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Abstract1

1. Effective conservation requires effective biodiversity monitoring.2

The pace of global biodiversity change far outstrips the ability of3

manual fieldwork to monitor it. Therefore, technological solutions,4

like camera traps, have emerged as a crucial way to meet biodiversity5

monitoring needs. Camera traps produce vast amounts of data and6

so AI is increasingly used to label images with species identities.7

However, AI struggles to identify species from new locations that8

are not part of the training data (‘generalisation’). Resolving this is9

crucial for the promise of automated biodiversity monitoring to be10

realised.11

2. Here we use ‘copy-paste’ augmentation to help resolve the generali-12

sation challenge. Copy-paste augmentation refers to isolating animal13

‘segments’ from existing images and pasting the segments onto novel14

backgrounds, to create new, synthetic images that are then used as15

part of the training data. Theoretically, this could make a model16

agnostic to backgrounds and therefore more able to generalise to17

unseen locations. While generation of synthetic images is commonly18

used as an augmentation method in other fields, such as medicine,19

it has not been used before in biodiversity science.20

3. We found that copy-paste augmentation improved the ability of21

AI to identify species in new, unseen locations by 8 ± 2%. There22

was species-level variation in improvement, but the vast majority of23

species benefited from the approach. We found mixed results when24

using copy-paste augmentation on models trained with very small25

numbers of images (1-8 per species).26

4. Copy-paste augmentation improves the ability of AI models to gen-27

eralise to new, unseen locations. Our method also shows promise for28

resolving the challenge of long-tailed camera trap data. AIs perform29

poorly on species in the ‘long tail’ of these distributions because30

there are very few images to train on. Copy-paste augmentation31

can help rebalance datasets by adding synthetic images of underrep-32

resented species. Overall, our results suggest a promising role for33

augmentation methods that generate new, synthetic images in bio-34

diversity science. Ecologists and conservationists must move beyond35

simple augmentation methods, such as image transformations, if we36

are to resolve key challenges in species identification AI.37

Keywords: camera trap, machine learning, AI, augmentation, com-41

puter vision, mammals, serengeti, monitoring42

1 Introduction43

Monitoring biodiversity is essential to track progress towards policy objec-44

tives and to assess the effectiveness of conservation actions. Traditionally,45
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biodiversity monitoring relies on manual fieldwork, where researchers sam-46

