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Abstract 14 

Insects, like most animals, have intimate interactions with microorganisms that can influence 15 

the insect host’s lipid metabolism. In this chapter, we describe what is known so far about the 16 

role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-17 

insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota 18 

that has been predominantly studied in Drosophila melanogaster. We then move to an 19 

overview of the work done on the common and well-studied endosymbiont Wolbachia 20 

pipientis, also in interaction with other microbes. Taking a slightly different angle, we then 21 

look at the effect of human pathogens, including dengue and other viruses, on the lipids of 22 

mosquito vectors. We extend the work on human pathogens and include interactions with the 23 

endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-24 

borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we 25 

end this chapter by highlighting current knowledge in the field.    26 
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1 Introduction 34 

All insects harbor a diverse and extensive microbial community, referred to as the microbiota 35 

(i.e., the assemblage of microorganisms -bacteria, fungi, viruses, archaea, and protists- 36 

associated with a defined host or environment; Berg et al., 2020). The diversification and 37 

evolution of insects are closely tied to their symbiotic interactions with microorganisms that 38 

may be mutualistic, commensal, or parasitic (Cornwallis et al., 2023; Janson et al., 2008). 39 

Bacterial symbionts represent the largest part of the microbiota that can be located either on 40 

the surface of the host’s body, i.e., ectosymbionts, or reside inside the host’s body, i.e., 41 

endosymbionts. In insects, endosymbionts are primarily present in the gut or in specialized 42 

cells called bacteriocytes (Baumann et al., 2006). Insects can also function as vectors for 43 

disease-causing microbes, such as dengue virus (DENV) transmitted by mosquitoes causing 44 

dengue fever in humans or plant viruses transmitted by phloem-sucking insects that can have 45 

a large effect on crops (e.g., beet, turnip etc…). Both symbiotic and pathogenic microorganisms 46 

can have substantial effects on many different aspects of the host’s biology.   47 

Symbiotic bacteria are known for a plethora of effects on insect hosts. The insect 48 

microbiota, for example, can affect i) the host’s immune system and protection against various 49 

predators, parasites, disease vectors or pathogens; ii) communication and behavior among 50 

individuals of the same or from different species; iii) host mating preferences and reproductive 51 

systems; iv) host life histories and fitness-related traits (e.g., development, lifespan, fecundity); 52 

and v) host resilience to environmental disturbances (e.g., pesticides) (Douglas, 2015; Engel 53 

and Moran, 2013; Engl and Kaltenpoth, 2018; Zhang et al., 2022). Notwithstanding these 54 

important functions, the provisioning of essential nutrients for the insect host seems to be a 55 

primary task of gut microorganisms. Many microorganisms provide nutrients that the insect 56 

cannot synthesize, such as amino acids, B vitamins or sterols (Douglas, 2015). The bacterial 57 

endosymbiont Buchnera aphidicola, for example, is of primary importance for aphid 58 

development and adult life by providing essential amino acids, and in return aphids provide a 59 

stable and nutrient-rich environment (Douglas et al., 2001). Another well-known insect 60 

endosymbiont, Wolbachia pipientis, has also been shown to supply B vitamins to its host, the 61 

bedbug Cimex lectularius (Hosokawa et al., 2010; Newton and Rice, 2020). Nutrient 62 

provisioning by bacteria can compensate for nutrient-poor diets, aids the digestion of 63 

recalcitrant food components (e.g., degradation of cellulose in plant cell walls), and supply 64 

essential amino acids, metabolic compounds, or nutrients (Engel et al., 2012; Hu et al., 2018; 65 

Jing et al., 2020; Russell et al., 2014; Sannino et al., 2018; Tokuda et al., 2018).  66 

Regarding nutritional interactions, symbiotic bacteria were already found to have a 67 

major impact on lipid metabolism in humans (Xu et al., 2022). For example, changes in gut 68 

bacterial communities are related to metabolic diseases, such as obesity, cardiovascular 69 

disease, and type 2 diabetes (Depommier et al., 2019; Liu et al., 2021; Wang et al., 2022). 70 

Relatively little is known, however, about the role played by symbiotic microorganisms in 71 

insect lipid metabolism. Considering how microorganisms affect key metabolic interactions is 72 

important, because more than 10% of insect species rely on obligate bacterial symbionts for 73 

survival or reproduction, and many more microorganisms are facultatively associated with 74 

insects (Hilgenboecker et al., 2008; Sazama et al., 2017; Weinert et al., 2015; Wernegreen, 75 

2002). In contrast, recent work on human pathogens, mainly DENV, has revealed major lipid 76 
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metabolic adjustments in the insect vector incited by the virus that are of importance for viral 77 

propagation (Chotiwan et al., 2018; Perera et al., 2012; Tongluan et al., 2017).  78 

 Lipids have also been implicated in immune responses of insects, which has already 79 

been reviewed extensively (Wrońska et al., 2023; Barletta et al., 2016), and falls beyond the 80 

scope of this chapter. We set out to unite research aimed at understanding the role of 81 

prokaryotic symbiotic or pathogenic microorganisms on insect lipid metabolism. We focus on 82 

prokaryotes, i.e., bacteria and viruses, to be able to set forth and identify commonalities and 83 

differences in the ways insect host/vector lipid metabolism is affected.  84 

 85 

2 The impact of symbiotic microorganisms on host insect lipid 86 

metabolism  87 

Influence of the gut microbiota 88 

There is growing evidence that the gut microbiota plays a key role in the regulation of insect 89 

fat storage. Most studies to date have focused on the impact of gut microbiota and microbe 90 

interactions on fat metabolism of the vinegar fly Drosophila melanogaster (Figure 1), which is 91 

an emerging model system in the field (Douglas, 2019; Erkosar et al., 2013). Generally, D. 92 

melanogaster deprived of the entire microbiota (i.e., axenic/germ-free individuals) had a higher 93 

triacylglycerol content than individuals with microbiota (Huang & Douglas, 2015; Newell & 94 

Douglas, 2014; Wong et al., 2014; but see Ridley et al., 2012 and Henry et al., 2020 who found 95 

no difference in fat content between axenic and control D. melanogaster flies). The lack of 96 

bacteria that usually utilize host gut nutrients could explain the higher triacylglycerol content 97 

in axenic D. melanogaster flies. Overall, the multitude of studies comparing axenic and 98 

microbiota-containing D. melanogaster show a range of different results on triacylglycerol 99 

content, which can be explained by variation in host-related factors, such as host sex and 100 

feeding rate, as well as composition of the diet (e.g., sugar:yeast ratio, nutrient-poor or rich 101 

diet) and how these factors interact with the microbiota and each other (Huang & Douglas, 102 

2015; McMullen et al., 2020; Wong et al., 2014). 103 

Interspecific bacterial interactions can lead to substantial differences in triacylglycerol 104 

content of D. melanogaster, where both laboratory and wild populations have low-diversity gut 105 

microbiota. The D. melanogaster gut microbiota is commonly dominated by bacteria in the 106 

family Acetobacteraceae (mainly represented by the genus Acetobacter) and the order 107 

Lactobacillales (mainly represented by the genus Lactobacillus) (Adair et al., 2018; Chandler 108 

et al., 2011, 2012; Wong et al., 2011). Both mutualistic and antagonistic associations between 109 

Acetobacter and Lactobacillus have been found in D. melanogaster, depending on the bacterial 110 

species involved (Consuegra et al., 2020; McMullen et al., 2020; Sommer and Newell, 2019). 111 

The impact of bacterial taxa (i.e., a total of five Acetobacter and Lactobacillus species) on D. 112 

melanogaster triacylglycerol content was assessed by comparing single-, dual- or multi-species 113 

infections (compared to both axenic and conventional flies) (Newell and Douglas, 2014). 114 

