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Abstract

Current metrics of demographic resilience (e.g., resistance, recovery) summarize the poten-
tial responses of populations to the frequent, varied disturbances that ecological systems
experience. Much of the application of these metrics has focused on the potential response
of time-invariant, density-independent structured population models to hypothetical dis-
turbances. Here, we examine such resilience measures in a flexible structured model with
five vital rate parameters. Making one vital rate density-dependent at a time, we show
that density dependence has profound and complex impacts on our understanding of re-
silience. Depending on which vital rate was subject to density effects, existing measures
of demographic resilience (compensation, resistance, and recovery time) either increased
or decreased with population density. Moreover, the density-independent model under-
predicted the recovery time of the corresponding density-dependent model, with a greater
offset for species with longer generation times and higher iteroparity. Our findings demon-
strate the importance of underlying non-linear processes when examining demographic
resilience.
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1 Introduction1

Ecological systems are exposed to a variety of disturbances. In the broadest sense, a2

disturbance is any a/biotic impact that causes a temporary change in the underlying bio-3

logical processes of a system, potentially pushing it away from its equilibrium. Examples4

of disturbances include a hurricane knocking down adult trees in a stand (Horvitz et al.,5

1995), pollutants decreasing fertility (Levin et al., 1996), or the introduction of an invader6

that leads to the decline of endemic species (Doody et al., 2009). As a result of frequent7

disturbances in natural systems (Turner, 2010), ecological systems may spend little time8

at equilibrium (Coulson, 2021; Hastings, 2010; Hastings et al., 2018). Consequently, a9

major focus of ecology is to understand how ecological systems respond to these myriad10

disturbances (e.g., Horvitz et al., 1995; McLauchlan et al., 2020; Paniw et al., 2017). As11

human-induced impacts on biodiversity continue (Butchart et al., 2010; Jaureguiberry et12

al., 2022) and the frequency of disturbances increases (Turner, 2010), there is an urgent13

need to identify which species are most likely to persist (Hare et al., 2016; Hernández-Yáñez14

et al., 2022; Urban, 2015). The study of ‘resilience’ holds promise for addressing this urgent15

need (Capdevila et al., 2020; Ingrisch and Bahn, 2018; Scheffer et al., 2015). At its core,16

resilience is related to concepts of stability: when perturbed, does the system return to its17

previous (equilibrium) state –and how quickly does it return– or do the dynamics change18

dramatically in such a way that the system is attracted to a new equilibrium (Hastings19

et al., 2018)?20

In natural populations, the demographic resilience framework (Capdevila et al., 2020;21

Stott et al., 2011) describes how populations are expected to respond to perturbations to22

population structure. Population structure is the relative distribution of individuals in a23

population across different size, stage, or age classes. Perturbations to population structure24

might arise from, for example, fires (Sah et al., 2010), hurricanes (Horvitz et al., 1995),25
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or changes in hunting pressure (Coulson et al., 2004). This framework of demographic26

resilience (Capdevila et al., 2020; Stott et al., 2011) is based on matrix population models,27

where the fates and reproductive contributions of individuals that are classified by their28

age, size, and/or developmental stage are followed in discrete time (Caswell, 2001). In29

these models, the long-term deterministic behaviour of the population is growth at the30

rate r = log λ, where λ is the leading eigenvalue of the population projection matrix. If λ31

is greater than 1, the population is predicted to grow in the long term, and if λ is less than32

1, to decline. When the population follows this deterministic behaviour, the population33

maintains a stable distribution across classes: the relative size of each (st)age class is34

constant, while the total population size grows or declines. When the relative size of the35

(st)age classes changes, the short-term growth rate can vary dramatically from λ (Stott36

et al., 2011). Natural populations are generally near, but not at, their stable distributions37

(Williams et al., 2011), leading to mismatches between the expected and realized population38

growth rate over the short term. An important assumption in this demographic resilience39

framework is that the vital rates (e.g., survival, maturation, reproduction) that define the40

matrix population model are density-independent (Stott et al., 2011).41

Vital rates are commonly affected by population density, with important implications42

for population and community dynamics. At the population level, negative density depen-43

dence can lead the population size to be stable, to cycle, or to follow chaotic dynamics;44

the outcome typically depends on the life history of the species (Neubert and Caswell,45

2000). In Soay sheep (Ovis aries), interactions between climate and population density46

cause population size to cycle between increases and crashes (Coulson et al., 2001). When47

reproductive output is subject to negative density dependence, adult survival is more im-48

portant to population dynamics and reproduction less important as population density49

increases (Layton-Matthews et al., 2019). At low population densities, low encounter rates50
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between individuals can significantly inhibit reproduction, driving small populations to51

extinction (“Allee effects” Courchamp et al. 1999). Meanwhile, at the community level,52

density-dependent regulation is crucial to our understanding of species diversity. The-53

ory predicts that coexisting species should exhibit stronger intra-specific competition (i.e.,54

within-population negative density dependence) than inter-specific competition (Chesson,55

2000). This theoretical expectation is strongly supported by empirical evidence from plant56

communities, which overwhelmingly exhibit stronger intra- than inter-specific competition57

(Adler et al., 2018; Metz et al., 2010; Wills et al., 1997).58

Matrix population models are generally evaluated at a particular density, rather than59

being constructed as explicitly density-dependent models (Crone et al., 2011). Even when60

density has been manipulated as part of the experimental design, these models are often61

constructed as ‘high-density’ and ‘low-density’ populations (Meekins and McCarthy, 2002;62

Oli et al., 2001). As a result, the vast majority of models archived in the COMADRE63

and COMPADRE databases (Salguero-Gómez et al., 2015; Salguero-Gómez et al., 2016a),64

which are among the largest repositories of published population models, do not explicitly65

include density effects. Since there is currently limited access to density-dependent ma-66

trix population models, past work on demographic resilience (Capdevila et al., 2022; Stott67

et al., 2011; Stott et al., 2012) has not taken density effects into account. This aspect68

is especially important since demographic resilience usually examines population change69

relative to disturbances in population structure and/or size. Currently, the implicit as-70

sumption is that a population’s resilience is the same given a certain structure, regardless71

of overall population size. Under density dependence, this assumption is likely not to hold.72

Even given the same population structure and size, resilience could be different if density73

dependence operates differently through time in terms of life cycle stages and vital rates74

affected.75
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Here, we explore the implications of density-dependent vital rates on the study of de-76

mographic resilience. We take a virtual species approach by simulating density-dependent77

effects on the vital rates of a two-stage matrix population model. By varying the com-78

bination of vital rate values, we explore a wide range of possible life history strategies.79

With these models, we ask the following questions: (i) How would the unobserved effects80

of density change our interpretation of population resilience?, (ii) How do the effects of81

density on resilience depend on life history strategy? Finally, we investigate the difference82

in transient behaviour of the density-independent and density-dependent models to (iii)83

assess whether the density-independent models currently in use could predict qualitative84

behaviour of the density-dependent models. We conclude by suggesting that the discipline85

is insufficiently equipped to study demographic resilience in non-linear systems, and offer86

suggestions to expand our toolbox to examine populations in their natural settings.87

2 Methods88

To examine the role of density dependence on demographic resilience across a wide vari-89

ety of life history strategies, we defined a two-stage population model following Neubert90

and Caswell (2000). The two stages of this model are non-reproductive and reproduc-91

tive individuals, with new offspring being placed into the non-reproductive class. An92

important addition to the Neubert-Caswell model here is the potential for individuals to93

retrogress (i.e., move ‘backwards’ in their development) from the reproductive class to the94

non-reproductive class. Including retrogression is important for accurately representing95

the life cycles of many plants (Salguero-Gómez and Casper, 2010) and some animals (Cant96

et al., 2023; Wikelski and Thom, 2000) that have the ability to drastically decrease in size.97

