
 1

Perspective 1

Developing Machine Learning Applications for Population Genetic Inference: 2

Ensuring Precise Terminology and Robust Implementation 3

Xin Huang1, 2, * 4

1 Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria 5

2 Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria 6

* Corresponding author: xin.huang@univie.ac.at 7

 8

Abstract 9

Machine learning applications for population genetic inference are emerging due to their potential to 10

leverage large-scale genomic datasets, offering insights that traditional statistical methods may overlook. 11

However, I have identified certain recurring issues. First, there is sometimes confusion between power 12

and recall, and between the false discovery rate and one minus precision. These terms are specifically 13

designed for hypothesis testing and are not appropriate for directly evaluating classification outcomes, as 14

classification is a different task. Second, the lack of robustness in machine learning applications 15

complicates their verification and application across different datasets, limiting their broader impact and 16

slowing research progress. Robustness can be improved through strategies such as employing object-17

oriented programming for design, utilizing version control systems during development, and adopting 18

package managers and workflow managers for distribution. I suggest by adhering to precise terminology 19

and refining implementation practices, the impact of machine learning in population genetics can be 20

maximized. 21

Keywords: Population genetics; Machine learning; Classification; Hypothesis testing; Software 22

development. 23

 24

Recent advances in machine learning, particularly in deep learning, have introduced innovative 25

methodologies for population genetic inference, enabling the development of numerous applications for 26

tasks such as inferring population structure, identifying genomic introgression, and investigating natural 27

selection (Schrider and Kern 2018; Korfmann et al. 2023; Yelman and Jay 2023; Huang et al. 2024). 28

These advancements capitalize on large-scale genomic data and sophisticated models, revealing intricate 29

patterns that traditional statistical methods might overlook. While interdisciplinary approaches can inspire 30

 2

novel applications, it is crucial to apply these methods with precision, particularly regarding the 31

terminology across different fields. Such precision enhances communication among disciplines and helps 32

prevent misunderstandings. As machine learning models grow increasingly complex, testing and 33

validating these approaches becomes progressively challenging (Raff 2019). Therefore, ensuring the 34

robustness of machine learning applications is essential for maximizing their impact. In this perspective, I 35

will first address the misuse of statistical terminology when applying machine learning to population 36

genetics, followed by an examination of the issues of non-robustness in certain machine learning 37

applications for population genetic inference, along with proposed strategies to enhance reproducibility 38

and reliability in the development of these applications. 39

Utilize Precise Terminology 40

Several recent machine learning applications for population genetic inference (Durvasula and 41

Sankararaman 2020; Amin et al. 2023; Arnab et al. 2023; Lauterbur et al. 2023a; Zhang et al. 2023) have 42

used power and the false discovery rate (FDR) to evaluate the performance of their classification models, 43

equating power to recall (or the true positive rate) and FDR to one minus precision. However, the terms 44

‘power’ and ‘FDR’ seem to be used colloquially to describe performance in terms of aptitude or 45

effectiveness, which can lead to confusion. These terms have specific meanings in hypothesis testing, 46

particularly in frequentist inference, and should not be conflated with machine learning metrics, as they 47

are not directly interchangeable. For a statistical test, power is defined as the probability of correctly 48

rejecting the null hypothesis when it is false, while FDR, in the context of multiple testing, is defined as 49

the expected proportion of false discoveries—not false positives—among the rejected null hypotheses 50

(Benjamini and Hochberg 1995; Wasserman 2003; Descôteaux 2007; Shreffler and Huecker 2024). 51

Hypothesis testing uses sample data to assess whether a population characteristic is more likely to be 52

consistent with the null hypothesis (H0) or the alternative hypothesis (H1), for the population from which 53

the sample was drawn. To conduct a hypothesis testing, an appropriate test statistic is needed (Wasserman 54

2003; Alpaydin et al. 2014). For example, suppose we sample two groups of data {X1, X2, …, Xn} and {Y1, 55

Y2, …, Yn}, a typical hypothesis task is to determine whether their means are equal. In this case, H0 is μX = 56

