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Abstract 11 

1. Matrix population models (MPMs) are widely used in ecology and evolution to explore 12 

population dynamics, including assessing management impacts and extinction risk. In 13 

comparative studies, MPMs can be used to test life history theory or investigate macro-14 

evolutionary patterns in demographic traits.   15 

2. Simulated MPMs can help researchers explore the effects of life cycle structure, vital rate 16 

trajectories, and uncertainty in transition rates due to sampling error. They are also valuable 17 

teaching tools. 18 

3. The mpmsim R package enables users to simulate random or semi-random Lefkovitch and 19 

Leslie MPMs based on life history archetypes or mortality and reproductive output patterns. It 20 

also allows the exploration of sampling error effects and uses parametric bootstrapping to 21 

calculate confidence intervals for matrix-derived estimates. 22 

4. mpmsim provides a convenient toolset for addressing questions about MPMs and life history, 23 

with full documentation and user-friendly vignettes. 24 

Keywords: simulation, sampling error, bias, teaching tools, mortality trajectory, fertility trajectory, 25 

Leslie matrix, Lefkovitch matrix, life history archetypes  26 
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Introduction 27 

Matrix population models (MPMs) are a versatile tool in population biology and evolution (Caswell, 28 

2001), first introduced by Leslie (1945) to study age-structured population dynamics. Lefkovitch (1965) 29 

expanded the approach to stage-classified life histories, followed by developments like stochastic 30 

(Cohen, Christensen & Goodyear, 1969) and density-dependent MPMs (Pennycuick, 1969), broadening 31 

their applications. Analytical methods such as elasticity and perturbation analysis, life table response 32 

experiments (LTRE), and Markov chain methods (Caswell, 2001) have further enhanced their utility. 33 

MPMs describe a population's demography at a specific time and place by modelling individuals 34 

categorised by (st)age over a discrete projection interval (Caswell, 2001). At the core is the projection 35 

matrix (A), representing transitions between stages through survival, growth, and reproduction, which 36 

can be split into submatrices U (growth/survival), F (sexual reproduction), and C (clonal 37 

reproduction), such that A = U + F + C. MPMs provide biologically meaningful outputs to estimate 38 

population growth rates, extinction risk, responses to vital rate perturbations, transient dynamics, 39 

effective population size, and life history traits. Consequently, MPMs have been pivotal in advancing 40 

population biology and life history theory (Caswell, 2001; Crone et al., 2011). Supporting this, the 41 

COMPADRE and COMADRE databases (Salguero-Gomez et al., 2015, 2016) provide >12,000 MPMs 42 

for >1,100 species, ranging from annual plants to whales, which address topics from population 43 

management to evolutionary theory. 44 

Several R packages support MPM analysis (e.g., popbio (Stubben & Milligan, 2007), popdemo (Stott 45 

et al., 2012), Rage (Jones et al., 2022), exactLTRE (Hernández et al., 2023)), but none provide broad 46 

scope for simulating MPMs with specific characteristics. This limits researchers' ability to explore 47 

population dynamics beyond empirical data constraints (Römer et al., 2024). To address this, I 48 

introduce mpmsim, an R package designed to simulate MPMs with defined characteristics, enabling 49 



 4 

users to explore life history and population dynamics. The core functions are make_leslie_mpm 50 

and its wrapper rand_leslie_set for Leslie matrices, and rand_lefko_mpm and 51 

rand_lefko_set for Lefkovitch matrices. The functions compute_ci and compute_ci_U 52 

calculate confidence intervals via parametric bootstrapping, and add_mpm_error allows users to 53 

simulate MPMs with sampling error. Together, these functions enable simulations of diverse life 54 

histories and the assessment of the impact of sampling error on inferences. 55 

Illustrating use of mpmsim 56 

To demonstrate mpmsim's versatility, I provide three examples in code boxes below. First, I show how 57 

to generate Leslie matrices based on mortality and reproductive trajectories. Second, I generate 58 

Lefkovitch models using defined life cycle characteristics. In both cases, the simulations assume a post-59 

breeding census, thus avoiding the often overlooked issue of unaccounted survival to reproduction 60 

highlighted by Kendall et al. (2019). Finally, I calculate confidence intervals for MPM-derived estimates, 61 

which can include a diverse set of demographic and life history parameters, such as population growth 62 

rate (λ), generation time, mean age at reproduction, and many others. These code boxes are concise 63 

demonstrations, illustrating key functions and workflows. However, they are not exhaustive. The 64 

vignettes (Supporting Information Vignettes S1, S2, and S3) provide more detailed explanations, 65 

covering additional use cases, variations in parameter choices, and practical considerations for different 66 

types of analyses. Readers seeking a deeper understanding or additional applications are encouraged to 67 

consult these resources. The package can be installed directly from CRAN using the command 68 

install.packages("mpmsim"). By default, all required dependencies will be installed 69 

automatically.  70 

Example 1: Generating Leslie matrices 71 
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Leslie MPMs model age-classified populations, with survival probabilities (px) in the subdiagonal 72 

representing survival probabilities from age x to x+1, and fecundity (fx) in the first row. Matrix A thus 73 

combines survival/growth (U) and sexual reproduction (fecundity) (F), such that A = U + F. For 74 

clonal organisms, a third submatrix C can be added (A = U + F + C). 75 

The main function for generating Leslie MPMs in the package is rand_leslie_set, which creates 76 

MPMs based on randomly drawn parameters from specified mortality and fecundity models. Users use 77 

arguments to define the model types (mortality_model, fecundity_model), parameter 78 

distributions (mortality_params, fecundity_params, 79 

fecundity_maturity_params), and the number of MPMs (n_models). The function 80 

outputs MPMs either as a list or a compadreDB object (Jones et al., 2022), depending on the 81 

output argument. The underlying functions model_mortality and model_fecundity 82 

calculate age-specific survival (px) and reproductive output (fx) using standard functional forms. 83 

The available mortality models include Siler, Exponential, Gompertz, Gompertz-Makeham, Weibull, 84 

and Weibull-Makeham (Table 1). The model_mortality function calculates survival probabilities 85 

for each age based on age-specific hazard rates. It first calculates hazard rates (hx) from the chosen 86 

mortality model using the model argument and a vector of parameters (params). The cumulative 87 

hazard (Hx) is then computed by integrating hx up to each age, giving total mortality risk. Survivorship 88 

(lx) is determined as exp(-Hx), and the age-specific survival probability (px) is the ratio of survivorship 89 

values at x+1 and x. The function outputs a life table as a data frame that extends by default until lx 90 

drops below 0.01. 91 

The model_fecundity function calculates age-specific reproductive output (fx), the average 92 

number of offspring produced at age x, using canonical models such as logistic, step-function, von 93 

Bertalanffy, Hadwiger, and Normal (Table 1). Key arguments include the model type (model), 94 
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parameters (params), and a vector of ages (age), and the output is a vector of age-specific 95 

reproductive output values corresponding to the input ages. 96 

Code Box 1 shows how to create 500 Leslie MPMs with Gompertz-Makeham mortality and step-97 

function fecundity, with ages at maturity varying from one to four, and parameter values drawn from 98 

uniform distributions. In this case, the output is in the form of a compadreDB object (Jones et al. 99 

2022), but this can be set to output a standard R list object using the output argument. The code 100 

runs in 1.89 seconds (SD = 0.07; 100 runs) on a MacBook running macOS (Sequoia 15.3) with an Intel 101 

quad Core i5 2.40 GHz CPU, 16 GB of RAM, and R version 4.4.2. Naturally, the simulation time 102 

increases with the number of models requested (Fig. 1A). 103 

 104 

Code box 1: Leslie matrix models 105 

# Load package 106 
library(mpmsim) 107 
 108 
# Define mortality model parameters 109 
# min/max values in Gompertz-Makeham model 110 
mortParams <- data.frame( 111 
  minVal = c(0, 0.01, 0.1), 112 
  maxVal = c(0.05, 0.15, 0.2) 113 
) 114 
# Define fecundity model parameters 115 
# min/max values in step model 116 
fecundityParams <- data.frame( 117 
  minVal = 2, 118 
  maxVal = 10 119 
) 120 
# Define age-at-maturity  121 
# min/max values 122 
maturityParam <- c(1, 4) 123 
 124 
# Produce 500 MPMs 125 
# Gompertz-Makeham mortality model and step function fecundity 126 
# Parameters drawn from uniform distribution 127 
# Output compadreDB 128 
myMatrices <- rand_leslie_set( 129 
  n_models = 500, 130 
  mortality_model = "GompertzMakeham", 131 
  fecundity_model = "step", 132 
  mortality_params = mortParams, 133 
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  fecundity_params = fecundityParams, 134 
  fecundity_maturity_params = maturityParam, 135 
  dist_type = "uniform", 136 
  output = "Type1" 137 
) 138 
 139 

