1	Phylogenetic Diversity vs H-Index – does genetics or culture lead
2	conservation research?
3	Tam, J. $*^{1,2}$, Cornwell, W. ² , and Francis, R. J. ¹
4	¹ Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW
5	Sydney, NSW 2052, Australia
6	² Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences,
7	UNSW Sydney, NSW 2052, Australia
8	*Corresponding author: j.tam@unsw.edu.au
9	
10	ORCID ids
11	Jess Tam: 0000-0003-3655-1974
12	Will Cornwell: 0000-0003-4080-4073
13	Roxane Francis: 0000-0003-3172-5445
14	
15	Keywords
16	scientific attention, scientific interest, phylogenetic uniqueness, evolutionary distinctiveness, research
17	bias, conservation bias
18	

Abstract

With so many species in decline it is difficult to know where conservation effort and funding 20 21 should be dedicated. A common prioritization argument is species uniqueness and phylogenetic diversity, where those with unique evolutionary history are thought to be 22 especially valuable. However, despite frequent calls for better prioritization, research interest 23 24 is often idiosyncratic, pragmatic, and geographically biased, creating an uneven spread of research interest across the tree of life. Here, we aim to quantify the research interest of 25 endemic species from Africa and Australia across 5 vertebrate groups, exploring whether 26 research interest has any correlation with phylogenetic uniqueness. To measure research 27 interest, Hirsch's h-index is used as it can identify biases in the research literature. In this 28 study, we explored the relationships between phylogenetic uniqueness, h-index, and the 29 number of publications for five vertebrate groups across the Australian and African 30 continents: Mammalia, Aves, Reptilia, Amphibia, and Chondrichthyes. Observing the top 10 31 32 species that are the most phylogenetically unique, there was very little relationship between 33 their phylogenetic uniqueness and research interest. The most highly researched animals were the megafauna, or those considered as charismatic – with human-perceived charisma not 34 35 showing a strong phylogenetic pattern. We saw higher research interest in mammals than other vertebrate groups, and generally higher levels of research attention in fauna from Africa 36 than Australia, which did reflect higher levels of phylogenetic uniqueness on the African 37 continent. While phylogenetic diversity is a useful index on which to base research interest 38 and conservation prioritization, it appears that current conservation strategies reflected by 39 research interest do not follow this approach. We believe that our approach in this study is 40 scalable to other geographical regions, which can help guide conservation efforts of 41 phylogenetically unique species. 42

1 Introduction

Species declines due to anthropogenic causes are so high, current times are referred to as the 45 sixth major extinction event (Ceballos et al., 2017), with estimates of up to 40% of species 46 47 experiencing population declines (Ceballos et al., 2017), and 80% decline in freshwater vertebrates alone (Darwall et al., 2018). With so many species in need of conservation, 48 49 difficult decisions around which species are to be prioritised are regularly made but are 50 guided by differing systems of prioritisation. A common decision-making process is referred to as conservation triage, where conservation efforts are assigned based on the likelihood of a 51 species' survival under constrained resources (Wilson & Law, 2016). This method has 52 received criticism due to the instances of species recovering despite being categorised as 53 unlikely to survive, alongside arguments against its ethicality (Wiedenfeld et al., 2021; 54 55 Wilson & Law, 2016). A different approach which avoids placing critically endangered species in the "can't be saved" category is the use of mathematical models to rank species in 56 order of conservation priority based on a wide range of attributes which may include 57 58 management costs, species value (such as its contribution to phylogenetic diversity) and likelihood of success (Joseph et al., 2009). 59

60 Current conservation prioritization techniques are often based on traditional measures of 61 biodiversity including taxonomic diversity, richness and distribution, alongside other criteria 62 such as ecological importance and social significance (Joseph et al., 2009). Allocation of 63 conservation funds are highly biased towards social significance, which prefers appealing and 64 charismatic endangered species, largely dominated by mammals and birds (Davies et al., 65 2018). As a result, other taxonomic groups, especially invertebrate groups are highly 66 understudied (Donaldson et al., 2016; Titley et al., 2017). For several reasons including

funding and the interests of scientists themselves, research interest cannot be allocated 67 68 independent of the cultural context in which the science occurs. We have chosen two 69 locations where we hypothesize that this cultural bias is especially important: in Africa where large charismatic mammals from the savanna such as lions and elephants receive large 70 amounts of human cultural attention (Di Minin et al., 2013; Williams et al., 2000) and in 71 72 Australia, where the cute and cuddly koala bear dominates media campaigns despite a 73 plethora of other endemic species (Bagust, 2010; Markwell, 2020; Stratford et al., 2000). 74 Other human cultural influences apply to conservation effort outside of the research species 75 themselves, such as geography, with 40% of studies conducted in the USA, Australia or the UK, and only 10% in Africa (Di Marco et al., 2017). There are also temporal cultural shifts 76 which are reflected in research interest. And conservation effort. For e.g., the total proportion 77 of articles on aquatic systems in 2017 was 50-60% higher than before 2010, however there 78 remains a disconnect between scientific focus and conservation needs (Di Marco et al., 2017). 79 80 Recognising and quantifying these biases is an important step to evaluate conservation efforts, and determine whether current efforts are justified and well placed. 81 82 There are multiple ways to measure conservation effort, the first being research output which includes the number of publications on a particular species. A complementary measure is 83 research interest, which can be measured using Hirsch's h-index, usually applied to measure 84 a person's scientific research, defined as the greatest number of publications cited a minimum 85 number of times (Hirsch, 2005). In this way the h-index monitors research interest, as it 86 includes not only the number of papers (output), but the number of times they were cited 87

88 (interest).

To improve on the prioritization of species conservation, and to explore the justification of
current species of focus, we suggest the inclusion of a species' unique contribution to
phylogenetic diversity (PD) as an important consideration. Although originally recommended

as early as 1991 (Faith, 1992; Vane-Wright et al., 1991), this metric quantifies the unique 92 evolutionary history that an extant species represents. PD is measured in the number of 93 94 million years, with a species unique contribution calculated by summing the lengths of branches that represent its independent journey throughout evolutionary history (Winter et 95 al., 2013). In itself it is not clear if this is valuable, but there are many reasons to support the 96 importance of this metric which include the 'resilience argument' which suggests 97 98 phylogenetically diverse ecosystems have greater options to respond to change, the 'historical value argument' which suggests protecting phylogenetic diversity preserves access to and 99 100 knowledge of the earth's history, and the 'aesthetic argument' which suggests phylogenetic diversity conserves aesthetic differences and qualities of unique species guarding an 101 interesting and aesthetically diverse and pleasing ecosystem (Palmer & Fischer, 2022). 102 Human studies have found reduced microbial PD can reflect reduced resilience and can be 103 associated with human disease, but similar arguments have not yet been solidly applied at the 104 macrobial ecology scale (Faith, 2018). These arguments, alongside others, are combined to 105 give power to the idea of value in phylogenetic diversity (Palmer & Fischer, 2022). Further, 106 PD can be combined with levels of extinction threat and can serve as a way to prioritize effort 107 when resources are scarce (Costion et al., 2015; Gumbs et al., 2021; Isaac et al., 2007; 108 Mooers & Atkins, 2003; Posadas et al., 2001). The Noah's Ark framework is a prioritisation 109 tool which considers this phylogenetic contribution to diversity (Metrick & Weitzman, 1998), 110 111 however it does not include the probability that the management of a species will succeed. There are, however, extensions on this framework which include this probability to succeed 112 and have been used to identify management priorities in New Zealand (Joseph et al., 2009) 113 and Australia (Gonzalez-Orozco et al., 2016). As a result of this approach, historic species 114 that are evolutionary unique and therefore hold many millions of years of evolutionary 115

history would be favoured for conservation, one such example being the Australian platypus*Ornithorhynchus anatinus*.

