

1 **Temperate tree seedlings show extensive plastic response to water deficit and**
2 **heat stress, but it is insufficient to fully mitigate decline in growth**

4 **Authors:** Lina Aragón¹, Fermín Rada^{2*}, Luke McComarck^{3*}, Christian Messier^{4,5}, Julie Messier⁶

6 ¹University of Miami, Department of Biology, Coral Gables, FL, USA

7 ²Universidad de los Andes, Departamento de Ciencias Biológicas

8 ³Center for Tree Science, The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA

9 ⁴Institut des sciences de la forêt tempérée, 58 rue principale, Département des sciences
10 naturelles, Université du Québec en Outaouais, Québec, Canada

11 ⁵Centre d'étude de la forêt, Département des sciences biologiques, Université du Québec à
12 Montréal, Montréal, Québec, Canada

13 ⁶University of Waterloo, Department of Biology, Waterloo, ON, Canada

15 **Abstract**

16 Heat, cold, drought, salinity, oxidative stress, and nutrient deficiency are among the abiotic
17 stressors that plants face because of climate change. However, these stressors do not occur in
18 isolation, which increases plant vulnerability to pathogens and herbivory. While plants cannot
19 quickly escape changes in air temperature and soil water availability, they still can acclimate to
20 the new abiotic and biotic conditions in their current environments. Since temperate forests in
21 Canada cover 9% of the world's total forest area (approximately 346 million hectares) and boreal
22 forests store one-third of the world's terrestrial carbon, it is crucial to evaluate how heat and
23 drought together impact the growth and functioning of native trees in these ecosystems. To
24 support this effort, we conducted a greenhouse experiment exposing five native tree species to
25 six different environmental treatments involving heat and drought, to assess specifically: 1)
26 effects of water deficit and heat, alone and together, on seedling performance, 2) the plastic
27 response of seedlings to water deficit and heat; and 3) the role of phenotypic plasticity to
28 maintain plant performance under stress. We found, first, that growth is significantly reduced
29 under water deficit, while warmer temperatures have a neutral to positive effect on growth,
30 depending on the species (broadleaves versus conifers). Second, the effects of water deficit and
31 heat on the phenotype are idiosyncratic among species, given that a) no single trait show a
32 consistent response to the stressors imposed across all species; b) some species only showed a
33 multivariate trait response to water deficit (i.e., *Acer saccharum*, and *Picea glauca*), others only
34 to heat (i.e., *Betula alleghaniensis*, and *Pinus resinosa*) and only *Q. rubra* responded to both
35 stressors; and c) a unique set of traits per species was associated with their responses to water
36 deficit and/or heat. Our results illustrate the various and unique ways in which plant species are
37 affected by and respond to environmental stress, highlighting the vulnerability of natural
38 ecosystems to global warming.

40 **Introduction**

41 Climate change is leading to declines in plant performance due to the simultaneous occurrence of
42 multiple interacting stressors (Pascual et al., 2022). Heat, cold, drought, salinity, oxidative stress,
43 and nutrient deficiency are among the abiotic stressors that plants face because of climate
44 change. However, these stressors do not occur in isolation, which increases plant vulnerability to
45 pathogens and herbivory (Zhang et al., 2025). Additionally, the effects of each stressor can
46 change in the presence of other stressors, making it challenging to reliably predict the effects of
47 combined stressors based on their individual effects (Pirotta et al., 2022; Zandalinas et al., 2021).
48 For example, a rise in air temperatures with similar precipitation regimes can still lead to drought
49 stress due to higher evaporative demands, which decrease the water availability of the overall
50 ecosystem (Gebrechorkos et al., 2025; Xu et al., 2023). Yet, we still do not fully understand the
51 compound effects of heat and drought on tree performance.

52
53 While plants cannot quickly escape changes in air temperature and soil water availability,
54 they still can acclimate, adapt, or migrate in response to those changes (Feeley et al., 2012). The
55 long lifespan of tree species limits their capacity to adapt to new environmental conditions
56 caused by climate change, and migration rates have been shown to be too slow when compared
57 to the rate of warming (Hansson et al., 2021). Therefore, acclimating to the new abiotic and
58 biotic conditions is essential to mitigate the effects of environmental stress on growth,
59 reproduction, and survival (i.e., plant performance) (Feeley et al., 2023).

60
61 Plants acclimate by adjusting their anatomical, morphological, and physiological
62 characteristics to maintain performance. These changes in ecophysiological characteristics
63 optimize resource acquisition, conservation, and allocation under the non-optimal conditions.
64 Theory shows that under limited resource availability (e.g., drought), we would expect
65 phenotypes to become more conservative by investing in costly, long-lived leaves (high leaf
66 mass per area (LMA), low nitrogen concentration, and low maximum photosynthetic rate) and
67 reducing their stomatal conductance (g_s) (I. J. Wright et al., 2004). Still, the entire (integrated)
68 plant phenotype responds to the set of environmental conditions the plant is facing (Blonder et
69 al., 2023; Díaz, 2025), and this response will be determined by the unique selective pressures
70 imposed by all the stressors experienced (Luong & Loik, 2022).

71
72 Heat and drought are significant stressors, especially when they occur together, resulting
73 in the largest crop yield losses, totaling approximately \$200 billion (Suzuki et al., 2014). These
74 stressors are detected by different parts of the plant (Gebrechorkos et al., 2025). Additionally,
75 plant responses to these stressors tend to oppose each other (Sato et al., 2024). When soil water
76 availability decreases due to reduced rainfall, plants close their stomata to conserve water and
77 prevent cavitation. Conversely, higher temperatures cause stomata to open, allowing the leaves
78 to cool and avoid thermal damage from oxidative stress. As a result, the effect of heat and
79 drought compound each other: increased temperatures lead to higher water use, while water
80 deficits result in higher leaf surface temperatures (Sato et al., 2024).

82 Efforts have been made to understand the responses of trees to heat and drought
83 individually. It has been shown that a widespread positive effect of warming on tree growth
84 exists, with a stronger positive effect for species from higher latitudes (Li et al., 2020; Way &
85 Oren, 2010). This could indicate that tree growth is not optimal in their current native
86 environments, a hypothesis supported by the fact that evergreen species from boreal to tropical
87 biomes have shown an upward shift of 0.34°C per $^{\circ}\text{C}$ in the thermal optimum of photosynthesis
88 under warming conditions (Crous et al., 2022). Moreover, plants limited by cold temperatures
89 showed under warming an increase in their maximum rate of carboxylation by Rubisco
90 (VCmax), maximum photosynthesis electron transport rate (Jmax), maximum carbon
91 assimilation per mass (Amass), and leaf stomatal conductance (gs) (Crous et al., 2022; Dai et al.,
92 2021; Li et al., 2020). In contrast, plants exposed to temperatures above their thermal optimum
93 of photosynthesis showed a reduction in their Amass, VCmax, Jmax, and chlorophyll
94 concentration (CHL). Still, most tree species cooccurring in the same environment show
95 idiosyncratic responses to warming (Li et al., 2020; G. Wu et al., 2018; T. Wu et al., 2019).
96

97 Tree mortality under water stress can be due to carbon starvation, hydraulic failure,
98 and biotic agents that can amplify or be amplified by the other two mechanisms (McDowell et
99 al., 2008). Species that have a tight control of their water loss through stomatal opening
100 regulation (i.e., isohydric species) tend to die of carbon starvation while those that keep moving
101 water despite soil water reduction (i.e., anisohydric species) tend to suffer from hidraulic failure
102 (McDowell et al., 2008). It has been observed that isohydric species under severe water stress
103 reduce their gs and Amass, however their root carbon reserves increase (Galvez et al., 2011).
104 Additionally, under moderate water stress trees try to maintain their aboveground growth and
105 access to resources, while under server stress, a higher investment to root growth results in an
106 increase in their root mass fraction (Brunner et al., 2015). Therefore, drought in contrast to heat
107 results in plant growth reduction or stagnation, a fact observed in cities where extreme heat
108 events during the summer can result in a reduction of tree growth by 64% (Marchin et al., 2025).
109

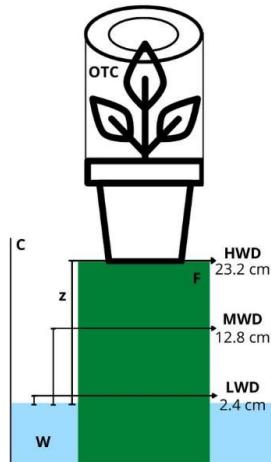
110 North American boreal forests exhibit a significant west-east gradient in water
111 availability and are projected to experience the lowest climatic moisture deficits in the future
112 (D'Orangeville et al., 2016). Therefore, these regions have been proposed as a refuge for boreal
113 species highly susceptible to drier conditions. However, there has been a lack of evidence of
114 boreal tree expansion toward northern locations (Rotbarth et al., 2023). And, contrary to
115 expectations, the temperate broadleaf forest is not migrating northward as quickly as was initially
116 anticipated due to dispersal and demographic constraints (Rotbarth et al., 2023; Vissault et al.,
117 2020). Thus, the maintenance of current populations in boreal and temperate forests will depend
118 on individuals' ability to acclimate to warmer and drier conditions where they occur.
119

120 This project examines the response of Canadian temperate seedlings to heat, drought, and
121 their combined effects. Temperate and boreal forests in North America are expected to
122 experience higher summer temperatures, accompanied by either similar or lower levels of
123 precipitation (Cohen et al., 2019). Future climate projections indicate that temperatures in
124 Canada are expected to increase by 2 to 7°C , depending on the effectiveness of efforts to reduce

125 greenhouse gas emissions (Cohen et al., 2019). Additionally, these projected changes will
126 compound the already observed rise in average annual temperature of over 1 °C between 1900
127 and 2016 (Cohen et al., 2019). Since temperate forests in Canada cover 9% of the world's total
128 forest area (approximately 346 million hectares) and boreal forests store one-third of the world's
129 terrestrial carbon (FAO, 2020), it is crucial to evaluate how heat and drought together impact the
130 growth and functioning of native trees in these ecosystems. To support this effort, we conducted
131 a greenhouse experiment to evaluate the effects of warming and water deficit, both individually
132 and in combination, on the phenotype and performance of temperate tree seedlings. Specifically,
133 by exposing five native tree species to six different environmental treatments involving heat and
134 drought, we asked the following questions: 1) What are the effects of water deficit and heat,
135 alone and together, on seedling performance? 2) What is the plastic response of seedlings to
136 water deficit and heat? and 3) Does phenotypic plasticity allow seedlings to maintain their
137 performance under stress? We expected that the compound effect of heat and drought would
138 result in the strongest reduction in plant performance (i.e., growth).

