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Abstract

Current metrics of demographic resilience (e.g., resistance, recovery) summarize how populations
respond to the frequent, varied disturbances that ecological systems experience. Much of the ap-
plication of these metrics has focused on the potential response of populations represented by
time-invariant, density-independent structured population models to hypothetical disturbances.
Here, we show that density dependence has profound and complex impacts on our understand-
ing of resilience. We examine resilience measures in a flexible structured model with five vital
rate parameters (juvenile survival, adult survival, juvenile progression, adult retrogression, and
adult reproductive output) with density dependence operating on one vital rate at a time. De-
pending on which vital rate was subject to density effects, existing measures of demographic
resilience (compensation, resistance, and recovery time) either increased or decreased with pop-
ulation density. Moreover, the density-independent model under-predicted the recovery time of
the corresponding density-dependent model, with a greater offset for species with longer gen-
eration times and higher iteroparity. Our findings demonstrate the importance of underlying
non-linear processes when examining demographic resilience, particularly if we hope to predict

how natural populations will respond to real disturbances.



Introduction

Ecological systems are exposed to a variety of disturbances. Here, we define disturbance as any
a/biotic impact that causes a temporary change in the biological processes that drive population
dynamics (sensu Scheffer 2009). Examples of disturbances include a hurricane knocking down
adult trees in a stand (Horvitz et al., 1995), pollutants decreasing fertility (Levin et al., 1996),
or the introduction of an invader that leads to the decline of endemic species (Doody et al.,
2009). As a result of frequent disturbances in natural systems (Turner, 2010), populations may
spend little time at equilibrium and instead exhibit ‘transient dynamics’ (Coulson, 2021; Hastings,
2010; Hastings et al., 2018). Consequently, a major focus of population biology is to understand
how populations respond to these myriad disturbances (e.g., Horvitz et al., 1995; McLauchlan
et al., 2020; Paniw et al., 2017). As human-induced impacts on biodiversity continue (Butchart
et al., 2010; Jaureguiberry et al., 2022) and the frequency of disturbances increases (Turner, 2010),
there is an urgent need to identify which species are most likely to persist (Hare et al., 2016;
Hernéndez-Yéfiez et al., 2022; Urban, 2015). The study of ‘resilience” holds promise for address-
ing this urgent need (Capdevila et al., 2020; Ingrisch and Bahn, 2018; Scheffer et al., 2015). At its
core, resilience is related to concepts of stability: when perturbed, how quickly does the system
return to its previous (equilibrium) state (Hastings et al., 2018)?

In natural populations, the demographic resilience framework (Capdevila et al., 2020; Stott
et al., 2011) describes how populations are expected to respond to perturbations of population
structure. Population structure is the relative distribution of individuals in a population across
distinct size, stage, or age classes. Perturbations of population structure might arise from, for ex-
ample, fires (higher mortality of small than large trees; Sah et al. 2010), hurricanes (more damage
to large than small trees; Horvitz et al. 1995), or changes in hunting pressure (cessation of hunting
means adults are underrepresented compared to the equilibrium structure; Coulson et al. 2004).
This framework of demographic resilience (Capdevila et al., 2020; Stott et al., 2011) is, therefore,

inextricably linked to structured population models (e.g., life tables, matrix population models,



integral projection models), where the fates and reproductive contributions of individuals de-
pend on their age, size, and/or developmental stage (Caswell, 2001; Ellner et al., 2016). In these
models, the long-term (asymptotic) trajectory of the population is to grow at the rate r = log A
with a stable distribution of individuals across (st)age classes. Transient dynamics arise when the
relative size of the (st)age classes changes, potentially causing the short-term growth rate to vary
dramatically from A (Figure 1A; Stott et al. 2011). Natural populations are generally near, but not
at, their stable distributions (Williams et al., 2011), leading to mismatches between the expected
and realized population growth rate over the short term. An important assumption in this de-
mographic resilience framework is that the vital rates (e.g., survival, maturation, reproduction)
that define the matrix population model are density-independent (Stott et al., 2011).

Vital rates are commonly affected by population density, with important implications for
population and community dynamics. At the population level, negative density dependence can
lead the population size to be stable, to cycle, or to follow chaotic dynamics; the outcome typically
depends on the life history of the species (Neubert and Caswell, 2000). In Soay sheep (Owvis
aries), interactions between climate and population density cause population size to cycle between
increases and crashes (Coulson et al.,, 2001). In barnacle geese (Branta leucopsis), reproductive
output is subject to negative density dependence, causing adult survival to be more important to
population dynamics and reproduction less important as population density increases (Layton-
Matthews et al., 2019). At low population densities, low encounter rates between individuals
can significantly inhibit reproduction, driving small populations to extinction (“Allee effects”
Courchamp et al. 1999). Meanwhile, at the community level, density-dependent regulation is
crucial to our understanding of species diversity. Theory predicts that coexisting species should
exhibit stronger intraspecific competition (i.e., within-population negative density dependence)
than interspecific competition (Chesson, 2000). This theoretical expectation is strongly supported
by empirical evidence from plant communities, which overwhelmingly exhibit stronger intra-
than inter-specific competition (Adler et al., 2018; Metz et al., 2010; Wills et al., 1997).