We aimed to explore the overlap in research interest and phylogenetic diversity for five 118 vertebrate animal groups (mammalia, aves, reptilia, amphibia and chondrichthyes) in 119 Australia and Africa, led by the presence of more complete taxonomic trees. We ask, 1) Are 120 121 h-index and number of publications always similar for each species? 2) Do animals that contribute to high phylogenetic diversity receive more research interest? 3) How does 122 research interest differ between the animal classes? And 4) How does research interest and 123 the range of phylogenetic diversity differ across the African and Australian continents? In 124 response to research question 2, we hypothesise that research interest is not strongly 125 correlated with phylogenetic diversity but is rather influenced by human cultural factors such 126 as charisma and size. Based on the phylogenetic diversity we suggest the top 10 animals from 127 each class and continent that would contribute to the greatest phylogenetic diversity 128 129 conserved and discuss the barriers towards their conservation. While we focus on only two continents, our methods can be duplicated to allow for location specific exploration of current 130 research interest, to ultimately guide future conservation decisions. 131

132

2 Methods

134 2.1 Data collection and cleaning

- 135 We collected phylogenetic trees of five vertebrate groups from http://vertlife.org/data/ in
- 136 September and October of 2022, totalling up to 34,090 species. For each group we
- downloaded 100 random trees, with each tree built from an arrangement of 5,911 mammals
- 138 (Upham et al., 2019), 9,993 birds (Jetz et al., 2014), 7,239 amphibians (Jetz & Pyron, 2018),
- 139 9,755 squamates (Tonini et al., 2016), and 1,192 chondrichthyes (Stein et al., 2018). Each of

the classes is comprised of a different number of orders, depending on the completion of eachtree (Appendix 1).

To relate species phylogenetic diversity to their research interest we extracted citation 142 143 information of relevant publications; those where the species' binomial name appeared in the title, abstract, or keywords, using the package specieshindex version 0.3.1(Tam, 2021), in late 144 2021. We extracted the metadata, including affiliations, and countries, separately with custom 145 functions using the packages httr version 1.4.2 (Wickham, 2020) and XML version 3.99.0.8 146 (Lang, 2022). We referenced the custom functions from 147 https://github.com/christopherBelter/scopusAPI and modified them for the use of this study. 148 We then retrieved the classification information, including class, order, and family, of each 149 species using the package rotl version 3.0.12 (Michonneau et al., 2016) and calculated their 150 151 individual *h*-index with the *specieshindex* function.

Finally, to sort our species geographically, we obtained location information of the species 152 from the Global Biodiversity Information Facility (Global Biodiversity Information, 2022) in 153 154 February of 2022 using the package *rgbif* version 3.6.0. We calculated the centroids of the occurrences of each species with a modified function from the package *letsR* version 4.0. We 155 decided to focus the data exploration on two large continents with high levels of endemism 156 (Chapman, 2009) and charismatic species (Lindsey et al., 2007; Monsarrat & Kerley, 2018; 157 United Nations World Tourism Organisation, 2014) so kept only species that fell within 158 Africa and Australia (including coastal islands). We filtered the data using geographic 159 coordinates, keeping Australian species that fell between 113 and 154 degrees of longitude 160 and -43.665676 and -10.698671 degrees of latitude, and African species that fell between -161 17.580559 and 51.853036 degrees of longitude and -35.230525 and 36.964658 degrees of 162 latitude. We further filtered out species with GBIF distributions that fell outside the 163 continent, i.e. those that were not endemic to either Africa or Australia (such as pest and 164

165	introduced species), and species whose research was predominantly based in husbandry or
166	medicine. We also removed marine mammals and sharks with large distributions that
167	spanned continents. A full list of the species removed for each group and continent is
168	provided as an appendix (Appendix 2).
100	Data asllastica and cleaning more nonformed within the D commuting environment marine
169	Data collection and cleaning were performed within the R computing environment version
170	1.4.1106 (R Studio Development Team, 2021).
171	2.2 Theoretical visualisations
172	To better visualise the research hypothesis associated with the question "Do animals that are
173	more phylogenetically diverse receive more research interest?" we clipped a random point in
174	the mammal tree, aiming to keep 10 species. We then highlighted the branch tips in green to
175	represent the species with the highest research interest illustrated in Fig.1. We created fake
176	datasets and scatterplots that would reflect what we would expect to see in the case of
177	accepting the null; animals that are more phylogenetically diverse receive more research
178	interest, rejecting the null; animals that are more phylogenetically diverse show no
179	relationships to research interest, or the third option that animals that are more

- 180 phylogenetically diverse receive less research interest, plotting research interest (h-index)
- 181 against phylogenetic diversity.

182

Figure 1. The three hypothetical outcomes regarding the first question of this study: Do animals that are more phylogenetically diverse receive more research interest? With potential results showing (a & b) research interest is higher in species that are highly phylogenetically diverse, (c & d) research interest is lower in species that are highly diverse or (e & f) research interest has no relationship to phylogenetic diversity.

188 2.3 Data Analysis

- 189 We first explored the correlation between h-index and the number of publications for all
- species using the Spearmans correlation coefficient, and finding a high level of correlation we

191 continue throughout the paper looking only at h-index as the chosen measure of research192 interest (Fig. 2).

To compare the phylogenetic uniqueness of a species with its research interest we kept the top 10 highly researched species from each of the five vertebrate groups (sorted first by hindex, and then again by number of publications) for both Africa and Australia (Fig. 3). To explore correlative trends between research interest (h-index) and phylogenetic diversity we calculated the spearman correlation coefficient for all species separated by taxonomic group and continent (Fig. 3).

To explore differences in the phylogenetic diversity of the top researched species, we took the average diversity by group and continent (Table 2). We compared this to the average diversity of the top 10 most diverse species of each group (Table 2). To confirm the trends, we saw in research output and phylogenetic diversity were not only present in the top 10 researched species we also ran analyses that included the top 100 for each taxonomic group for each continent.

205

206 **3 Results**

There was a high level of correlation between a species' number of publications and its hindex (0.98, Fig. 2). Of all species, there were five species that were either outliers to this trend, or had very high levels of research interest. Four of those were African species (African clawed frog *Xenopus laevis*, Chimpanzee *Pan troglodytes*, Grivet *Chlorocebus aethiops*, and the Greater Honeyguide *Indicator indicator*), whilst the Australian region had only a single outlier species (Goat *Capra hircus* (non-native and so removed from all further analyses)).

Figure 2. Species' h-index and number of publications were strongly correlated except for
five outliers (a) which when removed from the figure, i.e. in b) the strong relationships
between h-index and publications were more easily visualised for African (green) and
Australian (blue) species.

The top 10 species of each vertebrate group for the two continents according to their research
interest (h-index) are visualised in Figure 3. R² values showed very little correlation between

- research interest and phylogenetic uniqueness for any taxonomic group or continent (Figure
- 3). Echoing this finding, Table 1 lists the top 10 species with the highest h-index and the top
- 10 species that are the most phylogenetically unique from each taxon of the two continents.
- 238 Once again showing that species with more research interests weren't necessarily
- 239 contributing to phylogenetic diversity.