 140 

Example 2: Generating Lefkovitch matrices 141 

Lefkovitch MPMs are stage-based, making them ideal when age data is unavailable or less relevant, such 142 

as in life cycles governed by developmental stages (e.g., juvenile, adult). A key advantage is their 143 

adaptability to various life cycles, including transitions like retrogression or dormancy. This flexibility is 144 

essential for studying species with non-age-based life cycles. While these models accommodate diverse 145 

life cycles, some rules apply: survival probabilities cannot exceed 1, and reproduction cannot be 146 

negative. Thus, transition probabilities in U range from 0 to 1, with column sums constrained to ≤ 1, 147 

while fecundity in F has a lower limit of zero. 148 

In mpmsim, the function rand_lefko_set generates sets of Lefkovitch MPMs and is a wrapper 149 

for rand_lefko_mpm, which creates individual MPMs. These functions model the U matrix by 150 

drawing values from a random Dirichlet distribution, ensuring survival probabilities for each stage are 151 

≤ 1. Users can generate various life cycle structures using the archetype argument, based on Takada 152 

et al.'s (2018) four archetypes. In Archetype 1, individuals can move freely between stages, either 153 

progressing or retrogressing, with no constraints on the transition rate. Archetype 2 adds the 154 

assumption that survival improves with stage progression. Archetype 3 allows only forward 155 

progression, mimicking species with slow development. Archetype 4, similar to Archetype 3, includes 156 

improved survival with stage progression but without retrogression. 157 

In Takada et al.’s models, fecundity was placed in the top-right of the matrix, restricting reproduction to 158 

the final life cycle stage. In mpmsim, this constraint is relaxed through the fecundity argument, 159 
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which offers four options: (1) a single value representing fecundity in the most developed stage, (2) a 160 

vector matching the number of stages to assign stage-specific fecundity  across the top row, (3) a matrix 161 

defining fecundity  for each element, or (4) a list of two matrices setting upper and lower fecundity  162 

limits, with values drawn from a uniform distribution. This flexibility captures various reproductive 163 

strategies, accommodating diverse life histories. 164 

In addition to generating matrices based on selected archetypes, outputs can be fine-tuned using the 165 

constraint argument, allowing users to set limits based on any metric derived from the A matrix, 166 

such as asymptotic population growth rates within a defined range, to ensure viable life cycles. This 167 

enables tailored simulations for specific ecological or evolutionary scenarios. 168 

Code Box 2 generates 500 Lefkovitch models in a compadreDB object for Archetype 4, constrained 169 

to have a λ between 0.9 and 1.1. Fecundity is set to 0 for the first two stages, and 8 and 14 for the last 170 

two. The code runs in 3.20 seconds (SD = 0.17; 100 runs). The simulation time increases with the 171 

number of models requested, with rand_lefko_set being slower than rand_leslie_set for 172 

a given number of models (Fig. 1B). 173 

 174 

Code box 2: Lefkovitch matrix models 175 

# Load packages 176 
library(popdemo) 177 
library(mpmsim) 178 
 179 
# Define constraints 180 
# Lambda between 0.9 and 1.1 181 
constrain_df <- data.frame( 182 
  fun = "eigs", arg = "lambda", lower = 0.9, upper = 1.1 183 
) 184 
 185 
# Produce 500 MPMs, 3 stages, Archetype 4 186 
# Set fecundity of 8 for stage 3 and 14 for stage 4. 187 
# Output as compadreDB object 188 
myMatrices <- rand_lefko_set( 189 
  n = 500, n_stages = 4, fecundity = c(0,0,8,14),  190 
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  constraint = constrain_df, archetype = 4, output = "Type1") 191 
 192 

 193 

Example 3: Calculating confidence intervals 194 

MPMs are parameterised in various ways, often by estimating transition rates from repeated surveys of 195 

stage classes. Typically, only a population sample is used, and sample sizes may vary. For instance, 196 

juveniles might be common, resulting in larger sample sizes for estimating juvenile survival, while adults 197 

may be rarer, leading to smaller samples. As a result, sampling error varies across the matrix and 198 

between years in multi-year studies, potentially influencing life history or population dynamics analyses. 199 

I will illustrate how to explore these effects on inferences. Accounting for, and understanding this 200 

uncertainty is crucial, because incomplete propagation of sampling error can bias estimates of key 201 

demographic parameters such as population growth rate (λ), potentially leading to misleading 202 

conclusions (Simmonds & Jones, 2023). This has practical implications for population monitoring, 203 

conservation decision-making, and forecasting demographic trends. Below, I illustrate how mpmsim 204 

enables users to explore these effects, helping to improve the robustness of MPM-based inferences. 205 

I start with the matrix model, A, the sum of the U and F submatrices. For example, 𝐀 = #0.1 5.0
0.2 0.4* , 206 

𝐔 = #0.1 0
0.2 0.4* and 𝐅 = #0 5.0

0 0 *. Transition rates are assumed to result from specific statistical 207 

distributions: sexual reproduction follows a Poisson process, while growth/survival transitions follow a 208 

binomial process.  Specifically, survival probabilities (p) are drawn from a binomial distribution: 𝑋  ∼209 

Binomial(𝑛,  𝑝) where n is the sample size. The estimated survival probability is �̂� = !
"
∑𝑋. Fecundity 210 

values (F) are drawn from a Poisson distribution: 𝑌 ∼ Poisson(λ), where λ represents the expected 211 

reproductive output. The estimated fecundity is 𝐹: = !
"
∑𝑌. The well-known properties of these 212 

statistical processes enable the estimation of expected distributions for each matrix element, based on 213 
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their average values and sample sizes, which , in mpmsim, are provided to compute_ci as 214 

arguments mat_U, mat_F and sample_size. The compute_ci function then applies 215 

parametric bootstrapping, a resampling technique that assumes matrix elements follow a specified 216 

statistical distribution, defined by mean values and sample sizes. The function repeatedly draws random 217 

samples from these distributions, generating multiple simulated models. From these simulations, 218 

confidence intervals (CIs) are derived by analysing the variation in the resulting trait estimates, 219 

providing a measure of uncertainty that accounts for sampling variability. For tractability, this method 220 

currently assumes no covariance between rates, though trade-offs among elements may introduce 221 

nuances. Covariance among rates will be addressed in a future version of mpmsim. Code Box 3 shows 222 

how to calculate confidence intervals for generation time and λ, with sample sizes of 15 for adult 223 

fecundity and 40 for the survival/growth transitions. In practice, users should use estimated mean 224 

values and sample sizes from their own studies. When survival or reproduction estimates are derived 225 

from multiple studies with varying sample sizes, users should calculate an effective sample size rather 226 

than summing sample sizes across studies, which overestimates precision. The effective sample size can 227 

be approximated using the harmonic mean (𝑁eff =
%

∑ !
"#

$
#%!

). The harmonic mean gives more weight to 228 

smaller sample sizes, reflecting the reality that estimates from smaller studies contribute more 229 

variability. For example, if an estimate is based on two studies with sample sizes of N = 10 and N = 25, 230 

the effective sample size is: 𝑁eff =
'

( !!&)
!
'(*

= 14.29.  231 

Code box 3 – Confidence Intervals 232 

# Load packages 233 
library(popbio) 234 
library(mpmsim) 235 
 236 
# Define U matrix 237 
matU <- matrix(c( 238 
  0.1, 0.0, 239 
  0.2, 0.4 240 
), byrow = TRUE, nrow = 2) 241 
 242 
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# Define F matrix 243 
matF <- matrix(c( 244 
  0.0, 5.0, 245 
  0.0, 0.0 246 
), byrow = TRUE, nrow = 2) 247 
 248 
# Combine matrices to create A matrix 249 
matA <- matU + matF 250 
 251 
# Define sample sizes for F 252 
mat_F_ss <- matrix(c( 253 
  0.0, 15,   254 
  0.0, 0.0   255 
), byrow = TRUE, nrow = 2) 256 
 257 
# Define the sample sizes for U 258 
mat_U_ss <- matrix(c( 259 
  40, 40, 260 
  40, 40 261 
), byrow = TRUE, nrow = 2) 262 
 263 
# Combine sample sizes into list 264 
sampleSizes <- list(mat_U_ss = mat_U_ss, mat_F_ss = mat_F_ss) 265 
 266 
# Calculate lambda 267 
lambda(matA) 268 
#> [1] 1.261187 269 
 270 
# Calculate CI for lambda 271 
compute_ci( 272 
  mat_U = matU, mat_F = matF, sample_size = sampleSizes, 273 
  FUN = lambda 274 
) 275 
#>      2.5%     97.5% 276 
#> 0.9033941 1.6022154 277 
 278 
# Calculate generation time 279 
generation.time(matA) 280 
#> [1] 2.65536 281 
 282 
# Calculate CI for generation time 283 
compute_ci( 284 
  mat_U = matU, mat_F = matF, sample_size = sampleSizes, 285 
  FUN = popbio::generation.time 286 
) 287 
#>     2.5%    97.5%  288 
#> 2.371819 3.106800 289 
 290 