Matrix population models are generally evaluated at a particular density, rather than being



constructed as explicitly density-dependent models (Crone et al., 2011). For example, when
density has been manipulated as part of the experimental design, these models are often con-
structed as ‘high-density” and ‘low-density” populations (Meekins and McCarthy, 2002; Oli et al.,
2001). While there are examples of explicitly density-dependent matrix population models, (e.g.,
Bakker et al., 2021; Deangelis et al., 1980; Jensen, 1995; Levin and Goodyear, 1980; Takada and
Nakashizuka, 1996), the vast majority of models archived in the COMADRE and COMPADRE
databases (Salguero-Goémez et al., 2015; Salguero-Gémez et al., 2016a), a representative sample
of published matrix population models, do not explicitly include density effects. Due to lim-
ited access to density-dependent models, past work on demographic resilience (Capdevila et al.,
2022; Stott et al., 2011; Stott et al., 2012) has not taken density effects into account. Currently, the
implicit assumption is that a population’s resilience is the same given a certain post-disturbance
stage structure, regardless of how the disturbance affects population size. For populations that
experience strong density-dependent effects, both the size and structure of the population after a
disturbance will have an impact on population dynamics and recovery. For example, the ability
of a wild population to resist or recover following a disease outbreak (e.g. Gulland, 1992) could
depend on the population size after the disturbance. Likewise, the impact of management ac-
tions (e.g., release of wild-reared chicks Kauffman et al. 2004, stage-specific harvesting Fukuda
et al. 2021) may differ with population density.

The impact of incorporating density dependence into the analysis of demographic resilience
is likely to differ according to life history. For example, a species with low per-capita reproduc-
tive output will have little scope for density-dependent effects to further decrease reproductive
output. Therefore, negative density dependence on reproductive output may have a limited im-
pact on the demographic resilience of species that invest more in survival than reproduction.
Conversely, faster-living species that invest heavily into reproduction may show a strong re-
sponse of demographic resilience metrics to density-dependent reproduction but a much more
limited response to density-dependent survival. So, we may expect that slow-living species will

show the greatest impacts on demographic resilience when survival rates are negatively related



to population density, and that fast-living species will show the greatest impacts when repro-
ductive output is negatively related to population density. However, in natural systems these
patterns will ultimately depend on the specific density-dependent responses, which are likely to
be stage-specific (Gamelon et al., 2024) and to show variation with life history strategy (Bassar
et al., 2010). For example, there is evidence that adult survival of a species that invests greatly
in vitality might be buffered against the effects of density dependence (Bonenfant et al., 2009)
and that growth/maturation is the process most likely to be negatively affected by population
density in vertebrates (Bassar et al., 2010).

Here, we explore the implications of negative density dependence on the study of demo-
graphic resilience. We take a virtual species approach by simulating negative density-dependent
effects on the vital rates of a two-stage matrix population model. The combinations of vital
rates in our virtual species are informed by a large database of empirical matrix population
models (Salguero-Gémez et al.,, 2015; Salguero-Gémez et al., 2016a). By varying the combi-
nation of vital rate values, we explore a wide range of possible life history strategies. With
these models, we ask the following questions: (i) How would the unobserved effects of density
change our interpretation of population resilience?, (ii) How do the effects of density on re-
silience metrics depend on life history strategy? Finally, we investigate the difference in transient
behaviour of the density-independent and density-dependent models to (iii) assess whether the
density-independent models currently in use could predict qualitative behaviour of the density-
dependent models. We conclude by suggesting that the discipline is insufficiently equipped to
study demographic resilience in non-linear systems, and offer suggestions to expand our toolbox

to examine populations in their natural settings.

Methods

To examine the role of density dependence on demographic resilience across a wide variety of

life history strategies, we defined a two-stage population model following Neubert and Caswell



(2000). The two stages of this model are non-reproductive and reproductive individuals, with
new offspring placed into the non-reproductive class. An important addition here is the potential
for individuals to retrogress (i.e., move ‘backwards’ in their development) from the reproductive
class to the non-reproductive class. Including retrogression is important for accurately represent-
ing the life cycles of many plants (Salguero-Gémez and Casper, 2010) and some animals (e.g.,
corals, Cant et al. 2023; marine iguanas, Wikelski and Thom 2000; clown anemonefish Versteeg
et al. 2025) that have the ability to drastically decrease in size. For simplicity of language from
this point on, we refer to the non-reproductive class as “juveniles” and the reproductive class
as “adults.” Since some life cycles are best understood in terms of size, here we note that our
framework also applies to size-based models, in which case readers might want to think of the
classes as “small” and “large” individuals. The transition probabilities that link them would then
be growth (instead of progression) and shrinkage (instead of retrogression).

Our population can be projected forward in discrete time (from time ¢ to time t 4- 1) using the

following equation:

ni(t+1 oix (1 — + 0y * n;(t
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The projection matrix is parameterized with five vital rates: juvenile survival probability (c;),
juvenile progression probability (7y), adult survival probability (¢;), adult retrogression proba-
bility (o) and adult per-capita reproductive output (¢). The population is projected forward in

time by multiplying the population vector, composed of the current number of juveniles (1;) and

adults (1), by the projection matrix.

Density dependence in demographic parameters

To explore the effects of density on population resilience, we made each vital rate density-

dependent in turn, such that individual performance decreases with increasing density (Bo-



nenfant et al., 2009; Layton-Matthews et al., 2019; Takada and Nakashizuka, 1996). For survival,
progression, and reproductive output, we used an exponential form of negative density depen-
dence (Eq. S1). The functional form of density dependence has been a significant area of past
research, and is notoriously difficult to identify in empirical systems (Clark et al., 2010; Coulson
et al., 2008; Seether and Engen, 2002). We chose the negative exponential (discrete-time version
of the Ricker model Ricker 1954) because it is simple, well-recognized, has a small number of pa-
rameters, and because it leads to a stable equilibrium or “carrying capacity” at certain vital rate
combinations/ranges for density dependence on juvenile survival, juvenile progression, adult
survival, and reproductive output (Neubert and Caswell, 2000). However, we modeled retro-
gression (p) differently. For plants and some animals, the optimal size decreases when resource
availability or habitat suitability decreases (Cant et al., 2023; Cserg? et al., 2017; Salguero-Gémez
and Casper, 2011; Versteeg et al., 2025; Wikelski and Thom, 2000). Since higher density implies
lower per-capita resource availability, we would expect the mean size of individuals to decrease
with increasing density. Therefore, we used a saturating functional form, where retrogression
probability is 0 at low density (N ~ 0) and increases asymptotically (Eq. S2). See Supplemental
Section S1 for mathematical details.