240

Figure 3. The top 10 researched species for the a) amphibians, b) birds, c) Chondrichthyes, d)
mammals and e) reptiles for the African (green) and Australian (blue) continents. Reported

 R^2 values show the correlation between research interest (h-index) and phylogenetic 244 uniqueness for all species in the dataset, separated by taxonomic group and continent. 245 If conserving the top 10 most phylogenetically unique species from each of the five 246 vertebrate groups, Australia had the highest diversity at 994 myrs in the mammal group, 247 compared to Africa with 789 myrs. In all other groups Africa had greater potential PD than 248 249 Australia. When looking at the top 10 researched species (by h-index) for each of the five vertebrate groups, Australian birds followed by Australian mammals covered the most PD at 250 32% and 31% respectively. The most PD researched within a group in Africa was also the 251 mammals at 27% of the total potential PD covered in the top 10 researched species (Table 2). 252 Interestingly, while the avian group in Australia had the highest diversity being researched, it 253 was one of the lesser groups being researched in Africa (by PD). 254 255 The large difference between the top 10 most unique species of each group compared to the actual species being researched was consistent for both Africa and Australia, indicating 256 257 neither continent was fully meeting their potential in safe guarding PD. The greatest mismatch between potential PD and actual PD being conserved in the top 10 species was in 258 the Chondrichthyes group, with only 5% and 7% PD covered in Africa and Australia, despite 259 being the group with the lowest summed potential PD (Table 2). 260 Overall, African species had a higher mean h-index (58.26 vs 51.42), number of mean 261

publications (1733.36 vs 883.88) and a higher total sum of publications (86,668 vs 44,194)

than Australian species when including the top 10 phylogenetically unique species for each

taxonomic grouping and continent. Research interest and phylogenetic uniqueness for the top

10 species of each taxonomic grouping and continent can be found in the Appendix.

Table 2. Summed phylogenetic diversity conserved by selecting the top 10 most unique
species for each taxonomic group on each continent, compared to the summed actual
phylogenetic diversity being conserved in the top researched species. Values in brackets
show the difference in possible phylogenetic diversity conserved vs actual in myrs, and as a
percentage (%) of the total possible PD conserved.

		Summed PD of top 10	Summed PD of top	Top 10 published
Vertebrate group	Continent	phylogenetically diverse	10 h-index species	species (difference
		species (myrs)	(difference myrs, %)	myrs, %)
Amphibia	Africa	738	159 (-579, 22)	184 (-554, 25)
Amphibia	Australia	489	102 (-387, 21)	103 (-386, 21)
Aves	Africa	582	90 (-492, 15)	96 (-486, 16)
Aves	Australia	365	117 (-248, 32)	102 (-263, 28)
Chondrichthyes	Africa	311	17 (-294, 5)	17 (-294, 5)
Chondrichthyes	Australia	230	17 (-213, 7)	17 (-213, 7)
Mammalia	Africa	789	214 (-575, 27)	214 (-575, 27)
Mammalia	Australia	994	309 (-685, 31)	309 (-685, 31)
Squamata	Africa	600	74 (-526, 12)	71 (-529, 12)
Squamata	Australia	382	54 (-328, 14)	58 (-324, 15)
Chondrichthyes Chondrichthyes Mammalia Mammalia Squamata Squamata	Africa Australia Africa Australia Africa Australia	311 230 789 994 600 382	117 (-246, 32) 17 (-294, 5) 17 (-213, 7) 214 (-575, 27) 309 (-685, 31) 74 (-526, 12) 54 (-328, 14)	102 (-203, 23) 17 (-294, 5) 17 (-213, 7) 214 (-575, 27) 309 (-685, 31) 71 (-529, 12) 58 (-324, 15)

271

272 **4 Discussion**

We collected and analysed the citation information and phylogenetic uniqueness of endemic
species in Africa and Australia across five taxa – Mammalia, Aves, Reptilia, Amphibia, and
Chondrichthyes, and compared the relationship between phylogenetic diversity and research
interest in conservation-based science. Although there was a strong statistical correlation
between a species' number of publications and their h-index, we found no correlation

between their h-index and phylogenetic uniqueness, suggesting phylogenetic uniqueness is
not a leading contributor to rationale for research priority under current conservation triage
approaches. Overall, African vertebrate groups were more phylogenetically diverse than
Australian species, however Australian research interest was covering a greater proportion of
phylogenetic diversity.

283 4.1 Charismatic species dominating the scientific literature

The top 10 researched species in both African and Australian vertebrate groups included 284 many charismatic species (Fig. 3), including the African megafauna such as lions, leopards 285 and elephants and the cuddly and charismatic Australian koala and platypus. The popularity 286 of species plays an important role in their conservation since human interest tends to correlate 287 with research interest (Tam et al., 2022). Charismatic animals that have higher appeal 288 generally have larger bodies and forward-facing eyes (Macdonald et al., 2015; Smith et al., 289 290 2012; Tam et al., 2022), even when they are traditionally less appealing such as the 291 Chondrichthyes (Ducatez, 2019). Vertebrates also tend to receive more interest in research than invertebrates, especially mammals and birds (Donaldson et al., 2016; Troudet et al., 292 2017). While targeting the conservation of charismatic flagship species can help conserve 293 background species and address underlying ecological issues (McGowan et al., 2020), lesser-294 known species may be overlooked in conservation efforts. 295

4.2 Model species receiving disproportional amounts of research interest

Another reason why phylogenetic diversity does not correlate with the h-index of species is that model organisms are popular among researchers, for instance in the medical field, but some of these species are also a focus of conservation-based research. Historically, model organisms have provided many insights into biology and genetics that could be scaled and generalised to other species (Fields & Johnston, 2005). Such model species include the outliers Chimpanzee (*Pan troglodytes*) and the African clawed frog (*Xenopus laevis*), whom both have significantly higher h-index while not contributing as much to phylogenetic diversity as some others (Fig. 2, Fig. 3). The Chimpanzee is commonly used as a model in
human studies as they are one of our closest relatives and have a very similar genomic
makeup (Consortium, 2005). Whereas the African clawed frog is a model species commonly
used to study vertebrate embryonic development (Liao et al., 2022).

Nevertheless, some model species are endangered in the wild. For instance, the Chimpanzee, while a model species, is also in decline due to habitat destruction and poaching. Along with other African great apes, such as the Bonobo (*Pan paniscus*), and various *Gorilla* species and sub-species, studies predicted that the habitats of these primates will shrink in the near future (Carvalho et al., 2021; Junker et al., 2012). Therefore, while they are not phylogenetically unique, their inflated research interest may be contributing to their conservation efforts, and as such were not removed from this study.