An example analysis: the effect of life history constraints on life history 291 

structuring 292 
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In this section, I present a simplified analysis using mpmsim mto illustrate its application in a research 293 

context. Researchers are increasingly interested in understanding how life history traits are structured 294 

along specific axes or continua, as explored by Salguero-Gómez et al. (2016), Paniw et al. (2018), and 295 

Jones et al. (2020) among others. In these studies, MPMs are used to calculate key life history metrics, 296 

including generation time, survivorship curve type, age at sexual maturity, growth rate, life expectancy, 297 

mean sexual reproduction, iteroparity degree, and net reproductive rate and these are then analysed 298 

using multivariate techniques such as Principal Components Analysis (PCA) to reduce complexity and 299 

identify dominant patterns. 300 

For instance, Salguero-Gómez et al. (2016) applied PCA to COMPADRE MPMs (Salguero-Gómez et 301 

al., 2015) and identified two major axes explaining 55% of the variation in plant life history strategies. 302 

The first axis corresponded to the fast–slow continuum, with longevity-related traits positively 303 

correlated and traits associated with growth and reproduction negatively correlated. The second axis 304 

represented reproductive strategy, capturing variation in iteroparity and net reproductive rate. 305 

To investigate whether broad life history archetypes influence life history structuring, I employed a 306 

simulation-based approach. Using mpmsim’s rand_lefko_set function, I generated 250 random 307 

virtual species for each of two distinct life history archetypes, producing a total of 500 simulated 308 

species. These species were constrained to remain viable, with population growth rates (λ) between 0.9 309 

and 1.1. The first archetype describes a life history in which individuals can progress and retrogress 310 

rapidly, such as growing and shrinking in response to environmental fluctuations. In contrast, the 311 

second archetype represents a life history where survival increases with age or size, retrogression is 312 

absent, and individuals can only progress to the next stage. 313 

The hypothesis underlying my analysis is that PCA would reveal life history structuring consistent with 314 

the empirical findings of Salguero-Gómez et al. (2016) and that, since life history structuring is thought 315 

to be universal, the patterns should be similar for the two archetypes. Specifically, the first PCA axis 316 
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was expected to represent the fast–slow continuum, with longevity-related traits positively correlated 317 

and growth and reproductive traits negatively correlated. The second PCA axis was anticipated to 318 

capture reproductive strategy, with iteroparity and net reproductive rate positively correlated and 319 

retrogressive growth negatively correlated. 320 

The results (Figure 2) show that the two life history archetypes exhibit markedly different patterns of 321 

structuring. These findings suggest that life history constraints strongly influence the major axes of life 322 

history variation, reinforcing the idea that demographic constraints shape how species are organised 323 

within life history space. This simple analysis effectively demonstrates how mpmsim can be used to 324 

generate and analyse simulated life history data, providing a powerful tool for exploring theoretical 325 

questions in population biology. By leveraging such simulations, researchers can test hypotheses about 326 

life history structuring in a controlled and reproducible manner. The code to implement this analysis is 327 

given in Supporting Information S4. 328 

Discussion 329 

This package addresses a significant gap in the population modeling toolbox by providing a specialised 330 

framework for simulating matrix population models (MPMs) with controlled life history characteristics. 331 

While several R packages, such as popbio (Stubben & Milligan, 2007), popdemo (Stott et al., 2012), 332 

and Rage (Jones et al., 2022), facilitate MPM analysis, their primary focus is on extracting demographic 333 

parameters from empirical data. In contrast, mpmsim is explicitly designed for simulation, allowing 334 

researchers to explore theoretical and comparative scenarios that extend beyond the constraints of 335 

existing datasets. 336 

A key strength of mpmsim is its flexibility. Unlike other MPM-related packages, which often require 337 

fully parameterized matrices as inputs, mpmsim generates matrices based on predefined life history 338 

traits, mortality and reproductive trajectories, or theoretical life cycle structures. This feature makes it 339 
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particularly useful for hypothesis testing in macro-evolutionary and ecological research, where the goal 340 

is to examine how different life history strategies emerge under varying demographic constraints. 341 

Furthermore, the package’s ability to incorporate sampling error and generate confidence intervals via 342 

parametric bootstrapping enhances the robustness of demographic inferences, an aspect often 343 

overlooked in prior studies. 344 

Beyond research applications, mpmsim can also be a valuable tool for education in population ecology 345 

and evolutionary biology. By enabling students to generate and manipulate theoretical MPMs, the 346 

package provides a platform for illustrating fundamental demographic principles. Concepts such as life 347 

cycle complexity, survival trade-offs, and fertility trajectories can be directly explored, reinforcing the 348 

link between theoretical models and real-world population dynamics. This capability makes mpmsim a 349 

powerful complement to empirical analyses, bridging the gap between abstract theoretical models and 350 

observed demographic patterns. 351 

Conclusion 352 

In summary, mpmsim provides a novel and flexible framework for MPM simulation, supporting both 353 

theoretical and applied research in population biology. By allowing researchers to model demographic 354 

dynamics beyond empirical constraints, the package will play a crucial role in testing life history theory, 355 

quantifying uncertainty, and generating synthetic data for comparative analyses.  356 
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Tables 457 

 458 

Table 1: Mathematical expressions for mortality and reproductive output models in mpmsim. In 459 

mortality models, hx is the hazard function at age x, with parameters a0, a1, b0, b1, and c reflecting factors 460 

like aging rate and baseline risk. In the fecundity models, fx is the reproductive output at age x, with 461 

parameters A, k, xm, m, x0, μ, σ, a, b, and c determining the timing of peak output, distribution, and 462 

overall levels. See ?mortality_model and ?fecundity_model. 463 

Mortality models   

Gompertz ℎ+ = 𝑏,eb1x Gompertz (1825), 

Pletcher (1999), Ricklefs 

& Scheuerlein (2002), 

Colchero et al. (2012) 

Gompertz-Makeham ℎ+ = 𝑏,eb1x + 𝑐 Pletcher (1999), 

Colchero et al. (2012) 

Exponential ℎ+ = 𝑐 Cox & Oakes (1984), 

Colchero et al. (2012) 

Siler ℎ+ = 𝑎,e-a1x + 𝑐 + 𝑏,eb1x Siler (1979), Colchero et 

al. (2012) 

Weibull ℎ+ =	𝑏,	𝑏!
1&𝑥(1&3!) 

 

Pinder et al. (1978), 

Ricklefs & Scheuerlein 
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(2002), Colchero et al. 

(2012) 

Weibull-Makeham ℎ+ =	𝑏,	𝑏!
1&𝑥(1&3!) + 𝑐 Colchero et al. (2012) 

Fecundity models   

Logistic 𝑓+ = 𝐴/ I1 + expL−𝑘(𝑥 − 𝑥5)OP  

Step 𝑓	+ =	Q
𝐴, 𝑥	 ≥ 	𝑚
𝐴, 𝑥	 < 	𝑚  

Normal 
𝑓+ = 𝐴 × exp V−

1
2 I
𝑥 − 𝜇
𝜎 P

'
 Z 

 

Hadwiger 
𝑓+ =

𝑎𝑏
𝑐 I

𝑐
𝑥P

7
' exp Q−𝑏' I

𝑐
𝑥 +

𝑥
𝑐 − 2P[ 

 

Hadwiger (1940) 

Peristera & Kostaki 

(2007) 

von Bertalanffy 𝑓+ = 𝐴 I1 − 𝑒𝑥𝑝L−𝑘(𝑥 − 𝑥,)OP von Bertalanffy (1938) 

 464 

  465 
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Figure 1. Benchmarking results for the simulation time of rand_leslie_set (A) and 466 

rand_lefko_set (B) as a function of the number of matrices generated, using the code from 467 

Boxes 1 and 2. The elapsed time (in seconds) increases with the number of models requested, with 468 

rand_lefko_set running slower than rand_leslie_set for equivalent sample sizes. Each 469 

point represents the time taken to generate a given number of matrices. Benchmarking was performed 470 

on a MacBook running macOS (Sequoia 15.3) an Intel quad Core i5 2.40 GHz CPU, 16 GB of RAM, 471 

and R version 4.4.2. 472 

 473 

  474 
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Figure 2. Principal Components Analysis (PCA) of simulated life history archetypes. The plots show 475 

the first two principal components (PC1 and PC2) for 250 simulated species in each archetype. 476 

Archetype 1 (A) allows both progression and retrogression, while Archetype 4 (B) has increasing 477 

survival and no retrogression. Points represent individual species, arrows show key life history trait 478 

loadings, and red labels indicate metrics such as longevity, net reproductive rate (nrr_R0), generation 479 

time (gt_lt), life expectancy (lifeExpect), and entropy measures (entropy_k, entropy_d). PC1 explains 480 

most variation (79.54% in Archetype 1, 79.91% in Archetype 4), with PC2 capturing additional 481 

structure (11.87% and 13.51%, respectively). Differences in trait loadings suggest broad-scale life 482 

history structuring may be shaped by demographic constraints. 483 

 484 

 485 



Generating Leslie models

2024-10-12

Introduction

Leslie matrix models, named after Patrick Leslie who introduced them in the 1940s, are a type of matrix pop-
ulation model (MPM) used to describe the demography of age-structured populations. They are commonly
used in studies of wildlife, conservation and evolutionary biology.