To compare the response to population density across a wide range of life history strategies,
we re-scaled our models. The population densities of, for example, elephants and mice in a
given unit of habitat area are on different orders of magnitude (Santini et al., 2018). Rather than
being concerned with the absolute population densities, we examined demographic resilience
when populations were ‘far from carrying capacity” vs. ‘near carrying capacity.” So, we scaled
our models to a carrying capacity of 1, enabling us to examine the resilience of all life history
strategies across the same range of population density values, from N = 0 to N = 1. We
treated all vital rates except reproductive output as free to vary, and then solved for the value of
reproductive output (¢) that would cause the population to be at a stable equilibrium point at
N =1 (see Supplemental Section S2). With this scaling, ¢ is high for life history strategies with

low survival (Figure S1). Indeed, to successfully invade, a species with low survival would have



to produce a high number of propagules (Stearns, 1977). Regardless of life history strategy, our

scaling for a carrying capacity of 1 means that A always equals 1 at a density of 1 (Figure S2).

Selecting virtual species

With five vital rates that can vary among species, the possible population models represent a
large five-dimensional space. To overcome the challenge of exploring and visualizing results in
this high-dimensional space, we selected 16 vital rate combinations to represent the ‘space’ of life
history strategies as archived in the COMADRE (Salguero-Gémez et al., 2016a) and COMPADRE
(Salguero-Goémez et al., 2015) databases. In their versions 4.23.3.1 and 6.23.5.0, these databases
comprise 3,448 and 8,994 matrix population models for animals and plants, respectively. The
majority of these models (>95%) have been digitized from the published literature. Here, we
give a brief overview of how we used these databases to select vital rates for our virtual species
models. For the full details, see Supplemental Section S3.

We first filtered the COMADRE and COMPADRE databases for high-quality models that
represent wild populations under control (“unmanipulated”) conditions. Next, we collapsed
each of those selected models to the same 2 x 2 matrix form given in Equation 1 following
Salguero-Gémez and Plotkin (2010), using the Rage package (Jones et al., 2022). Finally, we
performed a principal component analysis (PCA) on the vital rates calculated from the collapsed
matrix models to project them into a reduced dimensional space (Figure 2A). We retained the first
two principal component (PC) axes because they captured 70% of the variation among models
from COMADRE and COMPADRE (PC1: 43.83%; PC2: 26.25%). PC1 was primarily explained by
variation in survival (¢}, 0;) and progression (7), such that longer-lived and late-maturing species
score positively on PC1. PC2 was primarily influenced by reproductive output (¢), such that
species with high reproductive output score positively on PC2 (Supplemental Table S1).

To define our virtual species, we inspected the distribution of empirical values of vital rates
in our final set of 1,285 collapsed two-stage models. Based on these distributions, we selected

two values for each vital rate (Figure 2A; see Supplemental Section S3). For example, we se-



lected values close to the empirical mean plus/minus one standard deviation for juvenile and
adult survival rates. By taking all possible combinations of the vital rates, we generated 16 vir-
tual species. We then projected those virtual species models across density-dependent scenarios
(five vital rates by six values of density ranging from 0 to 1) onto the PC axes as defined by
the empirical models (Figure 2A). Our virtual species models covered the space of naturally ob-
served populations reasonably well, but we excluded any combinations of virtual species and
density dependence scenarios resulting in PC2 scores >5.1 (Figures S3 and S4). This left us with
54 combinations of virtual species and density dependence scenarios (out of 80 total possible

combinations).

Density-independent resilience metrics

Demographic resilience measures the potential response of a population to a hypothetical disturbance
to its population structure. There are many different metrics that can be used to measure demo-
graphic resilience, and most of them are based on the transient envelope (Capdevila et al., 2020;
Stott et al., 2011). The transient envelope (blue lines in Figure 1A) comprises the outer boundaries
of all possible post-disturbance population trajectories. In other words, a population governed
by a given set of time-invariant, density-independent vital rates will always remain within the
transient envelope on its way back to its asymptotic behavior (Stott et al., 2011). These transient
bounds result from the most extreme initial conditions: the so-called stage-biased trajectories
where all individuals are in a single stage class following a disturbance (Townley and Hodgson,
2008).