139

140 **Methodology**


141 **Experimental Design**

142 We assessed the effects of water deficit and rising temperatures on five native Canadian tree
143 species in a greenhouse at the University of Waterloo (Waterloo, ON, Canada). Using a factorial
144 design, the trees were exposed to three water levels (low- (LWD), medium- (MWD), and high-
145 water deficit (HWD)), and two temperature settings (ambient greenhouse (AMBIENT) and
146 warmer temperatures with an open-top chamber (WARMED)). Trees were randomly assigned to
147 one of 10 tables, and tables were rotated biweekly. The experiment ran from June 1st to
148 September 20th, 2021. To mimic the natural decline of soil water due to drought, we first placed
149 all the trees in LWD for a week. Then, we moved the trees assigned to MWD and HWD to the
150 MWD treatment. After a week, the HWD trees were also transferred to this treatment. The
151 experiment involved 180 saplings from species commonly used in forestry, namely *Acer*
152 *saccharum* (ACSA), *Betula alleghaniensis* (BEAL), *Picea glauca* (PIGL), *Pinus resinosa*
153 (PIRE), and *Quercus rubra* (QURU). Six seedlings of each of the five species were grown in
154 each of the six treatments. The trees were obtained as 1 year-old seedlings in tube stock from the
155 Pépinière et centre de semences forestières de Berthier of the Ministère des Forêts, de la Faune et
156 des Parcs, and grown in circular pots containing a potting mix (80% Canadian sphagnum peat
157 moss: 20% coarse perlite).

158

159 To expose trees to water deficit and warmer temperatures, we used the "Snow and
160 Tinger" system and open-top chambers, respectively (Figure 1). The "Snow and Tiger" system
161 uses capillarity irrigation to control the pots' soil water content (Fernández & Reynolds, 2000;
162 Marchin et al., 2020; Snow & Tingey, 1985). This maintains a constant water potential and water
163 deficit across all pots in a given treatment over the duration of the experiment, irrespective of
164 their overall size, root size, or properties (Fernández & Reynolds, 2000; Lambrecht et al., 2007;
165 Marchin et al., 2020). In each water treatment, half of the plants from each species was passively

166 warmed inside an open-top chamber. We used open-top chambers with lids, custom-built to fit
167 around individual trees using 2-mm-thick, UV-transmissive plexiglass, with a 13 cm hole in the
168 lid. Open-top chambers are an affordable and effective tool for simulating warming climate
169 conditions by capturing solar radiation that passively warms the inside air and soil while
170 allowing natural light levels and gas exchange (De Frenne et al., 2013; Welshofer et al., 2018).

171 **Figure 1.** Diagram of the water deficit method, including the open-top chamber to increase the air and soil
172 temperature. Pots (height: 17 cm, diameter: 20.32cm, volume: 3.8L) were placed on top of a column of material with
173 low water permeability (F) (here, floral foam: 22.4 cm x 7.6 cm x 10.4 cm). The distance (z) between the water table
174 (W) and the bottom of the pot determines the degree of water deficit (LWD: low water deficit, MDW: medium
175 water deficit, HWD: high water deficit) (Adapted from Marchin et al. (2020)). W was held constant, and z was
176 varied among treatments. Based on a pilot project ran during the summer of 2020, we used the following three levels
177 for z: 2.4 cm for LWD, 12.8 cm for MWD, and 23.2 cm for HWD.

178

179 **Environmental conditions**

180 We measured the environmental conditions imposed on the plants by using 90 Flower Care™
181 sensors. Fifty-four sensors were placed within pots with open-top chambers and 36 in pots
182 without open-top chambers. The sensors recorded air temperature (°C, AirTemp) and soil
183 humidity (%, SH) every hour during the experiment. Additionally, we used a Teros 12 Soil
184 Moisture Sensor to measure the volumetric water content (m³/m³, VWC), temperature (°C,
185 SoilTemp), and bulk electrical conductivity (dS/m, BD) of each of the pots at least once per
186 month.

187

188 **Ecophysiological Traits**

189 To assess the response of trees to water deficit and warming, we measured 37 functional traits
190 from the leaves, stem, roots, and the whole plant, following standard procedures (Pérez-
191 Harguindeguy et al., 2013). See the full details in the supplementary material. We focused on
192 assessing key physiological functions expected to be affected by water deficit and heat, and to
193 play a role in maintaining plant performance under these stresses (Table 1). These are resource
194 acquisition (RA), resource conservation (RC, water transport (WT), temperature regulation (TR),
195 photoprotection (PP), a specific type of resource conservation, mechanical support (MS),
196 resource storage (RS), and biomass allocation (BA).

197
198
199
200
201
202

Table 1. Traits measured, abbreviations, units, and associated physiological function: resource acquisition (RA), resource storage (RS), water transport (WT), temperature regulation (TR), photoprotection (PP), mechanical support (MS), biomass allocation (BA). \ddagger Traits measured only on broadleaf species. \dagger Traits measured only on individuals assigned to the low water deficit + ambient temperature and high-water deficit + heat treatments.

Traits	Abbr.	Units	Putative functional role
Leaf traits			
Stomatal width \ddagger	SW	μm	RA - WT
Stomatal pore Index \ddagger	SPI	%	RA - WT
Leaf thickness	LT	mm	RA - RS - WT - MS
Leaf mass per area	LMA	g m^{-2}	RA - RS - WT - MS
Leaf water potential at turgor loss point \dagger	ψ_{TLP}	MPa	RA - RS - WT
Osmotic potential at full turgor \dagger	ψ_{100}	MPa	RA - RS - WT
Relative water content at turgor loss point \dagger	RWC _{TLP}	%	RA - RS - WT
Modulus of elasticity \ddagger	ϵ	%	MS
Predawn water potential \ddagger	PDwp	MPa	RA - WT
Delta water potential \ddagger	Dwp	MPa	RA - RS - WT
Leaf temperature differential	LTD	$^{\circ}\text{C}$	TR
Linear electron flow	LEF	unitless	RA - PP
Non-photochemical quenching estimated	NPQt	unitless	PP
Quantum Yield of Photosystem II	Phi2	unitless	RA
Ratio of incoming light lost via non-regulated processes	PhiNO	unitless	PP
Chlorophyll concentration	CHL	mg m^{-2}	RA
Maximum carbon assimilation per mass	Amass	$\mu\text{mol CO}_2 \text{ g}^{-1} \text{ s}^{-1}$	RA
Stomatal conductance	gs	$\text{mol H}_2\text{O m}^{-2} \text{ s}^{-1}$	RA - RS
Intrinsic water use efficiency	WUEi	$\mu\text{mol CO}_2 \text{ mol}^{-1} \text{ H}_2\text{O}$	RA - RS
Leaf carbon concentration	LCC	%	RA - RS
Leaf nitrogen concentration	LNC	%	RA - RS
Stem traits			
Hubber value	HV	$\text{m}^2 \text{ m}^{-2}$	WT - BA
Stem specific density	SSD	g cm^{-3}	RS - WT - MS
Fine (or Absorptive) Root Traits			
Root dry matter content	RDMC	g g^{-1}	RS
Specific root length	SRL	m g^{-1}	RA
Average root diameter	ARD	mm	RA - RS
Root carbon concentration	RCC	%	RS
Root nitrogen concentration	RNC	%	RA
Biomass Allocation			
Leaf mass fraction	LMF	g g^{-1}	BA
Root mass fraction	RMF	g g^{-1}	BA

203

204

Leaf traits

205 At the leaf level, we studied 21 functional traits (Table 1). All these traits were measured in at
206 least one young, fully developed leaf, following the standard procedures explained below, and
207 two months after the plants were established in their respective environments, allowing them to
208 acclimate to their environmental conditions (August 9-26, 2021).

209

210

211

212

213

214

We measured two anatomical and two morphological leaf traits. Stomatal width (SW), and pore index (SPI) are anatomical traits that contribute to regulating plant water loss (Buckley, 2019). The stomata pore index is an integrative trait that combines both stomatal density and size to reflect the leaf's stomatal conductance, and it is calculated as: $SPI = \text{stomatal density} \times \text{stomatal length}^2 \times 10^{-4}$ (Eq. 1). Leaf mass per area (LMA) and leaf thickness (LT) are two

215 morphological traits part of the leaf economic spectrum, a trade-off between strategies of long
216 life span with low nitrogen content (resource conservation) and fast turnover with high nutrient
217 concentration (resource acquisition), and therefore are associated with the plant's photosynthetic
218 capacity, resource-use strategy, and water transport: (Díaz et al., 2016; I. J. Wright et al., 2004).

219

220 The capacity of plants to regulate their hydric status was studied by measuring the
221 predawn water potential (PDwp, 3:00 – 5:00 h) and the daily change in water potential (Dwp =
222 MDwp – PDwp) using a Scholander Pressure Chamber (Model 1505D-EXP/PMS- Instrument-
223 Albany, OR) (Choat et al., 2012; Williams & Araujo, 2002).