315 We focused on presenting the difference between phylogenetic diversity and research interest as a percentage rather than in millions of years, as this better encompassed the difference 316 between potential PD conserved and research interest - as it was irrespective of the potential 317 PD on each continent (Table 2). For example, the difference in millions of years of PD 318 captured between the top 10 African squamates with the greatest phylogenetic uniqueness 319 and the top 10 researched African squamates appeared very large at a summed 526 myrs, 320 321 however taking into account the total diversity of this group and looking at this value as a 322 percentage instead we see they are not the lowest studied of the groups, with a 12% difference between available PD and researched PD, compared to 5% for the African 323 Chondrichthyes. 324

325 4.3 Accounting for distant relatives

Focusing research efforts on model species helps us study their close relatives, but it may not be able to capture the knowledge of distant relatives that are more evolutionarily diverse. For instance, studies of the zebra finch (6.9 myrs; Table 1), a model species for the study of

neuronal mechanisms of song and vocal learning (Brainard & Doupe, 2002; Vallentin et al., 329 330 2016), are less likely to be applicable to the ostrich (56.7 myrs; Table 1) due to the long time 331 since they diverged from their most recent common ancestor. Other aspects of biology that may be important for conservation, such as population demographics and response to 332 333 environmental fluctuations, are even more challenging to conserve phylogenetically. 334 Conserving groups of species with higher EDGE (Evolutionarily Distinct and Globally 335 Endangered) scores is more effective as it can not only capture more phylogenetic information (Isaac et al., 2007; Redding et al., 2010), but also target species that are declining 336 337 in population because species that contribute to phylogenetic diversity are not always endangered (Funk & Burns, 2019). 338

4.4 Phylogenetically distinct species targeted by illegal wildlife trade

Species across the tree of life that are more phylogenetically unique are vulnerable to illegal 340 wildlife trade. Higher phylogenetic uniqueness within the family-level, especially in 341 mammals and birds, can predict the likelihood of the species being trafficked (Scheffers et 342 al., 2019). These species often have unique physical features that are absent in other wildlife, 343 and thus are highly sought after for their novelty. For example, the Australian shingleback 344 lizard (*Tiliqua rugosa*) is highly traded due to its unique physical appearance and endemism 345 to Australia (Heinrich et al., 2022). Non-coincidentally it is also one of the top 10 346 phylogenetically diverse Australian reptiles encompassing 11.3 myrs of phylogenetic 347 diversity (Fig. 3, Table 1). 348

349 4.5 Drawing boundaries and allocating research funds

Funding for wildlife conservation is usually allocated by state or country. This allocation strategy may, however, miss marine species that migrate seasonally or have large movement ranges. In the case of marine animals, while they are protected within marine protected areas established in some countries, the same cannot be ensured when they migrate out of these territories or into other countries where there are no protected areas (Jenkins & Van Houtan, 2016). In addition, protected areas with higher biodiversity can still miss species that are
phylogenetically unique if their habitats are located outside of these species-rich zones (Jetz
et al., 2014). We removed many of these marine animals from our analysis as their large
distributions meant they could not be assigned to either Africa or Australia. Our methods,
however, can be repeated to explore these creatures in depth.

360 4.6 Limitations of the h-index

The h-index is a good indicator for measuring the research interest, but the primary focus of 361 this metric is restricted to peer-reviewed academic literature. As such, we did not include any 362 grey literature that can be found on Google scholar, for instance. Excluding grey literature 363 meant that some reports and articles that were not peer-reviewed were excluded from this 364 study. These outputs include reports from non-governmental organisations that do not publish 365 but manage to attain conservation goals. Nonetheless, the h-index is a suitable indicator that 366 shows how much formal research currently exists, and is a decent indicator of overall 367 368 research interest.

369 4.7 Wider application

While there are decisions made throughout this research that might not suit certain readers purposes, for example the removal of species with wide distributions, non-natives or pest species, our methods are repeatable and allow for flexibility in the species or area of interest. As such conservation managers from a certain area, or working on a certain group can tweak the approach to ensure it is relevant to their research, hopefully guiding a more balanced approach to conservation efforts that accounts for the phylogenetic uniqueness in the conservation prioritisation process.

377

378 5 Conclusions

In this study, we compared the differences between the h-index and phylogenetic diversity of 379 5 vertebrate groups on the African and Australian continents, illustrating that phylogenetic 380 uniqueness is not a key consideration in research and conservation efforts. We suggest the 381 use of the EDGE score when evaluating conservation priorities to better conserve populations 382 of wildlife that are both phylogenetically diverse and endangered, and provide our methods to 383 assist conservation managers to explore the potential imbalance of conservation effort and 384 385 phylogenetic uniqueness in their area. As populations of species across the tree of life continue to decline, it is important that conservation priorities are frequently re-evaluated to 386 387 maximise or as a minimum, consider, phylogenetic diversity.

388

389 Author contributions

RF and WC conceived the ideas and designed methodology; JT collected the data; RF
analyzed the data; RF and JT led the writing of the manuscript. All authors contributed
critically to the drafts and gave final approval for publication.

393

396

394 References

- Bagust, P. (2010). The South Australian 'koala wars': Australian fauna and mediagenic fitness
- Brainard, M. S., & Doupe, A. J. (2002). What songbirds teach us about learning. *nature*, 417(6886),

selection. Continuum, 24(4), 489-502.

- 398
 351-358.
- 399 Carvalho, J. S., Graham, B., Bocksberger, G., Maisels, F., Williamson, E. A., Wich, S., Sop, T.,
- 400 Amarasekaran, B., Barca, B., & Barrie, A. (2021). Predicting range shifts of African apes

401 under global change scenarios. *Diversity and Distributions*, 27(9), 1663-1679.

402 https://doi.org/doi.org/10.1111/ddi.13358

- 403 Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass
 404 extinction signaled by vertebrate population losses and declines. *Proceedings of the National*405 *academy of Sciences*, *114*(30), E6089-E6096.
- 406 Chapman, A. D. (2009). Numbers of living species in Australia and the world.
- 407 Consortium, A. (2005). Initial sequence of the chimpanzee genome and comparison with the human
 408 genome. *nature*, 437(7055).
- 409 Costion, C. M., Edwards, W., Ford, A. J., Metcalfe, D. J., Cross, H. B., Harrington, M. G.,
- 410 Richardson, J. E., Hilbert, D. W., Lowe, A. J., & Crayn, D. M. (2015). Using phylogenetic
- 411 diversity to identify ancient rain forest refugia and diversification zones in a biodiversity
 412 hotspot. *Diversity and Distributions*, 21(3), 279-289.
- 413 Darwall, W., Bremerich, V., De Wever, A., Dell, A. I., Freyhof, J., Gessner, M. O., Grossart, H. P.,
- 414 Harrison, I., Irvine, K., & Jähnig, S. C. (2018). The Alliance for Freshwater Life: a global call

415 to unite efforts for freshwater biodiversity science and conservation. *Aquatic Conservation:*

```
416 Marine and Freshwater Ecosystems, 28(4), 1015-1022.
```

- 417 Davies, T., Cowley, A., Bennie, J., Leyshon, C., Inger, R., Carter, H., Robinson, B., Duffy, J.,
- 418 Casalegno, S., & Lambert, G. (2018). Popular interest in vertebrates does not reflect
- extinction risk and is associated with bias in conservation investment. *PloS one*, *13*(9),
 e0203694.
- 421 Di Marco, M., Chapman, S., Althor, G., Kearney, S., Besancon, C., Butt, N., Maina, J. M.,

422 Possingham, H. P., von Bieberstein, K. R., & Venter, O. (2017). Changing trends and

- 423 persisting biases in three decades of conservation science. *Global Ecology and Conservation*,
 424 10, 32-42.
- 425 Di Minin, E., Fraser, I., Slotow, R., & MacMillan, D. C. (2013). Understanding heterogeneous
- 426 preference of tourists for big game species: implications for conservation and management.
- 427 *Animal Conservation*, *16*(3), 249-258.