For simplicity of language from this point on, we refer to the non-reproductive class as98

“juveniles” and the reproductive class as “adults.” Since some life cycles are best under-99
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stood in terms of size, here we note that our framework also applies to size-based models,100

in which case readers might want to think of the classes as “small” and “large” individuals.101

The transition probabilities that link them would then be growth (instead of progression)102

and shrinkage (instead of retrogression).103

nj(t+ 1)

na(t+ 1)

 =

σj ∗ (1− γ) ϕ+ σaρ

σj ∗ γ σa ∗ (1− ρ)

 ∗

nj(t)

na(t)

 (1)104

The resulting model has five vital rates: juvenile survival probability (σj), juvenile105

progression probability (γ), adult survival probability (σa), adult retrogression probability106

(ρ) and adult per-capita reproductive output (ϕ). The population is projected forward in107

time by multiplying the population vector, composed of the current number of juveniles108

(nj) and adults (na), by the projection matrix.109

2.1 Density dependence in demographic parameters110

To explore the effects of density on population resilience, we made each vital rate density111

dependent, such that individual performance decreases with increasing density (Bonen-112

fant et al., 2009; Layton-Matthews et al., 2019; Shepherd and Cushing, 1980; Takada and113

Nakashizuka, 1996). For survival, progression, and reproductive output, we used an expo-114

nential form of negative density dependence (Eq. 2). We chose this form because Neubert115

and Caswell (2000) found that their matrix population models had a stable equilibrium (at116

certain vital rate combinations/ranges) for density dependence on any of the vital rates.117

The general form is118

α(N) = αmaxe
−N , (2)119

where αmax is the maximum value that a given vital rate can take, and α(N) is that vital120

rate’s value at a given value of population density (N = na + nj).121
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The only vital rate that did not follow this functional form in our model framework122

was retrogression (ρ). In plant systems, the optimal size decreases when resource avail-123

ability or habitat suitability decreases (Csergő et al., 2017; Salguero-Gómez and Casper,124

2011); the same occurs in some animals (Cant et al., 2023; Wikelski and Thom, 2000).125

Since a higher density implies lower per-capita resource availability, we would expect the126

mean size of individuals to decrease with increasing density. Therefore, when retrogression127

is density-dependent, we would expect retrogression probability to increase with higher128

population density. Rather than the exponential form in Equation 2, here we used a satu-129

rating functional form, where retrogression probability is 0 at very low densities (N ≈ 0)130

and increases up to a selected maximum value (asymptotically):131

ρ(N) = ρmax ln(N + 1) (3)132

To ensure that ρ(1) would have a pre-determined value, we set ρmax to ρ(1)
ln 2 . This value is133

the result of re-arranging Equation 2 to solve for ρmax.134

To compare the response to population density across a wide range of life history135

strategies, we re-scaled our models. The population densities of, for example, elephants136

and mice in a given unit of habitat area are on different orders of magnitude (Santini137

et al., 2018). Rather than being concerned with the absolute population densities, we138

examined demographic resilience when populations were ‘far from carrying capacity’ vs.139

‘near carrying capacity.’ So, we scaled our models to a carrying capacity of 1, enabling us140

to examine the resilience of all life history strategies across the same range of population141

density values, from N = 0 to N = 1.142

We carried out our scaling as follows. For each density-dependent vital rate ‘case’, we143

selected all parameters except for reproductive output (ϕ, or ϕmax in the case of density-144

dependent reproductive output). Then, we solved for the value of reproductive output that145
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would cause the population to be at a stable equilibrium point at N = 1. The equations146

for reproductive output as a function of the other vital rates, for each density-dependent147

case, are given in Appendix Section S1. This scaling caused ϕmax to be rather high for148

life history strategies with low survival. Indeed, to successfully invade, a species with low149

survival would have to produce a high number of propagules (Stearns, 1977). As σj , σa,150

and γ increased, the required ϕmax decreased (Figure S1). This relationship also caused151

the population growth rate (λ) at low density to vary across life history strategies, with152

higher λ in shorter-lived life history strategies (Figure S2). Meanwhile, regardless of life153

history strategy, our scaling for a carrying capacity of 1 means that λ always equals 1 at a154

density of 1 (Figure S2).155

2.2 Selecting virtual species156

When all five vital rates can vary due to density dependence, the possible population157

models represent a large five-dimensional space. This would make it difficult to visualize158

how resilience and its response to density vary across life history strategies. To overcome159

this challenge, we selected a subset of 16 vital rate combinations that represent the ‘space’160

of life history strategies as archived in the COMADRE (Salguero-Gómez et al., 2016a)161

and COMPADRE (Salguero-Gómez et al., 2015) databases. In their versions 4.23.3.1 and162

6.23.5.0, these databases comprise 3,448 and 8,994 matrix population models for animals163

and plants, respectively. The majority of these models (>95%) have been digitized from164

the published literature. Here, we give a brief overview of how we used these databases to165

select our virtual species models. For the full details, see Appendix Section S2.166

We first defined a subset of high-quality models from the COMADRE and COMPADRE167

databases that represent wild populations under control (“unmanipulated”) conditions.168

Next, we collapsed each of those selected models to the same 2 × 2 matrix form given in169
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Equation 1 following (Salguero-Gómez and Plotkin, 2010), using the mpm collapse function170

in the Rage package (Jones et al., 2022). Finally, we performed a principal component171

analysis (PCA) on the collapsed empirical matrix population models to project the five172

vital rates into a reduced dimensional space (Figure S3). We retained the first two principal173

component (PC) axes because together they captured 70% of the variation among models174

from COMADRE and COMPADRE (PC1: 43.83%; PC2: 26.25%). PC1 was primarily175

explained by variation in survival (σj , σa) and progression (γ), such that longer-lived and176

late-maturing species score positively on PC1, while short-lived and fast-maturing species177

score negatively. PC2 was primarily influenced by reproductive output (ϕ), such that178

species with high reproductive output score positively on PC2 (Supplemental Table S1).179

As such, we refer to virtual species that fall in the upper left quadrant (low scores on PC1180

and high scores on PC2) as exhibiting fast life histories, and we refer to those that fall in181

the lower right quadrant (high scores on PC1 and low scores on PC2) as exhibiting slow182

life histories.183

To define our virtual species, we inspected the distribution of empirical values of vital184

rates in our final set of 1,285 collapsed two-stage models. Based on these distributions, we185

selected a high and low value for juvenile survival (σj), juvenile progression (γ), and adult186

survival (σa) (Table S2). For retrogression (ρ), we set the low value as 0 (no retrogression187

at all), and we set our high value near the mean of empirical values in models from the188

databases where retrogression was greater than 0 (Table S2). We then projected our189

virtual species models across density-dependent scenarios onto the PC axes as defined by190

the empirical models. Our virtual species models cover the space of naturally observed191

populations reasonably well (Supplemental Figure S3). Based on our model scaling, for192

some virtual species and density-dependent vital rate scenarios, the virtual species plotted193

at much higher values of PC2 than seen in the empirical models (Supplemental Figure S4).194
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For plotting and analyses, we restricted the virtual species to combinations of vital rates195

and density-dependent scenarios that had a score on PC2 of ≤ 5.1 for population densities196

between 0 and 1.197

2.3 Density-independent resilience metrics198

We explored how population density, via effects on individual vital rates, would impact199

previously-studied metrics of demographic resilience (Capdevila et al., 2020; Stott et al.,200

