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Abstract 10 

1. Matrix population models (MPMs) are widely used in ecology and evolution to explore 11 

population dynamics, including assessing management impacts and extinction risk. In 12 

comparative studies, MPMs can be used to test life history theory or investigate macro-13 

evolutionary patterns in demographic traits.   14 

2. Simulated MPMs can help researchers explore the effects of life cycle structure, vital rate 15 

trajectories, and uncertainty in transition rates due to sampling error. They are also valuable 16 

teaching tools. 17 

3. The mpmsim R package enables users to simulate random or semi-random Lefkovitch and 18 

Leslie MPMs based on life history archetypes or mortality and fecundity patterns. It also allows 19 

the exploration of sampling error effects and uses parametric bootstrapping to calculate 20 

confidence intervals for matrix-derived estimates. 21 

4. mpmsim provides a convenient toolset for addressing questions about MPMs and life history, 22 

with full documentation and user-friendly vignettes. 23 

Keywords: simulation, sampling error, bias, teaching tools, mortality trajectory, fertility trajectory, 24 

Leslie matrix, Lefkovitch matrix, life history archetypes  25 
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Introduction 26 

Matrix population models (MPMs) are a versatile tool in population biology and evolution (Caswell, 27 

2001), first introduced by Leslie (1945) to study age-structured population dynamics. Lefkovitch (1965) 28 

expanded the approach to stage-classified life histories, followed by developments like stochastic 29 

(Cohen, Christensen & Goodyear, 1969) and density-dependent MPMs (Pennycuick, 1969), broadening 30 

their applications. Analytical methods such as elasticity and perturbation analysis, life table response 31 

experiments (LTRE), and Markov chain methods (Caswell, 2001) have further enhanced their utility. 32 

MPMs describe a population's demography at a specific time and place by modelling individuals 33 

categorised by (st)age over a discrete projection interval (Caswell, 2001). At the core is the projection 34 

matrix (A), representing transitions between stages through survival, growth, and reproduction, which 35 

can be split into submatrices U (growth/survival), F (sexual reproduction), and C (clonal 36 

reproduction), such that A = U + F + C. MPMs provide biologically meaningful outputs to estimate 37 

population growth rates, extinction risk, responses to vital rate perturbations, transient dynamics, 38 

effective population size, and life history traits. Consequently, MPMs have been pivotal in advancing 39 

population biology and life history theory (Caswell, 2001; Crone et al., 2011). Supporting this, the 40 

COMPADRE and COMADRE databases (Salguero-Gomez et al., 2015, 2016) provide >12,000 MPMs 41 

for >1,100 species, ranging from annual plants to whales, which address topics from population 42 

management to evolutionary theory. 43 

Several R packages support MPM analysis (e.g., popbio (Stubben & Milligan, 2007), popdemo (Stott 44 

et al., 2012), Rage (Jones et al., 2022), exactLTRE (Hernández et al., 2023)), but none provide broad 45 

scope for simulating MPMs with specific characteristics. This limits researchers' ability to explore 46 

population dynamics beyond empirical data constraints (Römer et al., 2024). To address this, I 47 

introduce mpmsim, an R package designed to simulate MPMs with defined characteristics, enabling 48 
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users to explore life history and population dynamics. The core functions are make_leslie_mpm 49 

and its wrapper rand_leslie_set for Leslie matrices, and rand_lefko_mpm and 50 

rand_lefko_set for Lefkovitch matrices. The functions compute_ci and compute_ci_U 51 

calculate confidence intervals via parametric bootstrapping, and add_mpm_error allows users to 52 

simulate MPMs with sampling error. Together, these functions enable simulations of diverse life 53 

histories and the assessment of the impact of sampling error on inferences. 54 

Illustrating use of mpmsim 55 

To demonstrate mpmsim's versatility, I provide three examples. First, I show how to generate Leslie 56 

matrices based on mortality and fertility trajectories. Second, I generate Lefkovitch models using 57 

defined life cycle characteristics. Finally, I calculate confidence intervals for MPM-derived estimates. 58 

These are brief demonstrations rather than exhaustive analyses; more extensive vignettes are available 59 

on the package website (https://jonesor.github.io/mpmsim/).  60 

Example 1: Generating Leslie matrices 61 

Leslie MPMs model age-classified populations, with survival probabilities (px) in the subdiagonal 62 

representing survival probabilities from age x to x+1, and fecundity (fx) in the first row representing 63 

reproduction. Matrix A combines survival/growth (U) and sexual reproduction (F), such that A = U + 64 