- 428 Donaldson, M. R., Burnett, N. J., Braun, D. C., Suski, C. D., Hinch, S. G., Cooke, S. J., & Kerr, J. T.
 429 (2016). Taxonomic bias and international biodiversity conservation research. In (Vol. 1, pp.
- 430 105-113): Canadian Science Publishing 65 Auriga Drive, Suite 203, Ottawa, ON K2E 7W6.
- 431 Ducatez, S. (2019). Which sharks attract research? Analyses of the distribution of research effort in
- sharks reveal significant non-random knowledge biases. *Reviews in Fish Biology and Fisheries*, 29(2), 355-367.
- 434Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. *Biological conservation*,
- **435** *61*(1), 1-10.
- 436 Faith, D. P. (2018). Phylogenetic diversity and conservation evaluation: perspectives on multiple
- 437 values, indices, and scales of application. *Phylogenetic diversity: applications and challenges*438 *in biodiversity science*, 1-26.
- 439 Fields, S., & Johnston, M. (2005). Whither model organism research? *Science*, *307*(5717), 1885-1886.
- Funk, E. R., & Burns, K. J. (2019). Evolutionary distinctiveness and conservation priorities in a large
 radiation of songbirds. *Animal Conservation*, 22(3), 274-284.
- 442 Global Biodiversity Information, F. (2022). GBIF. <u>https://www.gbif.org/</u>
- 443 Gonzalez-Orozco, C. E., Pollock, L. J., Thornhill, A. H., Mishler, B. D., Knerr, N., Laffan, S. W.,
- Miller, J. T., Rosauer, D. F., Faith, D. P., & Nipperess, D. A. (2016). Phylogenetic approaches
 reveal biodiversity threats under climate change. *Nature Climate Change*, *6*(12), 1110-1114.
- 446 Gumbs, R., Chaudhary, A., Daru, B. H., Faith, D. P., Forest, F., Gray, C. L., Kowalska, A., Lee, W.-
- S., Pellens, R., & Pollock, L. J. (2021). The Post-2020 Global Biodiversity Framework must
 safeguard the Tree of Life. *bioRxiv*.
- 449 Heinrich, S., Toomes, A., Shepherd, C., Stringham, O., Swan, M., & Cassey, P. (2022). Strengthening
- 450 protection of endemic wildlife threatened by the international pet trade: the case of the
- 451 Australian shingleback lizard. *Animal Conservation*, 25(1), 91-100.
- 452 Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. *Proceedings of the*453 *National academy of Sciences*, *102*(46), 16569-16572.
- 454 Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C., & Baillie, J. E. (2007). Mammals on the EDGE:
- 455 conservation priorities based on threat and phylogeny. *PloS one*, 2(3), e296.

- Jenkins, C. N., & Van Houtan, K. S. (2016). Global and regional priorities for marine biodiversity
 protection. *Biological conservation*, 204, 333-339.
- Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with
 present imperilment across the amphibian tree of life. *Nature Ecology & Evolution*, 2(5), 850858. https://doi.org/10.1038/s41559-018-0515-5
- 461 Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., & Mooers, A. O. (2014). Global
- distribution and conservation of evolutionary distinctness in birds. *Current Biology*, 24(9),
 919-930.
- Joseph, L. N., Maloney, R. F., & Possingham, H. P. (2009). Optimal allocation of resources among
 threatened species: a project prioritization protocol. *Conservation Biology*, *23*(2), 328-338.
- 466 Junker, J., Blake, S., Boesch, C., Campbell, G., Toit, L. d., Duvall, C., Ekobo, A., Etoga, G., Galat-
- 467 Luong, A., & Gamys, J. (2012). Recent decline in suitable environmental conditions for A
 468 frican great apes. *Diversity and Distributions*, *18*(11), 1077-1091.
- Lang, D. T. (2022). XML: Tools for Parsing and Generating XML Within R and S-Plus. In (Version
 3.99-0.8) <u>https://CRAN.R-project.org/package=XML</u>
- 471 Liao, Y., Ma, L., Guo, Q., E, W., Fang, X., Yang, L., Ruan, F., Wang, J., Zhang, P., & Sun, Z. (2022).
- 472 Cell landscape of larval and adult Xenopus laevis at single-cell resolution. *Nature*473 *Communications*, 13(1), 4306.
- Lindsey, P. A., Alexander, R., Mills, M. G., Romañach, S., & Woodroffe, R. (2007). Wildlife viewing
 preferences of visitors to protected areas in South Africa: implications for the role of
- 476 ecotourism in conservation. *Journal of Ecotourism*, 6(1), 19-33.
- 477 Macdonald, E., Burnham, D., Hinks, A., Dickman, A., Malhi, Y., & Macdonald, D. (2015).
- 478 Conservation inequality and the charismatic cat: Felis felicis. *Global Ecology and*
- 479 *Conservation*, *3*, 851-866.
- 480 Markwell, K. (2020). Getting close to a national icon: an examination of the involvement of the koala
 481 (Phascolarctos cinereus) in Australian tourism. *Tourism Recreation Research*, 1-14.
- 482 McGowan, J., Beaumont, L. J., Smith, R. J., Chauvenet, A. L., Harcourt, R., Atkinson, S. C.,
- 483 Mittermeier, J. C., Esperon-Rodriguez, M., Baumgartner, J. B., & Beattie, A. (2020).

484 Conservation prioritization can resolve the flagship species conundrum. *Nature*

485 *Communications*, *11*(1), 994.

- 486 Metrick, A., & Weitzman, M. L. (1998). Conflicts and choices in biodiversity preservation. *Journal of*487 *Economic Perspectives*, 12(3), 21-34.
- 488 Michonneau, F., Brown, J. W., & Winter, D. J. (2016). rotl: an R package to interact with the Open

489 Tree of Life data. *Methods in Ecology and Evolution*, 7(12), 1476-1481.

490 https://doi.org/10.1111/2041-210X.12593

- Monsarrat, S., & Kerley, G. I. (2018). Charismatic species of the past: biases in reporting of large
 mammals in historical written sources. *Biological conservation*, 223, 68-75.
- 493 Mooers, A. Ø., & Atkins, R. (2003). Indonesia's threatened birds: over 500 million years of
 494 evolutionary heritage at risk. Animal Conservation forum,
- Palmer, C., & Fischer, B. (2022). Should Global Conservation Initiatives Prioritize Phylogenetic
 Diversity? *Philosophia*, 50(5), 2283-2302.
- 497 Posadas, P., Esquivel, D. R. M., & Crisci, J. V. (2001). Using phylogenetic diversity measures to set
 498 priorities in conservation: an example from southern South America. *Conservation Biology*,
 499 15(5), 1325-1334.
- 500 R Studio Development Team. (2021). *RStudio: Integrated Development for R*. In <u>https://rstudio.com/</u>
- Redding, D. W., DeWOLFF, C. V., & Mooers, A. Ø. (2010). Evolutionary distinctiveness, threat
 status, and ecological oddity in primates. *Conservation Biology*, *24*(4), 1052-1058.
- Scheffers, B. R., Oliveira, B. F., Lamb, I., & Edwards, D. P. (2019). Global wildlife trade across the
 tree of life. *Science*, *366*(6461), 71-76.
- Smith, R. J., Veríssimo, D., Isaac, N. J., & Jones, K. E. (2012). Identifying Cinderella species:
 uncovering mammals with conservation flagship appeal. *Conservation Letters*, 5(3), 205-212.
- 507 Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N. K., Joy, J. B., Smith, G. J.,
- 508 Dulvy, N. K., & Mooers, A. O. (2018). Global priorities for conserving the evolutionary
- 509 history of sharks, rays and chimaeras. *Nature Ecology & Evolution*, 2(2), 288-298.
- 510 <u>https://doi.org/10.1038/s41559-017-0448-4</u>