Combinations of bacterial taxa and corresponding triacylglycerol content showed that 1) dual-115 

microbe infected D. melanogaster individuals generally had a lower triacylglycerol content 116 

than axenic and single-microbe infected individuals; 2) bacterial effects on D. melanogaster 117 

triacylglycerol levels are microbe-specific and dependent on interactions, e.g., mono-infection 118 

by Lactobacillus brevis and L. plantarum did not lead to different triacylglycerol levels, only 119 
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in interaction with Acetobacter were levels significantly lower; and 3) bacterial interactions are 120 

essential to restore the natural insect phenotype (i.e., similar to untreated flies). Newell & 121 

Douglas (2014) also highlighted that Acetobacter tropicalis abundance is promoted by the 122 

colonization of L. brevis in D. melanogaster. High A. tropicalis cell density, in turn, decreased 123 

fly triacylglycerol content in a dose-dependent manner (Newell and Douglas, 2014). 124 

Drosophila melanogaster triacylglycerol content is thus mediated by the composition of the 125 

gut microbiota, bacterial abundance, and bacterial interactions.  126 

The capacity of some bacteria, such as Acetobacter or Lactobacillus, to reduce D. 127 

melanogaster fat content (confirmed by Bozkurt et al., 2023) has been attributed to several, not 128 

mutually exclusive, processes. First, the bacteria can reduce host triacylglycerol levels via the 129 

consumption of dietary glucose, e.g., Lactobacillus produces lactate via the consumption of 130 

glucose, the latter being a substrate for fatty acid and subsequent fat synthesis in insects (Huang 131 

and Douglas, 2015; Sommer and Newell, 2019). Second, microorganisms can modulate host 132 

nutritional signaling pathways. For example, the increased production of acetic acid by 133 

Acetobacter pomorum, in response to the production of lactate by Lactobacillus, was shown to 134 

increase D. melanogaster’s insulin levels resulting in reduced adult fat content (Shin et al., 135 

2011). Third, Lactobacillus can modulate the TOR (Target of Rapamycin) signaling pathway 136 

that also affects insulin signaling (Storelli et al., 2011). Fourth, metabolic models predicted a 137 

high release rate of succinate from Drosophila gut bacteria (Ankrah et al., 2021), impacting the 138 

citric acid cycle by reducing citrate levels available for fatty acid synthesis (Zhang et al., 2022).  139 

Bacteria can also interact with other microorganisms, such as fungi, affecting 140 

triacylglycerol levels differently depending on the interactions considered (Bozkurt et al., 2023; 141 

McMullen et al., 2020). For example, Bozkurt et al., 2023 showed a positive correlation 142 

between the abundances of A. persici, A. pomorum and Basidiomycota in D. melanogaster, as 143 

well as a negative correlation between these microbial taxa and triacylglycerol levels. In 144 

contrast, the fungus Hanseniaspora uvarum (order Saccharomycetales), also part of the D. 145 

melanogaster gut microbiota (Chandler et al., 2012), showed antagonistic interactions with L. 146 

brevis and A. fabarum. When H. uvarum is present, there is a negative effect on the abundance 147 

of L. brevis. The abundance of both H. uvarum and A. fabarum decreases when present together 148 

(McMullen et al., 2020). For the H. uvarum-A. fabarum interaction, a negative correlation was 149 

also observed between D. melanogaster triacylglycerol content and acetic acid that varied 150 

significantly with the presence of both A. fabarum and H. uvarum, consistent with previous 151 

studies (Newell and Douglas, 2014; Sommer and Newell, 2019). Drosophila melanogaster 152 

associated with both A. fabarum and H. uvarum displayed high acetic acid levels, but 153 

interestingly, triacylglycerol levels were also significantly elevated in flies only infected by the 154 

yeast H. uvarum (compared with axenic flies). Hanseniaspora uvarum was hypothesized to be 155 

another producer of acetic acid, as was found also for other fungi (Bueno et al., 2020; Jolly et 156 

al., 2014). Interactions between A. fabarum and H. uvarum could modulate the concentration 157 

of acetic acid, reducing triacylglycerol synthesis (McMullen et al., 2020). Taken together, these 158 

results demonstrate the key role of the gut microbiota and microbial fermentation products, 159 

such as acetic acid, on the nutritional status of Drosophila, particularly with respect to fat 160 

accumulation.  161 

In species other than Drosophila, only little progress has been made so far, and 162 

contrasting results have been reported regarding insect fat metabolism and fat content. In the 163 
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aphid Acyrthosiphon pisum, axenic individuals showed increased triacylglycerol levels, in line 164 

with findings in D. melanogaster (Rahbé et al., 1994). In contrast, lower fat content was 165 

reported for adults of three fruit fly species, Ceratitis capitata, Bactrocera tryoni, and 166 

Anastrepha fraterculus, following antibiotic treatment (Ben‐Yosef et al., 2008; Goane et al., 167 

2022; Nguyen et al., 2021). Similar to findings in D. melanogaster, the fat content of the other 168 

fruit flies was affected by interactions between microbiota, diet, and sex (Ben‐Yosef et al., 169 

2008; Nguyen et al., 2021).  170 

In the fruit fly B. dorsalis, a genomic study comparing gene expression of antibiotic-171 

treated and control individuals revealed upregulation of i) fatty acid synthesis genes (e.g., fatty 172 

acid synthase (fas), acetyl-CoA carboxylase), ii) genes encoding triacylglycerol catabolism 173 

(e.g., lipases, fatty acid hydroxylase), and iii) downregulation of genes involved in fatty acid 174 

beta-oxidation (e.g., enoyl-CoA hydratase), suggesting a general increase of free fatty acids in 175 

the axenic insect (Xie et al., 2023). Downregulation of genes involved in lipid storage (i.e., 176 

vitellogenin) and transport (i.e., lipophorins), as well as a decrease in lipid content of the host’s 177 

fat body have also been reported in Aedes aegypti axenic mosquitoes (Romoli et al., 2021). It 178 

has remained unclear how and why the expression of fatty acid and triacylglycerol metabolic 179 

genes changes depending on gut microbiota presence. One proposed hypothesis is that lipolysis 180 

facilitated by endosymbiotic bacteria increases the availability of different lipid types for the 181 

insect host. When no bacteria are present, the host insect is forced to start synthesizing different 182 

lipid types, while reducing fat storage (due to lower quantities of available precursors (Goane 183 

et al., 2022)).  184 

Gnotobiotic insects (i.e., insects associated with specific bacterial strain(s)) have also 185 

been used in systems other than Drosophila to decipher the role of bacterial strains on host fat 186 

metabolism and fat content. In the red palm weevil Rhynchophorus ferrugineus, for example, 187 

a significant reduction in triacylglycerol content was reported in germ-free larvae compared to 188 

untreated larvae (Habineza et al., 2019). Introduction of the bacterium Enterobacter cloacae 189 

into germ-free R. ferrugineus larvae partially restored triacylglycerol levels, but no effect was 190 

found for Lactococcus lactis (Habineza et al., 2019). Another study reported that gnotobiotic 191 

Ae. aegypti mosquitoes associated with Flavobacterium or Paenibacillus showed higher 192 

triacylglycerol levels compared to control mosquitoes, while Enterobacteriaceae and 193 

Lysobacter had no impact (Giraud et al., 2022). Enterobacter cloacae is known to synthetize 194 

various carbohydrate-modifying and glycolytic enzymes (e.g., cellulases, trehalases, 195 

glucosidases; Habineza et al., 2019), while Flavobacteria are chitinase producers (McBride et 196 

al., 2009), suggesting that bacteria other than Acetobacter and Lactobacillus can play a role in 197 

nutrient acquisition of other insect host species. 198 

 199 

  200 
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  201 

Figure 1. Summary of microbe effects on Drosophila melanogaster triacylglycerol levels (i.e., 

storage lipids). Triacylglycerol levels were compared between axenic (germ-free), mono-infected 

(bacteria-only or fungi-only), dual-infected (bacteria-bacteria and fungi-bacteria interactions), 

and conventional flies.  
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Box 1. The influence of microbes on insect fat accumulation during diapause 202 

Many insects have adapted to seasonal changes and low food availability by entering diapause. 203 