μY, and H1 is μX ≠ μY, where μX and μY represent the true means of the populations from which the samples 57

{X1, X2, …, Xn} and {Y1, Y2, …, Yn} are drawn. If we further assume that both groups are approximately 58

normally distributed, then we can calculate a t statistic based on the collected data to test our hypothesis. 59

If such a test is performed multiple times, a multiple testing correction may be applied. 60

In contrast, classification is a predictive task that focuses on assigning a label or category to each newly 61

observed data point, rather than making inferences about population characteristics. Unlike hypothesis 62

 3

testing, classification does not rely on a test statistic to make decisions. Instead, it employs an algorithmic 63

approach to learn patterns from the data and apply those patterns to new observations. For example, 64

consider a dataset {(X1, Y1), (X2, Y2), …, (Xn, Yn)}, where {X1, X2, …, Xn} are instances and {Y1, Y2, …, 65

Yn} are their corresponding classes; classification uses these data to find a function f: X → Y that predicts 66

the class Yn+1 of a new instance Xn+1, where Yn+1 = f(Xn+1) (Wasserman 2003). Since no hypothesis testing 67

is involved in this prediction, I suggest that when applying techniques such as classification to fields like 68

population genetics, it is important and necessary to adhere to the established terminology specific to 69

those techniques. 70

Several metrics to assess the performance of a classifier exist, such as error, which represents the 71

proportion of incorrectly classified instances out of the total number of instances (Alpaydin et al. 2014). 72

Error is equal to one minus accuracy, where accuracy is the proportion of correctly classified instances 73

(Alpaydin et al. 2014). However, accuracy is often an inadequate metric for evaluating performance, 74

which is why receiver operating characteristic (ROC) curves have become popular in the machine 75

learning community (Fawcett 2006). To conduct ROC analysis, various performance metrics are 76

calculated from elements organized in a confusion matrix, which may sometimes be mistakenly equated 77

with the outcomes of hypothesis testing or multiple testing due to their similar structure (Figure 1). 78

 79

Figure 1 Outcomes in different scenarios. (A) Binary classification outcomes. (B) Hypothesis testing 80

outcomes. (C) Multiple testing outcomes. 81

One should note that ‘positive’ and ‘negative’ in machine learning are defined on a case-by-case basis. 82

For example, when detecting introgressed fragments, ‘positive’ can refer to the detection of introgressed 83

fragments, whereas when detecting introgression deserts, ‘positive’ can refer to the detection of these 84

deserts. Instead, conventional statistical terminology emphasizes concepts like rejecting or failing to reject 85

the null hypothesis, identifying significant results, or making discoveries, without framing these outcomes 86

 4

in terms of ‘positive’ or ‘negative’ (Figure 1B). The null hypothesis typically represents a statement of no 87

effect, such as no difference between groups, which does not align naturally with the binary language of 88

‘positive’ or ‘negative.’ This is because statistical results often involve complex interpretations that cannot 89

be easily reduced to such terms. For instance, a statistically significant result does not necessarily imply 90

scientific significance, and a non-significant result does not necessarily indicate the absence of an 91

effect—it may simply mean the effect was not detectable with the given data (Wasserman 2003). In this 92

context, a ‘discovery’ typically refers to the rejection of the null hypothesis (Soric 1989). The original 93

definition of FDR describes it as ‘the expected proportion of falsely rejected hypotheses,’ without 94

employing the term ‘positive’ (Benjamini and Hochberg 1995). This suggests that, in hypothesis testing, 95

conclusions are made carefully and conditionally based on the data, while in classification, the focus is on 96

confidently assigning labels to instances, reflecting the fundamental difference in how results are 97

interpreted. 98

Moreover, FDR is the expected value of the false discovery proportion (FDP; Wasserman 2003), a 99

random variable Q = V / (S + V) (Figure 1C). Although FDP, V / (S + V), resembles the formula for FP / 100

(TP + FP), it is important to note that S and V are unobserved random variables; only the total number of 101

tests declared significant (S + V) is known after experimentation and analysis of the collected data 102