- 511 Stratford, E., Mazur, N., Lunney, D., & Bennett, D. (2000). Managing the koala problem:
- 512 interdisciplinary perspectives. *Conservation Biology*, *14*(3), 610-618.
- Tam, J. (2021). specieshindex: How (scientifically) popular is a given species? In (Version 0.2.1)
 https://github.com/jessicatytam/specieshindex
- Tam, J., Lagisz, M., Cornwell, W., & Nakagawa, S. (2022). Quantifying research interests in 7,521
 mammalian species with h-index: a case study. *GigaScience*, *11*, giac074.
- 517 Titley, M. A., Snaddon, J. L., & Turner, E. C. (2017). Scientific research on animal biodiversity is
 518 systematically biased towards vertebrates and temperate regions. *PloS one*, *12*(12), e0189577.
- 519 Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. (2016). Fully-sampled

520 phylogenies of squamates reveal evolutionary patterns in threat status. *Biological*

521 *conservation*, 204, 23-31. <u>https://doi.org/10.1016/j.biocon.2016.03.039</u>

- 522 Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., & Legendre, F. (2017). Taxonomic bias in
 523 biodiversity data and societal preferences. *Scientific reports*, 7(1), 9132.
- 524 United Nations World Tourism Organisation. (2014). World tourism organization: towards measuring
 525 the economic value of wildlife watching tourism in Africa–briefing paper. In: UNWTO
 526 Madrid.
- 527 Upham, N. S., Esselstyn, J. A., & Jetz, W. (2019). Inferring the mammal tree: Species-level sets of
- phylogenies for questions in ecology, evolution, and conservation. *PLOS Biology*, *17*(12),
 e3000494. https://doi.org/10.1371/journal.pbio.3000494
- Vallentin, D., Kosche, G., Lipkind, D., & Long, M. A. (2016). Inhibition protects acquired song
 segments during vocal learning in zebra finches. *Science*, *351*(6270), 267-271.
- Vane-Wright, R. I., Humphries, C. J., & Williams, P. H. (1991). What to protect?—Systematics and
 the agony of choice. *Biological conservation*, 55(3), 235-254.
- 534 Wickham, H. (2020). *httr: Tools for Working with URLs and HTTP*. In (Version 1.4.2)
- 535 <u>https://CRAN.R-project.org/package=httr</u>
- 536 Wiedenfeld, D. A., Alberts, A. C., Angulo, A., Bennett, E. L., Byers, O., Contreras-MacBeath, T.,
- 537 Drummond, G., da Fonseca, G. A., Gascon, C., & Harrison, I. (2021). Conservation resource

538	allocation, small population resiliency, and the fallacy of conservation triage. Conservation
539	Biology.
540	Williams, P. H., Burgess, N. D., & Rahbek, C. (2000). Flagship species, ecological complementarity
541	and conserving the diversity of mammals and birds in sub-Saharan Africa. Animal
542	Conservation Forum,
543	Wilson, K. A., & Law, E. A. (2016). Ethics of conservation triage. Frontiers in Ecology and
544	<i>Evolution</i> , <i>4</i> , 112.
545	Winter, M., Devictor, V., & Schweiger, O. (2013). Phylogenetic diversity and nature conservation:
546	where are we? Trends in ecology & evolution, 28(4), 199-204.

548 Appendices

549 Appendix 1. Orders within each of the five classes studied.

Class	Order		Cariamiformes
Amphibia	Anura		Charadriiformes
	Caudata		Columbiformes
	Gymnophiona		Musophagiformes
Aves	Tinamiformes		Cuculiformes
	Struthioniformes		Psittaciformes
	Rheiformes		Opisthocomiformes
	Casuariiformes		Strigiformes
	Apterygiformes	—	Caprimulgiformes
	Galliformes	_	Apodiformes
	Anseriformes	—	Coliiformes
	Sphenisciformes	_	Trogoniformes
	Gaviiformes		Coraciiformes
	Procellariiformes		Upupiformes
	Podicipediformes		Bucerotiformes
	Phoenicopteriformes		Passeriformes
	Ciconiiformes		Piciformes
	Pelecaniformes		Galbuliformes
	Accipitriformes	Chondrichthyes	Chimaeriformes
	Falconiformes		Myliobatiformes
	Gruiformes		Rajiformes
L			

	Pristiformes/Rhiniformes	Paucituberculata
	Productida	Primates
	Torpediniformes	Didelphimorphia
	Carcharhiniformes	Perissodactyla
	Squamata	Peramelemorphia
	Heterodontiformes	Dermoptera
	Lamniformes	Hyracoidea
	Orectolobiformes	Microbiotheria
	Hexanchiformes	Sirenia
	Squaliformes	Macroscelidea
	Echinorhiniformes	Proboscidea
Reptilia	Squamata	Pholidota
	Rhynchocephalia	Notoryctemorphia
Mammalia	Rodentia	Monotremata
	Chiroptera	Tubulidentata
	Carnivora	
	Diprotodontia	
	Artiodactyla	
	Scandentia	
	Eulipotyphla	
	Dasyuromorphia	
	Lagomorpha	
	Pilosa	
	Cingulata	

Appendix 2. Removed species from each of the h-index plots for Australian and African species.

Continent	Class	Species		Cophixalus
Africa	Amphibia	Salamandra		caverniphilus
		infraimmaculata		Cophixalus
	Aves	Sterna hirundo	_	petrophilus
	Chondrichthyes	Carcharhinus		Cynops ensicauda
		falciformis		Cynops pyrrhogaster
	Mammalia	Microtus		Hyla chinensis
		guatemalensis		Hyla japonica
		Microtus guentheri		Hylophorbus
		Microtus paradoxus		atrifasciatus
		Microtus qazvinensis		Hynobius chinensis
		Microtus socialis		Hynobius retardatus
		Microtus umbrosus		Liophryne
	Reptilia	Gallotia galloti		magnitympanum
Australia	Amphibia	Albericus alpestris		Litoria axillaris
		Albericus murritus		Litoria eurynastes
		Barygenys apodasta		Litoria viranula
		Barygenys resima		Nyctimystes
		Bombina orientalis		cryptochrysos
		Bufo gargarizans		Nyctimystes
		Bufo japonicus		intercastellus
		Callulops		Oreophryne ampelos
		eremnosphax		Oreophryne anamiatoi
		Callulops microtis		Paedophryne dekot
		Choerophryne	1	Paedophryne
		bryonopsis		kathismaphlox

	Paramesotriton		Eulacestoma
	chinensis		nigropectus
	Polypedates iskandari		Falcunculus frontatus
	Rana dybowskii		Melidectes fuscus
	Rana japonica		Oceanodroma
	Rana pirica		matsudairae
	Rhinella marina		Oceanodroma
	Staurois nubilus	-	monorhis
	Xenorhina		Oceanodroma
	brachyrhyncha		tristrami
Aves	Aleadryas rufinucha		Oreoica gutturalis
	Bradypterus castaneus		Pachycare
	Collocalia mearnsi		flavogriseum
	Colluricincla boweri		Pachycephala
	Colluricincla		albiventris
	harmonica		Pachycephala
	Colluricincla		arctitorquis
	megarhyncha		Pachycephala aurea
	Colluricincla		Pachycephala
	tenebrosa		griseonota
	Colluricincla	_	Pachycephala
	woodwardi		homeyeri
	Coturnix japonica		Pachycephala
	Daphoenositta		hyperythra
	chrysoptera		Pachycephala
	Daphoenositta		hypoxantha
	miranda		