Diapause is a genetically and hormonally determined program that depends on various 204 

environmental signals (e.g., photoperiod, temperature) allowing insects to anticipate pending 205 

unfavorable conditions (Denlinger, 2002; Denlinger et al., 2012). Diapause may occur during 206 

any stage of the insect’s life cycle (e.g., embryonic, larval, pupal, or adult), depending on the 207 

insect species, and is characterized by reduced metabolic and behavioral activity (Hahn and 208 

Denlinger, 2011). By delaying development from several weeks up to years, insects can 209 

synchronize their life cycle to match with periods suitable for growth, development, and 210 

reproduction. In addition to metabolic depression during diapause, insects typically increase 211 

energy stores by accumulating fat prior to diapause (Enriquez and Visser, 2023). Fat reserves 212 

constitute an important source of energy to meet metabolic demands during and post-diapause 213 

(Hahn and Denlinger, 2007).  214 

Only few studies have explored the role of bacterial symbionts on fat accumulation 215 

during diapause, despite the importance of facultative and obligatory diapause for many insects 216 

(Hahn and Denlinger, 2011). An exception is the work by Didion et al., (2021) that confirmed 217 

the critical importance of microbiota for diapause preparation in the mosquito Culex pipiens. 218 

Diapausing mosquitoes with a low bacterial load had 50% fewer fat reserves, associated with 219 

a lower dry mass and lower survival rate. In the parasitic wasp Nasonia vitripennis, 220 

triacylglycerol levels of diapausing larvae (ranging from 1 to 6 months of diapause) were 221 

significantly correlated with changes in microbiota composition (Dittmer and Brucker, 2021). 222 

This correlation was rather weak, however, when compared to the effects of temperature and 223 

quantities of other nutrient types, such as glycerol or glucose (Dittmer and Brucker, 2021). 224 

Under laboratory conditions, Liu et al., (2016) investigated the link between gut 225 

bacterial symbionts and the metabolic shift from protein synthesis to triacylglycerol 226 

accumulation in a vegetable pest beetle, Colaphellus bowringi, that occurs when females enter 227 

diapause. Gut microbiota composition was slightly different between diapausing and non-228 

diapausing individuals: positive correlations were found between diapause preparation and 229 

abundances of Proteobacteria (e.g., Serratia sp., Sphingomonas sp.) and Firmicutes (e.g., 230 

Lactococcus sp.), while a negative correlation was found with the abundance of Bacteroidetes 231 

(e.g., Flavobacterium sp.; but see Didion et al., (2021) that found no difference between the 232 

microbiota of diapausing and non-diapausing C. pipiens mosquitoes). Based on similar 233 

findings on the regulation of obesity by microbiota in mammals (Ley et al., 2005), higher 234 

abundances of Proteobacteria and Firmicutes may affect insect fat accumulation. In a more 235 

recent study, the endosymbiont Wolbachia appeared to reduce the lipid content (estimated by 236 

cholesterol amounts) of the parasitoid wasp Trichogramma brassicae, leading to a lower 237 

percentage of diapausing individuals (Rahimi-Kaldeh et al., 2019). 238 

 The above studies highlight an important functional role of the microbiota in insect 239 

diapause, although evidence of host-microbiota interactions during insect diapause remains 240 

scarce. As diapause is controlled by the insect’s endocrine system, the microbiota is expected 241 

to interact closely with the host’s hormonal signaling pathways. More work is now needed to 242 

increase our understanding of how microbe-insect interactions affect diapause, and more 243 

generally how microbes affect host fat metabolism under low-temperature stress (Lv et al., 244 

2023; Raza et al., 2020).  245 
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 246 

The particular case of the endosymbiont Wolbachia 247 

Wolbachia pipientis is one of the most widespread heritable bacterial endosymbionts harbored 248 

by insects, filarial nematodes, crustaceans, and mites (Serbus et al., 2008), infecting at least 249 

65% of all known insect species (Hilgenboecker et al., 2008; Zug and Hammerstein, 2012). 250 

Wolbachia is present in host germ line and somatic tissues, such as the fat body, salivary glands 251 

or hemolymph (Dobson et al., 1999; Pietri et al., 2016), and can affect a wide variety of the 252 

insect host’s biological functions. In mutualistic interactions, Wolbachia can confer fitness 253 

advantages, such as protection against viruses, resistance to heat stress or increasing learning 254 

ability, immunity, and life history traits (Arai et al., 2019; Cao et al., 2019; Farahani et al., 255 

2017; Faria et al., 2018; Gruntenko et al., 2017; Maistrenko et al., 2016; Mazzucco et al., 2020). 256 

Wolbachia can also be parasitic and is perhaps best known for manipulating host reproduction 257 

in favor of its vertical transmission and spread within insect populations. Wolbachia can reduce 258 

population sizes, distort population sex ratios through male-killing or feminization of genetic 259 

males, induce parthenogenesis or cause cytoplasmic incompatibility (i.e., mating between 260 

individuals differing in Wolbachia infection status result in embryonic mortality; Charlat et al., 261 

2001) (Dittmer and Bouchon, 2018; Hurst et al., 1999; Poinsot et al., 2003; Stouthamer et al., 262 

1999).  263 

Host insect nutrient metabolism appears to be strongly influenced by Wolbachia. In D. 264 

melanogaster, Wolbachia affects fatty acid profiles, particularly the odd-chain fatty acid 265 

fraction (Molloy et al., 2016; Scheitz et al., 2013). Insects cannot synthesize odd-chain fatty 266 

acids. In D. melanogaster females, odd-chain fatty acids are likely supplied by Wolbachia, 267 

where odd-chain fatty acids levels are positivively correlated to Wolbachia abundance ((Molloy 268 

et al., 2016; Scheitz et al., 2013). Odd-chain fatty acids are synthesized and elongated by FAS 269 

from the precursor propionic acid (C3), leading to the odd-chain numbers. Odd-chain fatty 270 

acids have been found in the insect cuticle and body extracts in a wide variety of insect orders: 271 

Diptera (Kaczmarek et al., 2020; Sato et al., 2020), Hymenoptera (Pickett et al., 2000; Stanley-272 

Samuelson et al., 1990), Hemiptera (Bashan et al., 2002; Cakmak et al., 2007a), Coleoptera 273 

(Howard and Stanley-Samuelson, 1990; Nikolova et al., 2000), Neuroptera (Cakmak et al., 274 

2007b) and Lepidoptera (Akinnawo and Ketiku, 2000; Gołębiowski et al., 2010). The 275 

widespread occurrence among insects demonstrates that odd-chain fatty acids are fairly 276 

common components of insect lipids, although the proportion of odd-chain fatty acids is low 277 

compared to even-chain fatty acids. Odd-chain fatty acids can have a role in membrane stability 278 

and structure, as they have been found in the phospholipid fraction (Howard and Stanley-279 

Samuelson, 1990; Sato et al., 2020). Odd-chain fatty acids have also been found in the 280 

triacylglycerol fraction, and used for fat storage (Cakmak et al., 2007a, 2007b). Odd-chain fatty 281 

acids can be acquired either by ingestion of symbiotic microorganisms that synthesize them 282 

(e.g., bacteria, yeast; Park et al., 2020; Řezanka & Sigler, 2009) or synthesized de novo. In D. 283 

melanogaster, Sato et al., (2020) observed no significant difference in odd-chain fatty acid 284 

content between conventional and germ-free flies, suggesting that the microbiota was not 285 

involved. Instead, the incorporation of isotopic labels into the odd-chain fatty acids of D. 286 

melanogaster suggested de novo synthesis (Sato et al., 2020).  287 

An increase in triacylglycerols was observed in D. melanogaster flies infected either 288 

with the wMelPlus, wMel, or wMelCS45 Wolbachia strain compared to uninfected flies 289 
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(Karpova et al., 2023). Contrasting results on the effect of Wolbachia on host fat metabolism 290 

have, however, been reported within and between mosquito species. Wolbachia infection led 291 

to a decrease in triacylglycerol levels in Ae. aegypti (wMel strain) and Ae. fluviatilis (wAflu) 292 