(Benjamini and Hochberg 1995). This differs from common metrics for evaluating classification model 103

performance, such as recall and precision, which are calculated using elements (TP, FP, TN, and FN) 104

directly observed in the data (Figure 1A). These metrics directly measure performance based on 105

prediction outcomes, without requiring a statistical hypothesis. Hence, the claim that FDR represents ‘the 106

proportion of false positives among all positives detected’ is inaccurate (Lauterbur et al. 2023a; Romieu et 107

al. 2024). 108

FDP, precision, and recall are dataset-dependent metrics, meaning they vary based on the characteristics 109

of the data and the model performance, which are often beyond direct control. In contrast, the power of a 110

statistical test remains theoretically consistent for a given null and alternative hypothesis, as long as test 111

conditions—such as sample size, significance level, and effect size—are held constant. This is because 112

power reflects the probability of detecting an effect when one exists, and these test conditions can be 113

controlled in advance (Shreffler and Huecker 2024). Although we can adjust the significance level in 114

hypothesis testing to influence the power of the test, this differs from how thresholds are used in 115

classification to determine whether an instance belongs to the positive or negative class based on the 116

probability output from a classifier. The significance level controls the probability of making a type I 117

error (Figure 1B) in deciding whether to reject the null hypothesis based on the entire dataset, and 118

adjusting it involves balancing the risk of making a type I error with the power of the test. Conversely, the 119

 5

threshold in machine learning is a flexible parameter used to classify individual instances, and adjusting it 120

balances precision and recall, impacting how confidently we can classify each instance. For example, 121

when detecting introgressed fragments in genomes, we might choose a threshold that prioritizes high 122

precision to obtain highly confident results for candidate segments. Additionally, power analysis is 123

typically conducted during the experimental design phase, before data collection, to ensure that the study 124

is adequately powered to detect the expected effects (Descôteaux 2007). Although retrospective power 125

analysis can be conducted after experimentation, it is a controversial practice and may be fundamentally 126

flawed (Thomas 1997; Hoenig and Heisey 2001). These fundamental differences highlight why directly 127

equating FDR with one minus precision, or power with recall (or the true positive rate), is inappropriate. 128

Consequently, misusing these metrics can lead to misunderstandings about the distinct focuses, 129

workflows, and methodologies, thereby hindering effective communication and collaboration across 130

disciplines. However, these approaches can be complementary. For example, machine learning can 131

introduce novel methods for controlling FDR, offering new perspectives beyond traditional approaches 132

like the Benjamini-Hochberg procedure and independent hypothesis weighting (Xia et al. 2017). Although 133

hypothesis testing can be employed to evaluate the performance of classification algorithms or to compare 134

the efficacy of different classifiers (Dietterich 1998; Demšar 2006; Alpaydin et al. 2014), it is crucial to 135

clearly define the hypothesis, as hypothesis testing requires a well-defined hypothesis (Wasserman 2003). 136

For example, when assessing the performance of a classifier, one might test whether the probability p that 137

the classifier makes an error is less than or equal to a specified value p0. In this scenario, H0 would be p ≤ 138

p0, while H1 would be p > p0; statistical tests, such as the binominal test, can then be utilized to evaluate 139

this hypothesis (Alpaydin et al. 2014). In this context, we could discuss the power of these statistical tests 140

rather than the power of the classifier. 141

Develop Robust Implementation 142

Machine learning is fundamentally dependent on code, making robust implementation crucial for 143

ensuring the accuracy and validity of results. A robust implementation encompasses both reliable 144

programs and reproducible analyses. Such an implementation not only allows other researchers to 145

replicate experiments and verify outcomes but also facilitates the application of established machine 146

learning approaches to different datasets. This, in turn, enhances our understanding of evolution across 147

various species and populations, which is certainly a motivating intention of the researchers developing 148

such methods. More generally, there is a reproducibility crisis in life sciences (Collins and Tabak 2014; 149

