to seed traps, and they are themselves 349 

strongly related (Chianucci et al., 2021; Tattoni et al., 2021; Touzot et al., 2018). 350 

Secondly, by contrasting the two methods with different strengths, we show that seed production patchiness 351 

might explain why the timed method picks up more variation under low-seed production canopies than the 352 

quadrat (Fig. 3). We found that most seed fall is patchy, and the dispersion of seed fall patchiness decreases 353 

with increasing seed crop size. This indicates that especially at low seed crop sizes, there are at least some trees 354 

with highly patchy seed fall. When seed fall is variable underneath a canopy, it is crucial to sample from 355 

across the seed fall shadow (Perry and Thill, 1999). While the quadrats were placed along multiple transects, 356 

their surface area was small (i.e. 1/9 m2 per quadrat). The smallest canopy under which we sampled was 36 357 

m2 whereas the largest canopy was 403 m2 . This means that the combined quadrats only captured between 358 

3% and 0.2% of the seed fall area, which makes it probable that many aggregations of seeds were missed. In 359 

contrast, the timed count covered substantially more ground. This likely enabled the observer to collect 360 

seeds from more aggregations when present, and consequently pick up more variation in seed production at 361 

low seed fall levels. 362 

The observed patchiness underscores the general importance of sampling a sufficient proportion of the 363 

canopy (Perry and Thill, 1999). In the field, it is customary for area-based seed collection methods to sample 364 

1 m2 to obtain an individual-level seed production estimate (e.g. Ida, 2021; Koenig et al., 1994a; Patterson et 365 
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al., 2023; Rodríguez-Ramírez et al., 2021). This is most likely done for practical reasons. Increasing the 366 

sampling area while using seed traps or quadrats comes at the cost of increased infrastructure or time. 367 

However, our findings show that it is advisable to increase this sampling area if resources permit and if 368 

individual-level variation of seed production is of interest (as done in e.g. Fleurot et al., 2023). Adopting 369 

methods which sample a larger area at a low cost such as the Koenig method, which samples approximately 370 

13% of the canopy (Koenig et al., 1994a), or the timed count is a possible solution when resources are 371 

limited. The timed count method may be preferable for beech since beech produces fruits regardless of 372 

pollination. Unlike the Koenig method, which would require additional estimation on the proportion of 373 

filled seeds, the timed count allows for accurate discrimination between filled and unfilled seeds. It is worth 374 

noting that it is not currently known which of the two methods tested here better captures the ‘true’ value of 375 

whole-plant seed supply. Further research into the small-scale spatial structure of seed fall is required to 376 

establish the optimal sampling area given the observed patchiness. 377 

Our findings reveal that seed sampling differences translate into variation in masting metrics, measured at 378 

the individual and population level. The differences between the often-used variability metric CV tended to 379 

be larger for individual-level time series than for population-level time series. Regardless, the findings 380 

underpin the need to understand the underlying characteristics of the specific data collection method 381 

chosen on seed counts and masting metrics. Refining our grasp on the effects of sampling methods on 382 

masting metrics is becoming increasingly pressing, as large-scale research on masting ecology gains 383 

momentum with the availability of large, combined datasets (e.g. Foest et al., 2024; Hacket-Pain et al., 2022; 384 

Journé et al., 2024, 2023a; Szymkowiak et al., 2024). While such datasets are invaluable resources for 385 

studying the wide-ranging impacts of masting on ecosystems (Pearse et al., 2021), comparisons of masting 386 

metrics across datasets obtained via different seed collection methods likely contain additional variation 387 

associated with the method used. Such variation may obscure ecologically relevant patterns (Mason et al., 388 
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2018). In the light of our results, we advise that modelling in such studies should include sampling method 389 

as a covariate, especially if individual-level masting metrics are compared. 390 

While our study sheds light on how seed sampling methods impact masting metrics at both individual and 391 

population levels, important challenges remain. Seed production is measured with a wide variety of other 392 

methods (Hacket-Pain et al., 2022), and one gap in our understanding is how population-level estimates 393 

derived from individual-level data differ from stand-based estimates. In other words, do we obtain similar 394 

population-level estimates of masting if seed fall is sampled not directly under tree canopies, but 395 

systematically or at randomised locations in stands (Chianucci et al., 2021)? Both methods may yield 396 

different time series and metrics, as the relative individual-plant contributions to the population-level mean 397 

can vary (Minor and Kobe, 2017). If population-level seed crop is calculated from individual-level seed 398 

production, then each individual contributes equally to the population-level mean. In contrast, in stand-399 

based estimates, the relative contribution is affected by the fecundity of trees and the location of seed traps. 400 

This could affect masting metrics, as dominant and fecund trees can show different masting patterns 401 

(Szymkowiak et al., 2023), and can be responsible for a disproportionate fraction of the overall population-402 

level seed production (Minor and Kobe, 2017). It is important for the research communities interested in 403 

seed production to prioritise efforts to better understand the variation associated with measurement 404 

methods and mitigate for it. 405 

Recommendations 406 

In summary, we recommend using timed counts for seed production sampling due to its efficiency, 407 

information on seed viability, and good fit with traditional quadrat counts through a loglinear relationship. 408 

Although further research is needed to determine the optimum sampling area for whole-plant seed supply, it 409 

is advised to sample areas larger than 1 m2 per tree. Lastly, using sampling methods as covariates in 410 
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regeneration studies is crucial to account for variation between different seed collection techniques, and the 411 

effects of other sampling methods on seed counts and masting metrics is necessary. 412 
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    629 

Figure S1: An overview of the EBMS sampling sites in the United Kingdom. An asterisk (*) was added to the 630 

site name to indicate locations where the survey was initiated after the original EBMS sites, and in some cases 631 

subsequently retired from the survey. These shorter records have not been included in prior studies using the 632 

EBMS record. Quadrat sampling was conducted in sites 1, 2, 6, 7, and 8.  633 
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 636 

Figure S2: Seed production estimates under all tree canopies obtained with quadrat counts. Panel titles show 3-637 

letter site code, the Tree ID preceded by the letter B or K, and year. Coloured points indicate standardised seed 638 

counts (at the tree level, using the maximum). The three sampling transects are shown, where the randomised 639 

orientation of the first transect is plotted at an angle of 0 degrees. The coloured lines indicate the relative 640 

distance from the canopy edge (i.e. Core (C), Middle (M), (Edge). 641 
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