224

225 Leaf cost production and photosynthetic capacity were assessed by measuring leaf carbon
226 and nitrogen concentration (LCC and LNC), as well as chlorophyll concentration (CHL). Carbon
227 and nitrogen concentrations were measured using combustion conversion of 0.9-1.0 mg of
228 ground sample material to gas through a 4010 Elemental Analyzer (Costech Instruments, Italy)
229 coupled to a Delta Plus XL (Thermo-Finnigan, Germany) at the Environmental Isotope Lab of
230 the University of Waterloo. Chlorophyll concentration was measured using a chlorophyll content
231 meter capable of handling small needles (CCM-300, Opti-Sciences, Hudson, USA).

232

233 Maximum carbon assimilation per mass (Amass), stomatal conductance (gs), and
234 intrinsic water use efficiency (iWUE) were measured from 10:00 to 12:00 h on a young, fully
235 developed leaf using a LiCor 6800 (Li-Cor, Lincoln, NE, USA). Photoprotective mechanisms
236 allow plants to dissipate the excess light energy they cannot use under stress (Derks et al., 2015).
237 From 10:00 – 12:00 h on each of three fully developed leaves, we measured the amount of
238 energy used towards photosynthesis (Phi2 – photochemistry) and lost via non-regulated
239 processes (PhiNO – fluorescence) using the MultispeQ v2.0 (PhotosynQ, USA). From the
240 MultispeQ v2.0, we also obtained the linear electron flow that is a proxy of photosynthesis
241 (LEF), a calculated non-photochemical quenching (NPQt), and a leaf temperature differential
242 which is the difference between ambient and leaf temperature (LTD).

243

244 To characterize the drought stress tolerance of the study species (Bartlett et al., 2012), we
245 performed pressure-volume (PV) curves for individuals in the LWD/ambient and HWD/warmed
246 treatments. From the PV curves, we extracted four hydraulic traits: turgor loss point (ψ_{TLP}), the
247 osmotic potential at full turgor (ψ_{100}), relative water content at the turgor loss point (RWC_{TLP}),
248 and modulus of elasticity of the cell walls (ϵ).

249

250 ***Stem traits***

251 At the stem level, we studied the stem-specific density (SSD, mg mm⁻³) and Huber value (HV),
252 two morphological and physiological traits related to water transport. SSD affects the four
253 physiological functions of the xylem: water transport safety, water transport efficiency, plant
254 support, and resource storage (Chave et al., 2009; Pratt & Jacobsen, 2017). The Huber value

255 (HV, $\text{m}^2 \text{ m}^{-2}$) is an integrative trait that relates the sapwood area ratio of a stem or branch (the
256 fraction of xylem that conducts sap) to the total leaf area it supplies. It thus provides a water
257 supply to demand ratio that has been shown to scale with plant stature and wood density
258 (Mencuccini et al., 2019).

259

260 **Root traits**

261 We studied five fine-root traits involved in resource acquisition and conservation (Bergmann et
262 al., 2020; Freschet, Roumet, et al., 2021). After tree harvesting, roots were manually washed in
263 water until all soil was cleared. Then, we collected at least ten fine absorptive root samples per
264 individual, defined here as 1st to 3rd-order roots for all species (Freschet, Pagès, et al., 2021;
265 McCormack et al., 2015). On these fine roots, we measured specific root length (SRL, cm mg^{-1}),
266 mean root diameter (RD, cm), root dry matter content (RDMC), root nitrogen content (RNC),
267 and root carbon content (RCC).

268

269 **Biomass allocation traits**

270 At the end of the experiment, leaf mass fraction (LMF) and root mass fraction (RMF) were
271 measured as the ratio of total leaf dry mass and root dry mass to total plant dry mass,
272 respectively. All plants were harvested between September 16 and 21. The leaves, stems, and
273 roots were separated and weighed after being oven-dried for 72 h at 65 °C. Leaves that were
274 naturally shed before the harvest date were collected, dried, and included in the total leaf mass
275 measurements. The weight of the fine roots collected for root trait measurements was added to
276 the total root biomass.

277

278 **Plant Performance**

279 We measured plant performance as their relative growth rate (RGR) based on total biomass. To
280 calculate the initial total biomass of the plants without killing them, we measured the total pot
281 weight after watering the plants and letting the pots drain for 20 mins. This weight combines
282 plant weight and soil weight at field capacity. At the end of the experiment, we repeated this
283 process to obtain the final weight at field capacity. RGR was calculated as:

$$RGR = \frac{\ln(\text{Final Weight}) - \ln(\text{Initial Weight})}{\ln(\text{Initial Weight})} \quad \text{Eq. 1}$$

284 This method assumes that soil maintains its water-holding capacity throughout the
285 experiment. Three individuals with negative growth values were removed from all analyses
286 using RGR.

287

288 **Statistical Analyses**

289 All the statistical analyses were performed in R v4.2. The models' assumptions were verified
290 using validation plots and statistical analyses (Zuur et al., 2010). The mean of each treatment is
291 reported for all the statistical analyses showing a significant effect. All the analyses were
292 performed for each species individually.

293

294 To evaluate the individual and combined effects of water deficit and heat on plant
295 performance (Question 1), we built a linear model predicting RGR as a function of the water
296 treatment, heat treatment, and their interaction (package `{stats}`, function `(lm)`). The interaction
297 term between water deficit and heat was reported when statistically significant. For each species,
298 differences among treatments were identified using post-hoc Tukey tests.
299

300 To evaluate the plastic response of individual traits to water deficit and heat (Objective
301 2), we used linear and mixed models predicting trait values as a function of the water treatment,
302 heat treatment, and their interaction. Linear models were used for those traits we measured once
303 during the entire course of the experiment (package `{stats}`, function `(lm)`). Linear mixed models
304 were used for those traits that were measured over multiple days, with the day of measurement as
305 a random effect (packages `{lmerTest}`, functions `(lmer)`). The interaction term between water
306 deficit and heat was reported when statistically significant. To evaluate the multivariate trait
307 response to water deficit and heat, we performed a redundancy analysis with water deficit and
308 heat as the explanatory variables (package `{vegan}`, function `(rda)`). For the RDA analysis, we
309 removed highly correlated functional traits (Pearson correlation coefficient higher than or equal
310 to 0.7).

311
312 To evaluate whether trait plasticity contributed to RGR maintenance under water deficit
313 and heat (Objective 3), we performed stepwise model selection in both directions (using the
314 package `{stats}`, function `(step)`) for a multiple linear regression that predicted a decrease in RGR
315 based on changes in functional traits. We calculated the relative changes in functional trait values
316 and relative growth rate under medium and high-water deficit (MWD and HWD) compared to
317 LWD, and under warmer conditions (WARMED) for heat, since there was no difference in RGR
318 between medium and high levels. The change in functional trait values was calculated as
319 follows:

$$|\Delta FT| = \left| \frac{FT_{control} - FT_{stressed}}{FT_{control}} \right| \quad \text{Eq. 3}$$

320 $FT_{control}$ represents the mean trait value under low water deficit or greenhouse temperatures
321 and $FT_{stressed}$ represents the observed trait value for every individual in the medium and high-
322 water deficit or warmer temperatures, with samples sizes of $n=24$ for water deficit (except for *P.*
323 *glauca* where $n = 23$) and $n=18$ for heat. The change in relative growth rate was calculated as
324 follows:

$$\Delta RGR = \frac{RGR_{control} - RGR_{stressed}}{RGR_{control}} \quad \text{Eq. 4}$$

325 $RGR_{control}$ represents the mean relative growth rate under low water deficit or greenhouse
326 temperatures and $RGR_{stressed}$ the observed relative growth rate for every individual in the
327 medium and high-water deficit or warmer temperatures. Given equation 4, positive ΔRGR values
328 indicate declines in growth rate. Since the control environment is used as reference for changes
329 in growth and, negative correlations between ΔRGR and $|\Delta FT|$ indicate that large changes in trait

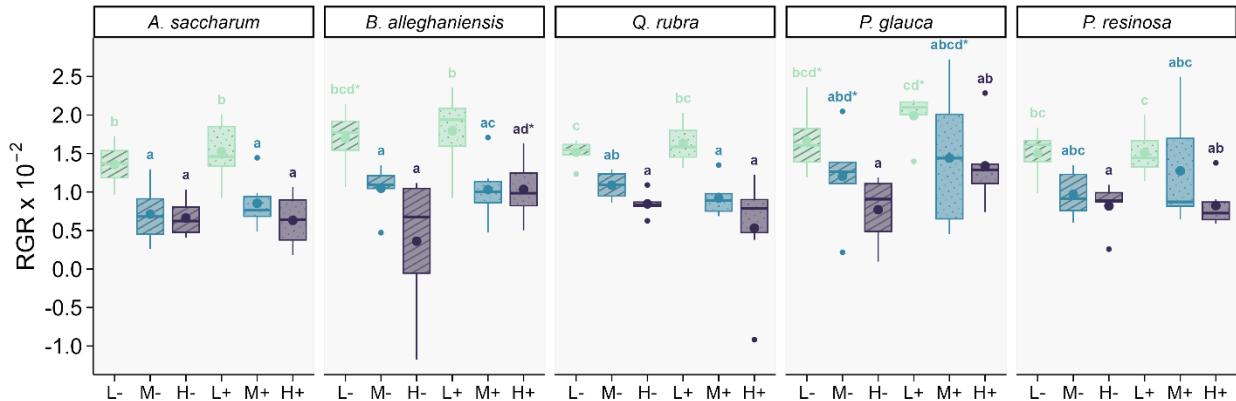
330 are associated with small declines in RGR, thus maintaining performance. In contrast, positive
331 correlations indicate that changes in traits are associated with large decreases in RGR.

332 We included in the full model all significant traits in either univariate or multivariate
333 analyses from objective 2. The selected model was the one with the lowest AIC and the fewest
334 traits. Before running the stepwise selection, highly correlated functional traits were removed
335 (Pearson correlation coefficient of 0.7 or higher for all species). We confirmed that the predictors
336 in the best model had a variance inflation factor (VIF) below 3 (Zuur et al., 2010, using {car},
337 function(vif)). When the best model contained predictors with VIF values exceeding 3, those
338 predictors were removed one by one from the full model, starting with the predictor with the
339 highest VIF, until all predictors in the best model had VIF values below 3.