2011). These previously-studied metrics are density-independent, but we can calculate201

them for a population projection matrix built at a particular density. In essence, we an-202

alyzed how our understanding of resilience would change if demographers had measured203

vital rates when the population was at low density vs. high density. To do so, we calcu-204

lated compensation, resistance, and recovery time for the (density-independent) population205

projection matrix built from vital rates at various values of density between N = 0 and206

N = 1 (Figure 1A).207

Compensation is the propensity for a population to ‘boom’ after a disturbance. Com-208

pensation is calculated as the largest possible population size, relative to a population209

growing at a rate λ, in the first time step after a disturbance (Capdevila et al., 2022). In210

general, this maximum one-time-step population growth rate would occur when the entire211

population is concentrated in the most fecund stage class. In our two-stage model, this212

situation corresponds to a scenario where only adults remain after a disturbance.213

Resistance is the ability of a population to prevent further losses after a disturbance.214

Resistance is calculated as the smallest possible relative population size in the first time step215

after a disturbance (Stott et al., 2011). In general, this minimum one-time-step population216

growth rate would be achieved if the entire population were concentrated in the most217

vulnerable and least fecund stage class (e.g., juveniles in our two-stage model). Populations218
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can vary greatly in their degree of resistance from those whose abundance changes little219

following a disturbance even when individuals are concentrated in the most vulnerable and220

least fecund class (high resistance, metric close to 1) to those whose abundance crashes221

(low resistance, metric close to 0).222

Recovery time is here defined as the number of time steps until all possible stage-223

biased trajectories converged back to asymptotic dynamics. A stage-biased trajectory224

has an initial condition (i.e., following a disturbance) where all remaining individuals are225

in a single stage class. For each possible stage-biased initial condition, we iterated the226

population model until the one-step-ahead population growth converges to λ using the227

convt() function in the popdemo package (Stott et al., 2012). We then measured recovery228

time as the maximum time across the possible initial conditions. In our model, there are229

two possible stage-biased initial conditions: only adults, and only juveniles. Note that this230

definition of recovery time is a change from recent publications on demographic resilience231

which used a definition of recovery time closely based on the damping ratio (e.g., Capdevila232

et al., 2020; Capdevila et al., 2022). Past analyses have indicated that the damping ratio233

is a poor measure of time to convergence (Stott et al., 2011). All density-independent234

resilience metrics were calculated using the popdemo package in R (Stott et al., 2012).235

We analyzed the relationships between vital rates and resilience metrics in our virtual236

species using linear regression models in R (R Core Team, 2023). For each resilience237

metric, we fit two separate regression models. First, we fit a linear regression with strictly238

additive terms for all five vital rates. Second, we fit a linear regression for the first two239

principal component axes including additive terms and their interaction. We used these240

models to interpret the importance of different vital rates and the PC axes in driving the241

values of compensation, resistance, and recovery time by focusing on the effect sizes (i.e.,242

regression coefficients). However, we do not report p-values because statistical power is243
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artificial in virtual species approaches (White et al., 2014), such as the one presented here.244

In essence, any desired p-value could be achieved by modulating the sample size and the245

level of replication of each virtual species across multiple density values for multiple vital246

rate scenarios.247

Figure 1: Examples for some key calculations regarding demographic responses to disturbances
using transient dynamics. In both examples, reproduction decreases with increasing population
density, and the vital rates are juvenile survival σj = 0.4, juvenile progression γ=0.9, adult survival
σa = 0.6, and adult retrogression probability ρ=0. (A) At each value of population density (the
plotted points), we calculated the density-independent resilience metrics (compensation in pur-
ple, resistance in green) from the density-independent matrix population model evaluated at the
corresponding value of population density. We then fit a line to the log10-transformed resilience
metrics, finding in this example that compensation decreased with population density (negative
slope), while resistance increased with population density (positive slope). Note that we also cal-
culated the slope of density-independent recovery time in the same way. (B) The recovery process
of a density-independent and density-dependent model are distinct, even when they start from the
same initial conditions. For this combination of vital rates, the density-independent model requires
six time steps to recover back to asymptotic dynamics. Meanwhile, the density-dependent model
requires 12 time steps to recover back to the carrying capacity.

We also explored how life history strategy interacted with density-dependent effects on248

resilience metrics. To do so, we calculated the slopes of log10-transformed compensation,249

resistance, and recovery time with population density using the lm function in R v.4.3.2250

(R Core Team, 2023) (Figure 1A). We calculated these slopes for each combination of251

juvenile survival, progression, adult survival, and retrogression across the full range of252
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possible values for those vital rates. To examine broad differences across density-dependent253

scenarios, we plotted the distributions of slopes for each resilience metric as histograms for254

each density-dependent scenario. To relate these slopes to life history strategy, we focused255

on how slopes changed across the full range of possible values of adult survival (σa) and256

progression (γ). For a subset of virtual species across the full range of adult survival257

and progression but with a single value of juvenile survival (σj = 0.6) and retrogression258

(rho = 0.3), we plotted the slopes as colour contours using the levelplot function from259

the lattice package (Sarkar, 2008). We chose these two vital rates because of their clear260

mathematical connection with generation time (Gaillard et al., 2005), which is itself an261

important proxy for life history speed (Healy et al., 2019; Paniw et al., 2018; Salguero-262

Gómez et al., 2016b). When progression rate is high and adult survival is low, species would263

exhibit precocious maturation and short mature life span, leading to a short generation264

time–we refer to this type of life history as ‘fast.’ Conversely, when progression rate is low265

and adult survival is high, species would have delayed maturation and long mature life266

span, leading to a long generation time–therefore this would be a ‘slow’ life history.267

2.4 Analysis of transient envelopes268

The addition of density-dependence to vital rates in the population models we explored269

here fundamentally changed the transient dynamics of those models. Not only did the270

density-independent metrics of resilience change with population density, but the process271

of recovery itself changed. This is because the density-dependent model will be attracted272

back to its equilibrium population size (a single point), while the density-independent273

model will be attracted to the asymptotic growth rate (a curve) (Figure 1B). Following274

Stott et al. (2011), we projected our virtual species forward in time from an all-juvenile275

or all-adult post-disturbance distribution, starting from a population density of 1. For276
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the first time step, the density-dependent and density-independent models are the same277

(Figure 1B). However, the entries of the density-dependent matrix model vary through278

time as density affects its target parameter: one of the five vital rates in our two-stage279

matrix population model (Eq. 1).280

We examined whether the density-independent transient period is predictive of the281

density-dependent transient period. To that end, we calculated the recovery time in both282

models, and compared them. In the density-independent model, the recovery time is (as283

explained above) the elapsed time before both the upper and lower transient bounds return284

to following asymptotic dynamics (Stott et al., 2012). Because the transient bounds are285

calculated by iterating the standardised model (Â = A/λ; Stott et al. 2011), population286

size in the standardised model stops changing when the model converges (solid blue line287

in Fig. 1B). In the density-dependent model, the transient bounds will both eventually288

return to a population size of 1, the carrying capacity we pre-defined for our density-289

dependent models (dashed orange line in Fig. 1B). We defined the density-dependent290

recovery time as the time until the distance between the upper and lower bound was291

smaller than 0.1; this distance could be achieved when both bounds cross within 5% of292

the carrying capacity, or when one of the bounds has reached carrying capacity and the293

other is 0.1 population size units away. To compare these two values of recovery time, we294

defined the difference in recovery time (∆RecoveryT ime) as the difference between the295

density-independent definition of recovery time (convt() from the popdemo package; Stott296

et al. 2011) and the density-dependent definition of recovery time (as defined here).297