These trajectories are relative to asymptotic dynamics, such that a population starting from
its stable stage distribution would maintain a relative population size of 1 over time. For some
post-disturbance population structures, the population would change at a rate greater than A
(the boundary that initially shows an increase in relative population size in Figure 1A), while for
other initial structures, the population change at a rate less than A (the boundary that initially

shows a decrease in relative population size in Figure 1A).
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Figure 1: Examples for some key calculations regarding demographic responses to disturbances
using transient dynamics. In both examples, the underlying population model exhibits negative
density dependence in reproductive output, and the other vital rates are set to the following val-
ues: juvenile survival g; = 0.4, juvenile progression =0.9, adult survival 0, = 0.6, and adult retro-
gression probability p=0. (A) Here we show the ‘transient envelope’ for the density-independent
(blue) and density-dependent (orange) models. For this combination of vital rates, the density-
independent model requires six time steps to recover back to asymptotic dynamics (blue vertical
dotted line). Meanwhile, the density-dependent model requires 12 time steps to recover back to
the carrying capacity (orange vertical dotted line). (B) At each value of population density (the
plotted points), we calculated the density-independent resilience metrics (compensation in pur-
ple, resistance in green) from the density-independent matrix population model evaluated at the
corresponding value of population density. We then fit a line to the log,-transformed resilience
metrics, finding in this example that compensation decreased with population density (negative
slope), while resistance increased with population density (positive slope). Note that we also
calculated the slope of density-independent recovery time in the same way:.
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Here, we explored how population density, via effects on individual vital rates, would im-
pact previously-studied metrics of demographic resilience (Capdevila et al., 2020; Stott et al.,
2011). These previously-studied metrics are density-independent, but we can calculate them
for a population projection matrix built at a particular density. In essence, we analyzed how
our understanding of resilience would change if demographers had measured vital rates when
the population was at low vs. high density. To do so, we calculated compensation, resistance,
and recovery time for the (density-independent) population projection matrix built from (density-
dependent) vital rates at various values of density between N = 0 and N = 1 (Figure 1B). All
density-independent resilience metrics were calculated using the popdemo package in R (Stott

et al., 2012).

Compensation. The propensity for a population to ‘boom” after a disturbance is referred to as
compensation, amplification, or first-time-step reactivity (Capdevila et al., 2020; Capdevila et
al., 2022; Stott et al., 2011). Compensation is calculated as the largest possible population size,
relative to a population growing at a rate A, in the first time step after a disturbance (Capdevila
et al., 2022). It is the value on the upper branch of the transient envelope one time step after
the disturbance. In general, this maximum one-time-step population growth rate would occur
if the entire population were concentrated in the most fecund stage class (e.g., the adults in our

two-stage model).

Resistance. The ability of a population to prevent further losses after a disturbance is referred
to as resistance or first-time-step attenuation. Resistance is calculated as the smallest possible
relative population size in the first time step after a disturbance (Capdevila et al., 2024; Stott
et al., 2011). In general, this minimum one-time-step population growth rate would be achieved
if the entire population were concentrated in the most vulnerable and least fecund stage class
(e.g., juveniles in our two-stage model). Populations can vary greatly in their degree of resistance
from those whose relative population size changes little following a disturbance (high resistance,

metric close to 1) to those whose abundance crashes (low resistance, metric close to 0).
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Recovery time. Here, we define recovery time as the number of time steps until all possible
post-disturbance initial conditions would converge back to asymptotic dynamics (Stott et al.,
2011). Recovery time is calculated by iterating the model from all possible stage-biased (post-
disturbance) initial conditions until convergence (blue lines in Figure 1A). A stage-biased initial
condition (i.e., following a disturbance) is one where all remaining individuals are in a single
stage class. For each possible stage-biased initial condition, we iterated the population model
until the one-step-ahead population growth converged to A using the convt () function in the
popdemo package (Stott et al.,, 2012). We then measured recovery time as the maximum time
across the possible initial conditions. In our model, there are two possible stage-biased initial
conditions: only adults, and only juveniles. Note that this definition of recovery time is a change
from recent publications on demographic resilience which used a definition of recovery time
closely based on the damping ratio (e.g., Capdevila et al., 2020; Capdevila et al., 2022). Past
analyses have indicated that the damping ratio is a poor measure of time to convergence (Stott
et al., 2011).

We analyzed the relationships between vital rates and resilience metrics in our virtual species
using linear regression models in R (R Core Team, 2023). For each resilience metric, we fit two
separate regression models. First, we fit a linear regression with strictly additive terms for all
five vital rates. Second, we fit a linear regression for the first two principal component axes
including additive terms and their interaction. We used these models to interpret the importance
of different vital rates and the PC axes in driving the values of compensation, resistance, and
recovery time by focusing on the effect sizes (i.e., regression coefficients). However, we do not
report p-values because they can be substantially affected by design choices in virtual species
approaches (White et al., 2014). Specifically, adjusting sample sizes and replication levels across
different density dependence scenarios can alter p-values, thereby diminishing their reliability.

We also explored how life history strategy interacted with density-dependent effects on re-
silience metrics. To do so, we calculated the linear slopes of logjo-transformed compensation,

resistance, and recovery time with population density (Figure 1B). We calculated these slopes for
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each combination of juvenile survival, progression, adult survival, and retrogression across the
full range of possible values for those vital rates. To relate these slopes to life history strategy, we
focused on how slopes changed with model-specific maximum values of adult survival (¢;) and
progression (). We chose these two vital rates because of their clear mathematical connection
with generation time (Gaillard et al., 2005), which is itself an important proxy for life history
speed (Healy et al., 2019; Paniw et al., 2018; Salguero-Gémez et al., 2016b). When progression
rate is high and adult survival is low, species would exhibit precocious maturation and short
mature life span, leading to a short generation time-we refer to this type of life history as ‘fast.”
Conversely, when progression rate is low and adult survival is high, species would have delayed
maturation and long mature life span, leading to a long generation time-therefore this would be

a ‘slow’ life history:.