	Pachycephala			Pachycephala
	inornata			rufogularis
	Pachycephala	-		Pachycephala
	lanioides			schlegelii
	Pachycephala	_		Pachycephala simplex
	leucogastra			Pachycephala soror
	Pachycephala lorentz	i		Pachycephala
	Pachycephala	_		sulfuriventer
	melanura			Pelagodroma marina
	Pachycephala meyeri			Pitohui cristatus
	Pachycephala	_		Pitohui dichrous
	modesta			Pitohui ferrugineus
	Pachycephala			Pitohui kirhocephalus
	monacha			Pitohui nigrescens
	Pachycephala	_		Rhagologus
	nudigula			leucostigma
	Pachycephala		Chondrichthyes	Platyrhina sinensis
	olivacea			Platyrhina tangi
	Pachycephala orpheu	S		Pristiophorus cirratus
	Pachycephala	_		Pristiophorus
	pectoralis			delicatus
	Pachycephala			Pristiophorus
	phaionota			japonicus
	Pachycephala			Pristiophorus
	philippinensis			nudipinnis
	Pachycephala			Squatina albipunctata
	rufiventris			Squatina australis

	Squatina caillieti	Lepus brachyurus
	Squatina formosa	Lepus coreanus
	Squatina japonica	Lepus mandshuricus
	Squatina nebulosa	Lepus sinensis
	Squatina	Macaca cyclopis
	pseudocellata	Macaca fuscata
	Squatina tergocellata	Macaca hecki
	Squatina	Macaca maura
	tergocellatoides	Macaca nigra
Mammalia	Acerodon jubatus	Macaca nigrescens
	Aonyx cinerea	Macaca ochreata
	Apodemus speciosus	Macaca tonkeana
	Arctocephalus	Marmosa tyleriana
	pusillus	Marmota
	Axis calamianensis	camtschatica
	Axis porcinus	Martes melampus
	Bettongia pusilla	Mastacomys fuscus
	Bubalus	Meles anakuma
	depressicornis	Melogale everetti
	Bubalus mindorensis	Microtus evoronensis
	Bubalus quarlesi	Microtus fortis
Mammalia	Camelus dromedarius	Microtus hyperboreus
	Capra hircus	Microtus kikuchii
	Capricornis crispus	Microtus
	Capricornis swinhoei	maximowiczii
	Catopuma badia	Microtus montebelli
	Hydropotes inermis	11

M	licrotus			Pipistrellus
sa	chalinensis			alaschanicus
М	untiacus atherodes	_		Pseudohydromys
M	lustela itatsi			fuscus
М	ustela kathiah	_		Pteropus speciosus
М	ustela nudipes	-		Rattus exulans
М	lustela sibirica	-		Rattus niobe
М	yodes andersoni	_		Rusa alfredi
М	yodes regulus	_		Rusa marianna
М	yodes rex			Rusa timorensis
М	yodes smithii	_		Suncus murinus
М	yotis rufopictus	_		Tarsius syrichta
Na	aemorhedus	_		Tursiops aduncus
ca	udatus		Reptilia	Aipysurus fuscus
Ne	eofelis diardi	_		Ateuchosaurus
No	eophocaena	_		chinensis
ph	nocaenoides			Bungarus
No	otomys fuscus	-		multicinctus
00	chotona coreana	_		Cryptoblepharus
00	chotona hyperborea	_		australis
00	chotona	-		Ctenophorus
ma	antchurica			mirrityana
Ot	tocolobus manul			Deinagkistrodon
0	vis nivicola			acutus
Pe	entalagus furnessi			Draco timorensis
Pe	etaurista lena			Gekko chinensis

	Laticauda
	semifasciata
	Liasis fuscus
	Myrrophis chinensis
	Oligodon chinensis
	Pareas chinensis
	Plestiodon chinensis
	Takydromus
	sylvaticus
	Trimeresurus
	stejnegeri
	Varanus komodoensis

Continent Group		H-index			Phylogenetic diversity		
		Species	Common name	h-index	Species	Common name	PD
Australia	Mammalia	Trichosurus vulpecula	Brushtail possum	60	Ornithorhynchus anatinus	Platypus	31
		Macropus eugenii	Tammar wallaby	54	Tarsipes rostratus	Honey possum	29
		Phascolarctos cinereus	Koala	53	Phascolarctos cinereus	Koala	26
		Sarcophilus harrisii	Tasmanian devil	47	Burramys parvus	Mountain pygymy possum	25
		Dugong dugon	Dugong	45	Hypsiprymnodon moschatus	Musky rat-kangaroo	24
		Macropus giganteus	Eastern grey kangaroo	43	Myrmecobius fasciatus	Numbat	22
		Antechinus stuartii	Brown antechinus	41	Acrobates pygmaeus	Feathertail glider	20
		Ornithorhynchus anatinus	Platypus	41	Distoechurus pennatus	Feather-tailed possum	20
		Macropus rufus	Red kangaroo	40	Gymnobelideus leadbeateri	Leadbeater's possum	17
		Rattus fuscipes	Bush rat	39	Sminthopsis longicaudata	Long-tailed dunnart	13
	Amphibia	Litoria aurea	Green and golden bell frog	31	Spicospina flammocaerulea	Sunset frog	55
		Litoria caerulea	Australian green tree frog	30	Paracrinia haswelli	Haswell's frog	45
		Limnodynastes peronii	Striped marsh frog	28	Adelotus brevis	Tusked frog	45
		Crinia georgiana	Quacking frog	24	Crinia fimbriata	Kimberley froglet	44
		Crinia signifera	Common eastern froglet	23	Crinia nimbus	Moss froglet	36
		Litoria raniformis	Growling grass frog	23	Crinia tasmaniensis	Tasmanian froglet	36
		Limnodynastes tasmaniensis	Spotted grass frog	19	Crinia deserticola	Desert froglet	32
		Litoria ewingii	Southern brown tree frog	17	Assa darlingtoni	Pouched frog	31
		Cyclorana alboguttata	Striped burrowing frog	15	Myobatrachus gouldii	Turtle frog	24

Table 1. Top 10 researched species and top 10 phylogenetically diverse species for each continent and taxa.