We also investigated how life history traits relate to the convergence time of the density-298

dependent model. We focused on generation time as a proxy for the position of the species299

along the fast-slow continuum (Gaillard et al., 2005), and the degree of parity as a measure300

of reproductive strategy (Salguero-Gómez et al., 2016b). For generation time, we calculated301
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the average age difference between parents and offspring (Bienvenu and Legendre, 2015).302

For degree of parity, we calculated Demetrius’ entropy, which measures how spread out303

reproduction is across an individual’s lifespan (Demetrius, 1977). Previous research has304

shown that both life history traits adequately capture a species’ life history strategy (Healy305

et al., 2019; Paniw et al., 2018; Salguero-Gómez et al., 2016b). For both life history traits,306

we used the functions gen time and entropy d, respectively, from the Rage package (Jones307

et al., 2022).308

We note that, in our comparisons of density-dependent and density-independent mea-309

sures of convergence time, we present p-values for correlation coefficients and an ANOVA310

analysis. In this section, each combination of a virtual species and density dependence311

scenario occurs at most once, for a sample size of 54 models. We acknowledge that the312

p-values are a tenuous measure of significance (see White et al. 2014), but we argue that313

the p-values provide a useful benchmark for examining the patterns resultsing from our314

analyses.315

3 Results316

Density dependence affected our interpretation of demographic resilience. The strength317

and direction of the impact of density dependence on resilience metrics depended on both318

life history strategy and the specific vital rate target of density dependence. Because of319

our model scaling, faster life histories exhibited stronger density-dependent effects on their320

overall population growth rate (Figure 2A). Indeed, because we scaled the reproductive321

output (ϕ) so that all virtual species would have a carrying capacity of 1, fast life histories322

have high reproductive output and high values of population growth rate (λ) at low density,323

as evidenced by red colour (low λ) being associated with small points (low density), in324

the top-left area of Figure 2A (fast life history space). Equivalent patterns are not as325
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pronounced in the bottom right of the figure (slow life history space).326

Figure 2: Resilience metrics in virtual species models change across life history strategies and
density-dependent scenarios for (A) population growth rate, (B) compensation, (C) resistance,
and (D) recovery time. The vital rates are: juvenile survival (σj), adult survival (σa), juvenile
progression (γ), adult retrogression (ρ), and reproductive output (ϕ). The principal component
(PC) axes were defined by the matrix population models parameterised with data from natural/wild
populations under control conditions from 1,285 populations of animals and plants (see Figure S3).
The virtual species have then been projected onto the PC axes. Life history speed generally increases
with PC2 (increasing reproductive output), and decreases with PC1 (increasing survival), such that
slow life histories are located towards the bottom-right of the PCA space and fast life histories are
located towards the top-left. Each virtual species was modelled with density-dependence on each
of the five vital rates (see top-right insert in panel B). For each density-dependent scenario, the
virtual species model was calculated for six values of density between 0 and 1 (plot symbols sized
according to population density).

In our virtual species models, compensation was most strongly influenced by repro-327
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ductive output (Figure 2B, Supplemental Table S3). Although most vital rates influenced328

compensation, the coefficients were both positive and negative (Supplemental Table S3).329

As a result, the effect of PC1 on compensation was much smaller than the effect of PC2330

(Supplemental Table S3). As such, virtual species with higher reproductive output and331

faster life histories exhibited higher compensation (redder colours in the upper left of Figure332

2B). Conversely, resistance was highest in species with slow life histories (redder colours333

to the lower right of Figure 2C). Resistance was most strongly influenced by juvenile sur-334

vival, with limited influence from other vital rates (Supplemental Table S3). Recovery335

time decreased with adult survival and juvenile survival, but increased with retrogression336

(Supplemental Table S3). As a result, recovery time was longest in virtual species with337

low survival and high retrogression (redder colours to the far left in Figure 2D).338

Compensation either increased or decreased with population density, depending on339

the vital rate that was affected by density dependence (Figure 3). Compensation always340

decreased at higher population density (negative slope) when reproductive output was den-341

sity dependent, and always increased at higher population density (positive slope) when342

density-dependence acted via juvenile survival (Figure S5). When density dependence op-343

erated via adult survival, the response of compensation to density was rather weak (Figure344

3), with the distribution of slope values centered on 0 (Figure S5). For progression and345

retrogression, compensation tended to increase with density (positive slopes; Figure 3), al-346

though the distribution crossed 0 (Figure S5). The response to density was clearly stronger347

when reproductive output or juvenile survival were density-dependent (absolute value of348

mean slope ≈ 0.2, Supplemental Figure histograms), in agreement with our results in Fig-349

ure 2B that compensation was most closely related to reproductive output and juvenile350

survival.351

In general, fast and slow life histories exhibited similar slopes of compensation across352
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densities (Figure 3). In other words, moving from a fast to a slow life history did not indicate353

a change in how strongly compensation would respond to density when reproductive output,354

progression, and juvenile survival were density dependent (see how the color contours355

in Figure 3 connect the upper left and lower right corners of the panels for ϕ, γ, and356

σj). However, when retrogression was density-dependent, then the strongest response357

of compensation to population density was in species with a slow life history (delayed358

progression and high adult survival).359

Resistance tended to increase with population density in all scenarios except for density-360

Figure 3: Strength of density effects on compensation varies with both life history strategy and
density-dependence scenarios. The color contours indicate the slope of compensation as a function
of population density. Redder colors indicate that compensation increased with increasing popu-
lation density, while bluer colors indicate that compensation decreased with increasing population
density. Slow life histories are in the upper left of each panel, and fast life histories are in the
lower right. These slope surfaces are shown for models with intermediate juvenile survival σj = 0.6
and with retrogression rate ρ = 0.3 To see how slope changed across juvenile survival σj and adult
retrogression ρ values within each scenario, see Figures S10-S9.
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dependent juvenile survival (Figure 4 and S11). Like for compensation, the strongest361

response to population density was observed for the density-dependent reproductive output362

and juvenile survival cases. When reproductive output was density-dependent, resistance363

increased with population density most strongly in fast life histories, and the response364

was weaker in slow life histories. When juvenile survival was density-dependent, changes365

in slope were not related to life history speed; instead, the steepest slope emerged when366

individuals matured early and had high adult survival (Figure 4).367

Figure 4: Strength of density effects on resistance varies with both life history speed and density-
dependence scenarios. The color contours indicate the slope of resistance as a function of population
density. Figure details are the same as in Figure 3. To see how slope changed across σj and ρ values
within each scenario, see Figures S16-S15.

Responses of recovery time to changes in population density were highly variable (Fig-368

ure 5). The steepest slopes of recovery time with density were seen when progression or369

reproductive output were density-dependent. When progression or reproductive output370
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Figure 5: Strength of density effects on recovery time varies with both life history strategy and
density-dependence scenarios. The color contours indicate the slope of recovery time as a function
of population density. Figure details are the same as in Figure 3. To see how slope changed across
juvenile survival σj and adult retrogression ρ values within each scenario, see Figures S22-S21.

were density-dependent, recovery time decreased at higher population densities for slow371

life histories, and recovery time increased at higher population densities for fast life histo-372

ries (Figure 5). In the other vital rate cases, the response of recovery time to changes in373

density did not follow any consistent patterns.374

Adding density dependence to our demographic models fundamentally changed the pro-375

cess of recovery, as shown in Figure 1B. Because we tuned our models such that the carrying376

capacity is at a population size/density of 1, we can compare the transient envelopes from377

the density-independent and density-dependent cases. We show one example in Figure 1B,378

but note that the shapes of the transient envelopes can vary dramatically across our vir-379

tual species and depending on which vital rate is density-dependent (Supplemental Figures380
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S23-S27).381

Figure 6: The density-independent (DI) model under-predicts recovery time compared with the
density-dependent (DD) model. Panel A shows the relationship between density-independent re-
covery time and density-dependent recovery time for the virtual species models. Panel B shows the
same virtual species on the PCA space as in Figure 2, colored according to ∆RecoveryT ime. Panels
C and D show how ∆RecoveryT ime relates to the generation time (C) and degree of iteroparity
(D). The different shapes, across all panels, indicate the different density-dependent vital rate sce-
narios. The color scale shown in panel C applies to panel D as well.