Analysis of transient envelopes

The transient dynamics and process of recovery in the density-independent and density-dependent
population models we explored here are fundamentally distinct, both biologically and mathe-
matically. Not only did the density-independent metrics of resilience change with population
density, but the process of recovery itself differed. Innately, the density-dependent model is at-
tracted back to its equilibrium population size (carrying capacity), while the density-independent
model is attracted to the asymptotic growth rate (Figure 1A). Following Stott et al. (2011), we
projected our virtual species forward in time from an all-juvenile or all-adult post-disturbance
distribution, starting from a population density of 1. Because we tuned our models such that the
carrying capacity is at a population size/density of 1, we can compare the transient envelopes
from the density-independent and density-dependent cases. For this comparison, the density-
independent model uses the vital rates that would be observed at carrying capacity, and then
assumes that those vital rates are constant as population density changes during the recovery
process. As such, for our virtual species, the density-dependent and density-independent mod-

els are the same for the first time step (Figure 1A). However, the entries of the density-dependent
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matrix model vary through time as density affects its target parameter: one of the five vital
rates in our two-stage matrix population model (Eq. 1). Along the way, these models differ in
both population growth/size and population structure, eventually converging to distinct stable
population structures.

To compare the density-dependent and density-independent transient periods, we calculated
the recovery time in both models. In the density-independent model, the recovery time is (as
explained above) the elapsed time before both the upper and lower transient bounds return to
following asymptotic dynamics (when solid blue lines becomes flat in Figure 1A; Stott et al. 2012).
Because the transient bounds are calculated by iterating the standardized model (A = A/A;
Stott et al. 2011), population size in the standardised model stops changing when the model
converges (solid blue lines in Figure 1A). In the density-dependent model, the transient bounds
will both eventually return to a population size of 1, the carrying capacity we pre-defined for our
density-dependent models (dashed orange line in Figure 1A). We defined the density-dependent
recovery time as the time until the distance between the upper and lower bound was smaller than
0.1; this distance could be achieved when both bounds cross within 5% of the carrying capacity,
or when one of the bounds has reached carrying capacity and the other is 0.1 population size
units away. To compare these two values of recovery time, we defined the difference in recovery
time (ARecoveryTime) as the difference between the density-independent and density-dependent
definitions of recovery time.

We also investigated how life history traits relate to the convergence time of the density-
dependent model. We focused on generation time as a proxy for the position of the species
along the fast-slow continuum (Gaillard et al.,, 2005), and the degree of parity as a measure
of reproductive strategy (Salguero-Gémez et al., 2016b). For generation time, we calculated the
average age difference between parents and offspring (Bienvenu and Legendre, 2015). For degree
of parity, we calculated evolutionary entropy, which measures how spread out reproduction is
across an individual’s lifespan (Demetrius, 1977). Previous research has shown that both life

history traits adequately capture a species” life history strategy (Healy et al., 2019; Paniw et al.,
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2018; Salguero-Goémez et al., 2016b). We calculated both life history traits with the Rage package
(Jones et al., 2022).

Results

Density dependence affected our interpretation of demographic resilience. The strength and
direction of the impact of density dependence on resilience metrics depended on both life history
strategy and the specific vital rate target of density dependence (Figures 2 and 3). Because of our
model scaling, faster life histories exhibited stronger density-dependent effects on their overall
population growth rate (Figure S4). Indeed, because we scaled the reproductive output (¢) so that
all virtual species would have a carrying capacity of 1, fast life histories have high reproductive
output and high values of population growth rate (A) at low density (Figure S4).

In our virtual species models, compensation was most strongly influenced by reproductive
output (Figure 2B, Supplemental Table S2). Although most vital rates influenced compensation
to some extent, the coefficients were both positive and negative (Supplemental Table S2). As a
net result, the effect of PC1 on compensation was much smaller than the effect of PC2 (Sup-
plemental Table S2). As such, virtual species with higher reproductive output exhibited higher
compensation (Figure 2B). Resistance was most strongly influenced by juvenile survival, with
limited influence from other vital rates (Figure 2C; Supplemental Table S2). Recovery time de-
creased with higher adult survival and juvenile survival, but increased with a higher probability
of retrogression (Supplemental Table S2). As a result, recovery time was longest in virtual species
corresponding to extreme values of PC1 (both high and low values; Figures 2D and S5C).

Compensation either increased or decreased with higher population density, depending on
the vital rate that was affected by density dependence (Figures 3, 4). Compensation always
decreased at higher population density (negative slope) when reproductive output was density-
dependent, and always increased at higher population density (positive slope) when density

dependence acted via juvenile survival (Figure 56). When density dependence operated via adult
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Figure 2: Resilience metrics for our virtual species (A) show strong relationships with demo-
graphic rates and axes of life history variation for compensation (B), resistance (C), and density-
independent recovery time (D). The PC axes are defined by the empirical models as shown in
(A), with the virtual species projected onto the PC axes. The arrows indicate the loading of each
vital rate parameter onto the PC axes (Table S1). Life history speed generally increases with PC2
(increasing reproductive output), and decreases with PC1 (increasing survival), such that slow
life histories are located towards the bottom-right of the PCA space and fast life histories are
located towards the top-left. Each virtual species was modeled with density dependence on each
of the five vital rates. For each density-dependent scenario, the virtual species model was calcu-
lated for six density values between 0 and 1. In panel A, points are sized according to population
growth rate (A); in panels B-D, symbols are sized according to population density. The example
empirical models are indicated by silhouettes (acquired from PhyloPic.org) and are listed in the
table based on their clockwise location in the figure, starting from the gorilla.
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survival, the response of compensation to density was rather weak (values close to 0, Figures 3,
4B, and S6). For progression and retrogression, compensation tended to increase with density
(positive slopes; Figures 3, 4), although the distribution crossed 0 (Figure S6). The response
to density was clearly stronger when reproductive output or juvenile survival were density-
dependent (Figure 3; absolute value of mean slope ~ 0.2, Supplemental Figure S6), in agreement
with our results in Figure 2B that compensation was most closely related to reproductive output
and juvenile survival.