(Conceição et al., 2021; Koh et al., 2020). Infection of Ae. aegypti with wAflu further led to 293 

decreased lipid droplet size in the cytoplasm of mosquito cells (Conceição et al., 2021). In Ae. 294 

albopictus, wMel Wolbachia infection decreased diglyceride levels by 32% compared to 295 

uninfected mosquitoes, while a 17% increase in triacylglycerols was observed in wMelPop-296 

infected mosquitoes (Molloy et al., 2016). Overall, Wolbachia effects on various lipid types 297 

depend on host and Wolbachia-related factors (e.g., host species or genotype, Wolbachia strain; 298 

(Molloy et al., 2016), as was already shown for other metabolic pathways (e.g., dopamine 299 

metabolism; Gruntenko et al., 2017).  300 

In Drosophila and several mosquito species, changes in lipid types other than fatty acids 301 

and triacylglycerols were observed in the presence of Wolbachia  (Conceição et al., 2021; Koh 302 

et al., 2020; Molloy et al., 2016). In Ae. albopictus, wMel and wMelPop Wolbachia infection 303 

resulted in 1) a decrease in various sphingolipids (mostly ceramides), as well as 304 

phosphatidylcholines, phosphatidylethanolamines, and diglycerides, and 2) an increase in 305 

phosphatidylglycerols and phosphatidylinositols in the host (Molloy et al., 2016). Wolbachia 306 

infection was also shown to differently affect Ae. albopictus lipids depending on the Wolbachia 307 

strain (i.e., either wMel or wMelPop). Ceramide levels, for example, decreased 62% in Ae. 308 

albopictus infected with the wMel Wolbachia strain compared to uninfected mosquitoes, while 309 

a decrease of only 20% was observed in mosquitoes infected with the wMelPop strain (Molloy 310 

et al., 2016). A mean decrease in sphingomyelins of 35% was reported in wMel-infected Ae. 311 

albopictus, while sphingomyelins increased by 28% in wMelPop-infected Ae. albopictus. Ae. 312 

aegypti infected with the same wMel Wolbachia strain also revealed a reduction of 313 

phosphatidylethanolamines and more complex forms of ceramides (e.g., glucosylceramides) 314 

(Koh et al., 2020). As sphingolipids and phospholipids play a major structural role in cell 315 

membranes (e.g., complex assembly in lipid rafts), depletion of these lipids was hypothesized 316 

to affect host membrane fluidity, curvature, and structure. Changes in the host membrane can 317 

facilitate Wolbachia colonization within the host (Molloy et al., 2016).  318 

Variation in lipid levels may be related to the dependency of Wolbachia on the host 319 

insect for lipids. A genome sequencing study indeed revealed that a Wolbachia strain (wMel) 320 

associated with D. melanogaster lost many key metabolic pathways, including pathways for 321 

fatty acid and cholesterol metabolism (Wu et al., 2004). Cholesterol is the dominant sterol in 322 

most insects, and a vital component for cell membrane stability, hormone regulation, and insect 323 

development (Behmer & Nes, 2003; Jing & Behmer, 2020). Wolbachia thus depends 324 

completely on the host to supply fatty acids and cholesterol for its survival and proliferation 325 

(Caragata et al., 2017; Zhang et al., 2021). Like some other intracellular bacteria, Wolbachia 326 

resides in a host-derived vacuole (Cho et al., 2011) within tissues of insects (Dobson et al., 327 

1999; Hughes et al., 2011; Pietri et al., 2016). Wolbachia is restricted to the host’s Golgi-related 328 

vesicles near the endoplasmic reticulum, a site of active nutrient synthesis (Cho et al., 2011). 329 

Close positioning next to a lipid-enriched organelle allows Wolbachia to acquire nutrients, such 330 

as amino acids or lipids, by subverting, modifying (e.g., lipid composition), and redistributing 331 

the endoplasmic reticulum of the host to colonize the host cell at a high density (Fattouh et al., 332 

2019).  333 
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Only few studies have so far examined the hypothesis that an essential requirement for 334 

lipids leads Wolbachia to manipulate host lipid metabolism. In adult Ae. aegypti infected by 335 

the wMel and wMelPop Wolbachia strain, a decrease of 25.6% and 27.7% in total cholesterol 336 

levels was observed, respectively. A reduction in total cholesterol level suggests that Wolbachia 337 

may use host cellular lipids (Caragata et al., 2014). Wolbachia seems to compete for host 338 

cholesterol, a pattern already reported for other intracellular bacteria (e.g., Ehrlichia 339 

chaffeensis, Anaplasma phagocytophilum, Brucella abortus; Lin & Rikihisa, 2003; Watarai et 340 

al., 2002). With Wolbachia being located in Golgi-related vesicles, where high membrane 341 

biogenesis and cholesterol sequestration typically occur, the bacterium has direct access to 342 

nutrients metabolized by the insect host (Cho et al., 2011; Howe and Heinzen, 2006).  343 

Recent studies highlighted that Wolbachia can affect gene expression of host metabolic 344 

pathways, including fat metabolism. Wolbachia first seems to act on the host’s insulin/insulin-345 

like-growth factor pathway (Currin-Ross et al., 2021; Ikeya et al., 2009). Whether Wolbachia 346 

actively regulates the insulin signaling pathway, however, remains a matter of debate, as both 347 

positive and negative regulation have been reported (Currin-Ross et al., 2021; Ikeya et al., 348 

2009). Moreover, genes underlying host fatty acid synthesis (e.g., fas) were further found to be 349 

upregulated in Wolbachia-infected D. melanogaster larval stages (wMel Wolbachia strain; 350 

Zheng et al., 2011), as well as in adult D. melanogaster (wMel; Dou et al., 2021) and 351 

mosquitoes (wMel and wMelPop; Rancès et al., 2012; Wimalasiri-Yapa et al., 2023), 352 

suggesting a role for Wolbachia in modulating the expression of host genes involved in fat 353 

metabolism.  354 

 355 

Endosymbionts other than Wolbachia can also alter host fat metabolism 356 

Some endosymbionts appear to compete with the host insect for lipids. In Spiroplasma 357 

poulsonii-infected D. melanogaster flies, for example, a significant decrease in circulating 358 

lipids, specifically diglycerides and sterols, was reported in host hemolymph (compared to S. 359 

poulsonii-free flies) (Herren et al., 2014). The bacterium S. poulsonii subverts and utilizes 360 

diglycerides contained in host hemolymph lipoprotein particles (i.e., an important hemolymph 361 

lipid carrier; Sieber & Thummel, 2012) prior to the arrival of diglycerides at the fat body, 362 

resulting in lower triacylglycerol levels (as triacylglycerol synthesis and storage in the fat body 363 

largely depends on host hemolymph diglycerides) (Herren et al., 2014). Proliferation of S. 364 

poulsonii was also found to be limited by the availability of host hemolymph lipids (Herren et 365 

al., 2014). The use of host lipids by S. poulsonii was confirmed in a parasitic wasp, Leptopilina 366 

boulardi, parasitizing D. melanogaster. Parasitic wasps depend on a single host insect to 367 

complete development and obtain sufficient nutritional resources to fuel life (see Chapter 16). 368 

The presence of S. poulsonii led to direct competition with L. boulardi for D. melanogaster 369 

hemolymph lipids (Paredes et al., 2016). In the D. melanogaster-S. poulsonii-L. boulardi 370 

interaction, competition for lipids underlies the protective role of S. poulsonii for D. 371 

melanogaster larvae by reducing developmental success of the parasitic wasp (Paredes et al., 372 

2016).  373 

Other endosymbionts, such as Serratia, are beneficial to the insect by enhancing host 374 

fatty acid metabolism. Serratia symbiotica-infected aphids (A. pisum), for example, up-375 

regulated the expression of genes involved in fatty acid and fat synthesis, such as fas and 376 

diacylglycerol-o-acyltransferase, resulting in higher triglyceride levels in the aphid fat body 377 
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(Zhou et al., 2021). In the silkworm Bombyx mori fed with the symbiont Bacillus subtilis, 378 

changes in insect gut microbiota composition were correlated with shifts in 379 

glycerophospholipid and sphingolipid composition in the host’s hemolymph (Li et al., 2022). 380 