The recovery time of the density-independent model nearly always under-predicted the382
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recovery time of the density-dependent model, without a significant relationship between383

the two recovery time measures (r = 0.03, p = 0.80; Figure 6A). There was no pattern to384

the offset between recovery time in the density-dependent and density-independent models385

(∆RecoveryT ime) based on which vital rate was the target of density dependence (ANOVA386

F4,49 = 0.787, p = 0.54). In the vital rate PCA space, ∆RecoveryT ime increased along387

PC1 (∆RecoveryT ime = β1 ∗ PC1 + β2 ∗ PC2: β1 = 11.8, p=0.01; β2 = 8.1, p=0.12),388

indicating that species with greater survival and delayed progression should take longer389

to recover (Figure 6B). Moreover, we found a significant correlation of ∆RecoveryT ime390

with both generation time (r = 0.44, p < 0.001) and iteroparity (r = 0.37, p = 0.005). In391

other words, as generation time increased or species became more iteroparous, the density-392

independent model was worse at predicting recovery time of the density-dependent model.393

If adult survival was density-dependent, then the density-independent model performed394

particularly poorly (Figure 6C and D).395

4 Discussion396

In the face of myriad disturbances that characterise the Anthropocene, the study of re-397

silience promises to help ecologists and managers identify the species and ecosystems most398

likely to persist (Enquist et al., 2024). Resilience is closely related to concepts of sta-399

bility (Hastings et al., 2018) and, in demographic models, long-term asymptotic system400

behavior (Capdevila et al., 2020; Stott et al., 2011). Although population density has401

important impacts on individual and population performance (e.g., Bonenfant et al., 2009;402

Layton-Matthews et al., 2019; Takada and Nakashizuka, 1996), density-dependence has403

been neglected in past studies of demographic resilience. Here, we show that density404

dependence has profound and complex impacts on our understanding of demographic re-405

silience. Depending on which vital rate (e.g., survival, reproduction) is subject to density406
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effects, existing measures of demographic resilience (compensation, resistance, and recov-407

ery time sensu Capdevila et al. 2022; Stott et al. 2011) can either increase or decrease408

with population density. Importantly, the strength of density-dependence in our resilience409

metrics was often uncorrelated with life history speed: the apparent resilience of fast and410

slow life histories often responded the same way to density-dependence. We also found that411

the recovery time of a density-independent model did not predict the recovery time of the412

corresponding density-dependent model. In fact, the offset between the density-dependent413

and density-independent definitions of recovery time were correlated with life history: in414

species with longer generation time and greater iteroparity, the density-independent model415

is even worse at predicting recovery time of the underlying density-dependent dynamics.416

Our results generally agree with past examinations linking metrics of demographic re-417

silience and life history traits. For instance, using 162 populations of 69 animal species418

from COMADRE and 748 populations of 232 plant species from COMPADRE, all explicitly419

density-independent, Capdevila et al. (2024) showed that species with high reproductive420

output compensate more, resist less and tend to take longer to recover. Here, we found the421

effects of reproductive output on compensation, resistance, and recovery time to be in the422

same direction as previously reported, but the effect of reproductive output was only domi-423

nant over other vital rates in the relationship with demographic compensation. Generation424

time, a strong marker of life history speed (Gaillard et al., 2005), was found to influence425

the transient dynamics across 111 mammal species (Gamelon et al., 2014). Additionally,426

Capdevila et al. (2022) found that slow life histories take longer to recover following a427

disturbance. In agreement with this finding, here we report longer recovery times for428

slow life histories, as well as more severe under-estimation of recovery time in the density-429

independent compared with density-dependent model (∆RecoveryT ime). These authors430

also found kingdom-specific responses for resistance: resistance increases with generation431
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time in animals but decreases in plants (Capdevila et al., 2024). These kingdom-specific432

responses may be linked via the more frequent ability of plants to shrink (Salguero-Gómez433

and Casper, 2010) than in animals (but see Wikelski and Thom 2000), an aspect that can434

be explicitly explored in future steps via our flexible structured population model. Regard-435

less, the general agreement between both studies and ours, despite their lack of explicit436

consideration of density dependence, may be due to their strict data selection criteria,437

which might have implicitly incorporated self-regulation effects in the matrix models.438

In some cases, we found counter-intuitive relationships between resilience and density.439

For example, when juvenile survival was density-dependent, compensation increased with440

population density. This counter-intuitive result arises from an indirect effect of density on441

compensation, via the direct effect of density on population growth rate (λ). Compensation442

is calculated as the maximum column sum of the standardized population matrix (Â).443

Given that survival rates are bounded between 0 and 1, while fertility rates are often greater444

than 1 (Salguero-Gómez et al., 2015; Salguero-Gómez et al., 2016a), compensation is often445

determined by the fertility entries. Therefore, in our two-stage model, compensation is446

determined by the second column sum of Â. So how does the density effect on juvenile447

survival, which appears only in the first column, impact compensation? The change in448

compensation arises because of the standardization (Â = A/λ). As juvenile survival449

decreases with density, λ decreases, and so the sum of the second column of Â actually450

increases. The same general principle applies for each of the vital rate scenarios where451

resistance increased with increasing density. This indirect effect of vital rates on resilience452

via a change in λ is both striking and easily interpreted in our two-stage model, but we may453

expect different results in larger, more complex life cycles and their resulting structured454

population models. Unlike the 2×2 model that we used here, most (93%) matrix population455

models archived in COMADRE and COMPADRE have more than two stages. In fact, 89%456
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of the models that we used for selecting our virtual species model were 3× 3 or larger, and457

53% of them were 5× 5 or larger (Supplemental Figure S28).458

Our findings have important implications for the study of invasive species. Amplifica-459

tion (here referred to as compensation), one of the three key components of demographic460

resilience (Capdevila et al., 2020), has recently been reported to be a strong predictor of in-461

vasiveness (Iles et al., 2016; Jelbert et al., 2019). However, neither of these two works dealt462

with models that explicitly incorporated density dependence - although we did find here463

that compensation and reproductive output are correlated in density-dependent models.464

Early in the invasion of a species, logically population size (and thus density) tends to be465

low, a feature that has attracted much attention via the so-called ‘paradox of invasion’ (Sax466

and Brown, 2000). However, the extent to which amplification remains a good predictor467

of performance of invasive populations as they become established, and how amplification468

may clarify the paradox of invasion, are promising next steps of research.469

Our findings clearly highlight the need for more research aimed at understanding the470

role of density dependence in populations at risk of extinction. We found that the currently-471

available density-independent demographic models underestimate recovery time if the un-472

derlying vital rates are density-dependent. The underestimation of recovery time was most473

severe when species have long generation times and/or high iteroparity. Because animal474

species with long generation times are also more vulnerable to extinction under climate475

change (Pearson et al., 2014), understanding how these species respond to changes in pop-476

ulation density may be most urgent. Interestingly, generation time does not appear to be477

a strong predictor of extinction risk in plants (Hernández-Yáñez et al., 2022; Salguero-478

Gómez, 2017), suggesting that different processes may be most important. In vertebrates,479

the vital rates with the strongest evidence of density dependence are age or size of maturity480