F. For clonal organisms, a third submatrix C can be added (A = U + F + C). 65 

The main function for generating Leslie MPMs in the package is rand_leslie_set, which creates 66 

MPMs based on randomly drawn parameters from specified mortality and fertility models. Users define 67 

the model types (mortality_model, fertility_model), parameter distributions 68 

(mortality_params, fertility_params, fertility_maturity_params), and the 69 

number of MPMs (n_models). The function outputs MPMs either as a list or a compadreDB 70 
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object (Jones et al., 2021), depending on the output argument. The underlying functions 71 

model_mortality and model_fertility calculate age-specific survival (px) and fertility (fx) 72 

using standard functional forms. 73 

The available mortality models include Siler, Exponential, Gompertz, Gompertz-Makeham, Weibull, 74 

and Weibull-Makeham (Table 1). The model_mortality function calculates survival probabilities 75 

for each age based on age-specific hazard rates. It first calculates hazard rates (hx) from the chosen 76 

mortality model using the model argument and a vector of parameters (params). The cumulative 77 

hazard (Hx) is then computed by integrating hx up to each age, giving total mortality risk. Survivorship 78 

(lx) is determined as exp(-Hx), and the age-specific survival probability (px) is the ratio of survivorship 79 

values at x+1 and x. The function outputs a life table as a data frame that extends by default until lx 80 

drops below 0.01. 81 

The model_fertility function calculates age-specific fertility (fx), the average number of 82 

offspring produced at age x, using canonical models such as logistic, step-function, von Bertalanffy, 83 

Hadwiger, and Normal (Table 1). Key arguments include the model type (model), parameters 84 

(params), and a vector of ages (age), and the output is a vector of fertility values corresponding to 85 

input ages. 86 

Code Box 1 shows how to create 500 Leslie MPMs with Gompertz-Makeham mortality and step-87 

function fertility, with ages at maturity varying from one to four, and parameter values drawn from 88 

uniform distributions. The code runs in 4.01 seconds (SD = 0.92; 100 runs) on a MacBook with 89 

macOS Sonoma 14.6.1, an Intel Core i5 2.40 GHz CPU, 16 GB of RAM, and R version 4.1.1.  90 

Code box 1: Leslie matrix models 91 

# Load package 92 
library(mpmsim) 93 
 94 
# Define mortality model parameters 95 
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# min/max values in Gompertz-Makeham model 96 
mortParams <- data.frame( 97 
  minVal = c(0, 0.01, 0.1), 98 
  maxVal = c(0.05, 0.15, 0.2) 99 
) 100 
# Define fertility model parameters 101 
# min/max values in step model 102 
fertParams <- data.frame( 103 
  minVal = 2, 104 
  maxVal = 10 105 
) 106 
# Define age-at-maturity  107 
# min/max values 108 
maturityParam <- c(1, 4) 109 
 110 
# Produce 500 MPMs 111 
# Gompertz-Makeham mortality model and step function fertility 112 
# Parameters drawn from uniform distribution 113 
# Output compadreDB 114 
myMatrices <- rand_leslie_set( 115 
  n_models = 500, 116 
  mortality_model = "GompertzMakeham", 117 
  fertility_model = "step", 118 
  mortality_params = mortParams, 119 
  fertility_params = fertParams, 120 
  fertility_maturity_params = maturityParam, 121 
  dist_type = "uniform", 122 
  output = "Type1" 123 
) 124 
 125 

 126 

Example 2: Generating Lefkovitch matrices 127 

Lefkovitch MPMs are stage-based, making them ideal when age data is unavailable or less relevant, such 128 

as in life cycles governed by developmental stages (e.g., juvenile, adult). A key advantage is their 129 

adaptability to various life cycles, including transitions like retrogression or dormancy. This flexibility is 130 

essential for studying species with non-age-based life cycles. While these models accommodate diverse 131 

life cycles, some rules apply: survival probabilities cannot exceed 1, and reproduction cannot be 132 

negative. Thus, transition probabilities in U range from 0 to 1, with column sums constrained to ≤ 1, 133 

while reproduction in F has a lower limit of zero. 134 
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In mpmsim, the function rand_lefko_set generates sets of Lefkovitch MPMs and is a wrapper 135 

for rand_lefko_mpm, which creates individual MPMs. These functions model the U matrix by 136 

drawing values from a random Dirichlet distribution, ensuring survival probabilities for each stage are 137 