In a Leslie MPM, the square matrix is used to model discrete, age-structured population growth with a
projection interval, most often representing years, as a time step. Each element in the matrix represents
a transition probability between different age classes or indicates the average reproductive output (often
referred to as fecundity in population biology and fertility in human demography) of the age class. The
information in the MPM (A) can be split into two submatrices (U and F), representing survival/growth and
reproduction, respectively. A = F + C.

• Survival Probabilities: The subdiagonal (immediately below the main diagonal) of the MPM consists
of survival probabilities. Each entry here shows the probability that an individual of one age class will
survive to the next age class. These probabilities can be understood as an age trajectory of survival
that can be modelled using a mathematical model describing how age-specific mortality changes with
age.

• Reproductive Output: The first row of the MPM contains the reproductive output of each age class,
representing the number of new individuals produced in each projection interval. This is often referred
to as fecundity in ecological contexts.

All other entries in the MPM are typically zero, indicating that those transitions are impossible.

To project the population size and structure through time, the MPM is multiplied by a vector that represents
the current population structure (number of individuals in each age class). This process results in a new
vector that shows the predicted structure of the population in the next time step. This calculation can be
iterated repeatedly to project population and structure through time.

Leslie matrices are useful for studying population dynamics under different scenarios, such as changes in
survival rates, fecundity rates, or management strategies. They have been widely applied in both theoretical
and applied ecology.

Aims

The aim of this vignette is to demonstrate how to simulate Leslie matrix population models (MPMs) using
functional forms for mortality and reproduction. This simulation is useful for various purposes, including:

• Investigating the influence of senescence parameters on population dynamics.
• Generating MPMs based on empirical parameter estimates of mortality and reproduction from the

literature.
• Creating MPMs with specific properties for educational and research purposes.

In the following sections, this document will:
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1) Explain the basics of mortality and reproduction trajectories.
2) Show how to produce life tables reflecting trajectories of mortality and reproduction.
3) Show how to produce MPMs from these life tables.
4) Show how to generate sets of many MPMs based on defined mortality and reproduction characteristics.

Preparation

Before beginning, users will need to load the required packages.

library(mpmsim)
library(dplyr)
library(Rage)
library(ggplot2)
library(Rcompadre)

1. Functional forms of mortality and reproduction

There are numerous published and well-used functional forms used to describe how mortality risk (hazard)
changes with age. The model_mortality function (and its synonym model_survival) handles 6 of these
models: Gompertz, Gompertz-Makeham, Weibull, Weibull-Makeham, Siler and Exponential.

In a nutshell:

• Gompertz: A mortality rate that increases exponentially with age. hx = b0eb1x

• Gompertz-Makeham: A mortality rate that increases exponentially with age, with an additional age-
independent constant mortality. hx = b0eb1x + c

• Weibull: A mortality rate that scales with age, increasing at a rate that can either accelerate or
decelerate, depending on the parameters of the model. hx = b0b1(b1x)(b0−1)

• Weibull-Makeham: as the basic Weibull, but with an additional age-independent constant mortality.
hx = b0b1(b1x)(b0−1) + c

• Siler: A mortality model that separates mortality rates into two age-related components — juvenile
mortality, which declines exponentially with age and adult mortality, which increases exponentially.
hx = a0e−a1x + c + b0eb1x

• Exponential: Constant mortality that is unchanging with age. hx = c

These are illustrated below.
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In addition to these functional forms of mortality, there are, of course, functional forms that have been used
to model reproductive output. The model_fecundity function (and its synonyms model_fedundity and
model_reproduction) handles five types: logistic, step, von Bertalanffy, normal and Hadwiger. Some of
these models originate from human demography, where fertility is used for realised reproductive output and
fecundity refers to reproductive potential. In ecology and population biology, however, fecundity typically
describes actual reproductive output. Since mpmsim is designed for population biologists, we will use the
terms fecundity, or simply reproduction/reproductive output.

• Logistic: Reproductive output initially increases rapidly with age then slows to plateau as it approaches
a maximum value. fx = A/(1 + exp(−k(x − xm)))

• Step: Reproductive output is initially zero, then jumps to a particular level at a specified age, after

which it remains constant. fx =
{

A, x ≥ m

A, x < m

• von Bertalanffy: This model is often used in growth dynamics but has been adapted for reproduction
to describe changes over age or time following a logistic growth form not limited by a strict upper
asymptote. It shows how reproductive output might increase and then decrease, following a sigmoid
curve. fx = A(1 − exp(−k(x − x0)))

• Normal : Reproductive output is modelled as normal distribution to describe how reproductive output
increases, peaks, and then decreases in a bell curve around a mean age of reproductive capacity.
fx = A × exp

(
− 1

2
(

x−µ
σ

)2 )
• Hadwiger: The outcomes of this model are qualitatively similar to the normal distribution. fx =

ab
C

(
C
x

) 3
2 exp

{
−b2 (

C
x + x

C − 2
)}
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Collectively, these mortality and fecundity functions offer a large scope for modelling the variety of demo-
graphic trajectories apparent across the tree of life.

2. Trajectories of mortality and reproductive output, and production of life
tables

To obtain a trajectory of mortality, users can use the model_mortality function, which takes as input the
parameters of a specified mortality model. The output of this function is a standard life table data.frame
including columns for age (x), age-specific hazard (hx), survivorship (lx), age-specific probability of death
and survival (qx and px). By default, the life table is truncated at the age when the survivorship function
declines below 0.01 (i.e. when only 1% of individuals in a cohort would remain alive).

(lt1 <- model_mortality(params = c(b_0 = 0.1, b_1 = 0.2), model = "Gompertz"))
#> x hx lx qx px
#> 1 0 0.1000000 1.00000000 0.1051240 0.8948760
#> 2 1 0.1221403 0.89487598 0.1268617 0.8731383
#> 3 2 0.1491825 0.78135045 0.1526972 0.8473028
#> 4 3 0.1822119 0.66204041 0.1832179 0.8167821
#> 5 4 0.2225541 0.54074272 0.2190086 0.7809914
#> 6 5 0.2718282 0.42231542 0.2606027 0.7393973
#> 7 6 0.3320117 0.31225886 0.3084127 0.6915873
#> 8 7 0.4055200 0.21595427 0.3626343 0.6373657
#> 9 8 0.4953032 0.13764186 0.4231275 0.5768725
#> 10 9 0.6049647 0.07940180 0.4892807 0.5107193
#> 11 10 0.7389056 0.04055203 0.5598781 0.4401219
#> 12 11 0.9025013 0.01784784 0.6330059 0.3669941

It can be useful to explore the impact of parameters on the mortality hazard (hx) graphically, especially for
users who are unfamiliar with the chosen models.

ggplot(lt1, aes(x = x, y = hx)) +
geom_line() +
ggtitle("Gompertz mortality (b_0 = 0.1, b_1 = 0.2)")

4



0.25

0.50

0.75

0 3 6 9
x

hx
Gompertz mortality (b_0 = 0.1, b_1 = 0.2)

The model_fecundity function is similar to the model_mortality function, as it has arguments for the
type of fecundity model, and its parameters. However, the output of the model_fecundity function is a
vector of reproductive output values rather than a data.frame. This allows us to add a fecundity column
(fecundity) directly to the life table produced earlier, as follows:

(lt1 <- lt1 |>
mutate(fecundity = model_fecundity(

age = x, params = c(A = 3),
maturity = 3,
model = "step"

)))
#> x hx lx qx px fecundity
#> 1 0 0.1000000 1.00000000 0.1051240 0.8948760 0
#> 2 1 0.1221403 0.89487598 0.1268617 0.8731383 0
#> 3 2 0.1491825 0.78135045 0.1526972 0.8473028 0
#> 4 3 0.1822119 0.66204041 0.1832179 0.8167821 3
#> 5 4 0.2225541 0.54074272 0.2190086 0.7809914 3
#> 6 5 0.2718282 0.42231542 0.2606027 0.7393973 3
#> 7 6 0.3320117 0.31225886 0.3084127 0.6915873 3
#> 8 7 0.4055200 0.21595427 0.3626343 0.6373657 3
#> 9 8 0.4953032 0.13764186 0.4231275 0.5768725 3
#> 10 9 0.6049647 0.07940180 0.4892807 0.5107193 3
#> 11 10 0.7389056 0.04055203 0.5598781 0.4401219 3
#> 12 11 0.9025013 0.01784784 0.6330059 0.3669941 3

Again, it can be useful to plot the relevant data to visualise it.

ggplot(lt1, aes(x = x, y = fecundity)) +
geom_line() +
ggtitle("Step fecundity, maturity at age 3")