(e.g. progression in our model) and reproductive output (Bassar et al., 2010). Meanwhile,481
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we found that resilience was most impacted by density-dependent effects when either repro-482

ductive output or juvenile survival were the targets of density dependence. Taken together,483

this suggests that density effects on reproductive output may be the best place to start484

integrating density-dependence into demographic models.485

The existing framework of demographic resilience is insufficient to examine the tra-486

jectory of a density-dependent model after a disturbance. Instead of analysing the de-487

mographic resilience of a fully-specified density-dependent matrix population model, we488

built a series of hypothetical density-independent models by calculating the vital rates489

that a population would have at each population density. We were constrained to this490

approach because the framework of demographic resilience relies on analysis of population491

size relative to the asymptotic population growth and requires that populations start from492

a population size/density that is standardised to 1 following a one-off (i.e., pulse) distur-493

bance (Stott et al., 2011; Stott et al., 2012). These generalisations make less sense in a494

density-dependent scenario where the model has an asymptotic population growth rate495

(λ) of 1 (no net growth once the population reaches equilibrium). Instead, for density-496

dependent models, measuring relative to carrying capacity is more relevant and encom-497

passes elements of both population size and asymptotic stability. Indeed, in our models498

we set carrying capacity, rather than initial population size, to equal 1. As a result, our499

density-dependent transient analyses measure the recovery time back to the equilibrium500

population size and structure (see example in Figure 1B). Past work examining the dynam-501

ics of density-dependent structured population models has focused on the local stability502

of the carrying capacity, defining reactivity as the propensity of perturbations from equi-503

librium to grow before decaying back to the stable equilibrium (Caswell, 2019; Caswell504

and Neubert, 2005; Neubert and Caswell, 1997). This approach, like what we have done505

here, focuses on perturbations to the system when it is at equilibrium. However, Caswell506
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(Caswell, 2019, p. 207) notes that the local stability approach is based on the inherent507

system dynamics, while the indices put forward by Stott and colleagues (Capdevila et al.,508

2020; Stott et al., 2011) are based on the transient responses to a particular initial condi-509

tion. Further work will be needed to analyse the transient responses of density-dependent510

models to perturbations that cause a particular initial condition. Still, we have shown511

that there is one resilience metric that can be generalised to both density-dependent and512

density-independent models: recovery time. We found that density-dependent recovery513

time was nearly always longer than density-independent recovery time, indicating that the514

non-linear model has a greater probability of long transient periods (Hastings et al., 2018).515

In our modelling framework, density dependence and disturbance are separate pro-516

cesses, but it is likely that they interact in natural systems. In a perennial plant population,517

the impact of density on both vital rates and population growth rate depended on whether518

the plot had experienced a fire that year or not (Gornish, 2013). For red deer (Cervus519

elaphus) in Scotland, the cessation of culling led to both changes in population density and520

population structure, resulting in long-term transient dynamics and density-dependent os-521

cillations (Coulson et al., 2004). Transient life table response experiment (LTRE) analysis522

holds the potential to disentangle the effects of variation in vital rates and variation in523

population structure (Knape et al., 2023; Koons et al., 2016), such as could result from the524

interacting effects of density-dependence and disturbance. However, transient LTREs have525

so far been underutilized, perhaps because fewer than 40% of the publications archived in526

the COMADRE and COMPADRE databases (a representative sample of published matrix527

population models) include data on observed population distributions (Gascoigne et al.,528

2023).529

In spite of the idiosyncratic patterns of resilience across densities and life history strate-530

gies, a few patterns with life history strategy remain reliable. Specifically, compensation531
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is greatest and resistance lowest in fast life histories, and vice versa in slow life histories.532

Additionally, we found that recovery time estimates from the density-independent frame-533

work were furthest from the recovery time of the true underlying density-dependent model534

in virtual species with long generation times and high iteroparity. Therefore, identifying535

density-dependent effects in more slow-living species, where there are already more conser-536

vation concerns (Lande 1998; Purvis et al. 2000, but see Paniw et al. 2018) may be most537

urgent for predicting responses to disturbance and management intervention. Finally, to538

truly understand the resilience of natural populations of plants and animals, then we must539

update transient dynamics methods and the demographic resilience framework to accom-540

modate time-varying vital rates. These advances will substantially improve our ability to541

predict the responses of species to the myriad and increasingly frequent disturbances they542

face.543
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report discrete stage-structured demographic information. Methods in Ecology and

Evolution, 14 (8), 2065–2083. https://doi.org/10.1111/2041-210X.14164

Gornish, E. S. (2013). Effects of density and fire on the vital rates and population growth of

a perennial goldenaster. AoB PLANTS, 5. https://doi.org/10.1093/aobpla/plt041

32



Hare, J. A., Morrison, W. E., Nelson, M. W., Stachura, M. M., Teeters, E. J., Griffis,

R. B., Alexander, M. A., Scott, J. D., Alade, L., Bell, R. J., et al. (2016). A vul-

nerability assessment of fish and invertebrates to climate change on the northeast

US continental shelf. PloS one, 11 (2), e0146756.

Hastings, A. (2010). Timescales, dynamics, and ecological understanding. Ecology, 91 (12),

3471–3480.

Hastings, A., Abbott, K. C., Cuddington, K., Francis, T., Gellner, G., Lai, Y.-C., Morozov,

A., Petrovskii, S., Scranton, K., & Zeeman, M. L. (2018). Transient phenomena in

ecology. Science, 361 (6406), eaat6412. https://doi.org/10.1126/science.aat6412

Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R., & Buckley, Y. M. (2019).
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population growth for models with environmental and demographic stochasticity.

Journal of Animal Ecology, 92 (10), 1979–1991. https://doi.org/10.1111/1365-

2656.13990

Koons, D. N., Iles, D. T., Schaub, M., & Caswell, H. (2016). A life-history perspective on the

demographic drivers of structured population dynamics in changing environments.

Ecology Letters, 19 (9), 1023–1031. https://doi.org/10.1111/ele.12628

Lande, R. (1998). Anthropogenic, ecological and genetic factors in extinction and conser-

vation. Researches on Population Ecology, 40, 259–269.

34



Layton-Matthews, K., Loonen, M. J. J. E., Hansen, B. B., Coste, C. F. D., Sæther, B.-E.,

& Grøtan, V. (2019). Density-dependent population dynamics of a high Arctic

capital breeder, the barnacle goose. Journal of Animal Ecology, 88 (8), 1191–1201.

https://doi.org/10.1111/1365-2656.13001

Levin, L., Caswell, H., Bridges, T., DiBacco, C., Cabrera, D., & Plaia, G. (1996). Demo-

graphic responses of estuarine polychaetes to pollutants: Life table response exper-

iments. Ecological Applications, 6, 1295–1313. https://doi.org/10.2307/2269608

McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K.,

Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., et al. (2020). Fire

as a fundamental ecological process: Research advances and frontiers. Journal of

Ecology, 108 (5), 2047–2069.

Meekins, J. F., & McCarthy, B. C. (2002). Effect of population density on the demography

of an invasive plant (Alliaria petiolata, Brassicaceae) population in a southeastern

Ohio forest. The American midland naturalist, 147 (2), 256–278.

Metz, M. R., Sousa, W. P., & Valencia, R. (2010). Widespread density-dependent seedling

mortality promotes species coexistence in a highly diverse amazonian rain forest.

Ecology, 91 (12), 3675–3685.

Neubert, M. G., & Caswell, H. (1997). Alternatives to resilience for measuring the responses

of ecological systems to perturbations. Ecology, 78 (3), 653–665.