In general, fast and slow life histories exhibited similar slopes of compensation across den-

Mean slope of log[metric] vs. density

Resilience metrics

Compensation Recovery
Resistance time

Reproductive
output

Adult |
survival

Progression |
rate

Juvenile
survival

Density-dependent vital rate scenarios

Retrogression
rate

Figure 3: The direction and strength of the change in resilience metrics as density increases de-
pends on which vital rate is the target of density dependence. Here, we summarize the response
of resilience metrics (compensation, resistance, and density-independent recovery time) to den-
sity dependence on each of the five vital rates (reproductive output, adult survival, progression
rate, juvenile survival, and retrogression rate). The colors indicate the mean slope across the full
range of tested vital rate combinations.
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sities (Figure 4). In other words, moving from a fast to a slow life history did not indicate
a change in how strongly compensation would respond to density when reproductive output,
progression, and juvenile survival were density-dependent (see how the color contours in Fig-
ure 4A,C,D connect the upper left and lower right corners). However, when retrogression was
density-dependent, then the strongest response of compensation to population density was in
species with a slow life history (delayed progression and high adult survival; Figure 4E).
Resistance tended to increase with population density in all scenarios except for density-
dependent juvenile survival (Figures 3, 5, and S12). Like for compensation, the strongest re-

sponse to population density was observed for the density-dependent reproductive output and
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Figure 4: Strength of density effects on compensation varies with both life history strategy and
density dependence scenarios. The color contours indicate the slope of compensation as a func-
tion of population density. Redder colors indicate that compensation increased with increasing
population density, while bluer colors indicate that compensation decreased with increasing pop-
ulation density. Slow life histories are in the upper left of each panel, and fast life histories are in
the lower right. These slope surfaces are shown for models with intermediate maximum juvenile
survival 0; = 0.6 and with maximum retrogression rate p = 0.3 To see how slope changed across
values of maximum juvenile survival and retrogression within each scenario, see figs. S7-S11.
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juvenile survival scenarios (Figure 3). When reproductive output was density-dependent, resis-
tance increased with population density most strongly in fast life histories, and the response
was weaker in slow life histories (Figure 5A). When juvenile survival was density-dependent,
changes in slope were not related to life history speed; instead, the steepest slope emerged when

individuals progressed early and had high adult survival (Figure 5D).
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Figure 5: Strength of density effects on resistance varies with both life history speed and density
dependence scenarios. The color contours indicate the slope of resistance as a function of popu-
lation density. Figure details are the same as in Figure 4. To see how slope changed across values
of maximum juvenile survival and retrogression within each scenario, see figs. S13-517.

Responses of recovery time to changes in population density were highly variable across life
history and the vital rate target of density dependence (Figures 3, 6). The steepest slopes of
recovery time with density were seen when progression, retrogression, or reproductive output
were density-dependent (Figure 3). In these scenarios, recovery time decreased at higher popu-
lation densities for slow life histories, and increased at higher population densities for fast life

histories (Figure 6). In the other vital rate scenarios, the response of recovery time to changes in

20



A DD reproductive output B DD adult survival

0.8 i Slope of log[recovery time] vs. density
g
s - 0 0.5 1.0
2 -1.0 -0.5 . .
? 044 .
3
< 0.2+ i
0 - B T T T T
. . . . slow ;
C DD progression rate D DD juvenile survival LH E DD retrogression rate
"
_. 0.8+ - _.0.84
g g
T 0.6 — T 0.6
2 2
< 2
» 0.4 - 3 0.4-
E 5
202 . 2 0.2
0 o T T T T 0 T T T T fast
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08 as
Progression rate (y) Progression rate (y) Progression rate (y) LH

Figure 6: Strength of density effects on density-independent recovery time varies with both life
history strategy and density dependence scenarios. The color contours indicate the slope of
density-independent recovery time as a function of population density. Figure details are the
same as in Figure 4. To see how slope changed across values of maximum juvenile survival and
retrogression within each scenario, see figs. S19-523.

density did not follow any consistent patterns.

Adding density dependence to our demographic models fundamentally changed the process
of recovery, as seen in the example transient envelope shown in Figure 1A. The shapes of the
transient envelopes varied dramatically across our virtual species and depending on which vital
rate is density-dependent (Supplemental Figures 524-528). The recovery time of the density-
independent model nearly always under-predicted the recovery time of the density-dependent
model, and the correlation between these measures was very weak (r = 0.03; Figure 7A). We
found a fairly strong correlation of ARecoveryTime with both generation time (r = 0.44) and
iteroparity (r = 0.37). In other words, as generation time increased or species became more
iteroparous, the density-independent model was worse at predicting recovery time of the density-

dependent model. If adult survival was density-dependent, then the density-independent model
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Figure 7: The density-independent (DI) model under-predicts recovery time compared with the
density-dependent (DD) model. Panel A shows the relationship between density-independent re-
covery time and density-dependent recovery time for the virtual species models. ARecoveryTime
is positively related to the generation time (B) and degree of iteroparity (C). The different shapes,
across all panels, indicate the different density-dependent vital rate scenarios. The color scale
shown in panel B applies to panel C as well.

performed particularly poorly (Figure 7B and C).