5



0

1

2

3

0 3 6 9
x

fe
cu

nd
ity

Step fecundity, maturity at age 3

3. From life table to MPM

Users can now turn these life tables, containing age-specific survival and reproductive trajectories, into
Leslie matrices using the make_leslie_mpm function. These MPMs can be large or small depending on the
maximum life span of the population: as mentioned above, the population is modelled until less than 1% of
a cohort remains alive.

make_leslie_mpm(lifetable = lt1)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.000000 0.0000000 0.0000000 3.0000000 3.0000000 3.0000000 3.0000000
#> [2,] 0.894876 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.000000 0.8731383 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.000000 0.0000000 0.8473028 0.0000000 0.0000000 0.0000000 0.0000000
#> [5,] 0.000000 0.0000000 0.0000000 0.8167821 0.0000000 0.0000000 0.0000000
#> [6,] 0.000000 0.0000000 0.0000000 0.0000000 0.7809914 0.0000000 0.0000000
#> [7,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7393973 0.0000000
#> [8,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.6915873
#> [9,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [10,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [11,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [12,] 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [,8] [,9] [,10] [,11] [,12]
#> [1,] 3.0000000 3.0000000 3.0000000 3.0000000 3.0000000
#> [2,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [7,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [8,] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [9,] 0.6373657 0.0000000 0.0000000 0.0000000 0.0000000
#> [10,] 0.0000000 0.5768725 0.0000000 0.0000000 0.0000000
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#> [11,] 0.0000000 0.0000000 0.5107193 0.0000000 0.0000000
#> [12,] 0.0000000 0.0000000 0.0000000 0.4401219 0.3669941

4. Producing sets of MPMs based on defined model characteristics

It is sometimes desirable to create large numbers of MPMs with particular properties in order to test
hypotheses. For Leslie MPMs, this can be implemented in a straightforward way using the function
rand_leslie_set. This function generates a set of Leslie MPMs based on defined mortality and fecun-
dity models, and using model parameters that are randomly drawn from specified distributions. For exam-
ple, users may wish to generate MPMs for Gompertz models to explore how rate of senescence influences
population dynamics.

Users must first set up a data frame describing the distribution from which parameters will be drawn at
random. The data frame has a number of rows equal to the number of parameters in the model, and
two values to describe the distribution. In the case of a uniform distribution, these are the minimum
and maximum parameter values, respectively and with a normal distribution they represent the mean and
standard deviation. The parameters should be entered in the order they appear in the model equations (see
?model_mortality), with the exact order depending on the chosen mortality model.

For the Gompertz-Makeham model: hx = b0eb1x + c

The output argument defines the output as one of six types (Type1 through Type6). These outputs include
CompadreDB objects or list objects, and the MPMs can be split into the component submatrices (U and
F, where the MPM, A = U + F). In the special case Type6 the outputs are provided as a list of life
tables rather than MPMs. If the output is set as a CompadreDB object, the mortality and fecundity model
parameters used to generate the MPM are included as metadata.

The following example illustrates the production of 50 Leslie MPMs output to a CompadreDB object based
on the Gompertz-Makeham mortality model and a step fecundity model with maturity beginning at age 0.
An optional argument, scale_output = TRUE will scale the fecundity in the output MPMs to ensure that
population growth rate is lambda. The scaling algorithm multiplies the fecundity part of the MPM (the F
submatrix) by a simple scaling factor to ensure the population growth rate is 1 while maintaining the shape
(but not the magnitude) of the fecundity trajectory. This should be used with care: The desirability of such
a manipulation strongly depends on the use the MPMs are put to.

mortParams <- data.frame(
minVal = c(0, 0.01, 0.1),
maxVal = c(0.05, 0.15, 0.2)

)

fecundityParams <- data.frame(
minVal = 2,
maxVal = 10

)

maturityParam <- c(0, 0)

(myMatrices <- rand_leslie_set(
n_models = 50,
mortality_model = "GompertzMakeham",
fecundity_model = "step",
mortality_params = mortParams,
fecundity_params = fecundityParams,
fecundity_maturity_params = maturityParam,
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dist_type = "uniform",
output = "Type1"

))
#> A COM(P)ADRE database ('CompadreDB') object with ?? SPECIES and 50 MATRICES.
#>
#> # A tibble: 50 x 8
#> mat mortality_model b_0 b_1 C fecundity_model A
#> <list> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 <CompdrMt> gompertzmakeham 0.0457 0.141 0.129 step 8.64
#> 2 <CompdrMt> gompertzmakeham 0.0321 0.0827 0.174 step 3.08
#> 3 <CompdrMt> gompertzmakeham 0.0328 0.109 0.146 step 7.75
#> 4 <CompdrMt> gompertzmakeham 0.0467 0.0458 0.146 step 9.52
#> 5 <CompdrMt> gompertzmakeham 0.0489 0.0264 0.147 step 6.48
#> 6 <CompdrMt> gompertzmakeham 0.0452 0.0294 0.199 step 9.57
#> 7 <CompdrMt> gompertzmakeham 0.00412 0.0820 0.139 step 9.25
#> 8 <CompdrMt> gompertzmakeham 0.0223 0.127 0.174 step 8.49
#> 9 <CompdrMt> gompertzmakeham 0.0194 0.106 0.100 step 8.66
#> 10 <CompdrMt> gompertzmakeham 0.000367 0.0391 0.191 step 6.89
#> # i 40 more rows
#> # i 1 more variable: fecundity_scaling <dbl>

The function operates quite fast. For example, on an older MacBook (3.10GHz Intel with 4 cores), it takes
17 seconds to generate 5000 MPMs with the parameters mentioned above.

As an aid to assessing the simulation, users can produce a simple summary of the MPMs using the
summarise_mpms function. Note, though, that this only works with CompadreDB outputs. In this case,
because we are working with Leslie MPMs, the dimension of the MPMs is indicative of the maximum age
reached by individuals in the population.

summarise_mpms(myMatrices)
#> Summary of matrix dimension:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 15.00 18.25 22.00 22.98 26.00 39.00
#> Summary of lambda values:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.845 6.010 7.970 7.557 9.150 10.672
#>
#> Summary of maximum F values:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.002 5.157 7.142 6.720 8.327 9.788
#>
#> Summary of maximum U values:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.7829 0.8159 0.8347 0.8365 0.8545 0.8925
#>
#> Summary of minimum non-zero U values:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.5715 0.6881 0.7650 0.7514 0.8160 0.8814

After producing the output as a CompadreDB object, the matrices can be accessed using functions from the
RCompadre R package. For example, to get the A matrix, or the U/F submatrices users can use the matA,
matU or matF functions. The following code illustrates how to rapidly calculate population growth rate for
all of the matrices.
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# Obtain the matrices
x <- matA(myMatrices)

# Calculate lambda for each matrix
sapply(x, popdemo::eigs, what = "lambda")
#> [1] 9.480062 3.889616 8.587381 10.343567 7.303660 10.356146 10.112353
#> [8] 9.308862 9.549256 7.720332 10.672096 7.928430 5.604869 8.872518
#> [15] 6.966830 7.339943 9.468459 3.993036 8.631979 2.871674 8.012464
#> [22] 3.567593 2.844529 8.688251 7.778629 5.968972 8.664013 9.523154
#> [29] 7.123514 9.482587 7.556071 10.495633 7.644149 7.441366 7.792883
#> [36] 9.092281 10.412818 5.422186 9.018497 8.325535 4.386485 5.377892
#> [43] 6.131147 3.940014 8.952296 4.907484 9.138780 9.154187 3.317446
#> [50] 8.668165

Users can examine the vignettes for the Rcompadre and Rage packages for additional insight into other
potential operations with the compadreDB object.

Conclusion

This vignette demonstrated how to generate Leslie matrices using functional forms of mortality and fecundity,
allowing users to simulate virtual species with varied life histories. These matrices can be used to explore how
life history or parameter differences affect population dynamics, supporting various research and educational
applications.
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Generating Lefkovitch models

2024-10-12

Introduction

Lefkovitch matrix population models (MPMs) were introduced by Leonard Lefkovitch in his 1965 paper,
“The Study of Population Growth in Organisms Grouped by Stages”, published in Biometrics.. This paper
extended the concept of Leslie MPMs, which are structured by age, to stage-structured populations, providing
a framework that has been widely used in ecology, evolution and conservation studies.
In a Lefkovitch MPM, the square matrix is used to model population growth across discrete projection
intervals, typically representing years. Each matrix element represents either a transition probability between
different stages or the reproductive output of a stage across the projection interval. The MPM can be divided
into submatrices: one for survival/growth (the U matrix), one for sexual reproduction (the F matrix) and
one for asexual reproduction (the C matrix), where A = U + F + C. Occasionally, these reproduction
matrices are lumped together as a reproduction matrix, R (i.e. R = F + C). Reproduction is often termed
fecundity in the population biology literature.
The elements of the U matrix represent survival or growth from stage-to-stage between time steps. Therefore
the column sums of the U submatrix cannot exceed 1. The reproductive output elements in the F and C
(or R) submatrices do not have an upper bound and indicate the number of new individuals each stage can
produce in each time interval.
Zero entries in the matrices indicate that those transitions do not occur.
To project population size and structure over time, the MPM is multiplied by a vector representing the
current population structure (number of individuals in each stage). This results in a new vector that shows
the predicted population structure for the next time step. This process can be repeated to project population
dynamics over multiple time steps.
Lefkovitch models are useful for studying population dynamics under different scenarios, such as changes in
survival or reproductive rates, or different management strategies. They have broad applications in both
theoretical and applied ecology.