Neubert, M. G., & Caswell, H. (2000). Density-dependent vital rates and their population

dynamic consequences. Journal of Mathematical Biology, 41 (2), 103–121. https :

//doi.org/10.1007/s002850070001

Oli, M. K., Slade, N. A., & Dobson, F. S. (2001). Effect of density reduction on Uinta

ground squirrels: Analysis of life table response experiments. Ecology, 82, 1921–

1929. https://doi.org/10.1890/0012-9658(2001)082\[1921:EODROU\]2.0.CO;2

35
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Section S1 Model tuning for density dependence

For each scenario, we solved analytically for per-capita reproductive output (ϕ) or max-

imum per-capita reproductive output (ϕmax) value that corresponds to the population

model having its equilibrium population size (‘carrying capacity’) at a density of 1. Density

is calculated as a simple sum of the number of juveniles and adults (N(t) = nj(t)+na(t)).

The method for solving for ϕ or ϕmax is as follows:

A. Write the population projection matrix with one vital rate as a function of density,

following the form r(N) = rmaxe
−bN .

B. Solve for the equilibrium population distribution for juveniles n̂j and adults n̂a that

are unchanged by projection to the next time step.

C. Set n̂j + n̂a = 1 and solve for ϕ (or ϕmax in the case where ϕ is the density-dependent

vital rate).

The analytical solutions are as follows:

Density-dependent juvenile survival

ϕ =

[
1− (1− γ)σj,maxe

−b
]
[(1− γ)− σa(1− ρ)(1− γ)]

γ(1− γ)σj,maxe−b
− σaρ (S1)

Density-dependent progression

ϕ =
−1

σjγmaxe−b

[
σaρ(σj − 1) + (σa − 1)

(
1− σj(1− γmaxe

−b)
)]

(S2)

1



Density-dependent adult survival

ϕ =
1− σj(1− γ)− σa,maxe

−b [σjγρ+ (1− ρ)(1− σj(1− γ))]

σjγ
(S3)

Density-dependent retrogression

ϕ =
1

σjγ
[(1− σa) (1− σj(1− γ))− σaρmax ln 2(σj − 1)] (S4)

Density-dependent reproductive output

ϕmax = eb
(
[1− σj(1− γ)] [1− σa(1− ρ)]

σjγ
− σaρ

)
(S5)

Section S2 Selecting virtual species

We subsetted the COMADRE Animal Matrix Database (Salguero-Gómez et al., 2016)

and the COMPADRE Plant Matrix Database (Salguero-Gómez et al., 2015) to matrix

population models that are ergodic, irreducible, and primitive. Doing so guarantees the

existence of a single dominant eigenvalue (Caswell, 2001, pp. 83-85). We imposed a series

of selection criteria on the 3,488 matrix population models available in COMADRE (v.

4.23.3.1) and 8,994 models in COMPADRE (v. 6.23.5.0) to ensure fair comparisons. The

criteria are as follows: We retained only models (1) built from demographic data on both

survival and reproduction, so complete life-cycle information was available; (2) collected in

observational (“wild”, i.e., non-laboratory) settings without experimental manipulations

so the models would reflect the dynamics of natural populations; and (3) published and

digitized such that survival and reproduction are separable (i.e., there are separate F and

U matrices). The latter criterion is particularly necessary here to separate the proportion

of the matrix element a1,2 that corresponds to reproductive output vs. to (potentially)

2



retrogression. Finally, (5) we excluded models with clonal reproduction because permitting

fair comparisons between studies with and without clonal reproduction requires careful

consideration of ramet vs. genet dynamics (Janovský and Herben, 2020) and their emergent

vital rates (Salguero-Gómez, 2018). As such, in our virtual species model, we also do not

include clonal reproduction.

For each matrix population model that met our criteria, we coerced it into the same

model formulation as Equation 1, that is, a two stage model. When models are digitized for

the databases, each stage of the model is identified as a propagule, an active member of the

population, or a dormant member of the population. Based on the non-zero columns of the

fertility (F) matrix, we can also identify each life stage as reproductive or non-reproductive.

With the columns of the fertility (F) and survival-growth (U) matrices correctly identified,

we can collapse the models down into a 2×2 matrix model matching Equation 1 (Salguero-

Gómez and Plotkin, 2010). This last step was performed using the mpm collapse function

in the Rage package (Jones et al., 2022) in the R programming language.

We then eliminated any collapsed models with incorrect survival values (σj or σa >1).

Finally, we restricted our set of observed models to those with a population growth rate

(λ, the dominant eigenvalue of the projection matrix) between 1.0 and 1.6. We chose

this range as a realistic comparison with our density-dependent models: at equilibrium

(“carrying capacity”), our virtual species models will have λ = 1 and in early tests of the

density-dependent reproductive output case, the highest population growth (atN → 0) was

λ ≈ 1.6. Finally, we removed models with extremely high or extremely low reproductive

output, with outliers defined as values for ϕ that fall outside of the interval [LQ − 1.5 ∗

IQR,UQ+1.5∗ IQR], where LQ is the lower quartile, UQ is the upper quartile, and IQR

is the interquartile range. This final step resulted in a matrix population model for 410

animal, 872 plant, and three fungi populations, representing 100, 204, and one species,

3



respectively (Supplemental Materials Table S4).

With our final filtered set of collapsed population models, we used a principal compo-

nents analysis (PCA) to define the space of ‘observed life history strategies’ (Figure S3).

This two-dimensional space captured 70% of the variation among models from COMADRE

and COMPADRE (PC1: 43.83%; PC2: 26.25%). PC1 was primarily explained by variation

in survival (σj , σa) and progression (γ), such that longer-lived and late-maturing species

score positively on PC1, while short-lived and fast-maturing species score negatively. PC2

was primarily influenced by reproductive output (ϕ), such that species with high reproduc-

tive output score positively on PC2 (Supplemental Table S1). As such, we refer to virtual

species that fall in the upper left quadrant (low scores on PC1 and high scores on PC2)

as exhibiting fast life histories, and we refer to those that fall in the lower right quadrant

(high scores on PC1 and low scores on PC2) as exhibiting slow life histories.

To define our virtual species, we inspected the distribution of empirical values of vital

rates in our final set of 1,285 collapsed two-stage models. Based on these distributions, we

selected a high and low value for adult survival (σa), juvenile survival (σj), and progression

(γ) (Table S2). For retrogression (ρ), we set the low value as 0 (no retrogression at all),

and we set our high value near the mean of empirical values in models from the databases

where retrogression was greater than 0 (Table S2). We then projected our virtual species

models across density-dependent scenarios onto the PC axes as defined by the empirical

models. Our virtual species models cover the space of naturally observed populations

reasonably well (Supplemental Figure S3). Based on our model scaling, for some virtual

species and density-dependent vital rate scenarios, the virtual species plotted at much

higher values of PC2 than seen in the empirical models (Supplemental Figure S4). For

plotting and analyses, we restricted the virtual species to combinations of vital rates and

density-dependent scenarios that had a score on PC2 of ≤ 5.1 for population densities

4



between 0 and 1.

As these two axes together explain a sufficient amount of variation (>70%), we used

these two components to visualize the space occupied by the different life history strategies,

as well as to describe how the resilience components of our virtual species are influenced

by vital rates and the PC axes (Supplemental Table S3).
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mer, V., Wille, J., Voigt, J., Zeh, S., Vieregg, D., Buckley, Y. M., Che-Castaldo,

J., . . . Vaupel, J. W. (2016). COMADRE: A global data base of animal demogra-

5



phy. Journal of Animal Ecology, 85 (2), 371–384. https://doi.org/10.1111/1365-

2656.12482
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Section S3 Supplemental Figures and Tables

Table S1: The contribution of each vital rate to the first two principal component axes (PC1 and
PC2). Loadings in bold indicate a high contribution (greater than ±0.50) of the life-history trait
to the PC axis.