340

341 **Results**

342 **Water deficit and heat treatments were effective**


343 The watering treatments successfully resulted in three water deficit levels. Treatments had
344 significantly different volumetric water contents ($\mu_{LWD} = 38.2\%$, $\mu_{MWD} = 35.7\%$, $\mu_{HWD} = 31.3\%$, p
345 = 2.2e-15, Figure S1). Open-top chambers resulted in a significant increase of 0.54 °C in average
346 daily temperature ($F_{(1,83)} = 17.86$, $p < 0.0001$), with the most pronounced warming occurring
347 during the morning (6h00 – 13h00: + 0.60°C) and nighttime (20h00 – 6h00: + 0.64°C). See
348 Figure S2).

349

350 **Water deficit and heat reduced plant performance (RGR)**

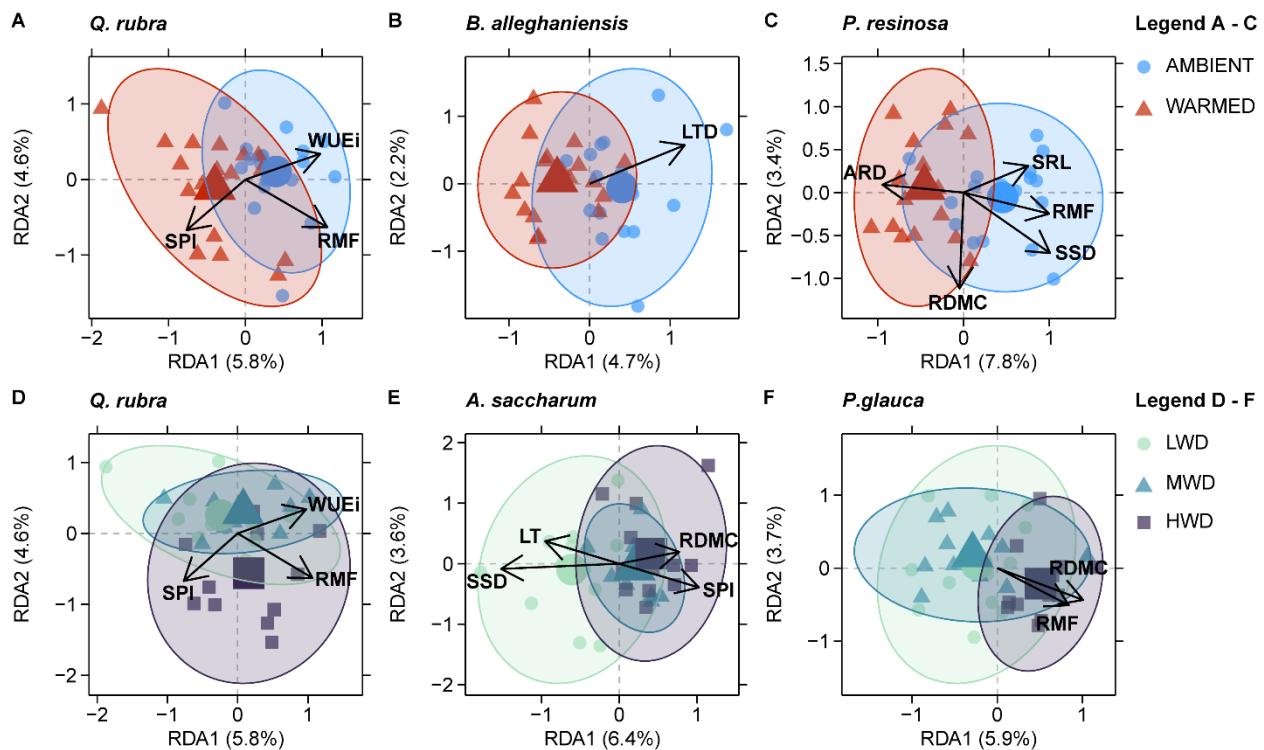
351 All species showed a reduction in RGR with water deficit, both in ambient and heated treatments
352 (Figure 2). For broadleaf species, RGR in the MWD and HWD treatments were similar and were
353 36 to 55% lower than in the LWD treatment (*A. saccharum*: $F_{(2,32)} = 19.83$, $p < 0.0001$; *B.*
354 *alleghaniensis*: $F_{(2,32)} = 12$, $p < 0.001$; *Q. rubra*: $F_{(2,32)} = 18.4$, $p < 0.0001$). Warmer
355 temperatures did not affect the RGR of broadleaf species. For coniferous species, RGR in HWD
356 was 26 to 45% lower than in the LWD treatment (*P. glauca*: $F_{(2,31)} = 5.86$, $p < 0.01$; *P. resinosa*:
357 $F_{(2,30)} = 7.23$, $p < 0.01$) and RGR in the MWD treatment was not different from either LWD or
358 HWD. Additionally, warmer temperatures led to higher values of RGR for *P. glauca* but did not
359 affect *P. resinosa* (*P. glauca*: $F_{(1,31)} = 4.09$, $p = 0.05$). In none of the species did water deficit and
360 temperature interact to affect RGR.

361

362
363
364
365
366
367
368
369

Figure 2. Relative growth rate (RGR) for each species under six different water deficit and heat treatments (n = 6). L, M, and H, followed by a minus (–) sign, are the low, medium, and high-water deficit treatments without heat treatment, while L, M, and H, followed by a plus (+) sign, are the low, medium, and high-water deficit treatments with heat treatment. Different letters denote statistically significant differences among the 6 treatments. Similar letters followed by a * indicate that the differences among the treatments are marginally significant (0.05 > p ≤ 0.10). Lines in the box plots indicate the median values, whereas solid dots indicate the mean values.

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

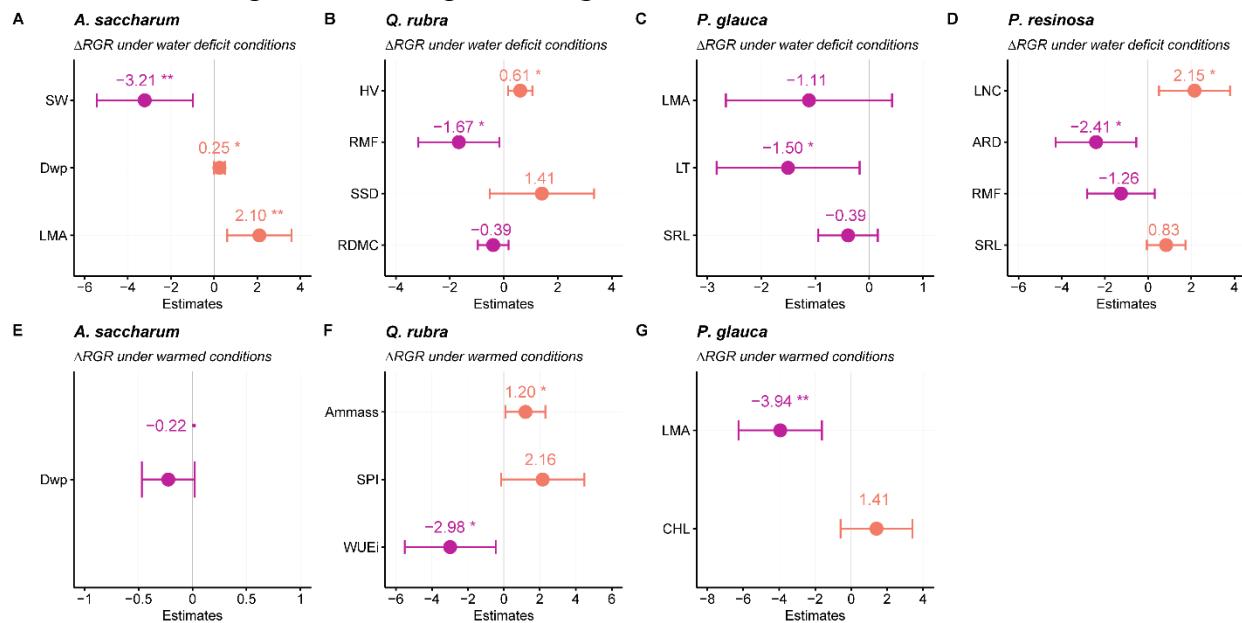

Water deficit and heat have different effects on the phenotype.

Univariate and multivariate analyses of the effects of water deficit and heat on plant functional traits showed that 1) different species responded differently to the stressors, and 2) for each species, the traits that responded to heat differed from the traits that responded to water deficit (Table 2 and Figure 3). No single trait changed in all species in response to heat or water deficit, however, leaf thickness (LT) showed a plastic response under water deficit conditions for all species but *B. alleghaniensis* (*A. saccharum*: $F_{(2,32)} = 3.6$, $p = 3.9e-2$; *Q. rubra*: $F_{(2,32)} = 7.3$, $p = 0.01$; *P. glauca* $F_{(2,31)} = 3.4$, $p = 4.5e-2$, *P. resinosa*: $F_{(2,30)} = 2.8$, $p = 7.5e-2$). Additionally, *A. saccharum*, *B. alleghaniensis*, and *P. resinosa* showed a strong increase in leaf temperature differential (LTD, a measure of cooling), under warmer conditions: cooling increasing from ca. 40 to ca. 90% (*A. saccharum*: $F_{(1,32)} = 8.8$, $p = 5.7e-3$; *B. alleghaniensis*: $F_{(1,32)} = 8.2$, $p = 7.4e-3$; *P. resinosa*: $F_{(1,30)} = 7.7$, $p = 9.5e-3$). *B. alleghaniensis* showed the fewest changes in trait values in response to the two stressors, with no plastic response to water deficit. In all species, the response of a few traits to one stress was contingent on the other stress (Table 2, water deficit and heat interaction).