Aims

The purpose of this vignette is to illustrate how to simulate stage-based (Lefkovitch) MPMs based on defined
life history archetypes. There are several reasons why one would want to do this, including, but not limited
to:

• Exploring how life history or life cycle structure influences population dynamics.
• Generating MPMs with defined life cycle properties for teaching purposes.

In the following sections, this vignette will:

1) Explain how life cycles can be categorised into Archetypes.
2) Show how to generate a random Lefkovitch MPM based on an archetype.
3) Show how to rapidly produce sets of many random MPMs.
4) Show how to constrain the MPMs by matrix properties.
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Preparation

Before beginning, users will need to load the required packages.

library(mpmsim)
library(dplyr)
library(Rage)
library(ggplot2)
library(Rcompadre)

1. Life cycle archetypes and generating an MPM

In stage-based (Lefkovitch) matrix population models (MPMs), different life cycle types can be represented
by various structural forms of the matrices. These life cycle types can be captured using different life history
archetypes, which define the transitions between stages and the survival probabilities in the population.

The life history archetypes, based on Takada et al. (2018), are as follows:

• Archetype 1: All elements are positive, meaning transitions from/to any stage are possible. This model
represents a life history where individuals can progress and retrogress rapidly.

• Archetype 2: Similar to Archetype 1, but with the survival probability increasing monotonically as
individuals advance to later stages. This model also allows for rapid progression and retrogression but
with more realistic stage-specific survival probabilities.

• Archetype 3: Positive non-zero elements for survival are only allowed on the diagonal and lower sub-
diagonal of the matrix. This model represents a life cycle where retrogression is not allowed, and
progression can only happen to the immediately larger/more developed stage (slow progression, e.g.,
trees).

• Archetype 4: Similar to Archetype 3 but with the additional assumption that stage-specific survival
increases as individuals increase in size/developmental stage.

In all these archetypes, fecundity is placed in the top row of the matrix. In Takada et al.’s paper, fecundity
was always placed in the top right of the MPM, meaning that only the “last” stage of the life cycle reproduced.
This approach can be relaxed to allow reproduction from any stage.

2. Generate a random Lefkovitch MPM based on an archetype

In mpmsim the function rand_lefko_mpm can be used to generate a random MPM that conforms to one of
the above four life cycle archetypes. The function allows for the generation of random MPMs based on
these archetypes, with survival and growth (the U matrix) based on draws from a Dirichlet distribution to
ensure biological plausibility. The Dirichlet distribution is used to draw survival and growth values because
it ensures that the sum of the probabilities for each stage is equal to 1, which is necessary for biologically
realistic models. The function allows users to specify a wide range of reproductive output scenarios , offering
flexibility in how fecundity is modelled across stages.

The function is straightforward. In the following example, I create a three-stage MPM based on Archetype
2. I set fecundity, arbitrarily, to be 5. By default, if only a single value is given, this is placed in the top-right
hand corner of the F matrix. Also, by default, all fecundity is assumed to be sexual.

rand_lefko_mpm(n_stages = 3, fecundity = 5, archetype = 2)
#> $mat_A
#> [,1] [,2] [,3]
#> [1,] 0.005877166 0.10766181 5.72412770
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#> [2,] 0.509913175 0.03602856 0.06736799
#> [3,] 0.287840153 0.74138349 0.19955576
#>
#> $mat_U
#> [,1] [,2] [,3]
#> [1,] 0.005877166 0.10766181 0.72412770
#> [2,] 0.509913175 0.03602856 0.06736799
#> [3,] 0.287840153 0.74138349 0.19955576
#>
#> $mat_F
#> [,1] [,2] [,3]
#> [1,] 0 0 5
#> [2,] 0 0 0
#> [3,] 0 0 0

To introduce variability in fecundity, users can provide reproductive output as a list of two matrices, with
numeric values of the same dimensions as n_stages, representing the lower and upper limits of mean fecundity
for the entire matrix model. Reproductive output values are then drawn from a uniform distribution between
the two values. Users should use 0 for both lower and upper limits in cases with no fecundity.
The following code provides an example:

lower_reprod <- matrix(c(
0, 0, 0,
0, 0, 0,
0, 0, 0

), nrow = 3, ncol = 3, byrow = TRUE)
upper_reprod <- matrix(c(

0, 4, 20,
0, 0, 0,
0, 0, 0

), nrow = 3, ncol = 3, byrow = TRUE)

rand_lefko_mpm(
n_stages = 3, fecundity = list(lower_reprod, upper_reprod),
archetype = 2

)
#> $mat_A
#> [,1] [,2] [,3]
#> [1,] 0.0873477 2.6402006 15.2043937
#> [2,] 0.4082913 0.1851252 0.5516964
#> [3,] 0.3924441 0.1736190 0.1107596
#>
#> $mat_U
#> [,1] [,2] [,3]
#> [1,] 0.0873477 0.5799473 0.3249008
#> [2,] 0.4082913 0.1851252 0.5516964
#> [3,] 0.3924441 0.1736190 0.1107596
#>
#> $mat_F
#> [,1] [,2] [,3]
#> [1,] 0 2.060253 14.87949
#> [2,] 0 0.000000 0.00000
#> [3,] 0 0.000000 0.00000
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3. Generate sets of Lefkovitch matrices

It is sometimes desirable to create large numbers of MPMs with particular properties in order to test hy-
potheses. For stage-based (Lefkovitch) MPMs, this can be implemented using the rand_lefko_set function.
This function acts as a wrapper for the previously described function and generates a set of Lefkovitch MPMs
based on a defined life cycle archetype and specified reproductive output. For example, users may wish to
generate MPMs for different life history archetypes to explore how life cycle structure may influence popu-
lation dynamics. By specifying the number of stages, fecundity values, and archetypes, users can produce
MPMs that are tailored to their specific research needs. This capability is useful for exploring the effects of
life history traits on population dynamics, testing ecological and evolutionary hypotheses, and for teaching
purposes.

The function returns either a list or a CompadreDB object depending on the output argument. If the output
is set as a CompadreDB object, the archetype of the MPM is included as a column of metadata.

The following code shows how users can generate 100 matrices in a CompadreDB object.

myMatrices <- rand_lefko_set(
n = 100, n_stages = 3, fecundity = 12,
archetype = 4, output = "Type1"

)

After producing the output as a CompadreDB object, the matrices can be accessed using functions from the
RCompadre R package. For example, to get the A matrix, or the U/F submatrices users can use the matA,
matU or matF functions. The following code illustrates how to rapidly calculate population growth rate for
all of the matrices.

# Obtain the matrices
x <- matA(myMatrices)

# Calculate lambda for each matrix
lambdaVals <- sapply(x, popdemo::eigs, what = "lambda")
summary(lambdaVals)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.7378 1.1395 1.4965 1.4653 1.7106 2.1926

Users can examine the vignettes for the Rcompadre and Rage packages for additional insight into other
potential operations with the compadreDB object.

4. Constraining the output matrices

Critically, users can impose constraints on the “acceptable” properties of these randomly generated MPMs.
For example, in some analyses, it may be desirable to generate MPMs where the population growth rate is
constrained to values near 1.

This is handled by the constraint argument, which takes a data frame specifying the criteria for acceptable
MPMs. The data frame must have four columns: fun, arg, lower, and upper. The fun column contains the
name of the function that calculates the metric to be constrained (e.g., eigs, from the popdemo package).
The arg column specifies any additional argument that the function requires (e.g., what = "lambda" for the
eigs function), using NA if no additional argument is needed. The lower and upper columns set the bounds
of the acceptable range for the metric.

Here’s an example of how to use the constraint argument to ensure that the generated MPMs have a
population growth rate (lambda) between 0.9 and 1.1.
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library(popdemo)

constrain_df <- data.frame(
fun = "eigs", arg = "lambda", lower = 0.9, upper = 1.1

)

myMatrices <- rand_lefko_set(
n = 100, n_stages = 3, fecundity = 12, constraint = constrain_df,
archetype = 4, output = "Type1"

)

We can check that it has worked by examining the matrices.

# Obtain the matrices
x <- matA(myMatrices)

# Calculate lambda for each matrix
lambdaVals <- sapply(x, popdemo::eigs, what = "lambda")
summary(lambdaVals)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.9019 0.9612 1.0148 1.0115 1.0635 1.0984

Conclusion

This vignette has provided a comprehensive guide to generating Lefkovitch matrix population models
(MPMs) based on life history archetypes. By using the rand_lefko_mpm and rand_lefko_set functions,
users can create individual MPMs or large sets of MPMs tailored to specific research needs. The ability to
impose constraints on these models allows for precise control over their properties, ensuring that generated
MPMs meet defined criteria, such as specific population growth rates.