Baker 2016), which can only be addressed by proper implementations. Conversely, a lack of robustness 150

forces potential users to painstakingly examine the code and analysis, possibly leading to reinventing the 151

wheel, which almost certainly slows down the pace of research and causes unnecessary duplication of 152

 6

efforts. As noted by Nekrutenko et al. (2018), truly usable software in evolutionary biology is currently in 153

short supply, and this issue could be exacerbated in the context of machine learning applications. 154

For example, a recent study by Romieu et al. (2024) evaluated the performance of several methods for 155

detecting adaptive introgression, including two newly developed machine learning approaches, 156

genomatnn (Gower et al. 2021) and MaLAdapt (Zhang et al. 2023). This study found that the Q95 statistic 157

(Racimo et al. 2017) outperformed other methods, which differs from the results reported in the original 158

studies for genomatnn and MaLAdapt. This discrepancy is likely due to the reliance on pre-trained 159

models from the original studies, which were trained using simulated data based on specific human 160

demographic models that differ from the new dataset, particularly since it originates from a different 161

species. As a result, this mismatch may lead to model misspecification when the pre-trained models are 162

applied to the new data. The current implementation of these methods makes training new models on 163

novel datasets difficult, restricting their application to pre-trained models or a limited set of predefined 164

human demographic models for simulating training data. This may lead to reduced performance when 165

applied to diverse datasets, especially those from different species. 166

Hence, this suggests that non-robust implementation could lead to inconsistencies in model performance, 167

particularly when new datasets are involved, ultimately hindering the broader applicability of these 168

methods. Several recommendations to enhance the reproducibility of machine learning applications in life 169

sciences have been proposed (Heil et al. 2021; Walsh et al. 2021). For instance, Heil et al. (2021) 170

proposed a gold standard for reproducibility and emphasized that the entire analysis is reproducible with a 171

single command, requiring minimal effort to replicate. Building on these recommendations and best 172

practices from fields such as software development, I propose additional practical approaches to further 173

promote the development of robust machine learning applications in population genetics (Table 1). 174

Table 1 Practical approaches for implementing robust machine learning applications 175

Phase Design Development Distribution

Approach

• Object-oriented

programming for

organizing the code

• Unified Modeling

Language for mapping

relation among different

modules

• Version control tools for

documenting

development history

• Unit tests for ensuring

code functionality

• Code review for

improving code quality

• Package managers for

maintaining

dependencies and

facilitating installation

• Workflow managers for

automating and

managing complex tasks

To develop reliable code, developers can start with object-oriented programming (OOP), a paradigm that 176

efficiently organizes complex software by structuring code around objects representing real-world entities 177

 7

or concepts. OOP encapsulates data and behavior within self-contained modules, allowing for 178

independent development, testing, and maintenance. Through inheritance, OOP enables the construction 179

of complex modules from simpler ones, increasing code reusability and reducing redundancy. These 180

principles—encapsulation and inheritance—enhance code flexibility and extensibility, thereby improving 181

reliability by making it easier to modify, extend, and maintain. Familiarity with OOP is also beneficial for 182

understanding machine learning frameworks like PyTorch (Paszke et al. 2019), which are built on OOP 183

concepts. Additionally, Unified Modeling Language can aid in complex software design by visualizing 184

the structure and behavior of software systems. 185

During code development, developers can utilize version control tools such as Git, which enable tracking 186

changes and automatically documenting the development history of the application—a practice 187

recommended by DOME (Walsh et al. 2021). In addition to writing code, developers should implement 188

unit tests to ensure that individual components function correctly and to maintain the integrity of the 189

codebase as it evolves. Developers can use Git and deposit their code on various platforms, such as 190

GitHub, Bitbucket, and Hugging Face (specialized for machine learning). These platforms provide 191

automated workflows for running unit tests, streamlining the coding and testing process, and ensuring 192

continuous integration. Furthermore, these platforms facilitate collaboration, which can improve code 193

quality through peer review, collective problem-solving, and user feedback. For instance, the development 194

guidelines of the PopSim Consortium (Adrion et al. 2020) require that code contributions undergo peer 195

review for validation in their GitHub repository, exemplifying how collaboration on platforms like 196