386 **Table 2.** Summary table of functional traits that responded to water deficit, heat, or both. The “Combined effect of
 387 Water Deficit + Heat” row corresponds to those traits measured only in individuals in the LWD- and HWD+
 388 treatments and, therefore, whose trait response cannot be ascribed to an individual stressor. Values in parentheses
 389 indicate the percentage and direction of trait change in high or medium water deficit relative to low water deficit for
 390 water deficit, trait change in the warm treatment relative to ambient treatment for heat, and trait change under high
 391 water deficit and warmed temperature relative to low water deficit and ambient temperature for the combination of
 392 water deficit and heat. All traits reported changed significantly in response to the stresses imposed ($p \leq 0.05$), except
 393 those followed by a dot (•), which changed marginally ($0.5 > P \leq 0.1$). See Table 1 for trait acronyms.

Treatment	Species	<i>A. saccharum</i>	<i>B. alleghaniensis</i>	<i>Q. rubra</i>	<i>P. glauca</i>	<i>P. resinosa</i>
Water Deficit		RDMC (+28.5)		HV (+24.8)	RDMC (+25.1)	LCC (+1.31)
		SPI (+18.6)		SSD (+22.1)	LMA (+19.4)	LT (-9.9)•
		LT (-8.7)		RMF (+18.9)•	LT (+17.2)	RDMC (-11)
		SSD (-14.3)		LT (+12)•	RMF (+15.7) •	Dwp (-41.5)
				Ammass (-15.4)•		
				RNC (-17.3)•		
				Dwp (-42.7)		
Heat		LTD (+93.1)	LTD (+40)	SPI (+13.7)	gs (+31) •	LNC(+83)
		SPI (+9.2) •	PhiNO (+4.6)	RDMC (-13.7)	ARD (+14.8)•	LTD (+55.5)
		SW (-3.2) •	RMF (-6.9)	RMF (-11)	CHL (-9.9)	NPQt (+43.6) •
			NPQt (-18.4)	WUEi (-14.0)	WUEi (-9.9)	ARD (+12.7)
						LMF (+3.7)•
						SSD (-3.4)
						RMF (-12.8)
Water Deficit and Heat Interaction		LT•	SSD	LT	LT	LT
		Dwp	RMF	SSD •	SRL	RDMC
		LMA		SPI •	ARD	RNC
Combined effect of Water Deficit + Heat		RWC _{TLP} (-7.3%)		ε (+68%)		
				ψ ₁₀₀ (-34.6%)		

394
 395 All species exhibited a multivariate trait response to either heat or water deficit, with only *Q.*
 396 *rubra* showing a multivariate trait response to both stressors (Heat: *B. alleghaniensis* $F_{1,34} =$
 397 $1.58, p = 0.048$, *Q. rubra* $F_{1,32} = 1.98, p = 0.009$, and *P. resinosa* $F_{1,32} = 2.57, p = 0.003$. Water
 398 deficit: *A. saccharum* $F_{2,33} = 1.49, p = 0.05$, *Q. rubra* $F_{2,32} = 1.34, p = 0.084$, and *P. glauca* $F_{2,32}$
 399 $= 1.38, p = 0.083$; Figure 3). For *Q. rubra*, together heat and water deficit explained 4.5 % of the
 400 variation in trait values ($p = 0.007$). Heat explained 1.6% of the variation in trait values for *B.*
 401 *alleghaniensis* ($p = 0.048$), and 4.5% for *P. resinosa* ($p = 0.003$). Water deficit explained 2.7%
 402 of the variation in trait values for *A. saccharum* ($p = 0.05$), and 2.2% for *P. glauca* ($p = 0.083$).
 403 Different sets of traits were associated with the significant RDA 1 axis of each species (*A.*
 404 *saccharum* $F_{1,33} = 2.24, p = 0.016$, *B. alleghaniensis* $F_{1,34} = 1.58, p = 0.032$, *Q. rubra* $F_{1,32} =$
 405 $2.12, p = 0.055$, *P. glauca* $F_{1,32} = 1.91, p = 0.07$, and *P. resinosa* $F_{1,32} = 2.57, p = 0.002$). The
 406 only similarities are that RMF decreases with heat in both *Q. rubra* and *P. resinosa* and increases
 407 with water deficit in *Q. rubra* and *P. glauca*. RDMC increases with water deficit in *P. glauca*
 408 and *A. saccharum*.



411 **Figure 3.** RDA plots for those species with a significant redundancy analysis of the effect of water deficit and heat.
 412 For clarity and readability, we presented the treatments separately, even in *Q. rubra*, for which both treatments had a
 413 significant effect.

415 **Few functional traits showed adaptive plasticity, mitigating the effects of water deficit and**
 416 **heat on RGR**

417 *A. saccharum*, *Q. rubra*, *P. glauca*, and *P. resinosa* showed changes in functional trait values
 418 under medium and high-water deficits that contributed to maintaining relative growth rate to
 419 levels similar to those under low water deficit (Figure 4A-D). For *A. saccharum*, *Q. rubra*, and
 420 *P. glauca*, trait plasticity mitigated declines in RGR under warmer conditions (Figure 6E-G).
 421 Stomatal width (SW), root mass fraction (RMF), leaf thickness (LT), and average root diameter
 422 (ARD) were the individual traits that contributed to RGR maintenance under water deficit for *A.*
 423 *saccharum* ($R^2_{adj} = 42\%$, $F_{3,20} = 6.65$, $p = 0.003$), *Q. rubra* ($R^2_{adj} = 30\%$, $F_{4,19} = 2.9$, $p = 0.05$),
 424 *P. glauca* ($R^2_{adj} = 36\%$, $F_{3,19} = 3.6$, $p = 0.03$) and *P. resinosa* ($R^2_{adj} = 30\%$, $F_{4,19} = 3.4$, $p =$
 425 0.03), respectively. The plastic response of midday and predawn water potentials (Dwp),
 426 intrinsic water use efficiency (WUEi), and leaf mass per area (LMA) were the individual traits
 427 that mitigated decline in RGR under warmer conditions for *A. saccharum* ($R^2_{adj} = 14\%$, $F_{1,16} =$
 428 3.8 , $p = 0.07$), *Q. rubra* ($R^2_{adj} = 27\%$, $F_{3,14} = 3.1$, $p = 0.06$), and *P. glauca* ($R^2_{adj} = 50\%$, $F_{2,15} =$
 429 9.7 , $p = 2e-3$), respectively. In *B. alleghaniensis*, no plastic changes in trait values mitigated the
 430 decline in RGR under either water deficit or warmer conditions. A few plastic responses
 431 contributed to the decline in performance of the species: under water deficit shifts in LMA led to
 432 larger declines in growth in *A. saccharum*, shifts in HV led to larger declines in growth in *Q.*

433 *rubra*, and shifts in LNC led to larger declines in growth in *P. resinosa*. Under heat stress, shifts
 434 in Amass led to larger declines in growth in *Q. rubra*.

435
 436 **Figure 4.** Forest plot of the significant multiple linear regression best model for each species under water deficit
 437 conditions (A – D) and warmed conditions (E – G).• = $0.5 > p \leq 0.01$, * = $p \leq 0.05$; ** = $p \leq 0.01$; *** = $p \leq 0.001$.
 438 Bold traits are those that significantly contribute towards RGR maintenance under stressful conditions.

439

440 Discussion

441 Our study examined the response to water deficit and heat stress in saplings from five native tree
 442 species found in temperate and boreal forests of North America. We found, first, that growth is
 443 significantly reduced under water deficit, while warmer temperatures have a neutral to positive
 444 effect on growth, depending on the species (broadleaves versus conifers). Second, the effects of
 445 water deficit and heat on the phenotype are idiosyncratic among species, given that a) no single
 446 trait show a consistent response to the stressors imposed across all species; b) some species only
 447 showed a multivariate trait response to water deficit (i.e., *Acer saccharum*, and *Picea glauca*),
 448 others only to heat (i.e., *Betula alleghaniensis*, and *Pinus resinosa*) and only *Q. rubra* responded
 449 to both stressors; and c) a unique set of traits per species was associated with their responses to
 450 water deficit and/or heat. Finally, in only a handful of traits was the plastic response to the
 451 stressor adaptive (able to maintain the decline in growth). Collectively, these results illustrate the
 452 various and unique ways in which plant species are affected by and respond to environmental
 453 stress, highlighting the vulnerability of natural ecosystems to global warming.

454

455 Water deficit reduced plant performance (RGR)

456 We anticipated reduced growth under conditions of heat and water deficit, both in isolation and
 457 in combination, as resource-poor environments induce physical stress. This stress triggers
 458 biochemical changes that impact metabolic and developmental processes. As expected, we
 459 observed a reduction in the relative growth rate under medium and high-water deficits compared

460 to the low water deficit; however, the growth rates in medium and high-water deficits did not
461 differ significantly. This was unexpected given that the high-water deficit reduced the volumetric
462 water content by twice the amount of the medium water deficit (6.9% v. 2.5%). In contrast to
463 water deficit, warmer temperatures did not hinder plant growth. In fact, for white spruce (*P.*
464 *glauca*), warmer temperatures even caused non-significant increases in growth across all soil
465 moisture conditions. This lack of response to temperature may be due to the small increase in
466 temperature caused by the open-top chambers (WARMED), as well as the geographical location
467 and provenance of the species.

468

469 The OTCs did lead to an increase in air temperatures of +0.54 °C; however, this rise is
470 still below the future climate projections, which suggest an increase of 1.5 to 3.5 °C by 2100. *In-*
471 *situ* experiments have demonstrated that temperate tree seedlings, such as *A. saccharum*, *P.*
472 *resinosa*, and *Q. rubra*, grow better at warmer temperatures (+1.7 and +3.4 °C), but this positive
473 effect was found to be contingent on exposure to water deficit (J. A. Wright et al., 2018). In
474 contrast, none of our temperate potted plants showed adverse effects from the warmer
475 temperatures, and the combination of warmer and drier conditions did not significantly suppress
476 growth when compared to the control treatment. Therefore, the positive effects of warmer
477 temperatures on the photosynthesis and growth of temperate trees in cold-limited environments
478 may not become evident until a minimum temperature increase is achieved or may only occur at
479 lower temperatures.