The flexibility and power of these functions facilitate the exploration of population dynamics under various
scenarios, aiding in hypothesis testing in studies of population biology and life history theory. Additionally,
tight integration with the RCompadre package facilitates the use of generated models, enhancing their utility
in both theoretical and applied ecological research.
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Sampling error and its propagation

2024-10-12

Introduction

Uncertainty in the individual elements of a matrix population model (MPM) can propagate, affecting the
accuracy of metrics derived from the model, such as population growth rate, generation time, etc.

One approach to estimate this uncertainty is parametric bootstrapping, which generates a sampling distribu-
tion for the matrix model based on assumptions about the underlying demographic processes and uncertain-
ties in individual matrix elements. For example, reproductive output can be modelled as a Poisson-distributed
process, suitable for count-based data, while survival can be represented by a binomial distribution, reflecting
the probability of individual survival.

The compute_ci function estimates a 95% confidence interval (95% CI) for any MPM-derived metric by
generating a sampling distribution through resampling based on the given assumptions. The 95% CI is
derived from the 2.5th and 97.5th percentiles of this distribution, where a narrower interval indicates greater
precision.

The width and shape of the sampling distribution are influenced by several factors, including the sample
size used for estimating matrix elements, the matrix model’s structure, the assumptions underlying the
compute_ci function, and the distribution of uncertainties across matrix elements. To accurately assess the
precision of MPM estimates, it is necessary to consider these factors when interpreting the results.

The following examples show how to use these functions.

Aims

The purpose of this vignette is to illustrate how to use mpmsim to assess and estimate sampling error in
MPMs and how this uncertainty propagates into derived metrics. This approach is useful for several reasons,
including:

• Estimating confidence intervals (CIs) for key demographic metrics, such as population growth rate
using parametric bootstrapping methods.

• Exploring the impact of sample size on the precision of estimates for population growth rate and other
metrics derived from MPMs.

• Evaluating the propagation of uncertainty across different matrix elements and submatrices (sur-
vival/growth vs. reproduction) in MPMs.

Estimate 95% Confidence Intervals

We can estimate the 95% CI for any metric derived from a matrix population model. In this example, we
focus on the population growth rate, λ.

Consider a matrix model A, which is composed of submatrices U (survival/growth) and F (sexual repro-
duction), such that A = U + F.
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The methods require that the matrix model be split into its component submatrices because the underlying
processes are governed by distributions with different statistical properties: individual survival is treated as
a binary process (0 = dies, 1 = survives), whereas individual reproduction follows a Poisson distribution.

In this example, the matrix is simple, with only the top-right element representing reproduction, while all
other elements represent survival or growth.

A =
[
0.1 5.0
0.2 0.4

]
U =

[
0.1 0.0
0.2 0.4

]

F =
[
0.0 5.0
0.0 0.0

]
We can enter these matrices into R as follows, first entering the U and F matrices, and then summing them
to get the A matrix.

matU <- matrix(c(
0.1, 0.0,
0.2, 0.4

), byrow = TRUE, nrow = 2)

matF <- matrix(c(
0.0, 5.0,
0.0, 0.0

), byrow = TRUE, nrow = 2)

matA <- matU + matF

The estimated population growth rate (λ) can be calculated using the eigs function from the popdemo
package like this:

popdemo::eigs(matA, what = "lambda")
#> [1] 1.261187

We can now estimate the 95% CI for this estimate, based on a knowledge of the sample size(s) used to
parameterise the MPM.

If the sample size used to estimate each element of the matrix is 20 individuals, we can estimate the 95% CI
for λ using the compute_ci function. This function requires several arguments: mat_U and mat_F represent
the survival/growth matrix and reproductive output matrix respectively, and sample_size specifies the
number of individuals used to estimate each element (in this case, 20). The argument FUN defines the
function to be applied to the resulting A matrix to calculate the desired metric.

compute_ci(
mat_U = matU, mat_F = matF, sample_size = 20,
FUN = popdemo::eigs, what = "lambda"

)
#> 2.5% 97.5%
#> 0.7097788 1.7020301

We can examine the sampling distribution of these λ estimates estimates by using the argument dist.out
= TRUE.
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distLambda_20 <- compute_ci(
mat_U = matU, mat_F = matF,
sample_size = 20, FUN = popdemo::eigs, what = "lambda",
dist.out = TRUE

)
hist(distLambda_20$estimates)
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Sample sizes that vary across the MPM

In the above example, it is assumed that the sample size used to make the parameter estimates (i.e. each
element of the matrix model) was the same throughout the model. However, sample size might vary across
different parts of the matrix or submatrices due to variations in data availability or biological processes. For
example, data on survival and growth (represented in the U matrix) might be more abundant because these
processes can often be tracked more easily in field studies. In contrast, reproductive output data (represented
in the F matrix) may be harder to collect, especially for species with complex reproductive cycles, leading to
smaller sample sizes. Additionally, environmental factors or study limitations can result in unequal sampling
efforts across different life stages, contributing to varying sample sizes in the matrix elements.

To account for this, the compute_ci function allows flexibility in specifying sample size, which can be
added in several ways to control how variability is modeled across different parts of the matrix. As an
alternative to providing a single value to apply uniformly to all elements (as done above) you can provide a
matrix specifying sample sizes for each element, or a list of matrices for distinct components (e.g., U and F
matrices). This flexibility helps tailor the modeling of uncertainty to reflect different data availability across
biological processes.

For instance, in the following code, we use the same MPM as above, split into U and F submatrices (matU and
matF, respectively), but now assume that sample size varies between these components, with 40 individuals
for U and 15 for F. Here, the sample size is consistent across all elements within the U matrix, but you
could also assign different sample sizes to individual elements of the matrix, allowing for different sample
sizes for different transitions.
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# Define the sample sizes for U
mat_U_ss <- matrix(c(

40, 40,
40, 40

), byrow = TRUE, nrow = 2)

# Define sample sizes for F
mat_F_ss <- matrix(c(

0.0, 15,
0.0, 0.0

), byrow = TRUE, nrow = 2)

# Combine sample sizes into list
sampleSizes <- list(mat_U_ss = mat_U_ss, mat_F_ss = mat_F_ss)

# Calculate CI for lambda
compute_ci(

mat_U = matU, mat_F = matF, sample_size = sampleSizes,
FUN = popdemo::eigs, what = "lambda"

)
#> 2.5% 97.5%
#> 0.895995 1.579860

Exploring the impact of sample size

Sample size is critical in determining the precision of statistical estimates. In demographic studies, small
sample sizes can lead to high uncertainty in estimates of derived measures like λ, making it difficult to make
strong inferences. Larger sample sizes reduce this uncertainty, as seen in the narrower confidence intervals
around λ when we increase the sample size from 20 (calculated above) to 100 (below).

distLambda_100 <- compute_ci(
mat_U = matU, mat_F = matF,
sample_size = 100, FUN = popdemo::eigs, what = "lambda",
dist.out = TRUE

)

par(mfrow = c(2, 1))
hist(distLambda_20$estimates, xlim = c(0, 1.75))
hist(distLambda_100$estimates, xlim = c(0, 1.75))
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This approach can be used to perform a form of power analysis by simulation, a technique for determining
the sample size required to detect an effect with a specified statistical power and significance level. For
instance, one might ask, ’What sample size is needed to confidently conclude that the population growth
rate is above 1.0?

The following code creates a plot to visualize how the precision of λ estimates improves as sample size
increases. It first defines a set of sample sizes to iterate over, then it uses compute_ci to calculate the
confidence intervals (CIs) for λ estimated from MPMs based on these sample sizes. It then plots λ estimates
and their CIs, along with a reference line at λ = 1. The goal is to show that as the sample size increases,
the width of the CIs shrinks, increasing our confidence in the value of λ.

In this case, a sample size of approximately 70 appears sufficient. However, sample size likely has greater
importance for the more elastic elements of the MPM. Therefore, focusing on these elements could help users
better understand the specific sample size requirements for their system. This targeted approach would lead
to a more nuanced study design, allowing for optimized sampling efforts in the areas where precision matters
most.