		Litoria genimaculata	Green-eyed tree frog	15	Litoria brevipalmata	Green-thighed frog	20
Sc	quamata	Notechis scutatus	Tiger snake	39	Crenadactylus ocellatus	Occellated velvet gecko	54
		Boiga irregularis	Brown tree snake	37	Carphodactylus laevis	Smooth knob-tailed gecko	35
		Tiliqua rugosa	Shingleback lizard	35	Hesperoedura reticulata	Reticulated velvet gecko	33
		Bassiana duperreyi	Eastern three-lined snake	33	Intellagama lesueurii	Australian water dragon	33
		Oxyuranus scutellatus	Coastal taipan	32	Anomalopus pluto	Cape York worm-skink	27
		Pogona vitticeps	Central bearded dragon	31	Concinnia frerei	Blue-mountains water skink	25
		Pseudonaja textilis	Eastern brown snake	31	Nephrurus wheeleri	Thick-tailed gecko	24
		Hoplocephalus bungaroides	Broad-headed snake	28	Amalosia lesueurii	Lesueur's velvet gecko	22
		Amphibolurus muricatus	Jacky dragon	27	Concinnia queenslandiae	Prickly forest skink	22
		Acanthophis antarcticus	Common death adder	25	Lophognathus longirostris	Long-nosed water dragon	21
A	ves	Taeniopygia guttata	Zebra finch	120	Anseranas semipalmata	Magpie goose	64
		Dromaius novaehollandiae	Emu	71	Pedionomus torquatus	Plains wanderer	36
		Melopsittacus undulatus	Budgerigar	56	Oreoscopus gutturalis	Fern wren	31
		Malurus cyaneus	Superb fairy wren	42	Leipoa ocellata	Malleefowl	30
		Milvus migrans	Black kite	41	Scenopoeetes dentirostris	Tooth-billed bowerbird	29
		Manorina melanocephala	Noisy minor	37	Nymphicus hollandicus	Cockatiel	28
		Puffinus tenuirostris	Short-tailed shearwater	35	Aegotheles tatei	Tate's Owlet-nightjar	27
		Zosterops lateralis	Silvereye	35	Probosciger aterrimus	Palm cockatoo	26
		Ptilonorhynchus violaceus	Satin bowerbird	31	Ptilonorhynchus violaceus	Satin bowerbird	23
		Nymphicus hollandicus	Cockatiel	29	Dromaius novaehollandiae	Emu	23
Cl	hondrichthyes	Carcharodon carcharias	Great white shark	54	Hypnos monopterygius	Coffin ray	155
		Galeocerdo cuvier	Tiger shark	50	Hemipristis elongata	Snaggletooth shark	91
		Carcharhinus leucas	Bull shark	47	Eucrossorhinus dasypogon	Tasselled wobbegong	57
		Carcharhinus obscurus	Dusky shark	34	Pristis zijsron	Long-comb sawfish	50
		Carcharias taurus	Grey nurse shark	34	Brachaelurus colcloughi	Bluegrey carpetshark	50

					1		
		Carcharhinus melanopterus	Blacktip reef shark	29	Brachaelurus waddi	Blind shark	50
		Mustelus antarcticus	Gummy shark	29	Narcine westraliensis	Banded numbfish	48
		Carcharhinus amblyrhynchos	Grey reef shark	28	Trygonoptera ovalis	Striped stingaree	47
		Triaenodon obesus	Whitetip reef shark	25	Iago garricki	Longnose houndshark	44
		Heterodontus portusjacksoni	Port Jackson shark	24	Furgaleus macki	Whiskery shark	42
Africa	Mammalia	Pan troglodytes	Chimpanzee	251	Orycteropus afer	Aardvark	81
		Chlorocebus aethiops	Grivet	135	Daubentonia madagascariensis	Aye-aye	37
		Gorilla gorilla	Gorilla	123	Geogale aurita	Bushveld elephant shrew	37
		Panthera leo	Lion	113	Heterocephalus glaber	Naked mole-rat	27
		Papio hamadryas	Hamadryas babboon	113	Lophiomys imhausi	Maned rat	26
		Pan paniscus	Bonobo	99	Petromus typicus	Rock hyrax	23
		Panthera pardus	Leopard	95	Nandinia binotata	African palm civet	22
		Loxodonta africana	African elephant	87	Potamogale velox	Giant otter shrew	22
		Crocuta crocuta	Spotted hyena	81	Tenrec ecaudatus	Lowland streaked tenrec	19
		Papio cynocephalus	Yellow baboon	80	Uranomys ruddi	Rudd's mouse	18
	Amphibia	Xenopus laevis	African clawed frog	369	Odontobatrachus natator	Saber toothed frog	127
		Xenopus tropicalis	Western clawed frog	78	Pseudhymenochirus merlini	Merlin's clawed frog	98
		Xenopus borealis	Marsobit clawed frog	40	Ericabatrachus baleensis	Bale mountains frog	70
		Hyperolius marmoratus	Marbled reed frog	20	Madecassophryne truebae		70
		Xenopus muelleri	Müller's clawed frog	19	Boulengerula fischeri	Fischer's Caecilian	70
		Hymenochirus boettgeri	Congo dwarf clawed frog	16	Lanzarana largeni	Lanza's frog	63
		Kassina senegalensis	Senegal running frog	14	Laliostoma labrosum	Madagascar bullfrog	62
		Chiromantis xerampelina	Grey foam-nest tree frog	13	Tsingymantis antitra		62
		Hyperolius viridiflavus	Common reed frog	13	Hadromophryne natalensis	Natal ghost frog	58
		Pyxicephalus adspersus	African bullfrog	13	Phrynobatrachus sandersoni	Sanderson's hook frog	56
	Aves	Hirundo rustica	Barn swallow	79	Leptosomus discolor	Madagascar hoopoe	77

		Coturnix coturnix	Common quail	78	Sagittarius serpentarius	Secretary bird	65
		Tyto alba	Barn owl	70	Scopus umbretta	Hamerkop	57
		Apus apus	Common swift	65	Balaeniceps rex	Shoebill	57
		Chlorocichla flavicollis	Yellow-throated greenbul	62	Struthio camelus	Ostrich	57
		Struthio camelus	Ostrich	61	Pachycoccyx audeberti	Thick-billed cuckoo	54
		Acrocephalus arundinaceus	Great reed warbler	58	Pluvianus aegyptius	Egyptian plover	54
		Amadina fasciata	Cut-throat finch	57	Ceuthmochares aereus	Blue malkoha	50
		Serinus canaria	Atlantic canary	52	Corythaeola cristata	Great blue turaco	43
		Phylloscopus trochilus	Willow warbler	43	Urocolius macrourus	Red-faced mousebird	34
	Chondrichthyes	Carcharhinus longimanus	Oceanic white-tipped shark	22	Zanobatus schoenleinii	Striped panray	186
		Rhizoprionodon acutus	Milk shark	22	Leptocharias smithii	Barbeled houndshark	100
		Taeniura lymma	Bluespotted fantail ray	19	Pliotrema warreni	Thornback skate	84
		Centrophorus granulosus	Gulper shark	16	Iago omanensis	Arabian butterfly ray	44
		Raja miraletus	Brown ray	15	Ctenacis fehlmanni	Harlequin catshark	40
		Squatina squatina	Angel shark	15	Squatina africana	African angelshark	36
		Pastinachus sephen	Cowtail stingray	14	Taeniurops grabata	White-spotted guitarfish	35
		Rhinobatos rhinobatos	Common guitarfish	14	Rostroraja alba	White skate	34
		Torpedo torpedo	Common torpedo	14	Chlamydoselachus africana	African frilled shark	32
		Pteromylaeus bovinus	Bull ray	13	Squatina aculeata	Sawback angelshark	30
	Squamata	Naja nigricollis	Western barred spitting cobra	52	Atlantolacerta andreanskyi	Moroccan rock lizard	69
		Dendroaspis angusticeps	Eastern green mamba	41	Narudasia festiva	Festive gecko	68
		Dendroaspis polylepis	Black mamba	39	Saurodactylus mauritanicus	Mauritania dune gecko	67
		Naja mossambica	Mozambique spitting cobra	35	Saurodactylus fasciatus	Moroccan dune gecko	65
		Bitis arietans	Puff adder	34	Poromera fordii	West African striped lizard	61
		Echis ocellatus	West African carpet viper	34	Rhoptropella ocellata	Namaqua day gecko	60

	Varanus exanthematicus	Savannah monitor	32	Vhembelacerta rupicola	Eastern mountains rock lizard	56
	Python regius	Ball python	31	Australolacerta australis	Southern rock lizard	55
	Echis pyramidum	North east African carpet viper	27	Calabaria reinhardtii	Ball python	51
	Naja melanoleuca	Black cobra	27	Elasmodactylus tetensis	Tete thick-toed gecko	49