ple some aspect of biodiversity across space and/or time. However, this47

kind of fieldwork is both expensive and time consuming and thus scales48

poorly (Caughlan & Oakley 2001). While traditional fieldwork will always49

play a role in ecology, it alone cannot meet the growing need for up-to-date50

information about the state of global biodiversity (Leadley et al. 2022).51

Technology offers a possible solution to this problem, through the ad-52

vent of passive monitoring techniques, such as camera traps. Camera traps53

– motion- or heat-activated cameras that capture images of wild animals54

– have great potential to help monitor biodiversity at scale: their low55

cost allows them to be deployed in vast arrays, collecting data on wildlife56

locations and behaviour across long time spans and large spatial extents57

(Swanson et al. 2015). Camera traps are already widely used and demon-58

strably useful, producing essential insights into population sizes, species59

richness, animal behaviour, disease spread, migration patterns, movement60

ecology, predator-prey interactions and conservation management (Delisle61

et al. 2021).62

One of the biggest barriers to harnessing the full potential of camera63

traps, however, is that processing the large amounts of data they collect64

remains a manual task: humans must view tens of thousands, or even65

millions, of images and identify any species that occur in each image. This66

work is extremely time consuming and it can take multiple person-years67

to label all images in a single dataset (Norouzzadeh et al. 2018).68

To solve this problem, deep learning algorithms have been proposed69

to automate the identification of animals in camera trap images. These70

AI approaches have produced impressive results. For example, using the71

3.2 million-image ‘Snapshot Serengeti’ dataset, deep neural networks au-72

tomatically identified animals correctly in 96.6% of images, representing73

a saving of 8.4 years of human effort (Norouzzadeh et al. 2018).74

While these figures are impressive, and highlight the potential for arti-75

ficial intelligence to transform conservation biology, they may also be mis-76

leading. This is because the majority of camera trap AI studies only evalu-77

ate performance on images from locations seen during training (Shahinfar78

et al. 2020, Schneider et al. 2020, Tabak et al. 2019). Conversely, when79

algorithms have been tested on their ability to generalise to new, pre-80

viously unseen locations, they perform significantly worse (Beery et al.81

2018, Schneider et al. 2020). The panacea for this field is for biodiver-82

sity monitoring to be fully automated, based on AI which can accurately83

identify all species in any camera trap image from anywhere in the world.84

Generalisation to new locations is clearly central to this mission and thus85

it was recently identified as one of the main unsolved problems in the field86

(Schneider et al. 2020).87

Deep learning algorithms may struggle to generalise to new locations88

because models overfit to particular backgrounds (Schneider et al. 2020).89

Thus, when new backgrounds are encountered, algorithms are more likely90

to fail. Some studies have tried to remedy this problem by cropping im-91

ages, such that they contain fewer background pixels and animals occupy92

more of the frame (Norouzzadeh et al. 2021). This approach has shown93

promise, with algorithms trained on cropped images having greater accu-94

racy than those trained on full images (Norouzzadeh et al. 2021, Beery95
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et al. 2018). However, cropping is not a perfect solution because back-96

ground pixels still remain in the image, preventing algorithms from be-97

ing truly decoupled from the environmental contexts on which they were98

trained.99

Recently, it was proposed that segmentation approaches could be used100

to completely remove the background from camera trap images, leaving101

just the animal ‘segments’ (Schneider et al. 2020). Training datasets could102

then be augmented with generated images, comprising animal segments103

‘pasted’ onto novel backgrounds (Ghiasi et al. 2021a). Theoretically this104

approach could allow models “to become agnostic to backgrounds, and105

thus able to generalize to any unseen location” (Schneider et al. 2020).106

However, despite the immense potential of this approach, it has never107

been attempted.108

Here we make the first such attempt, using segmentation to create109

novel ‘copy-paste’ images to augment a large dataset of real camera trap110

images. We assess the ability of copy-paste augmentation to improve the111

ability of algorithms to generalise to new, unseen locations. We find that112

this approach improves accuracy and conclude this could have important113

implications for future work building towards a general AI for global bio-114

diversity monitoring.115

2 Materials and Methods116

2.1 Data117

We analysed the Snapshot Serengeti dataset (Swanson et al. 2015), avail-118

able at https://lila.science/datasets/snapshot-serengeti. Snap-119

shot Serengeti has a number of advantages: (i) it is the largest camera120

trap image dataset available; (ii) it has a large number of bounding box121

annotations, which are a relatively uncommon annotation, but which were122

essential for our study; and (iii) it has been used by other studies in re-123

lated work, facilitating comparisons between approaches (e.g. Norouz-124

zadeh et al. (2018, 2021)). Of the 7 million images in the dataset, 74616125

have bounding box annotations around individual animals, giving their126

position and species identity. The dataset covers 225 different locations127

over 6 seasons. Unfortunately, the species identity (hereafter referred to128

as ‘classes’) annotations are given for a sequence of 3 images, and not for129

a particular bounding box, making it impossible to know which class cor-130

responds to which bounding box without further manual inspection. We131

therefore focused on images where a single class was identified to remove132

this uncertainty. Another issue with the dataset is that images from some133

locations have been rescaled, while their bounding boxes have not; images134

from these locations were removed. The list of removed locations can be135

found in the supplementary in Table S1).136

2.2 Monte Carlo Cross Validation137

To test for transferability (the ability of our trained AI to generalise to138

new, unseen locations), and to estimate the statistical significance of our139
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results, we apply Monte Carlo cross validation. The following experiment140