The abundance of Enterococcus was, for example, negatively correlated with some 381 

lysophosphatidylcholines and lysophosphatidylethanolamines and positively correlated with 382 

some phosphocholines, suggesting a role of Enterococcus in the glycerophospholipid 383 

metabolism of the host B. mori.  384 

 385 

3 Interference of disease-vector lipid metabolism by human 386 

pathogenic microbes 387 

Mosquito-vector lipid metabolism upon infection with human pathogenic viruses 388 

Arthropod-borne viruses (arboviruses), such as DENV, West Nile virus, Chikungunya virus and 389 

Zika virus (ZIKV), can cause major health problems for humans with hundreds of millions of 390 

infections leading to serious diseases and deaths (Bhatt et al., 2013; Fauci and Morens, 2016; 391 

Guzman et al., 2010). Like many other viruses, the DENV cycle is initiated with the attachment 392 

of the virus to a targeted host cell through the interaction between viral surface proteins and 393 

receptor molecules on the host cell surface (Cruz-Oliveira et al., 2015). The internalization of 394 

the virus within the infected cell involves receptor-mediated endocytosis (Mosso et al., 2008). 395 

Viral genomic RNA is then released into the cytoplasm of the host cell and translated into 396 

proteins required for RNA replication and viral particle assembly (Vial et al., 2021). Virus 397 

replication is dependent on three cellular pathways: autophagy (e.g., degradation of substrates, 398 

such as proteins or lipid droplets), actin polymerization and remodeling (e.g., vesicular 399 

trafficking), and fatty acid biosynthesis (Tongluan et al., 2017). Arboviruses are enveloped by 400 

lipids derived from the insect vector, leading the scientific community to hypothesize that viral 401 

entry, replication, assembly, and release occur in the host’s cellular membranes. This led to a 402 

surge of studies on the ways in which viruses can manipulate insect vector lipid metabolism.  403 

The fundamental role insect vector lipids play in the virus life cycle has mainly been 404 

investigated using flaviviruses, including DENV (see Ratnayake et al., 2023 and Vial et al., 405 

2021 for recent reviews; but see Liu et al., 2021 for an investigation of the mechanisms by 406 

which FAS is affected following Classical Swine Fever virus infection). Analysis of the 407 

vector’s fatty acid biosynthesis pathway revealed that the FAS enzyme is essential for DENV 408 

replication (Perera et al., 2012; Tongluan et al., 2017). DENV infection induces upregulation 409 

of the fas gene leading to de novo fatty acid synthesis, and relocalization of the enzyme FAS 410 

to sites of DENV replication (Tongluan et al. 2017). Alterations in de novo fatty acid synthesis 411 

and the role played by various Ae. aegypti fatty acid synthases (AaFAS) were recently 412 

investigated by Chotiwan et al., (2022). Seven distinct orthologues of human fas were 413 

identified, five of which produced transcripts. In females, only aaFAS1 showed high expression 414 

in both sugar-fed and blood-fed females, where diet does not seem to play a substantial role. 415 

To better understand the role played by the other fas orthologues, Chotiwan et al., (2022) 416 

knocked down aaFAS1 to determine if aaFAS2, aaFAS3, and aaFAS5 transcription could 417 

compensate for significantly reduced aaFAS1 transcription. While the other aaFAS’s showed a 418 

two-fold increase in transcription, aaFAS1 transcription remained higher following 419 

knockdown, suggesting that the other aaFAS’s may not be able to compensate for aaFAS1 420 
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function. Knockdown of aaFAS1 further led to a reduction of DENV replication in both 421 

mosquito Aag2 cell line and midguts, suggesting that aaFAS1 is required for DENV replication. 422 

Interestingly, in mosquitoes, a significant increase in fat content was observed during 423 

the early stages of DENV infection, especially with higher abundances of glycerolipids, 424 

including mono-, di- and triglycerides, as well as other lipid types, such as 425 

glycerophospholipids, sphingolipids or sterols (Chotiwan et al., 2018; Perera et al., 2012). 426 

Mosquito (i.e., Aedes sp.) fat content subsequently decreased after a few days. Increased de 427 

novo fatty acid synthesis, as well as increased transport of stored fat, suggests that these 428 

processes may be required for virus replication, dissemination, and survival during the initial 429 

stages of infection (Chotiwan et al., 2018; Perera et al., 2012).  430 

 Newly synthesized lipids are redistributed to sites of viral replication, mainly near the 431 

insect vector’s endoplasmic reticulum membrane. Incorporation of different lipid types can 432 

then modify vector membrane structure, i.e., fluidity, permeability, and curvature, altering the 433 

functionality of the endoplasmic reticulum to the benefit of virus replication (Vial et al., 2021). 434 

DENV translation, replication and assembly indeed require vector cell endoplasmic reticulum 435 

membranes that could affect the synthesis of phospholipids, critical cell membrane 436 

components. Vial et al., (2019) used high-resolution mass spectrometry to understand how 437 

phospholipid metabolism is affected in Ae. aegypti cells, midguts, and whole mosquitoes at 438 

various times post-infection. Phospholipidomics first revealed that aminophospholipids, 439 

including phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylserine 440 

(PS), increased at the beginning of the DENV viral cycle, but decreased as time passed. 441 

Acylglycerol phosphate acyltransferase (AGPAT) is the rate-limiting enzyme involved in the 442 

synthesis of phospholipids (generating phosphatidic acid, a precursor for more complex 443 

phospholipids). In Ae. aegypti, five AGPAT isoforms were identified, with AGPAT1 being 444 

downregulated upon DENV infection (at different times depending on the level of organization, 445 

either cell, tissue or whole organism). Vial et al., (2019) then set out to test whether AGPAT1 446 

regulation is involved in the reconfiguration of the phospholipidome. RNA interference on 447 

mosquito cells, used to temporarily knock down agpat1 and thus mimicking DENV infection, 448 

revealed an increase in aminophospholipids. Knockdown of agpat1 indeed also increased 449 

DENV production. The instrumental role of agpat1 for phospholipid remodeling was 450 

confirmed by supplementation of ethanolamine in cells with knocked down agpat1 expression. 451 

Ethanolamine is used in the synthesis of PEs and the presence of ethanolamine in the mosquito 452 

cell medium partially restored the observed increase in aminophospholipids in DENV-infected 453 

cells. In mosquitoes, knockdown of agpat1 led to an increase in DENV infection through the 454 

consumption or redirection of aminophospholipids.  455 

In a follow-up study, Vial et al., (2020) set out to determine how DENV reconfigures 456 

aminophospholipids in mosquitoes, but also how aminophospholipid reconfiguration affects 457 

virus proliferation. In the first set of experiments, Vial et al., (2020) knocked down several 458 

genes involved in de novo phospholipid synthesis and monitored changes in the 459 

phospholipidome. In addition, DENV-infected mosquito Aag2 cells were supplemented with 460 

phospholipid precursors to partly restore de novo synthesis. Newly synthesized phospholipids 461 

were indeed found to be antiviral, but DENV can inhibit de novo synthesis and initiate 462 

phospholipid remodeling to modulate and create a more proviral environment. In a stable 463 

isotope tracing experiment using different labeled precursors, Vial et al., (2020) then showed 464 
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that DENV induces remodeling early on during infection (0-24 hours), after which de novo 465 

phospholipid synthesis takes place. To test the negative effect of de novo phospholipid 466 

synthesis in vivo, mosquitoes were fed an infected blood meal with increased levels of 467 

phospholipid precursors. When fed lower precursor levels, DENV was able to increase 468 

phospholipid reconfiguration for its own benefit, but reconfiguration was not sufficient at 469 

higher precursor concentrations. When DENV-induced remodeling is inhibited by de novo 470 

phospholipid synthesis, viral replication (rather than attachment, internalization, or translation) 471 

is reduced. Phopholipids were also found to be the main lipid type affected when Ae. albopictus 472 

cells were infected with ZIKV (Melo et al., 2016).      473 

Cholesterol appears to be essential for the fusion of the lipid envelope of the viral 474 

particle with the vector membranes, allowing DENV release and replication (Blanc et al., 2011; 475 