480

481 In comparison to temperate species, white spruce—the only boreal tree—showed a
482 positive response in relative growth rate (RGR) to warmer temperatures, regardless of water
483 deficit conditions. These findings contradict the average plastic reduction of approximately 25%
484 in growth for midwestern boreal individuals when exposed to predicted future temperatures
485 (+1.7 and +3.4 °C) (J. A. Wright et al., 2018). Tree-ring data from populations across North
486 America indicate that the responses of white spruce populations to increased temperatures and
487 drier conditions will vary by location and by provenance (Hynes & Hamann, 2020; Lu et al.,
488 2019). Furthermore, it has been found that populations from south-central Ontario and
489 southwestern Quebec show better growth in northern environments compared to local
490 populations (Lu et al., 2019).

491

492 Since our stock of trees originated from nurseries in Quebec, the observed neutral and
493 potentially positive effects on RGR to warming conditions could be due to their inherent higher
494 capacity to withstand the warmer temperatures to which they were exposed, and support the idea
495 that northeastern North America could serve as a refuge for temperate and boreal forests
496 (D'Orangeville et al., 2016). Or it could just be that these five species are already adapted to the
497 temperature to which we exposed them.

498

499 **Water deficit and heat have different effects on the phenotype**

500 Univariate and multivariate analyses revealed that the effects of the studied stressors are highly
501 species-specific. The plastic response of each species to warming and water deficit differed.
502 Further, each species showed a distinct response to these two stressors (whether individual or
503 combined). For example, leaf thickness increased under drier conditions for the northern red oak
504 (*Q. rubra*) and white spruce (*P. glauca*), decreased for sugar maple (*A. saccharum*) and red pine
505 (*P. resinosa*), and remained unchanged for yellow birch (*B. alleghaniensis*).
506

507 The northern red oak and white spruce exhibited changes in functional trait values under
508 water deficit conditions, indicating a more conservative resource use. The northern red oak
509 adopted a conservative strategy, characterized by greater investment in structural carbon and in
510 the storage of carbohydrates and sugars in costly plant tissues. This was evident through its
511 thicker leaves, denser stems, and increased root production under water deficit conditions.
512 Additionally, it showed reduced stomatal opening at noon, resulting in similar predawn and
513 midday leaf water potential values, associated with lower carbon assimilation. In contrast, white
514 spruce did not show significant changes in carbon assimilation or water loss under drought
515 conditions. However, like the northern red oak, it exhibited increased carbon investment and
516 resource storage in expensive tissues, marked by thicker, denser needles and higher root
517 production with lower water content.
518

519 On the other hand, sugar maple (*A. saccharum*) and red pine (*P. resinosa*) showed mixed
520 responses: trait values shifted towards increased resource acquisition while others shifted
521 towards increased resource conservation strategies under water scarcity. Sugar maple individuals
522 under water deficit conditions had thinner leaves and less dense stems, which helped in faster
523 resource acquisition. They also had a higher number of smaller stomata, allowing for improved
524 carbon assimilation without significantly increasing water loss, along with root tissues that
525 contained less water but needed higher carbon content. Red pine individuals exhibited thinner
526 leaves and root tissues with high water content, indicating an acquisitive strategy. However, they
527 also displayed a shift towards more conservative traits: needles with high carbon concentration
528 that showed reduced stomatal opening at noon, resulting in similar predawn and midday leaf
529 water potential values as in the low water deficit treatment.
530

531 Responses to warmer conditions, differed among broadleaves and conifers. Broadleaf species,
532 such as sugar maple and northern red oak, showed an increase in the stomatal pore index,
533 primarily associated with a rise in the number of stomata. Plants need to balance their carbon
534 gain and water loss, and this balance is also influenced by the plant's need to cool its leaves
535 under warmer conditions (Hofmann et al., 2025; Sato et al., 2024). Both increases and decreases
536 in stomatal density have been reported under warmer conditions (Beerling & Chaloner, 1993;
537 Ferris et al., 1996; Hill et al., 2014; Jumrani et al., 2017), each offering different benefits. In our
538 specific experiment, and for these two species, an increase in stomatal density could help

539 mitigate the effects of heat through transpiration-mediated cooling (Bertolino et al., 2019). This
540 was the response of sugar maple, which, along with yellow birch, showed an increase of over
541 40% in their leaf temperature differential, indicating increased cooling. It is worth noting that for
542 northern red oak, changes in SD were accompanied by a reduction in water-use efficiency,
543 suggesting that the cooling advantage may come at the cost of higher water loss. This trade-off
544 can be risky if higher temperatures lead to increased vapor pressure deficit (VPD), even with
545 similar precipitation levels, as observed in the temperate and boreal forests of northeastern North
546 America (Hofmann et al., 2025).

547

548 Conifer species responded to warmer conditions with opposite changes from each other in
549 aboveground traits and similar changes in belowground traits. For aboveground traits, stomatal
550 conductance increased in white spruce but decreased in red pine. The higher stomatal
551 conductance in white spruce was linked to lower water use efficiency, which favored whole-
552 plant growth over water conservation under warmer conditions. Conversely, red pine's reduced
553 stomatal conductance was accompanied by decreased carbon assimilation and,
554 counterintuitively, an increase in the leaf's cooling capacity. Enhanced leaf cooling in red pine
555 was associated with an upregulation of controlled dissipation of excess light energy (higher
556 NPQ), indicating that cuticle conductance might be a trait worthy of study for this species under
557 different temperature regimes (Garen & Michaletz, 2025; Slot et al., 2021). Regarding
558 belowground traits, both species exhibited an increase in average root diameter, possibly
559 indicating an "outsourcing" strategy under warmer conditions due to fungi's ability to enhance
560 plant stress tolerance (Laughlin et al., 2021; Yaffar et al., 2022).

561

562 The varied trait responses observed, coordination, and decoupling emphasize the importance of
563 studying the integrated phenotype (Díaz, 2025). Our multivariate trait analysis revealed that
564 whole-organism phenotypic responses align with the optimal partition theory. The optimal
565 partition theory suggests that resource allocation is adjusted to maximize the capture of the most
566 limiting resource under environmental stress (Bloom et al., 1985; Luong & Loik, 2022). Species
567 that showed whole-organism responses to water deficit (*Q. rubra*, *A. saccharum*, and *P. glauca*)
568 showed an increase in either or both root mass fraction and root dry matter content, supporting
569 the allocation of resources towards root tissues that can increase the access to water. Still, species
570 like the sugar maple have shown that thinner leaves can be favored in some species under water
571 scarcity, indicating that different combinations of trait values can be successful in a certain
572 environmental context (Blonder et al., 2023; Díaz, 2025). Another important takeaway is that the
573 plastic response of different species to the same stressor can be vastly different, cautioning us
574 against undue generalizations.

575

576 **Few functional traits showed adaptive plasticity, resulting in limited mitigation pf the**
577 **effects of water deficit and heat on RGR**

578 Changes in stomatal width (*A. saccharum*), root mass fraction (*Q. rubra*), leaf thickness (*P.*
579 *glauca*), and average root diameter (*P. resinosa*) values helped maintain RGR. These traits are
580 associated with resource acquisition (SW, LT, and ARD), resource storage (LT and ARD), water
581 transport (SW and LT), mechanical support (LT), and biomass allocation (RMF). Our results
582 show that different species adjust different traits serving different ecophysiological functions to
583 maintain growth under stress.

584

585 Reproduction, growth, and survival rates are the three fitness components (Violle et al.,
586 2012). Seedlings can maximize their fitness by maintaining growth or survival, leading to
587 demographic trade-offs within and across species (Ellis et al., 2021; Laughlin et al., 2020). The
588 observed changes in plant phenotype favored whole-plant survival (growth-survival trade-off) as
589 a response to drier and/or warmer environmental conditions (Díaz, 2025). Therefore, the few
590 traits linked to growth maintenance under water scarcity may be because growth is not the
591 primary performance component contributing to plant fitness in this system (Blonder et al., 2023;
592 Laughlin et al., 2020). This is supported by the higher number of functional traits that changed
593 under warmer conditions, the multivariate response to heat of *Q. rubra*, *B. alleghaniensis*, and *P.*
594 *resinosa*, and the roles of daily water regulation (*A. saccharum*), water use efficiency (*Q. rubra*),
595 and leaf mass per area (*P. glauca*) in maintaining RGR (Blonder et al., 2023).

596

597 Furthermore, we found that some traits exhibit maladaptive plasticity in maintaining the relative
598 growth rate under heat and water deficit conditions. Therefore, the observed adaptive plasticity
599 was not enough to counteract the stressors' effects on the performance metric of interest (i.e.,
600 growth). Nevertheless, each species employed a distinct strategy to balance gains and losses,
601 supporting both resource acquisition and conservation, which helped allocate carbon toward root
602 tissue production and/or prevent thermal damage through cooling responses.