GitHub can enhance code quality and reliability. This collaborative approach aligns with 197

recommendations to employ reproducibility collaborators for validating machine learning studies (Heil et 198

al. 2021). 199

To further enhance reproducibility, developers can apply package managers for distributing code 200

(Nekrutenko et al. 2018) and workflow managers for streamlining analysis. Package managers—such as 201

Conda and Mamba—automate the installation of dependencies, manage different software environments, 202

and ensure that all necessary packages are available and correctly configured. This is particularly 203

important in machine learning, where packages evolve rapidly, and version conflicts are a common cause 204

of reproducibility issues. By controlling the exact versions of all dependencies (Figure 2A), these tools 205

help mitigate inconsistencies and ensure that the environment in which the code runs remains stable and 206

reproducible. Workflow managers, such as NextFlow (Tommaso et al. 2017) and Snakemake (Mölder et 207

al. 2021), allow developers to define and automate complex workflows, ensuring that each step in the 208

analysis is executed in the correct order and under consistent conditions each time. This is notably 209

valuable in machine learning, as it often involves multiple steps, such as data preprocessing, model 210

 8

training, hyperparameter tuning, and performance evaluation (Figure 2B). Additionally, workflow 211

managers can optimize the use of computing resources by distributing tasks across different machines and 212

even integrating local and cloud servers (Huang et al. 2023). This capability is especially beneficial when 213

working with massive datasets, ensuring that machine learning applications are both scalable and 214

efficient. Together, package managers and workflow managers provide a robust framework for achieving 215

the reliability and reproducibility required in modern machine learning applications. To demonstrate, I 216

implemented a Snakemake workflow (see Data availability) to reproduce the results for detecting 217

introgressed loci using pop_gen_cnn (Flagel et al. 2019). Users can replicate the entire analysis with a 218

single command, aligning with the gold standard suggested by Heil et al. (2021). 219

 220

Figure 2 An example illustrating how package managers and workflow managers can facilitate the 221

implementation of robust machine learning applications for population genetic inference. (A) The 222

dependencies and their versions for an application can be recorded in a YAML file, which is then used by 223

the package manager Conda to create a virtual environment. This ensures a reproducible and consistent 224

environment for executing the application. (B) Different steps in the Snakemake workflow, such as data 225

downloading, model training, and testing, can be streamlined into a single file. The specific details of 226

each step can then be documented in separate modules. This approach enables users to configure the 227

appropriate environments for each step within the workflow. For instance, the training process in 228

pop_gen_cnn uses Python 3 and TensorFlow 2 (Abadi et al. 2016), while the evaluation process requires 229

Python 2 and TensorFlow 1 to maintain compatibility with the original model. 230

Besides source code, it is essential to make training and test datasets, model checkpoints, and trained 231

models publicly available. This is particularly important because machine learning often relies on 232

stochastic algorithms, where sharing model checkpoints and trained models helps in examining how 233

randomness affects model performance. For supervised learning-based applications that utilize simulated 234

data as training data—a new paradigm in population genetics (Schrider and Kern 2018)—sharing the 235

simulation scripts and simulated datasets is crucial. These resources not only help users verify findings 236

but also enable them to generate their own training data for similar research questions, for example, when 237

working on different species. Moreover, it is vital to use established simulators, such as ms, msprime, and 238

SLiM (Hudson 2002; Baumdicker et al. 2022; Haller and Messer 2023), and curated demographic 239

 9

models, such as those from the PopSim Consortium (Lauterbur et al. 2023b), for generating simulated 240

data. These tools have been extensively tested by the community, reducing the likelihood of producing 241

unreliable datasets. As examples of such problems, customized versions of ms were used in two recent 242

machine learning applications—ArchIE and IntroUNET—to simulate training data and detect 243

introgressed fragments or alleles in genomes (Durvasula and Sankararaman 2019; Ray et al. 2024). In 244

ArchIE, a variable representing the introgression proportion in the simulated data was introduced into ms, 245

which causes this customized version of ms to fail when no introgression occurs between populations. 246