Caragata et al., 2014, 2013; Carro and Damonte, 2013). In Ae. aegypti, sterol carrier protein 2 476 

(SCP-2), involved in cholesterol binding and transport, is essential for cellular cholesterol 477 

homeostasis and of importance for DENV production (Fu et al., 2015). Knockdown of SCP-2 478 

indeed reduced DENV production in mosquito Aag2 cells. Further studies with mosquito Aag2 479 

cells revealed that DENV reduced protein expression of low-density lipoprotein receptor-480 

related protein 1 (LRP-1), increasing cholesterol levels and stimulating viral replication (Tree 481 

et al., 2019). In mosquitoes, however, low-density-lipoproteins contained in human blood 482 

inhibited DENV replication during an early stage of viral infection following a blood meal 483 

(also for ZIKV; Wagar et al., 2017). Vertebrate lipids thus seem to have contradictory effects 484 

on DENV. To test how DENV responds to low levels of vertebrate lipids, Marten et al., (2022) 485 

created cell lines mimicking mosquitoes “feeding” on blood (i.e., provided a normal, control, 486 

cell culture medium) or not (i.e., a lipid-depleted medium only). Lipid-depleted cells contained 487 

less cholesterol, but similar intracellular lipid levels compared to control cells, despite being 488 

smaller and showing reduced proliferation. Mosquito cells thus appear to overcome chronic 489 

lipid depletion by reducing lipolysis and increasing de novo lipid synthesis, including fatty 490 

acids synthesis. Similar amounts of DENV were found in both cell lines, meaning that mosquito 491 

cellular lipid metabolism compensates for a lipid-depleted environment without affecting 492 

DENV infection. Cholesterol was also found to play a critical role in alphavirus (e.g., Semliki 493 

Forest virus and Sindbis virus) entry and exit in vector cells (Lu et al., 1999).  494 

 495 

Interactions between Wolbachia, arboviruses and lipids 496 

During the past decade, considerable progress has been made in developing novel methods to 497 

combat the spread of insect disease vectors, including mosquitoes, and consequently virus 498 

transmission. A promising strategy is the use of Wolbachia to control and limit arboviral 499 

transmission in animals, because Wolbachia infection can protect against viral infections 500 

(Pimentel et al., 2021). For example, Wolbachia can significantly reduce viral load, replication, 501 

and transmission of several natural pathogenic RNA viruses associated with the Drosophila 502 

genus (e.g., Nora virus or Drosophila C virus; Teixeira et al., 2008). A similar effect has also 503 

been observed for arthropod-borne viruses, such as West Nile virus or Chikungunya virus, with 504 

Wolbachia presence generally lowering host insect mortality rate (Glaser and Meola, 2010; 505 

Hedges et al., 2008; Teixeira et al., 2008). A growing number of studies have, however, 506 

suggested that Wolbachia can differentially affect viral replication and transmission depending 507 

on the insect host species, host strain, and Wolbachia strain (Caragata et al., 2013; Hussain et 508 
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al., 2013; Reyes et al., 2021). For example, replication of West Nile virus in Ae. aegypti 509 

mosquitoes is significantly reduced by infection with the wMelPop Wolbachia strain, but no 510 

effect was reported for the wMel strain (Hussain et al., 2013).  511 

Wolbachia blocks viral replication and transmission by priming the host’s immune 512 

system (Angleró-Rodríguez et al., 2017; Bian et al., 2010; Pan et al., 2018, 2012) and/or 513 

competing with the virus for host cellular resources, such as amino acids or lipids (Caragata et 514 

al., 2013; Moreira et al., 2009). The hypothesis that modification of host metabolic pathways 515 

rather than host immune pathways forms the basis for Wolbachia pathogen-blocking abilities 516 

finds more empirical support. As both the virus and the bacterium are dependent on host lipids 517 

for survival and propagation, there can be extreme competition for host lipids, particularly 518 

cholesterol. Caragata et al., (2013) tested the influence of a standard, intermediate, or high 519 

cholesterol diet on the ability of Wolbachia-infected D. melanogaster to resist Drosophila C 520 

virus. An increase in cholesterol availability via the enriched diet increased virus replication 521 

and reduced the protective effect of Wolbachia in a dose-dependent manner. The virus titer was 522 

indeed higher in cholesterol-enriched media, leading to earlier death of the flies. An increase 523 

in viral replication following cholesterol supplementation was also reported for Ae. albopictus 524 

and Ae. aegypti, suggesting that competition for cholesterol can also play a role in these model 525 

systems (Geoghegan et al., 2017; Schultz et al., 2017).  526 

For Ae. aegypti, an increase in stored cholesterol (i.e., esterified cholesterol levels) with 527 

localized accumulation of lipid droplets in the fat body and a decrease of free cholesterol levels 528 

(i.e., potential regulators of lipid transport) were found in Wolbachia-infected mosquitoes, 529 

suggesting that intracellular cholesterol trafficking may be perturbed (Geoghegan et al., 2017). 530 

In Ae. albopictus, the abundance of other lipid types, such as sphingolipids, 531 

phosphatidylcholines, and diacylglycerols (used by bacteria to enter the cell and activate 532 

mechanisms required for bacterial dissemination; Lafont & van der Goot, 2005), also decreased 533 

following Wolbachia infection in DENV-infected Ae. albopictus mosquitoes (Molloy et al., 534 

2016). Wolbachia and arboviruses may thus compete for multiple lipid types, not only 535 

cholesterol. Gene expression studies support these findings, because several genes involved in 536 

fatty acid and lipid metabolism, including fas, acc or sterol-coA desaturase, were 537 

downregulated in the presence of Wolbachia (Geoghegan et al., 2017; Teramoto et al., 2019). 538 

Wolbachia-induced metabolic changes, including increased cholesterol storage near viral 539 

replication sites, as well as disruption of vesicular trafficking, may thus reduce energy 540 

availability needed for viral replication, thereby blocking viral proliferation and transmission 541 

(Geoghegan et al., 2017; Schultz et al., 2018, 2017).  542 

The manner by which Wolbachia regulates lipid metabolism in the presence of viruses 543 

has remained largely unclear. Haqshenas et al., (2019) revealed, however, downregulation of 544 

insulin receptor abundance and phosphorylation levels in Wolbachia-infected lines, associated 545 

with a reduction of DENV and ZIKV proliferation. Inhibition of the insulin receptor revealed 546 

that ZIKV and DENV replication is reduced in a dose-dependent manner, suggesting a key role 547 

of insulin receptor kinase activity in virus replication. Wolbachia may thus reduce insulin 548 

receptor phosphorylation and kinase activity, decreasing virus replication (Haqshenas et al., 549 

2019). Insulin was already linked to the activation of the insect host’s immune system (Reyes 550 

et al., 2021), but further investigation into the underlying mechanisms is needed. Interestingly, 551 
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here cholesterol could also play a role, as cholesterol is known to affect regulation of the 552 

insulin-receptor signaling pathway (Sánchez-Wandelmer et al., 2009). 553 

 Wolbachia could become a promising tool for regulating arthropod-borne virus 554 

transmission (Ant et al., 2023; Ogunlade et al., 2021). Two recent studies have, however, 555 

reported that DENV infection in mosquitoes led to a distinct lipid profile when compared to 556 

mosquitoes carrying Wolbachia (Koh et al., 2020; Manokaran et al., 2020). This could suggest 557 

that DENV and Wolbachia may use different lipid types and may not be in competition for 558 

lipids. Edenborough et al., (2021) suggested that the intra-thoracic DENV infections used in 559 