603

604 **Bibliography**

605 Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss
606 point and prediction of drought tolerance of species and biomes: A global meta-analysis.
607 *Ecology Letters*, 15(5), 393–405. <https://doi.org/10.1111/j.1461-0248.2012.01751.x>

608 Beerling, D. J., & Chaloner, W. G. (1993). The Impact of Atmospheric CO₂ and
609 Temperature Changes on Stomatal Density: Observation from *Quercus robur* Lammars
610 Leaves. *Annals of Botany*, 71(3), 231–235. <https://doi.org/10.1006/anbo.1993.1029>

611 Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper, T. W., Guerrero-
612 Ramirez, N., Valverde-Barrantes, O. J., Bruelheide, H., Freschet, G. T., Iversen, C. M.,
613 Kattge, J., McCormack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Semchenko, M.,
614 Sweeney, C. J., van Ruijven, J., York, L. M., & Mommer, L. (2020). The fungal
615 collaboration gradient dominates the root economics space in plants. *Science Advances*,
616 6(27), eaba3756. <https://doi.org/10.1126/sciadv.aba3756>

617 Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of Stomatal Density and
618 Morphology on Water-Use Efficiency in a Changing World. *Frontiers in Plant Science*,
619 10. <https://doi.org/10.3389/fpls.2019.00225>

620 Blonder, B. W., Aparecido, L. M. T., Hultine, K. R., Lombardozzi, D., Michaletz, S. T.,
621 Posch, B. C., Slot, M., & Winter, K. (2023). Plant water use theory should incorporate
622 hypotheses about extreme environments, population ecology, and community ecology.
623 *New Phytologist*, 238(6), 2271–2283. <https://doi.org/10.1111/nph.18800>

624 Bloom, A. J., F S Chapin III, & Mooney, H. A. (1985). Resource Limitation in Plants-An
625 Economic Analogy. *Annual Review of Ecology, Evolution, and Systematics*, 16(Volume
626 16,), 363–392. <https://doi.org/10.1146/annurev.es.16.110185.002051>

627 Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots
628 respond to drought. *Frontiers in Plant Science*, 6, 547.
629 <https://doi.org/10.3389/fpls.2015.00547>

630 Canning, C. M., Mood, B. J., Bonsal, B., Howat, B., & Laroque, C. P. (2023).
631 Comparison of tree-growth drought legacies of three shelterbelt species in the Canadian
632 Prairies. *Agricultural and Forest Meteorology*, 330, 109317.
633 <https://doi.org/10.1016/j.agrformet.2023.109317>

634 Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009).
635 Towards a worldwide wood economics spectrum. *Ecology Letters*, 12(4), 351–366.
636 <https://doi.org/10.1111/j.1461-0248.2009.01285.x>

637 Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J.,
638 Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherli, H.,
639 Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann,
640 J., ... Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought.
641 *Nature*, 491(7426), 752–755. <https://doi.org/10.1038/nature11688>

642 Cohen, S., Bush, E., Zhang, X., Gillett, N., Bonsal, B., Derksen, C., Flato, G., Greenan,
643 B., & Watson, E. (2019). *Changes in Canada's regions in a national and global context*.
644 <https://doi.org/10.4095/327813>

645 Crous, K. Y., Uddling, J., & De Kauwe, M. G. (2022). Temperature responses of
646 photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. *The*
647 *New Phytologist*, 234(2), 353–374. <https://doi.org/10.1111/nph.17951>

648 Dai, L., Xu, Y., Harmens, H., Duan, H., Feng, Z., Hayes, F., Sharps, K., Radbourne, A.,
649 & Tarvainen, L. (2021). Reduced photosynthetic thermal acclimation capacity under
650 elevated ozone in poplar (*Populus tremula*) saplings. *Global Change Biology*, 27(10),
651 2159–2173. <https://doi.org/10.1111/gcb.15564>

652 De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., Baeten, L., Verstraeten, G.,
653 Vellend, M., Bernhardt-Römermann, M., Brown, C. D., Brunet, J., Cornelis, J., Decocq,
654 G. M., Dierschke, H., Eriksson, O., Gilliam, F. S., Hédl, R., Heinken, T., Hermy, M.,
655 Hommel, P., Jenkins, M. A., ... Verheyen, K. (2013). Microclimate moderates plant

656 responses to macroclimate warming. *Proceedings of the National Academy of Sciences*,
657 110(46), 18561–18565. <https://doi.org/10.1073/pnas.1311190110>

658 Díaz, S. (2025). Plant functional traits and the entangled phenotype. *Functional Ecology*,
659 39(5), 1144–1159. <https://doi.org/10.1111/1365-2435.70017>

660 Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B.,
661 Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter,
662 H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., ... Gorné, L. D.
663 (2016). The global spectrum of plant form and function. *Nature*, 529(7585), Article 7585.
664 <https://doi.org/10.1038/nature16489>

665 D'Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Côté, B., & Pederson, N.
666 (2016). Northeastern North America as a potential refugium for boreal forests in a
667 warming climate. *Science*, 352(6292), 1452–1455.
668 <https://doi.org/10.1126/science.aaf4951>

669 Ellis, T. J., Postma, F. M., Oakley, C. G., & Ågren, J. (2021). Life-history trade-offs and
670 the genetic basis of fitness in *Arabidopsis thaliana*. *Molecular Ecology*, 30(12), 2846–
671 2858. <https://doi.org/10.1111/mec.15941>

672 FAO. (2020). *Global Forest Resources Assessment 2020 – Key findings*.
673 <https://doi.org/10.4060/ca8753en>

674 Fernández, R. J., & Reynolds, J. F. (2000). Potential growth and drought tolerance of
675 eight desert grasses: Lack of a trade-off? *Oecologia*, 123(1), 90–98.
676 <https://doi.org/10.1007/s004420050993>

677 Ferris, R., Nijs, I., Behaeghe, T., & Impens, I. (1996). Elevated CO₂ and Temperature
678 have Different Effects on Leaf Anatomy of Perennial Ryegrass in Spring and Summer.
679 *Annals of Botany*, 78(4), 489–497. <https://doi.org/10.1006/anbo.1996.0146>

680 Frelich, L. E., Montgomery, R. A., & Reich, P. B. (2021). Seven Ways a Warming
681 Climate Can Kill the Southern Boreal Forest. *Forests*, 12(5), 560.
682 <https://doi.org/10.3390/f12050560>

683 Frelich, L. E., & Reich, P. B. (2010). Will environmental changes reinforce the impact of
684 global warming on the prairie–forest border of central North America? *Frontiers in*
685 *Ecology and the Environment*, 8(7), 371–378. <https://doi.org/10.1890/080191>

686 Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C.,
687 Klimešová, J., Zadworny, M., Poorter, H., Postma, J. A., Adams, T. S., Bagniewska-
688 Zadworna, A., Bengough, A. G., Blancaflor, E. B., Brunner, I., Cornelissen, J. H. C.,
689 Garnier, E., Gessler, A., Hobbie, S. E., ... McCormack, M. L. (2021). A starting guide to
690 root ecology: Strengthening ecological concepts and standardising root classification,
691 sampling, processing and trait measurements. *New Phytologist*, 232(3), 973–1122.
692 <https://doi.org/10.1111/nph.17572>

693 Freschet, G. T., Roumet, C., Comas, L. H., Weemstra, M., Bengough, A. G., Rewald, B.,
694 Bardgett, R. D., De Deyn, G. B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M.
695 L., Meier, I. C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M.,
696 Bagniewska-Zadworna, A., ... Stokes, A. (2021). Root traits as drivers of plant and
697 ecosystem functioning: Current understanding, pitfalls and future research needs. *New*
698 *Phytologist*, 232(3), 1123–1158. <https://doi.org/10.1111/nph.17072>

699 Galvez, D. A., Landhäusser, S. M., & Tyree, M. T. (2011). Root carbon reserve dynamics
700 in aspen seedlings: Does simulated drought induce reserve limitation? *Tree Physiology*,
701 31(3), 250–257. <https://doi.org/10.1093/treephys/tpr012>

702 Garen, J. C., & Michaletz, S. T. (2025). Temperature governs the relative contributions of
703 cuticle and stomata to leaf minimum conductance. *New Phytologist*, 245(5), 1911–1923.
704 <https://doi.org/10.1111/nph.20346>

705 Gebrechorkos, S. H., Sheffield, J., Vicente-Serrano, S. M., Funk, C., Miralles, D. G.,
706 Peng, J., Dyer, E., Talib, J., Beck, H. E., Singer, M. B., & Dadson, S. J. (2025). Warming
707 accelerates global drought severity. *Nature*, 642(8068), 628–635.
708 <https://doi.org/10.1038/s41586-025-09047-2>

709 Hill, K. E., Guerin, G. R., Hill, R. S., & Watling, J. R. (2014). Temperature influences
710 stomatal density and maximum potential water loss through stomata of *Dodonaea viscosa*
711 subsp. *Angustissima* along a latitude gradient in southern Australia. *Australian Journal of
712 Botany*, 62(8), 657. <https://doi.org/10.1071/BT14204>

713 Hofmann, T. A., Atkinson, W., Fan, M., Simkin, A. J., Jindal, P., & Lawson, T. (2025).
714 Impact of climate-driven changes in temperature on stomatal anatomy and physiology.
715 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 380(1927),
716 20240244. <https://doi.org/10.1098/rstb.2024.0244>

717 Hynes, A., & Hamann, A. (2020). Moisture deficits limit growth of white spruce in the
718 west-central boreal forest of North America. *Forest Ecology and Management*, 461,
719 117944. <https://doi.org/10.1016/j.foreco.2020.117944>

720 Jumrani, K., Bhatia, V. S., & Pandey, G. P. (2017). Impact of elevated temperatures on
721 specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in

722 soybean. *Photosynthesis Research*, 131(3), 333–350. <https://doi.org/10.1007/s11120-016-0326-y>

723

724 Lambrecht, S. C., Shattuck, A. K., & Loik, M. E. (2007). Combined drought and episodic

725 freezing effects on seedlings of low- and high-elevation subspecies of sagebrush

726 (*Artemisia tridentata*). *Physiologia Plantarum*, 130(2), 207–217.

727 <https://doi.org/10.1111/j.1399-3054.2007.00904.x>

728 Laughlin, D. C., Gremer, J. R., Adler, P. B., Mitchell, R. M., & Moore, M. M. (2020).

729 The Net Effect of Functional Traits on Fitness. *Trends in Ecology & Evolution*, 35(11),

730 1037–1047. <https://doi.org/10.1016/j.tree.2020.07.010>

731 Laughlin, D. C., Mommer, L., Sabatini, F. M., Bruelheide, H., Kuyper, T. W.,

732 McCormack, M. L., Bergmann, J., Freschet, G. T., Guerrero-Ramírez, N. R., Iversen, C.

733 M., Kattge, J., Meier, I. C., Poorter, H., Roumet, C., Semchenko, M., Sweeney, C. J.,

734 Valverde-Barrantes, O. J., van der Plas, F., van Ruijven, J., ... Weigelt, A. (2021). Root

735 traits explain plant species distributions along climatic gradients yet challenge the nature

736 of ecological trade-offs. *Nature Ecology & Evolution*, 5(8), Article 8.