Additionally, the recipient population—the population receiving genetic material during introgression—247

must be defined as the first subpopulation in the demographic model; otherwise, the variable cannot 248

accurately report the introgression proportion, limiting its applicability across different species or 249

population structures. Furthermore, while a four-population human demographic model was used to 250

simulate the training data, a three-population model was reported in the paper, resulting in 251

inconsistencies. In IntroUNET, modifications to the seed argument in ms introduced bugs, causing the 252

same training data to be simulated periodically, which raises concerns about the actual performance of 253

IntroUNET. These examples underscore the importance of transparency and the use of reliable, well-254

tested tools in the simulation process. 255

In conclusion, while machine learning holds great potential for addressing complex evolutionary 256

problems, I believe that its full power can only be realized through precise terminology and robust 257

implementation. 258

Acknowledgements 259

X.H. thanks Josef Hackl for testing ArchIE, IntroUNET, genomatnn, and MaLAdapt; Martin Kuhlwilm 260

and Yungang He for their discussions and comments on the manuscript; and the Life Science Compute 261

Cluster at the University of Vienna for providing computing resources. 262

Competing interests 263

X.H. declares no conflict of interests. 264

Data availability 265

The Snakemake workflow to reproduce the results for detecting introgressed loci using pop_gen_cnn with 266

a single command can be found in https://github.com/xin-huang/prml, last accessed August 31, 2024. 267

References 268

https://github.com/xin-huang/prml

 10

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. 269

2016. TensorFlow: A system for large-scale machine learning. arXiv. 270

https://arxiv.org/abs/1605.08695, last accessed August 31, 2024. 271

Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G, Kyriazis CC, Ragsdale AP, 272

Tsambos G, Baumdicker F, et al. 2020. A community-maintained standard library of population 273

genetic models. eLife 9: e54967. 274

Alpaydin E. 2014. Introduction to Machine Learning 3rd edition. Cambridge: MIT Press. 275

Amin MR, Hasan M, Arnab SP, DeGiorgio M. 2023. Tensor decomposition-based feature extraction and 276

classification to detect natural selection from genomic data. Mol Biol Evol 40: msad216. 277

Arnab SP, Amin MR, DeGiorgio M. 2023. Uncovering footprints of natural selection through spectral 278

analysis of genomic summary statistics. Mol Biol Evol 40: msad157. 279

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533: 452–454. 280

Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, Zhu S, Eldon B, Ellerman 281

EC, Galloway JG, et al. 2022. Efficient ancestry and mutation simulation with msprime 1.0. Genetics 282

220: iyab229. 283

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach 284

to multiple testing. J R Stat 57: 289–300. 285

Collins FS, Tabak LA. 2014. Policy: NIH plans to enhance reproducibility. Nature 505: 612–613. 286

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1–30. 287

Descôteaux J. 2007. Statistical power: An historical introduction. Tutor Quant Methods Psychol 3: 28–34. 288

Dietterich TG. 1998. Approximate statistical tests for comparing supervised classification learning 289

algorithms. Neural Comput 10: 1895–1923. 290

Durvasula A, Sankararaman S. 2019. A statistical model for reference-free inference of archaic local 291

ancestry. PLoS Genet 15: e1008175. 292

Durvasula A, Sankararaman S. 2020. Recovering signals of ghost archaic introgression in African 293

populations. Sci Adv 6: eaax5097. 294

Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognit Lett 27: 861–874. 295

Flagel L, Brandvain Y, Schrider DR. 2019. The unreasonable effectiveness of convolutional neural 296

networks in population genetic inference. Mol Biol Evol 36: 220–238. 297

Gower G, Picazo PI, Fumagalli M, Racimo F. 2021. Detecting adaptive introgression in human evolution 298

using convolutional neural networks. eLife 10: e64669. 299

Haller BC, Messer PW. 2023. SLiM 4: Multispecies eco-evolutionary modeling. Am Nat 201: E127–300