Koh et al., (2020), could inhibit the effects of Wolbachia and may not represent the virus-560 

Wolbachia relationship in a natural infection (Fraser et al., 2017). A comprehensive view on 561 

the impact of Wolbachia and interactions with other microorganisms at the cellular and 562 

molecular level is now necessary to fully understand the mechanistic basis of Wolbachia-563 

arbovirus interference. 564 

4 Plant pathogen effects on insect vector fat metabolism 565 

Plant pathogens represent a major threat to plant populations. In agricultural systems, plant 566 

pathogens can reduce yield and affect the quality of agricultural production. Plant pathogens 567 

indeed induce significant losses in crops worldwide, representing a major issue for global food 568 

security (Fones et al., 2020; Ristaino et al., 2021). Plant viruses can manifest in a variety of 569 

symptoms, such as yellowing, spots, necrosis, and distortions of plant structures (Jiang and 570 

Zhou, 2023). Most plant viruses depend on insect vectors for their survival and transmission, 571 

typically phytophagous hemipterans (e.g., aphids, whiteflies, psyllids, leafhoppers, 572 

grasshoppers) that use their piercing, sucking mouthparts to feed on plant sap from which the 573 

virus is taken up (Hogenhout et al., 2008; Nault, 1997). The insect vector then transmits the 574 

virus by subsequently feeding on sap from healthy plants.  575 

Plant viruses are generally transmitted by insects via three modes: non-persistent, semi-576 

persistent, and persistent (Nault, 1997; Wu et al., 2022). Transmission modes differ in the time 577 

during which the insect vector can harbor the virus, ranging from minutes to hours (i.e., non-578 

persistent), days (i.e., semi-persistent), or longer (i.e., persistent; some insects are infected 579 

during their entire life and the virus can even be transmitted to insect offspring) (Ng and Falk, 580 

2006). Non-persistent and semi-persistent viruses are mainly retained by the insect vector’s 581 

stylet and foregut, respectively, while persistent viruses infect insect gut cells and are then 582 

released in the hemocoel to invade insect tissues and organs (e.g., salivary glands, reproductive 583 

system) (Hogenhout et al., 2008; Ng and Falk, 2006). The persistent mode of transmission is 584 

further categorized as propagative or circulative, depending on whether the location of viral 585 

replication is in the insect body or not, respectively (Hogenhout et al., 2008).   586 

 Plant viruses have a range of effects on insect vectors by modifying, for example, 587 

insect-plant preference/choice, population growth, feeding behavior or fitness-related traits that 588 

may in turn affect survival and transmission of the virus (Blanc & Michalakis, 2016; Bosque-589 

Pérez & Eigenbrode, 2011; Colvin et al., 2006; Ingwell et al., 2012; Mauck et al., 2012; Stafford 590 

et al., 2011). Only little information is available so far on the effects of plant viruses on fat 591 

metabolism of insect vectors. Ghodoum Parizipour et al., (2021) investigated the effect of three 592 

luteoviruses (i.e., persistent circulative viruses), pea enation mosaic virus (PEMV), bean 593 

leafroll virus (BLRV), and barley yellow dwarf virus-PAV (BYDV-PAV) that cause 594 
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considerable economic losses to cereal and legume fields, on the fatty acid profiles and fat 595 

content of the aphid vectors, A. pisum, Aphis fabae, and Rhopalosiphum padi, respectively. 596 

Fatty acid profiles differed between infected and uninfected insects in all virus-aphid 597 

interactions. In both A. pisum-PEMV and A. fabae-BRLV interactions, myristic acid (C14:0) 598 

quantities increased while an increase in palmitic acid (C16:0) was reported in A. fabae-BRLV 599 

and R. padi-BYDV-PAV associations. An increase of linoleic acid (C18:2), as well as a decrease 600 

of capric (C10:0) and oleic acid (C18:1) were also observed in the A. pisum-PEMV, A. fabae-601 

BRLV, and R. padi-BYDV-PAV interactions, respectively, highlighting specific fatty acid 602 

changes depending on the virus-aphid interaction. Infection of A. fabae individuals by BRLV 603 

further led to a reduction of aphid fat content, while no changes in fat content were reported 604 

for the other two virus-aphid interactions (Ghodoum Parizipour et al., 2021). In another virus-605 

aphid vector interaction involving the turnip yellows virus (TuYV) (i.e., a persistent circulative 606 

virus, one of the most important viruses infecting cultivated Brassicaceae, e.g., lettuce, broccoli 607 

etc...) and Myzus persicae, virus infection also led to a reduction in fat content (Joffrey et al., 608 

2018).  609 

Direct and/or indirect effects of plant viruses have been proposed to explain changes in 610 

fatty acid profiles and fat content in A. fabae and M. persicae infected with BLRV and TuYV 611 

respectively. For example, direct immune responses involving lipids, including fatty acids, can 612 

protect the insect vector against virus infection (Wrońska et al., 2023). Viruses can also 613 

negatively affect plant physiology and quality, decreasing plant biomass and photosynthetic 614 

activity, in turn affecting the insect vector (Joffrey et al., 2018). Fat metabolism of the insect 615 

vector feeding from the plant sap could be negatively affected due to the lower quantity of 616 

nutrients synthetized by the plant (e.g., amino acids). Positive effects of plant virus infection 617 

on insect vector fat metabolism have also been reported. The white-backed planthopper 618 

Sogatella furcifera, vector of the southern rice black-streaked dwarf virus (i.e., a persistent, 619 

propagative virus) showed a significant increase in myristic (C14:0), oleic (C18:1), and 620 

palmitoleic acid (C16:1) levels in infected individuals (Zhang et al., 2018). Moreover, the small 621 

brown planthopper Laodelphax striatellus, infected by the maize Iranian mosaic virus (i.e., a 622 

persistent propagative virus), harbored more fat that uninfected individuals (Moeini and 623 

Tahmasebi, 2019). Effects of the maize Iranian mosaic virus on L. striatellus fat content was 624 

further found to be stage- (i.e., nymph or adult) and sex-specific, where adults and females 625 

accumulated more fat. Lipids, including fatty acids, play a key role during viral replication 626 

(Konan and Sanchez-Felipe, 2014; Lorizate and Krausslich, 2011). For persistent propagative 627 

viruses, viral replication occurs in the insect tissues/organs; hence increasing and/or modifying 628 

insect fat content and fatty acid levels during infection would allow the virus to use insect lipids 629 

for replication and dissemination. Finally, an increase of fat storage generally improves insect 630 

fitness (Arrese & Soulages, 2010; Scheifler et al., 2024 Chapter 16, Box 1), allowing the insect 631 

to colonize new host plants and, thereby, improve virus transmission.  632 

Plant pathogens other than viruses were also found to affect fat metabolism of insect 633 

vectors, including the bacterial pathogen associated with citrus greening disease, Candidatus 634 

Liberibacter asiaticus (CLAS), for which the Asian citrus phyllid Diaphorina citri is the main 635 

vector. A proteomic study on D. citri adults, infected by CLAS, reported an upregulation of 636 

proteins involved in fatty acid beta-oxidation (e.g., enoyl-coA hydratase, acyl-CoA 637 

dehydrogenase; Ramsey et al., 2015), while another study found upregulation of fas and 638 
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vitellogenin (i.e., proteins involved in lipid transport) upon infection (Kruse et al., 2018). No 639 

change in fatty acid composition was observed between uninfected and infected D. citri adults, 640 

yet more palmitoleic (C16:1), palmitic (C16:0), linoleic (C18:2), and stearic acid (C18:0) were 641 

found in infected nymphs compared to infected adults, suggesting that variation in fatty acid 642 

composition is stage-specific (Killiny and Jones, 2018). There are thus contrasting results for 643 

fat metabolic responses of D. citri. Taken together, insect vector fat metabolic responses to 644 

plant pathogens are highly dependent on the insect vector-pathogen-host plant interaction 645 

considered.  646 

Another topic that has received some attention is the impact of plant viruses and plant 647 

physiology and quality on higher trophic levels. Many parasitoids infect vectors of plant 648 

pathogens, and virus infection is expected to affect parasitoid performance. Joffrey et al., 649 