Discussion

The study of resilience promises to help ecologists and managers understand how populations
with diverse life histories may respond to a myriad of disturbances (Enquist et al., 2024). Re-
silience is closely related to concepts of stability (Hastings et al., 2018) and, in demographic
models, long-term asymptotic system behavior (Capdevila et al., 2020; Stott et al., 2011). Al-
though population density has important impacts on individual and population performance
(e.g., Bonenfant et al., 2009; Layton-Matthews et al., 2019; Takada and Nakashizuka, 1996), den-
sity dependence has been neglected in past studies of demographic resilience. Here, we show
that density-dependent vital rates have profound and complex impacts on our understanding
of population responses to potential disturbances. Depending on which vital rate (e.g., survival,
reproduction) is subject to density effects, existing measures of demographic resilience (compen-
sation, resistance, and recovery time sensu Capdevila et al. 2022; Stott et al. 2011) can either
increase or decrease with population density. Importantly, the effects of density dependence

on the density-independent resilience metrics was often uncorrelated with life history speed:
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the apparent resilience of fast and slow life histories often responded the same way to den-
sity dependence. We also found that the recovery time of a density-independent model did
not predict the recovery time of the corresponding density-dependent model. In fact, the off-
set between the density-dependent and density-independent definitions of recovery time were
correlated with life history: in species with longer generation time and greater iteroparity, the
density-independent model is even worse at predicting recovery time of the underlying density-
dependent dynamics.

Our results generally agree with past examinations linking demographic resilience and life
history traits. For instance, using 162 populations of 69 animal species from COMADRE and 748
populations of 232 plant species from COMPADRE, Capdevila et al. (2024) showed that species
with high reproductive output have greater compensation, weaker resistance and longer recov-
ery time. Here, we found the effects of reproductive output on compensation, resistance, and
recovery time to be in the same direction as previously reported. Generation time, a strong
marker of life history speed (Gaillard et al., 2005), was found to influence the transient dynam-
ics across 111 mammal species (Gamelon et al., 2014). Likewise, Capdevila et al. (2022) found
that slow life histories take longer to recover following a disturbance. Here we similarly report
longer recovery times for slow life histories for both density-independent and density-dependent
definitions of recovery time), as well as more severe under-estimation of recovery time in the
density-independent compared with density-dependent model (ARecoveryTime). These authors
also found kingdom-specific responses for resistance: resistance increases with generation time
in animals but decreases in plants (Capdevila et al., 2024). These kingdom-specific responses
may be linked via the more frequent ability of plants to shrink (Salguero-Gémez and Casper,
2010) than in animals (but see Versteeg et al. 2025; Wikelski and Thom 2000), an aspect that can
be explicitly explored in future steps via our flexible structured population model. The general
agreement between these past studies and our results suggests that density dependence may not
be an issue for broad comparative studies of demographic resilience.

For some vital rate targets of density dependence, we found that demographic resilience
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increased with population density, despite the density-dependent decrease in individual perfor-
mance. This counter-intuitive result arises from an indirect effect of density on compensation,
via the direct effect of density on population growth rate (1). Compensation is calculated as
the maximum column sum of the standardized population matrix (A). Given that survival rates
are bounded between 0 and 1, while fertility rates are often greater than 1 (Salguero-Gémez
et al., 2015; Salguero-Gémez et al., 2016a), compensation is often determined by the fertility
entries. Therefore, in our two-stage model, compensation is determined by the second column
sum of A. So how does the density effect on juvenile survival, which appears only in the first
column, impact compensation? The change in compensation arises because of the standardiza-
tion (A = A/A). As juvenile survival decreases with density, A decreases, and so the sum of
the second column of A actually increases. The same general principle applies for each of the
vital rate scenarios where resistance increased with increasing density. This indirect effect of
vital rates on resilience via a change in A is both striking and easily interpreted in our two-stage
model, but we may expect different results in larger, more complex life cycles and their resulting
structured population models. For example, if density dependence impacts a stage class that
does not control the boom or bust processes (i.e., the most fecund stage and the stage with the
lowest survival, respectively), then density dependence would have a limited effect on compen-
sation and resistance, but could still have a meaningful impact on recovery time. Unlike the
2 x 2 model that we used here in the interest of tractability of incorporating density effects on
vital rates, most (93%) matrix population models archived in COMADRE and COMPADRE have
more than two stages. In fact, 89% of the models that we used for selecting our virtual species
model were 3 x 3 or larger, and 53% of them were 5 x 5 or larger (Supplemental Figure S29).
Choosing how to parametrize and test the effects of density dependence in these larger models
could be quite tricky. For example, in a model where individuals are classified into multiple (>2)
size classes, should a negative density-dependent effect on growth affect all size classes equally?
This is an ongoing area where more research is needed, to understand the stage-specificity of

density-dependent effects (Gamelon et al., 2024).
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Our findings have important implications for the study of invasive species. Our results
about the relationship between demographic resilience and density dependence suggest an addi-
tional mechanism that could help to explain the so-called “paradox of invasion’, wherein locally-
adapted species can be replaced by alien species but over time those alien species also become
susceptible to invasion by new arrivals (Sax and Brown, 2000). Because populations and com-
munities are experiencing frequent disturbances, the way that a species responds to those dis-
turbances as its density changes may influence its ability to establish and persist. Logically, high
compensation at low population density will promote initial establishment, in line with recent
evidence that amplification (here referred to as compensation) is a strong predictor of invasive-
ness (Iles et al., 2016; Jelbert et al., 2019). However, neither of these two works dealt with models
that explicitly incorporated density dependence, and our study enables some speculation about
how invasiveness may change after initial establishment. For example, a species that exhibits
density-dependent reproduction may have a harder time persisting because its compensation in
response to disturbances decreases as the population density increases. Conversely, a species that
exhibits density dependence on juvenile survival will see even greater compensation in response
to disturbances as its population grows and establishes. Therefore, our results suggest that
species with high compensation and density-dependent juvenile survival may be more likely to
become established and nuisance invaders than species exhibiting density dependence on other
vital rates.