Vital rate Symbol PC1 PC2

Juvenile survival σj 0.579 0.269
Progression γ -0.529 -0.408
Adult survival σa 0.569 0.123
Retrogression ρ 0.094 0.450
Reproductive output ϕ -0.230 0.735

Proportion of variance 0.438 0.263
Cumulative proportion of variance 0.438 0.701
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Table S2: Empirical and modelled values of vital rates. Empirical values come from the matrix
population models from the COMADRE and COMPADRE databases (model selection and vital
rate estimation is described in Appendix Section S2). Based on inspection of the distribution of
empirical values, we selected the high and low values for each vital rate as seen here.

Empirical models Virtual species
Parameter Mean Std. dev. Low value High value
σj 0.66 0.28 0.4 0.9
γ* 0.34 0.35 0.1 0.9
σa 0.84 0.23 0.6 0.95
ρ** 0.23 0.25 0 0.3

* The empirical distribution of values for γ was bimodal with values close to 0 and 1 being more
common than intermediate values.
** The empirical mean and standard deviation for ρ were calculated for only models where some
retrogression was observed (ρ > 0).

Table S3: The effects of vital rates and principal component axes on the resilience metrics of
compensation, resistance, and recovery time in our virtual species. For each resilience metric, we fit
two separate regression models. First, we fit a linear regression with strictly additive terms for each
vital rate. Second, we fit a linear regression for the principal component axes including additive
terms and their interaction.

Vital rate Symbol
Regression coefficient

Compensation Resistance Recovery Time

Juvenile survival σj -0.402 0.838 -3.679
Progression γ -0.351 -0.085 0.588
Adult survival σa 0.626 -0.076 -4.689
Retrogression ρ 0.152 0.048 2.687
Reproductive output ϕ 0.771 -0.036 0.201

PC axis 1 -0.094 0.135 -0.805
PC axis 2 0.604 -0.060 -0.383
Interaction PC1 and PC2 -0.023 0.002 -0.705
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Figure S1: An example of how our model scaling affects maximum reproductive output (ϕmax)
across other vital rates. In this case, reproductive output is density-dependent, and the model is
scaled such that the population is at its carrying capacity (λ = 1) when population density (na+nj)
is equal to 1. In each panel, we show how ϕmax varies across progression (γ) and adult survival (σa)
for a given value of juvenile survival (σj) and retrogression (ρ). The color scales are log10(ϕmax).
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Figure S2: Population growth rate (λ) and per-capita reproductive output (ϕ) across population
density for 16 virtual species models.

9



Figure S3: Principal component analysis (PCA) of life history strategies based on the two-stage
population model given in Equation 1. The parameters are: juvenile survival (σj), juvenile progres-
sion (γ), adult survival (σa), adult retrogression (ρ), and reproductive output (ϕ). The PCA space
is defined by the observed models (colored circles, sized according to their asymptotic population
growth rate, λ). The virtual species, shown in black, were then projected onto the PCA space.
Each virtual species was modelled with density-dependence on each of the five vital rates (shown
with different shapes), and each density-dependent scenario was plotted for six values of density
between 0 and 1, sized according to λ. Note that this figure excludes values of PC2 >5.1.
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Figure S4: Some of the virtual species and density-dependent vital rate scenarios corresponded
to extreme values of PC2, falling far from the space defined by empirical models. Figure details are
the same as in Figure S3.
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Figure S5: The distribution of compensation slope values depends on which vital rate is the
target of density dependence. For each density-dependence scenario, we calculated the slope of
compensation across densities (i.e., a in log10(C) = a ∗N + b, where N is population density and
C is the compensation of the population projection matrix calculated at each value of N) for the
full range of possible vital rates: σj ∈ [0.01, 1]; γ ∈ [0.01, 0.95]; σa ∈ [0, 0.95]; and ρ ∈ [0, 1]. For
each vital rate, we calculated slopes at 10 values, yielding a total of 104 vital rate combinations for
each density-dependence scenario. In each panel, a slope of 0 is highlighted with a solid red line,
and the mean value of slopes across all tested vital rate combinations is shown with a thick vertical
dashed line.
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Figure S6: Strength of density effects on compensation when juvenile survival is density-
dependent. We calculated the slope of compensation across population densities (logC ∼ Nt)
for many possible parameter combinations across: σa ∈ [0, 0.95], γ ∈ [0.01, 0.95], σj = 0.3, 0.6, 0.9,
and ρ = 0, 0.3. A single color scale is used for all panels. Slow life histories are in the upper left of
each panel, and fast life histories are in the lower right.
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Figure S7: Strength of density effects on compensation when juvenile progression rate is density-
dependent. Details are the same as Figure S6.
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Figure S8: Strength of density effects on compensation when adult survival is density-dependent.
Details are the same as Figure S6.
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Figure S9: Strength of density effects on compensation when retrogression rate is density-
dependent. Details are the same as Figure S6.
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Figure S10: Strength of density effects on compensation when reproductive output is density-
dependent. Details are the same as Figure S6.
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Figure S11: The distribution of resistance slope values depends on which vital rate is the target
of density dependence. Details are the same as in Figure S5.
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Figure S12: Strength of density effects on resistance when juvenile survival is density-dependent.
Details are the same as Figure S6.
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Figure S13: Strength of density effects on resistance when juvenile progression rate is density-
dependent. Details are the same as Figure S6.
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Figure S14: Strength of density effects on resistance when adult survival is density-dependent.
Details are the same as Figure S6.
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Figure S15: Strength of density effects on resistance when retrogression rate is density-dependent.
Details are the same as Figure S6.
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Figure S16: Strength of density effects on resistance when reproductive output is density-
dependent. Details are the same as Figure S6.
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Figure S17: The distribution of recovery time slope values depends on which vital rate is the
target of density dependence. Details are the same as in Figure S5.
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Figure S18: Strength of density effects on recovery time when juvenile survival is density-
dependent. Details are the same as Figure S6.
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Figure S19: Strength of density effects on recovery time when juvenile progression rate is density-
dependent. Details are the same as Figure S6.
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Figure S20: Strength of density effects on recovery time when adult survival is density-dependent.
Details are the same as Figure S6.
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Figure S21: Strength of density effects on recovery time when retrogression rate is density-
dependent. Details are the same as Figure S6.
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Figure S22: Strength of density effects on recovery time when reproductive output is density-
dependent. Details are the same as Figure S6.
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Figure S23: Variation in transient envelope patterns across our set of virtual species and between
density-dependent and density-independent models. In this case, density dependence operates on
juvenile survival (σj).
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Figure S24: Variation in transient envelope patterns across our set of virtual species and between
density-dependent and density-independent models. In this case, density dependence operates on
progression rate (γ).
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Figure S25: Variation in transient envelope patterns across our set of virtual species and between
density-dependent and density-independent models. In this case, density dependence operates on
adult survival (σa).
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Figure S26: Variation in transient envelope patterns across our set of virtual species and between
density-dependent and density-independent models. In this case, density dependence operates on
retrogression rate (ρ).
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Figure S27: Variation in transient envelope patterns across our set of virtual species and between
density-dependent and density-independent models. In this case, density dependence operates on
reproductive output (ϕ).
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Figure S28: The matrix dimensions for empirical models used in selecting virtual species models.
The matrix dimension is the number of classes included in the projection matrix. Before collapsing
all the models to 2× 2, most of the models were larger, representing more complex life cycles than
represented by our two-stage model (Supplemental Materials Table S4).
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