is reproduced k times. We first randomly sample locations, selecting 80%141

of the locations for training and 20% of the locations for testing. We142

use a small subset of the test set for validation purposes (10 images per143

class from the test locations); this is used at each epoch to evaluate the144

training in terms of accuracy. We evaluate on the test set for each k once145

the training is finished (note that results shown below are averaged over146

the k iterations of the Monte Carlo cross validation; the standard error is147

provided to capture variability between iterations).148

We produce multiple training sets per iteration: a ‘raw’ training set149

with only real images, and ‘augmented’ training sets, which contain both150

real images and generated images. The augmented sets contain varying151

numbers of generated images, determined by the augmentation factor. An152

augmentation factor of 1 (indicated by aug_1 in plots) would describe an153

augmented set with an equal number of raw and generated images; an154

augmentation factor of 2 (indicated by aug_2 in plots) would describe an155

augmented set with twice as many generated images as raw images, and156

so on. Examples of raw and augmented images can be seen in Figure 1.157

Figure 1: Examples of raw and generated training images. The top row shows
generated training images resulting from our automated copy-pasting strategy onto
empty backgrounds. The bottom row shows raw, unedited images from the Snapeshot
Serengeti dataset.

2.3 Image segmentation158

Copy-paste augmentation involves pasting images of animals that have159

no background, onto backgrounds that contain no animals, to create new160

images (Figure 1). Images of animals that have had their backgrounds161

removed are called segments. To automate segmentation, we use U2-NET,162

a convolutional neural network for image segmentation and background163

removal (Qin et al. 2020). To prevent having multiple animals in the164
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same segment, we focus on images with a single bounding box. For each165

bounding box, we extend the bounding box by 10%, crop the image to the166

bounding box and use the pretrained U2-NET to remove the background.167

After removing the background, we tighten the bounding box to match the168

silhouette of the segment. Following segmentation, we exclude segments169

that contain less than 30% non-transparent pixels. This is because these170

segments are usually cases where the segmentation algorithm has made171

errors, such as selecting the background instead of the animal or where172

animals are missing most of their bodies. We manually filter the resulting173

5235 segments to remove any remaining erroneous segments, leaving 3585174

usable segments.175

2.4 Automated copy pasting of animals176

To generate augmented datasets, we use the segmented animals from im-177

ages randomly sampled from the raw dataset and from the training lo-178

cations of that iteration. For each class (species), we create as many179

copy-paste images as required, depending on the number of usable seg-180

ments available for that class. For each image, the segment is randomly181

shrunk or expanded by ±5%, rotated by ±5 degrees, and flipped horizon-182

tally (mirrored in the y-axis). We choose a random x and y coordinate as183

the location to paste the segment, such that the bottom of the segment184

is in the bottom half of the background being pasted onto. Segments185

are pasted onto empty background images chosen randomly from the test186

locations of that iteration.187

2.5 Evaluation188

The software package we use for object detection , YOLOv5 (Jocher 2020),189

produces mean average precision metrics (mAP ). The mean average pre-190

cision is the average precision over all classes detected and the average191

precision is calculated based on precision and recall.192

We evaluate the performance of our algorithms using the mean delta193

mean average precision (mAP):194

�mAP =
1
k

i=kX

i=1

mAP (i, raw + aug)�mAP (i, raw) (1)

We define the �mAP as the mean over k Monte Carlo iterations of195

the difference between the mAP resulting from training on an augmented196

dataset and the mAP resulting from the training on the raw dataset in197

the same iteration. mAP is a widely used metric for evaluating object198

detection algorithms, derived from the confusion matrix.199

We carried out two sets of experiments: (i) a traditional experiment200

using 500 images per class in the raw training set; and (ii) a few-shot201

learning approach using very small numbers of images per class in the202

raw training set (between 1 and 8 images).203

Figure S2 gives the versions of all software packages used in this anal-204

ysis to facilitate reproducibility.205
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3 Results206