737 <https://doi.org/10.1038/s41559-021-01471-7>

738 Li, Y., Xu, Y., Li, Y., Wu, T., Zhou, G., Liu, S., Meng, Y., Wang, J., Ling, L., & Liu, J.

739 (2020). Warming effects on morphological and physiological performances of four

740 subtropical montane tree species. *Annals of Forest Science*, 77(1), 2.

741 <https://doi.org/10.1007/s13595-019-0910-3>

742 Lu, P., Parker, W. C., Colombo, S. J., & Skeates, D. A. (2019). Temperature-induced

743 growing season drought threatens survival and height growth of white spruce in southern

744 Ontario, Canada. *Forest Ecology and Management*, 448, 355–363.

745 <https://doi.org/10.1016/j.foreco.2019.06.022>

746 Luong, J. C., & Loik, M. E. (2022). Adjustments in physiological and morphological

747 traits suggest drought-induced competitive release of some California plants. *Ecology*

748 and *Evolution*, 12(4), e8773. <https://doi.org/10.1002/ece3.8773>

749 Marchin, R. M., Esperon-Rodriguez, M., Tjoelker, M. G., & Ellsworth, D. S. (2025).

750 Understanding urban tree heat and drought stress by tracking growth and recovery

751 following an extreme year. *Landscape and Urban Planning*, 261, 105394.

752 <https://doi.org/10.1016/j.landurbplan.2025.105394>

753 Marchin, R. M., Ossola, A., Leishman, M. R., & Ellsworth, D. S. (2020). A Simple

754 Method for Simulating Drought Effects on Plants. *Frontiers in Plant Science*, 10.

755 <https://doi.org/10.3389/fpls.2019.01715>

756 McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo,

757 D., Helmisaari, H.-S., Hobbie, E. A., Iversen, C. M., Jackson, R. B., Leppälämmi-

758 Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, K. S., Pritchard, S. G., Rewald, B., &

759 Zadworny, M. (2015). Redefining fine roots improves understanding of below-ground

760 contributions to terrestrial biosphere processes. *New Phytologist*, 207(3), 505–518.

761 <https://doi.org/10.1111/nph.13363>

762 McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T.,

763 Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of

764 plant survival and mortality during drought: Why do some plants survive while others

765 succumb to drought? *New Phytologist*, 178(4), 719–739. <https://doi.org/10.1111/j.1469-8137.2008.02436.x>

767 Mencuccini, M., Rosas, T., Rowland, L., Choat, B., Cornelissen, H., Jansen, S., Kramer,
768 K., Lapen, A., Manzoni, S., Niinemets, Ü., Reich, P. B., Schrod, F., Soudzilovskaia,
769 N., Wright, I. J., & Martínez-Vilalta, J. (2019). Leaf economics and plant hydraulics
770 drive leaf: Wood area ratios. *New Phytologist*, 224(4), 1544–1556.
771 <https://doi.org/10.1111/nph.15998>

772 Pascual, L. S., Segarra-Medina, C., Gómez-Cadenas, A., López-Climent, M. F., Vives-
773 Peris, V., & Zandalinas, S. I. (2022). Climate change-associated multifactorial stress
774 combination: A present challenge for our ecosystems. *Journal of Plant Physiology*, 276,
775 153764. <https://doi.org/10.1016/j.jplph.2022.153764>

776 Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P.,
777 Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C.,
778 Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G.,
779 De Vos, A. C., ... Cornelissen, J. H. C. (2013). New handbook for standardised
780 measurement of plant functional traits worldwide. *Australian Journal of Botany*, 61(3),
781 167–234. <https://doi.org/10.1071/BT12225>

782 Pirotta, E., Thomas, L., Costa, D. P., Hall, A. J., Harris, C. M., Harwood, J., Kraus, S. D.,
783 Miller, P. J. O., Moore, M. J., Photopoulou, T., Rolland, R. M., Schwacke, L., Simmons,
784 S. E., Southall, B. L., & Tyack, P. L. (2022). Understanding the combined effects of
785 multiple stressors: A new perspective on a longstanding challenge. *Science of The Total
786 Environment*, 821, 153322. <https://doi.org/10.1016/j.scitotenv.2022.153322>

787 Pratt, R. B., & Jacobsen, A. L. (2017). Conflicting demands on angiosperm xylem:
788 Tradeoffs among storage, transport and biomechanics. *Plant, Cell & Environment*, 40(6),
789 897–913. <https://doi.org/10.1111/pce.12862>

790 Rotbarth, R., Van Nes, E. H., Scheffer, M., Jepsen, J. U., Vindstad, O. P. L., Xu, C., &
791 Holmgren, M. (2023). Northern expansion is not compensating for southern declines in
792 North American boreal forests. *Nature Communications*, 14(1), 3373.
793 <https://doi.org/10.1038/s41467-023-39092-2>

794 Sato, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2024). Complex plant
795 responses to drought and heat stress under climate change. *The Plant Journal*, 117(6),
796 1873–1892. <https://doi.org/10.1111/tpj.16612>

797 Slot, M., Nardwattanawong, T., Hernández, G. G., Bueno, A., Riederer, M., & Winter, K.
798 (2021). Large differences in leaf cuticle conductance and its temperature response among
799 24 tropical tree species from across a rainfall gradient. *New Phytologist*, 232(4), 1618–
800 1631. <https://doi.org/10.1111/nph.17626>

801 Snow, M. D., & Tingey, D. T. (1985). Evaluation of a system for the imposition of plant
802 water stress. *Plant Physiology*, 77(3), 602–607. <https://doi.org/10.1104/pp.77.3.602>

803 Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., &
804 Messier, J. (2012). Viva la variance! A reply to Nakagawa & Schielzeth. *Trends in
805 Ecology & Evolution*, 27(9), 475–476. <https://doi.org/10.1016/j.tree.2012.06.004>

806 Vissault, S., Talluto, L., Boulangeat, I., & Gravel, D. (2020). Slow demography and
807 limited dispersal constrain the expansion of north-eastern temperate forests under climate
808 change. *Journal of Biogeography*, 47(12), 2645–2656. <https://doi.org/10.1111/jbi.13978>

809 Way, D. A., & Oren, R. (2010). Differential responses to changes in growth temperature
810 between trees from different functional groups and biomes: A review and synthesis of
811 data. *Tree Physiology*, 30(6), 669–688. <https://doi.org/10.1093/treephys/tpq015>

812 Welshofer, K. B., Zarnetske, P. L., Lany, N. K., & Thompson, L. A. E. (2018). Open-top
813 chambers for temperature manipulation in taller-stature plant communities. *Methods in*
814 *Ecology and Evolution*, 9(2), 254–259. <https://doi.org/10.1111/2041-210X.12863>

815 Williams, L. E., & Araujo, F. J. (2002). Correlations among Predawn Leaf, Midday Leaf,
816 and Midday Stem Water Potential and their Correlations with other Measures of Soil and
817 Plant Water Status in *Vitis vinifera*. *Journal of the American Society for Horticultural*
818 *Science*, 127(3), 448–454. <https://doi.org/10.21273/JASHS.127.3.448>

819 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F.,
820 Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E.,
821 Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., ...
822 Villar, R. (2004). The worldwide leaf economics spectrum. *Nature*, 428(6985), 821–827.
823 <https://doi.org/10.1038/nature02403>

824 Wright, J. A., Fisichelli, N. A., Buschena, C., Rice, K., Rich, R., Stefanski, A.,
825 Montgomery, R., & Reich, P. B. (2018). Biodiversity bottleneck: Seedling establishment
826 under changing climatic conditions at the boreal–temperate ecotone. *Plant Ecology*,
827 219(6), 691–704. <https://doi.org/10.1007/s11258-018-0827-1>

828 Wu, G., Liu, H., Hua, L., Luo, Q., Lin, Y., He, P., Feng, S., Liu, J., & Ye, Q. (2018).
829 Differential Responses of Stomata and Photosynthesis to Elevated Temperature in Two
830 Co-occurring Subtropical Forest Tree Species. *Frontiers in Plant Science*, 9, 467.
831 <https://doi.org/10.3389/fpls.2018.00467>

832 Wu, T., Qu, C., Li, Y., Li, X., Zhou, G., Liu, S., Chu, G., Meng, Z., Lie, Z., & Liu, J.
833 (2019). Warming effects on leaf nutrients and plant growth in tropical forests. *Plant*
834 *Ecology*, 220(7), 663–674. <https://doi.org/10.1007/s11258-019-00943-y>

835 Xu, X., Fonseca de Lima, C. F., Vu, L. D., & De Smet, I. (2023). When drought meets
836 heat – a plant omics perspective. *Frontiers in Plant Science*, 14, 1250878.
837 <https://doi.org/10.3389/fpls.2023.1250878>

838 Yaffar, D., Cabugao, K. G., & Meier, I. C. (2022). Representing root physiological traits
839 in the root economic space framework. *New Phytologist*, 234(3), 773–775.
840 <https://doi.org/10.1111/nph.18070>

841 Zandalinas, S. I., Sengupta, S., Fritschi, F. B., Azad, R. K., Nechushtai, R., & Mittler, R.
842 (2021). The impact of multifactorial stress combination on plant growth and survival.
843 *New Phytologist*, 230(3), 1034–1048. <https://doi.org/10.1111/nph.17232>

844 Zhang, Y., Cui, Z., Bai, Y.-H., Zhang, H.-T., & Tang, Z. (2025). Trees suppress growth
845 but sustain water consumption in response to flash drought in a subtropical forest.
846 *Agricultural and Forest Meteorology*, 372, 110727.
847 <https://doi.org/10.1016/j.agrformet.2025.110727>

848 Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid
849 common statistical problems. *Methods in Ecology and Evolution*, 1(1), 3–14.
850 <https://doi.org/10.1111/j.2041-210X.2009.00001.x>