Our findings clearly highlight the need for more research aimed at understanding the role of
density dependence in populations at risk of extinction. Because resilience metrics change with
density in opposite directions depending on the vital rate target, un-modeled density depen-
dence that operates on distinct vital rates for each species could lead to an incorrect ordering of
species by their resilience. This would undermine use of the demographic resilience framework
to identify and prioritize species for management intervention (Hare et al., 2016; Urban, 2015).
Furthermore, we found that density-independent demographic models underestimate recovery

time if the underlying vital rates are density-dependent. This underestimation of recovery time
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was most severe when species have long generation times and/or high iteroparity. Because an-
imal species with long generation times are also more vulnerable to extinction under climate
change (Pearson et al., 2014), these are the same species that are frequently the focus of conser-
vation efforts. In vertebrates, the vital rates with the strongest evidence of density dependence
are age or size of maturity (e.g. progression in our model) and reproductive output (Bassar et al.,
2010). Meanwhile, we found that resilience was most impacted by density-dependent effects
when either reproductive output or juvenile survival were the targets of density dependence.
Taken together, this suggests that density effects on reproductive output may be the best place
to start integrating density dependence into demographic models that are used for management
and conservation, as is already standard in fisheries models (Cattoni et al., 2024; Shepherd and
Cushing, 1980).

The existing framework of demographic resilience is insufficient to examine the trajectory of a
density-dependent model after a disturbance. Demographic resilience measures post-disturbance
population growth relative to asymptotic population growth (Stott et al., 2011; Stott et al., 2012),
but this standardization makes less sense in density-dependent scenarios where the asymptotic
growth rate is zero. Instead, for density-dependent models, measuring relative to carrying ca-
pacity would encompass elements of both population size and asymptotic stability. Past work
examining the dynamics of density-dependent structured population models has focused on the
local stability of the carrying capacity, defining reactivity as the propensity of perturbations from
equilibrium to grow before decaying back to the stable equilibrium (Caswell, 2019; Caswell and
Neubert, 2005; Neubert and Caswell, 1997). Caswell (Caswell, 2019, p. 207) notes that the local
stability approach is based on the inherent system dynamics, while the indices put forward by
Stott and colleagues (Capdevila et al., 2020; Stott et al., 2011) are based on the transient responses
to a particular initial condition. Here, we focused only on post-disturbance initial conditions
where the population is at its carrying capacity, but not at its stable population structure. Fur-
ther work is needed to analyze transient responses of density-dependent models to perturbations

that cause a change in both population density and structure. Still, we have shown that there is
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one resilience metric that can be generalized to both density-dependent and density-independent
models: recovery time. We found that density-dependent recovery time was longer than density-
independent recovery time, indicating that the density-dependent model has a greater probability
of long transient periods (Hastings et al., 2018).

Here, we focused on the simplest form of density-dependence: a negative exponential func-
tion (Ricker model, Ricker 1954) that applies to a single vital rate at a time, with the same strength
in all cases. However, the toolbox of density-dependent approaches is very large. For decades,
ecologists and statisticians have argued over which forms of density dependence are most ap-
propriate and when each can be detected or applied (Clark et al., 2010; Coulson et al., 2008;
Runge and Johnson, 2002). Beyond the decision of which functional form to apply, there are also
decisions about which matrix elements should be affected by density dependence, ranging from
all of them (Jensen, 1995) to a critical stage class (Gamelon et al., 2024). The shape and strength
of the density-dependent response (e.g., the parameter b in Equation S1) is likely to be highly
specific to the species, population, and even vital rate (Fukuda et al., 2010). The promise of
larger demographic datasets, with collection and analysis made possible by remote sensing and
machine learning approaches (Cavender-Bares et al., 2022; Pichler and Hartig, 2023; Sun et al.,,
2021), is that they may enable a wider estimation of density-dependent processes for population
ecology and conservation.

In our modeling framework, density dependence and disturbance are separate processes, but
it is likely that they interact in natural systems. In a perennial plant population, the impact of
density on both vital rates and population growth rate depended on whether the plot had ex-
perienced a fire that year or not (Gornish, 2013). For red deer (Cervus elaphus) in Scotland, the
cessation of culling led to both changes in population density and population structure, resulting
in long-term transient dynamics and density-dependent oscillations (Coulson et al., 2004). Tran-
sient life table response experiment (LTRE) analysis holds the potential to disentangle the effects
of variation in vital rates and variation in population structure (Knape et al., 2023; Koons et al.,

2016), such as could result from the interacting effects of density dependence and disturbance.
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However, transient LTREs have so far been underutilized, perhaps because fewer than 40% of
the publications archived in the COMADRE and COMPADRE databases (a representative sam-
ple of published matrix population models) include data on observed population distributions

(Gascoigne et al., 2023).

Conclusion

In spite of the idiosyncratic patterns of resilience across densities and life history strategies, a
few patterns with life history strategy remain reliable. Specifically, compensation is greatest
and resistance lowest in fast life histories, and vice versa in slow life histories. Additionally, we
found that recovery time estimates from the density-independent framework were furthest from
the recovery time of the true underlying density-dependent model in virtual species with long
generation times and high iteroparity. Therefore, identifying density-dependent effects in more
slow-living species, where there are already more conservation concerns (Lande 1998; Purvis
et al. 2000, but see Paniw et al. 2018) may be most urgent for predicting responses to disturbance
and management intervention. Finally, to truly understand the resilience of natural populations
of plants and animals, we must update the demographic resilience framework to accommodate
time-varying vital rates. These advances will substantially improve our ability to predict the

responses of species to the myriad and increasingly frequent disturbances they face.
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