3.1 500 images per class207

When training with 500 raw images and 500 augmented images per class,208

�mAP is positive. This means that the mean average precision is higher209

when raw and augmented images are used (when copy-paste augmenta-210

tion was used), compared to when just raw images are used (without211

copy-paste augmentation). Figure 2 shows the mean mAP for raw and212

augmented datasets throughout the training, calculated on the valida-213

tion set. The mean �mAP over 10 iterations is 0.0156 ± 0.00496 (SE)214

when evaluated on the test sets (ranging between 10 and 15,000 images),215

corresponding to an 8 ± 2% gain in accuracy.216

Figure 3 shows the relationship between the number of usable segments217

per species and the mAP test results. We find a significant correlation of218

the form y ⇠ log(x) (estimate = 0.0569, p < 0.001, R2 = 0.597).219

Figure 4 shows model performance for each class. For the vast majority220

of classes, model performance was higher with copy-paste augmentation.221

The jackal, guinea fowl and kori bustard gained the most from copy-paste222

augmentation. However, for eight (17%) classes (bat-eared fox, civet,223

eland, elephant, hippopotamus, striped hyenas, rodents and waterbuck)224

model performance was substantially lower with copy-paste augmentation225

compared to when only raw images were used.226

3.2 Few-shot learning227

Model performance when using very small amounts of training data was228

mixed (Figure 5). When using 1 or 2 images per class, copy-paste augmen-229

tation improved model performance. When 4 or 8 images per class were230

used, copy-paste augmentation appeared to worsen model performance231

(Figure 5). Figure 6 shows �mAP and standard errors from the few-232

shot learning approach, evaluated on each iteration’s test sets. Results233

per class are given in Figure S1.234

4 Discussion235

We find that copy-paste augmentation improves the ability of AI models to236

identify species in camera trap images from unseen locations. Specifically,237

we found that using copy-paste augmentation to double the number of238

training images per species improved performance by 8± 2%.239

There are two main augmentation strategies in computer vision: (1)240

transforming existing images through processes like flipping, rotating, and241

cropping (Schneider et al. 2020, Shorten & Khoshgoftaar 2019), and (2)242

generating new, artificial images (Barile et al. 2021, Garcea et al. 2023,243

Shorten & Khoshgoftaar 2019). While fields like medicine frequently244

adopt the latter (Garcea et al. 2023), biodiversity science has lagged be-245

hind, and primarily uses basic image transformations (Schneider et al.246

2020), or no augmentation at all (Norouzzadeh et al. 2021).247

Our results suggest a promising future for augmentation with artificial248
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(a)

�
m
A
P

(b)

Figure 2: (a) The mean mAP for raw and augmented datasets throughout the train-
ing, calculated on the validation set, averaged over 10 Monte Carlo samples. The
raw dataset contained 500 images per class (‘raw_500’) and the augmented dataset
contained 500 raw and 500 generated images per class (an augmentation factor of 1,
‘raw_500+aug_1’). The mAP [0.5:0.95] y-axis label represents the number of true
positives over the total number of true positives and false positives with an intersection
over union (IoU) between 0.5 and 0.95. The IoU relates to the overlap of the original
bounding boxes and the detected ones. Gray bands represent the standard error of the
mean. (b) �mAP training results on 500 raw images with an augmentation factor of
1 over the k = 10 Monte Carlo samples.
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Figure 3: Correlation between the mAP and the number of usable segments per class
over 10 iterations. Each point represents a class (species).

images in biodiversity monitoring. Specifically, copy-paste augmentation249

can help address two main challenges (Schneider et al. 2020). First, it250

helps improve transferability to new locations. This ‘domain shift’ is a ma-251

jor challenge: in a recent study, the best performing model achieved 95.6%252

accuracy when tested on locations seen during training, but only 68.7%253

accuracy when tested on unseen locations. In general, neural networks254

perform best when the testing and training data are similar (Goodfellow255

2016, LeCun et al. 2015). However, this is rarely the case in conservation,256

where users will often want to identify species in images in new locations257

that have different backgrounds to those seen in training (Meek et al.258

2013). Here we show that augmentation improves model performance on259

unseen locations for ‘free’; that is, higher transferability can be achieved260

via augmentation without the need for any additional data.261

Second, augmentation helps address the issue of unbalanced datasets.262

Camera trap datasets have highly skewed frequency distributions across263

species, with a few species having large numbers of images, and many264

species having few images. Accurately classifying species with few images265

to train on poses a significant challenge for species identification AIs, as266

models typically require large amounts of data for training (Norouzzadeh267

et al. 2018, Tabak et al. 2019, Willi et al. 2019). Here we show that268

copy-paste augmentation improves performance in classes with only 500269

images, suggesting that it is a valid strategy for rebalancing datasets and270

addressing this problem.271
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Figure 4: Horizontal bar plot of the �mAP per class over 10 iterations when
evaluated on the test sets with the best weights at 300 epochs for the raw dataset, and
50 epochs for the raw+aug dataset (an equivalent total training time).
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(a) 1 image per class (b) 2 images per class