≤ 1. Users can generate various life cycle structures using the archetype argument, based on Takada 138 

et al.'s (2018) four archetypes. In Archetype 1, individuals can move freely between stages, either 139 

progressing or retrogressing, with no constraints on the transition rate. Archetype 2 adds the 140 

assumption that survival improves with stage progression. Archetype 3 allows only forward 141 

progression, mimicking species with slow development. Archetype 4, similar to Archetype 3, includes 142 

improved survival with stage progression but without retrogression. 143 

In Takada et al.’s models, fecundity was placed in the top-right of the matrix, restricting reproduction to 144 

the final life cycle stage. In mpmsim, this constraint is relaxed through the fecundity argument, which 145 

offers four options: (1) a single value representing reproduction in the most developed stage, (2) a 146 

vector matching the number of stages to assign stage-specific fecundity across the top row, (3) a matrix 147 

defining fecundity for each element, or (4) a list of two matrices setting upper and lower fecundity 148 

limits, with values drawn from a uniform distribution. This flexibility captures various reproductive 149 

strategies, accommodating diverse life histories. 150 

In addition to generating matrices based on selected archetypes, outputs can be fine-tuned using the 151 

constraint argument, allowing users to set limits based on any metric derived from the A matrix, 152 

such as population growth rates within a defined range, to ensure viable life cycles. This enables tailored 153 

simulations for specific ecological or evolutionary scenarios. 154 

Code Box 2 generates 500 Lefkovitch models in a compadreDB object for Archetype 4, constrained 155 

to have a λ between 0.9 and 1.1. Fecundity is set to 0 for the first two stages, and 8 and 14 for the last 156 

two. The code runs in 1.22 seconds (SD = 0.12; 100 runs).  157 
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Code box 2: Lefkovitch matrix models 158 

# Load packages 159 
library(popdemo) 160 
library(mpmsim) 161 
 162 
# Define constraints 163 
# Lambda between 0.9 and 1.1 164 
constrain_df <- data.frame( 165 
  fun = "eigs", arg = "lambda", lower = 0.9, upper = 1.1 166 
) 167 
 168 
# Produce 500 MPMs, 3 stages, Archetype 4 169 
# Set fecundity of 8 for stage 3 and 14 for stage 4. 170 
# Output as compadreDB object 171 
myMatrices <- rand_lefko_set( 172 
  n = 500, n_stages = 4, fecundity = c(0,0,8,14),  173 
  constraint = constrain_df, archetype = 4, output = "Type1") 174 
 175 

Example 3: Calculating confidence intervals 176 

MPMs are parameterised in various ways, often by estimating transition rates from repeated surveys of 177 

stage classes. Typically, only a population sample is used, and sample sizes may vary. For instance, 178 

juveniles might be common, resulting in larger sample sizes for estimating juvenile survival, while adults 179 

may be rarer, leading to smaller samples. As a result, sampling error varies across the matrix and 180 

between years in multi-year studies, potentially influencing life history or population dynamics analyses. 181 

I will illustrate how to explore these effects on inferences.  182 

I start with the matrix model, A, the sum of the U and F submatrices. For example, 𝐀 = #0.1 5.0
0.2 0.4* , 183 

𝐔 = #0.1 0
0.2 0.4* and 𝐅 = #0 5.0

0 0 *. Transition rates are assumed to follow specific statistical 184 

distributions: sexual reproduction follows a Poisson process, while growth/survival transitions follows 185 

a binomial process. The well-known properties of these statistical processes enable the estimation of 186 

expected distributions for each matrix element, based on their average values and sample sizes. In 187 

mpmsim, the compute_ci function uses parametric resampling, simulating multiple models by 188 

resampling matrix elements from their respective distributions to generate a distribution of derived trait 189 
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estimates. For tractability, this method assumes no covariance between rates, though trade-offs among 190 

elements may introduce nuances. Code Box 3 shows how to calculate confidence intervals for 191 

generation time and λ, with sample sizes of 15 for adult fecundity and 40 for the survival/growth 192 