(2018) studied the effects of TuYV on a plant-aphid-parasitoid interaction, involving the aphid 650 

M. persicae and the parasitoid Aphidius colemani. Reduced photosynthetic activity and lower 651 

biomass in TuYV-infected plants led to a decrease in both body size and fat content of M. 652 

persicae adults. Smaller and leaner aphid adults used as hosts for the parasitoid A. colemani 653 

led to concomitant decreases in adult parasitoid body size, fat content, and fitness (i.e., lower 654 

egg numbers) (Joffrey et al., 2018). No differences were found in host and parasitoid body size 655 

and fat content in the aphid A. fabae, the parasitoid Lysiphlebus fabarum on beets infected with 656 

Beet yellows virus (Albittar et al., 2019). Fat storage is particularly important for parasitoids, 657 

because most species do not accumulate fat as adults (Visser et al., 2010, Visser, Le Lann et al., 658 

2023; Scheifler et al., 2024 Chapter 16). When the amount or quality of fat that can be carried 659 

over from the host is reduced due to plant pathogens, there might be negative consequences for 660 

parasitoids, a level higher up the trophic food chain. The complexity of these interactions 661 

should be studied more carefully to anticipate potential issues in agricultural systems both due 662 

to plant disease and complications in biocontrol. 663 

 664 

5 Conclusions and future perspectives 665 

Considering the gut microbiota, research on D. melanogaster has revealed that individual 666 

microbe effects on lipid metabolism appear to be strongly influenced by the metabolic activities 667 

of other co-occurring microbes. The complexity of these interactions and their impact on lipid 668 

metabolism in general must, therefore, be studied using community-based approaches (rather 669 

than mono or dual-infections; Gurung et al., 2019). Furthermore, microbiota composition 670 

differs between the sexes in several insect species, suggesting different types of interactions 671 

between male and female insect hosts and their respective microbiota (Chen et al., 2016; 672 

Fransen et al., 2017; Tang et al., 2012). Metabolic and physiological differences or 673 

requirements between the sexes could also explain why interactions between gut microbiota 674 

and host fat metabolism are sex-specific, e.g., females require more resources for egg 675 

production, mainly lipids. Future work should consider how diet composition and host-related 676 

traits, such as genotype and sex, can affect the resident microbiota (Newell and Douglas, 2014; 677 

Ridley et al., 2012). Such analyses could then be extended to other insect species. 678 

 Microbes also seem to play a role in insect recognition and communication. Hertaeg et 679 

al., (2021) recently showed that endosymbiotic bacteria can alter the cuticular hydrocarbon 680 

(CHC, derived from long-chain fatty acids) composition in the aphid A. fabae. CHC profiles 681 
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depend on the host insect’s genetic background, as well as the endosymbiont strain present, 682 

which in turn impacts aphid interactions with other insects, such as ants (Hertaeg et al., 2021). 683 

We are only beginning to understand the role microbes play in lipid metabolism of insect hosts, 684 

but lipid-mediated traits, such as chemical communication can further affect interspecific 685 

insect-insect interactions, also in species other than A. fabae.  686 

 Wolbachia can have widely different effects on the insect host, including lipid 687 

metabolism; hence Wolbachia-insect interactions remain complex to interpret. Modifications 688 

of insect fat metabolism and other lipid types appear to depend on insect species, insect host-689 

related traits, and Wolbachia strain (Koh et al., 2020; Molloy et al., 2016). Factors other than 690 

Wolbachia presence should be considered when studying the impact of Wolbachia on host fat 691 

metabolism, for example, Wolbachia density that can vary in response to biotic (Padde et al., 692 

2023; Pascar et al., 2023; Serbus et al., 2008) and abiotic factors (e.g., temperature; Padde et 693 

al., 2023; Mouton 2004). We know very little about the mechanism by which Wolbachia can 694 

modulate insect host fat metabolism. If we want to uncover more about the intricate interplay 695 

between Wolbachia and insect metabolism, one could investigate lipid-related gene 696 

transcription in both the insect host and the Wolbachia strain under study. Such a gene-based 697 

approach allows for finding correlative data on regulatory and target genes used or exploited 698 

by both interacting partners. Once candidate gene regulators and targets have been identified, 699 

gene knockdown approaches, such as RNA interference or CRISPR-Cas9 can be used to find 700 

a functional link leading to lipid-related phenotypic effects.   701 

 Studying the nutritional interplay between symbionts and insect hosts, particularly 702 

lipids, is also highly relevant for preventing and managing major public health threats, 703 

including vector-borne viruses such as DENV and Chikungunya virus. Wolbachia is a 704 

promising tool for regulating insect disease vector transmission (Ant et al., 2023; Ogunlade et 705 

al., 2021) as Wolbachia competes with viruses for multiple host lipid types (Geoghegan et al., 706 

2017; Molloy et al., 2016). A comprehensive overview of the role of fat in Wolbachia virus-707 

blocking mechanisms is needed to promote efficient and sustainable virus control in 708 

mosquitoes.  709 

 Intricate biochemical work on the way in which pathogenic arboviruses manifest within 710 

insect mosquito vectors has led to major advancements in our understanding of lipid-virus-711 

mosquito interactions (Vial et al., 2021, 2020, 2019). Viruses critically rely on an array of 712 

different lipid types, including fatty acids, phospholipids, and cholesterol, each fulfilling a 713 

discrete function for different viral stages. Research on plant pathogen effects on vector lipid 714 

metabolism has so far led to varying results, and if lipids are affected, only relatively simple 715 

estimates of bulk fat content have been estimated. Lipid effects on vectors could thus be due to 716 

indirect effects of infected plants or be a consequence of the viral infection itself.  We propose 717 

that the research field concerned with plant pathogen-vector interactions draws parallels with 718 

the work on pathogenic arboviruses, as the mechanisms by which viruses manipulate and 719 

utilize host insect vector lipids may be similar. The use of isotope tracing, precursor 720 

supplementation and genomic interference mechanisms may increase the resolution with which 721 

plant pathogen effects can be studied in insect vectors.  722 

Research on the effects of microbes on insect lipid metabolism is up and coming, and 723 

we can expect microbes to play unexpected roles in host insect metabolism. The nutritional 724 

role lipids play for host insects, microbes or both often remains to be fully elucidated. The 725 
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repeated evolution of endosymbioses has led to recurrent environmental compensation, where 726 

resource provisioning by the insect host has led to genome reduction and trait loss in microbes 727 

(Ellers et al., 2012). The loss of fatty acid synthesis pathways in Wolbachia is an excellent 728 

example of an evolved evolutionary dependence on an insect host (Wu et al., 2004). We can 729 

hypothesize that intricate mechanisms to optimize the host environment have evolved in lipid-730 

dependent endosymbionts, for example by stimulating the synthesis of fatty acids or other lipid 731 

types by the host. When considering interactions between coexisting microbes, dependence can 732 

also evolve when a microbial species provides a common resource, or public good, that is 733 

exploited by the community of microbes, also referred to as the Black Queen Hypothesis 734 

(Morris, 2015). No examples have yet come to light regarding lipids as a public good of 735 

microbial origin, but nutrient metabolic interactions could be investigated using recently 736 

developed tools, such as NetMet, to predict the metabolic capacities of interacting microbes 737 

(Tal et al., 2020). Alternatively, microbes can provide certain nutrients or precursors that are 738 

required by the host insect. A well-known example is vitamin B, where different variants are 739 

produced by a range of microbes associated with distinct insect species (Serrato-Salas and 740 

Gendrin, 2023). Regarding various lipids, some microbes, including Wolbachia, can synthesize 741 

biotin, a co-factor required for acetyl coenzyme A, which is a central intermediary precursor 742 

for fatty acid synthesis. We have yet to explore how the synthesis of lipid precursors contributes 743 

to lipid dynamics between insect host and symbiont(s).  744 
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