(c) 4 images per class (d) 8 images per class

Figure 5: Results of few-shot learning validated on a 10 images per class validation
set at each epoch, up to 300 epochs. Copy-paste augmentation improves accuracy
when 1 or 2 images per class are used, but worsens accuracy when 4 or 8 images per
class are used. Results are projected onto training time. Results are shown for 1, 2, 4,
8 images per class and augmentation factors of 1, 2, 4, 8. ‘raw_n’ by itself shows the
performance of the model when trained on just raw images. ‘raw_n+aug_n’ shows the
performance of models trained on augmented datasets containing raw and generated
images. ‘raw_n’ indicates n raw images per class in a dataset. ‘aug_m’ indicates an
augmentation factor of m. An augmentation factor of 1 means the augmented dataset
contains an equal number of raw and generated images; an augmentation factor of 2,
means the augmented set contains twice as many generated images as raw images, and
so on. For example, ‘raw_8+aug_8’ shows the performance of a model trained on 72
images, comprising 8 raw images and 64 generated images. The mAP [0.5:0.95] y-axis
label represents the number of true positives over the total number of true positives
and false positives with an intersection over union (IoU) between 0.5 and 0.95. The
IoU relates to the overlap of the original bounding boxes and the detected ones.
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(a) �mAP over the iterations

(b) Standard error of the mean

Figure 6: Aggregated results of the few-shot learning experiment, showing (a) mean
change in mAP and (b) standard error of those means, for different numbers of raw
images and augmentation factors.
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However, augmentation approaches are not immune from data de-272

mands. As Figure 3 shows, model performance was higher for species273

with a larger number of available segments. This could result in a ‘rich274

get richer’ effect, where performance is higher for frequently occurring275

species that have many available segments to paste, compared to data-276

sparse species for which a less diverse set of augmented images can be277

created. Thus, while copy-paste augmentation can improve performance278

for species that have a low numbers of available images from which to279

source segments, it may still not solve the issue of unbalanced data for280

species with extremely low numbers images (e.g. one); a minimum num-281

ber of available segments is needed to produce an augmented dataset with282

sufficient diversity to improve performance. Encouragingly, however, the283

non-linear relationship between number of segments and mAP (Figure284

3) suggests that, initially, large increases in performance are achieved285

for small increases in number of segments, with relatively few segments286

needed to approach peak performance (⇠50 segments). Further research287

across datasets is needed to confirm if this pattern is general.288

While, for the vast majority of species, copy-paste augmentation im-289

proved performance, for eight species (17%) it substantially decreased290

performance. One possible reason for this is that all but one (elephant)291

of these negative-performing species are to some degree nocturnal or cre-292

puscular: the bat-eared fox, civet, striped hyena and many rodents are293

nocturnal, the common eland is crepuscular, and hippopotamuses and294

waterbucks are often active at night. This means it is likely that the295

segments of these animals are from images captured at night. We did296

not synchronise times between segments and backgrounds, thus night seg-297

ments of these species could have been pasted on to day backgrounds,298

resulting in unusual images that the model performed worse on. This299

could have been compounded by AI models’ generally lower performance300

on night camera trap images, due to greyscale, grain, glare from flash and301

shorter viewing distance (Mitterwallner et al. 2024). However, given that302

our augmentation approach improved performance substantially for other303

nocturnal species, such as aardvark and porcupine, this cannot fully ex-304

plain our results. Another possible explanation is that these species have305

some morphological or behavioural traits that are not captured through306

simple duplication; these may be species that require a greater diversity307

of images for improved model performance. Alternatively, these species’308

traits might mean the segmentation algorithm performed worse, perhaps309

removing too much or too little of the source image, resulting in subtly er-310

roneous segments that lose necessary detail. Further research is needed to311

fully understand species-level variation in improvement by augmentation.312

We found that augmentation had a mixed impact in a few-shot learn-313

ing context. Augmentation substantially improved model performance,314

when there were only one or two raw images per class. However, when315

four or eight images per class were used, augmentation reduced perfor-316

mance. The augmentation factor (number of augmented images) seemed317

to have little impact on performance, with the exception of when only one318

raw image per class was used: in this analysis, augmentation factor four319

performed best, followed by eight, two, then one. Taken together, these320

results are hard to fully explain. Data augmentation is an established321
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few-shot method (Liu et al. 2022, Tian et al. 2024), and has previously322