transitions. 193 

 194 

Code box 3 – Confidence Intervals 195 

# Load packages 196 
library(popbio) 197 
library(mpmsim) 198 
 199 
# Define U matrix 200 
matU <- matrix(c( 201 
  0.1, 0.0, 202 
  0.2, 0.4 203 
), byrow = TRUE, nrow = 2) 204 
 205 
# Define F matrix 206 
matF <- matrix(c( 207 
  0.0, 5.0, 208 
  0.0, 0.0 209 
), byrow = TRUE, nrow = 2) 210 
 211 
# Combine matrices to create A matrix 212 
matA <- matU + matF 213 
 214 
# Define sample sizes for F 215 
mat_F_ss <- matrix(c( 216 
  0.0, 15,   217 
  0.0, 0.0   218 
), byrow = TRUE, nrow = 2) 219 
 220 
# Define the sample sizes for U 221 
mat_U_ss <- matrix(c( 222 
  40, 40, 223 
  40, 40 224 
), byrow = TRUE, nrow = 2) 225 
 226 
# Combine sample sizes into list 227 
sampleSizes <- list(mat_U_ss = mat_U_ss, mat_F_ss = mat_F_ss) 228 
 229 
# Calculate lambda 230 
lambda(matA) 231 
#> [1] 1.261187 232 
 233 
# Calculate CI for lambda 234 
compute_ci( 235 
  mat_U = matU, mat_F = matF, sample_size = sampleSizes, 236 
  FUN = lambda 237 
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) 238 
#>      2.5%     97.5%  239 
#> 0.9033941 1.6022154 240 
 241 
# Calculate generation time 242 
generation.time(matA) 243 
#> [1] 2.65536 244 
 245 
# Calculate CI for generation time 246 
compute_ci( 247 
  mat_U = matU, mat_F = matF, sample_size = sampleSizes, 248 
  FUN = popbio::generation.time 249 
) 250 
#>     2.5%    97.5%  251 
#> 2.371819 3.106800 252 
 253 

Conclusion 254 

These examples highlight mpmsim as a valuable tool for simulating MPMs, ideal for research on 255 

population dynamics and life history evolution, as well as for teaching. Detailed examples are available 256 

in the GitHub vignettes (http://www.github.org/jonesor/mpmsim). The package can be installed via 257 

CRAN with install.packages("mpmsim") or from GitHub for the development version. 258 

Overall, mpmsim provides user-friendly tools for MPM simulation, making it a powerful resource for 259 

population ecology and evolutionary biology research. 260 
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Tables 335 

 336 

Table 1: Mathematical expressions for mortality and fertility models in mpmsim. In mortality models, 337 

hx is the hazard function at age x, with parameters a0, a1, b0, b1, and c reflecting factors like aging rate and 338 

baseline risk. In fertility models, fx is the fertility rate at age x, with parameters A, k, xm, m, x0, μ, σ, a, b, 339 

and c determining peak fertility timing, distribution, and overall levels. See ?mortality_model and 340 

?fertility_model. 341 

Mortality models   

Gompertz ℎ! = 𝑏"eb1x Gompertz (1825), 

Pletcher (1999), Ricklefs 

& Scheuerlein (2002), 

Colchero et al. (2012) 

Gompertz-Makeham ℎ! = 𝑏"eb1x + 𝑐 Pletcher (1999), 

Colchero et al. (2012) 

Exponential ℎ! = 𝑐 Cox & Oakes (1984), 

Colchero et al. (2012) 

Siler ℎ! = 𝑎"e-a1x + 𝑐 + 𝑏"eb1x Siler (1979), Colchero et 

al. (2012) 

Weibull ℎ! = 𝑏"𝑏'(𝑏'𝑥)()"*') Pinder et al. (1978), 

Ricklefs & Scheuerlein 
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(2002), Colchero et al. 

(2012) 

Weibull-Makeham ℎ! = 𝑏"𝑏'(𝑏'𝑥)()"*') + 𝑐 Colchero et al. (2012) 

Fertility models   

Logistic 𝑓! = 𝐴/ :1 + exp=−𝑘(𝑥 − 𝑥,)@A  

Step 𝑓	! =	C
𝐴, 𝑥	 ≥ 	𝑚
𝐴, 𝑥	 < 	𝑚  

Normal 
𝑓! = 𝐴 × exp I−

1
2 :
𝑥 − 𝜇
𝜎 A

.
 M 

 

Hadwiger 
𝑓! =

𝑎𝑏
𝑐 :

𝑐
𝑥A

/
. exp C−𝑏. :

𝑐
𝑥 +

𝑥
𝑐 − 2AN 

 

Hadwiger (1940) 

Peristera & Kostaki 

(2007) 

von Bertalanffy 𝑓! = 𝐴 :1 − 𝑒𝑥𝑝=−𝑘(𝑥 − 𝑥")@A von Bertalanffy (1938) 

 342 

 343 