# Define sample sizes to iterate over
sample_sizes <- seq(10,100,10)

# Lambda value for reference
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matA <- matF + matU
true_lambda <- popdemo::eigs(matA, what = "lambda")

# Initialize an empty data frame with predefined columns
ci_results <- data.frame(

sample_size = sample_sizes,
ci_lower = numeric(length(sample_sizes)),
ci_upper = numeric(length(sample_sizes)),
estimate_mean = numeric(length(sample_sizes))

)

# Loop through each sample size and calculate the CI for lambda
for (i in seq_along(sample_sizes)) {

n <- sample_sizes[i]

# Compute CI for the current sample size
dist_lambda <- compute_ci(

mat_U = matU, mat_F = matF,
sample_size = n, FUN = popdemo::eigs, what = "lambda",
dist.out = TRUE

)

# Calculate 95% CI from the distribution
ci_results$ci_lower[i] <- quantile(dist_lambda$estimates, 0.025)
ci_results$ci_upper[i] <- quantile(dist_lambda$estimates, 0.975)
ci_results$estimate_mean[i] <- mean(dist_lambda$estimates)

}

# Calculate error bars
ci_lower_error <- ci_results$estimate_mean - ci_results$ci_lower
ci_upper_error <- ci_results$ci_upper - ci_results$estimate_mean

# Create the plot
plot(ci_results$sample_size, ci_results$estimate_mean,

ylim = range(ci_results$ci_lower, ci_results$ci_upper),
pch = 19, xlab = "Sample Size", ylab = "Lambda Estimate",
main = "Effect of Sample Size on Lambda Estimate Precision")

# Add error bars and reference line
arrows(ci_results$sample_size, ci_results$ci_lower,

ci_results$sample_size, ci_results$ci_upper,
angle = 90, code = 3, length = 0.05, col = "blue")

abline(h = 1, lty = 2)
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Conclusion

This vignette demonstrates how sampling error propagates through MPMs, influencing metrics like pop-
ulation growth rate, and provides a practical method for estimating confidence intervals for these metrics
using compute_ci. By applying tools like compute_ci, users can also evaluate the effect of sample size on
estimate precision, using this information to optimize data collection efforts and improve the reliability of
demographic estimates.

Addendum

The compute_ci function is intended for metrics that rely on the full A matrix. However, some metrics,
like life_expect_mean from the Rage package, only require the U matrix. For metrics such as these, users
should use the compute_ci_U function, which works similarly to compute_ci, but is specifically designed for
metrics that focus solely on survival and growth processes within the U matrix.
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Supplemental Code S4: life history archetypes and life history structuring 

 

library(mpmsim) 

library(Rage) 

library(Rcompadre) 

library(dplyr) 

library(popbio) 

library(ggfortify) 

 

set.seed(42) 

constrain_df <- data.frame(fun = "lambda", arg = NA, lower = 0.9, upper = 
1.1) 

sim_life_hist_1 <- generate_mpm_set( 

  n = 250, n_stages = 3, fecundity = c(0, 6, 6), archetype = 1, split = 
TRUE, 

  max_surv = 0.95, constraint = constrain_df,attempts = 3000 

) 

 

sim_life_hist_1 <- cdb_flag(sim_life_hist_1, checks = "check_irreducible") 
%>% 

  filter(check_irreducible == TRUE) 

 

# Put the matrices into the metadata 

sim_life_hist_1$matA <- matA(sim_life_hist_1) 

sim_life_hist_1$matU <- matU(sim_life_hist_1) 

sim_life_hist_1$matF <- matF(sim_life_hist_1) 

 

# Use cdb_metadata to turn this into a data frame 

sim_life_hist_1 <- cdb_metadata(sim_life_hist_1) 

 

 

# New functions to calculate generation time from life table. 

# Function to calculate generation time from the life table 

gt_lt <- function(matU, matF, start = 1, ...) { 

  tempLT <- mpm_to_table(matU, matF, start = start, ...) 

  return(sum(tempLT$x * tempLT$lxmx) / sum(tempLT$lxmx)) 

} 



 

sim_life_hist_1$gt_lt <- mapply( 

  gt_lt, sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

sim_life_hist_1$longevity <- sapply(sim_life_hist_1$matU, 

                                    Rage::longevity, 

                                    x_max = 1000, lx_crit = 0.01 

) 

sim_life_hist_1$lifeExpect <- sapply( 

  sim_life_hist_1$matU, 

  Rage::life_expect_mean 

) 

sim_life_hist_1$entropy_d <- mapply( 

  entropy_d, 

  sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

 

sim_life_hist_1$entropy_k <- mapply(entropy_k, sim_life_hist_1$matU) 

sim_life_hist_1$nrr_R0 <- mapply( 

  net_repro_rate, sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

 

pcData <- sim_life_hist_1 %>% 

  select(gt_lt, longevity, lifeExpect, entropy_d, entropy_k, nrr_R0) %>% 

  na.omit() 

 

PCA <- prcomp(pcData, scale = TRUE, center = TRUE) 

 

# Add the PC data to the raw data. 

pcData <- pcData %>% 

  cbind(PCA$x[, 1:2]) 

 

PCA_plot <- autoplot( 



  object = PCA, alpha = 0, size = 4, fill = "#55616D60", 

  loadings.colour = "#0072B2", shape = 16, 

  loadings = TRUE, loadings.label = TRUE, loadings.label.colour = "red", 

  loadings.label.size = 3, loadings.label.repel = TRUE, 

  frame = FALSE, frame.type = "norm", scale = 0 

) 

 

PCA_plot$layers <- c( 

  geom_point( 

    aes( 

      x = pcData$PC1, 

      y = pcData$PC2 

    ), 

    size = 2, alpha = 0.5 

  ), 

  PCA_plot$layers 

) 

 

A <- PCA_plot + ggtitle("A) Archetype 1") +  

  theme_minimal()+ 

  theme( 

    text = element_text(size = 8), 

    axis.title = element_text(size = 8), 

    axis.text = element_text(size = 7), 

    plot.title = element_text(size = 9, face = "bold") 

  ) 

 

ggsave("PCA_Archetype1.png", width = 5, height = 5) 

#### 

 

set.seed(34) 

constrain_df <- data.frame(fun = "lambda", arg = NA, lower = 0.9, upper = 
1.1) 

sim_life_hist_1 <- generate_mpm_set( 

  n = 250, n_stages = 3, fecundity = c(0, 6, 6),archetype = 4, split = 
TRUE, 

  max_surv = 0.95, constraint = constrain_df,attempts = 3000 



) 

 

sim_life_hist_1 <- cdb_flag(sim_life_hist_1, checks = "check_irreducible") 
%>% 

  filter(check_irreducible == TRUE) 

 

# Put the matrices into the metadata 

sim_life_hist_1$matA <- matA(sim_life_hist_1) 

sim_life_hist_1$matU <- matU(sim_life_hist_1) 

sim_life_hist_1$matF <- matF(sim_life_hist_1) 

 

# Use cdb_metadata to turn this into a data frame 

sim_life_hist_1 <- cdb_metadata(sim_life_hist_1) 

 

 

# New functions to calculate generation time from life table. 

# Function to calculate generation time from the life table 

gt_lt <- function(matU, matF, start = 1, ...) { 

  tempLT <- mpm_to_table(matU, matF, start = start, ...) 

  return(sum(tempLT$x * tempLT$lxmx) / sum(tempLT$lxmx)) 

} 

 

sim_life_hist_1$gt_lt <- mapply( 

  gt_lt, sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

sim_life_hist_1$longevity <- sapply(sim_life_hist_1$matU, 

                                    Rage::longevity, 

                                    x_max = 1000, lx_crit = 0.01 

) 

sim_life_hist_1$lifeExpect <- sapply( 

  sim_life_hist_1$matU, 

  Rage::life_expect_mean 

) 

sim_life_hist_1$entropy_d <- mapply( 

  entropy_d, 



  sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

 

sim_life_hist_1$entropy_k <- mapply(entropy_k, sim_life_hist_1$matU) 

sim_life_hist_1$nrr_R0 <- mapply( 

  net_repro_rate, sim_life_hist_1$matU, 

  sim_life_hist_1$matF 

) 

 

pcData <- sim_life_hist_1 %>% 

  select(gt_lt, longevity, lifeExpect, entropy_d, entropy_k, nrr_R0) %>% 

  na.omit() 

 

PCA <- prcomp(pcData, scale = TRUE, center = TRUE) 

 

# Add the PC data to the raw data. 

pcData <- pcData %>% 

  cbind(PCA$x[, 1:2]) 

 

PCA_plot <- autoplot( 

  object = PCA, alpha = 0, size = 4, fill = "#55616D60", 

  loadings.colour = "#0072B2", shape = 16, 

  loadings = TRUE, loadings.label = TRUE, loadings.label.colour = "red", 

  loadings.label.size = 3, loadings.label.repel = TRUE, 

  frame = FALSE, frame.type = "norm", scale = 0 

) 

 

PCA_plot$layers <- c( 

  geom_point( 

    aes( 

      x = pcData$PC1, 

      y = pcData$PC2 

    ), 

    size = 2, alpha = 0.5 

  ), 



  PCA_plot$layers 

) 

 

B <- PCA_plot + ggtitle("B) Archetype 4") + 

  theme_minimal()+ 

  theme( 

    text = element_text(size = 8), 

    axis.title = element_text(size = 8), 

    axis.text = element_text(size = 7), 

    plot.title = element_text(size = 9, face = "bold") 

  ) 

 

 

ggsave("PCA_Archetype4.png", width = 5, height = 5) 

 

A/B 

 

ggsave("/Users/jones/Dropbox/mpmsim manuscript/MEE Revision 
1/PCAPlots.png",  

       width = 3.35, height = 4.72, units = "in", dpi = 300)   