shown consistent improvements in model performance across a range of323

dataset sizes (Ghiasi et al. 2021b), and thus we would expect consistent324

improvement. Notably, in all cases, augmented models perform better325

than raw-only models in the early parts of training (Figure 5). Simply326

increasing computational resources could therefore produce improved re-327

sults; for example, training the models for a longer time period, or running328

more iterations of each analysis to reduce stochastic effects. Alternatively,329

drastically increasing the number of augmented images could produce im-330

provements — our analysis includes a maximum of 64 augmented images331

(eight raw images with an augmentation factor of 8). Testing, for exam-332

ple, eight raw images with thousands of augmented images could be an333

interesting future direction to establish the limits of this approach. Fur-334

ther research is needed into the value of copy-paste augmentation in a335

few-shot context before its utility can be fully assessed. However, the re-336

sults shown here for one or two images per class, show there is significant337

promise of the approach.338

Our research demonstrates the potential for artificial image augmen-339

tation in biodiversity monitoring, and thus opens promising avenues for340

future research. First, it is important to validate our approach in other341

datasets that span a wide range of species, habitat types and locations.342

Second, while we manually removed erroneous segments, future research343

could automate this step, perhaps using an animal detection model, such344

as MegaDetector (Beery et al. 2019). Third, there are several ways the345

copy-paste approach could be improved to potentially achieve higher per-346

formance. For example, time could be synchronised between segments347

and backgrounds so that segments are pasted onto backgrounds of an ap-348

proximately similar time of day, creating a better match between segment349

and background lighting conditions. Methods for ‘smart’ pasting could350

also be developed, to ensure that segments are pasted onto backgrounds351

in a sensible way that results in realistic images; for example, ensuring352

land animals are not pasted onto the sky. A more complex solution could353

ensure animals are pasted at locations on the background such that the354

resulting images look natural. Currently our approach can result in non-355

sensical images: for example, pasting elephant segments onto backgrounds356

with blades of grass in the foreground, resulting in images where elephants357

appear smaller than blades of grass. Improving pasting methods and as-358

sessing whether this increases performance is an important direction for359

future research.360

Overall, we show that copy-paste augmentation shows significant promise361

as a way to address key challenges in biodiversity monitoring AI. Specifi-362

cally, it improves transferability to unseen locations and can help balance363

typical long-tailed ecological camera trap data. Ecologists and conserva-364

tionists must move beyond just simple image transformations and embrace365

artificial images as another tool for augmentation.366
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Figure S1: Heatmap of the �mAP per species at 300 epochs
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Season Location
S2 E01
S3 E11
S3 J08
S4 R11
S4 E11
S4 E01
S5 G07
S5 L04
S5 E09
S5 E12
S5 C11
S5 B09
S5 D10
S5 I05
S5 J08
S6 G07
S6 G10
S6 E10
S6 H10
S6 D05
S6 O13
S6 C10
S6 L04
S6 E09

Season Location
S6 J09
S6 D08
S6 U13
S6 S12
S6 P10
S6 L13
S6 S11
S6 F10
S6 J13
S6 E12
S6 E02
S6 C07
S6 C11
S6 K09
S6 E03
S6 R13
S6 B09
S6 Q10
S6 O11
S6 D10
S6 O12
S6 I05
S6 J08
S6 R12

Table S1: List of removed locations per season due to a resizing issue in the original
dataset.
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yolov5==6.2.0
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0 # see https://pytorch.org/get-started/locally/ (recommended)
torchvision>=0.8.1
tqdm>=4.64.0
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012

# Logging -------------------------------------
tensorboard>=2.4.1
# clearml>=1.2.0
# comet

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

Figure S2: Software packages versions
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