E139. 301

https://arxiv.org/abs/1605.08695

 11

Heil BJ, Hoffman MM, Markowetz F, Lee SI, Greene CS, Hicks SC. 2021. Reproducibility standards for 302

machine learning in the life sciences. Nat Methods 18: 1132–1135. 303

Hoenig JM, Heisey DM. 2001. The abuse of power. Am Stat 55: 19–24. 304

Huang X, Struck TJ, Davey SW, Gutenkunst RN. 2023. dadi-cli: Automated and distributed population 305

genetic model inference from allele frequency spectra. bioRixv. 306

https://doi.org/10.1101/2023.06.15.545182, last accessed August 31, 2024. 307

Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M. 2024. Harnessing deep learning for 308

population genetic inference. Nat Rev Genet 25: 61–78. 309

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. 310

Bioinformatics 18: 337–338. 311

Korfmann K, Gaggiotti OE, Fumagalli M. 2023. Deep learning in population genetics. Genome Biol Evol 312

15: evad008. 313

Lauterbur ME, Munch K, Enard D. 2023a. Versatile detection of diverse selective sweeps with Flex-314

Sweep. Mol Biol Evol 40: msad139. 315

Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, Tsambos G, Adrion J, Belsare S, 316

Biddanda A, Caudill V, et al. 2023b. Expanding the stdpopsim species catalog, and lessons learned for 317

realistic genome simulations. eLife 12: RP84874. 318

Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, Twardziok 319

SO, Kanitz A, et al. 2021. Sustainable data analysis with Snakemake. F1000 Res 10: 33. 320

Nekrutenko A, Galaxy Team, Goecks J, Taylor J, Blankenberg D. 2018. Biology needs evolutionary 321

software tools: Let’s build them right. Mol Biol Evol 35: 1372–1375. 322

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et 323

al. 2019. PyTorch: An imperative style, high-performance deep learning library. Adv Neural Inf 324

Process Syst 32: 8026–8037. 325

Racimo F, Marnetto D, Huerta-Sánchez E. 2017. Signatures of archaic adaptive introgression in present-326

day human populations. Mol Biol Evol 34: 296–317. 327

Raff E. 2019. A step toward quantifying independently reproducible machine learning research. Adv 328

Neural Inf Process Syst 32: 5485–5495. 329

Ray DD, Flagel L, Schrider DR. 2024. IntroUNET: Identifying introgressed alleles via sematic 330

segmentation. PLoS Genet 20: e1010657. 331

Romieu J, Camarata G, Crochet PA, de Navascués M, Leblois R, François Rousset. 2024. Performance 332

evaluation of adaptive introgression classification methods. bioRixv. 333

https://doi.org/10.1101/2024.06.12.598278, last accessed August 31, 2024. 334

https://doi.org/10.1101/2023.06.15.545182
https://doi.org/10.1101/2024.06.12.598278

 12

Schrider DR, Kern A. 2018. Supervised machine learning for population genetics: A new paradigm. 335

Trends Genet 34: 301–312. 336

Shreffler J, Huecker MR. 2024. Type I and type II errors and statistical power. In StatPearls. Treasure 337

Island: StatPearls Publishing. 338

Soric B. 1989. Statistical "discoveries" and effect-size estimation. J Am Stat Assoc 84: 608–610. 339

Thomas L. 1997. Retrospective power analysis. Conserv Biol 11: 276–280. 340

Tommaso PD, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables 341

reproducible computational workflows. Nat Biotechnol 35: 316–319. 342

Walsh I, Fishman D, Garcia-Gasulla D, Titma T, Pollastri G, ELIXIR Machine Learning Focus Group, 343

Harrow J, Psomopoulos FE, Tosatto SCE. 2021. DOME: Recommendations for supervised machine 344

learning validation in biology. Nat Methods 18: 1122–1127. 345

Wasserman L. 2003. All of Statistics: A Concise Course in Statistical Inference. New York: Springer. 346

Xia F, Zhang MJ, Zou J, Tse D. 2017. NeuralFDR: Learning discovery thresholds from hypothesis 347

features. Adv Neural Inf Process Syst 30: 1540–1549. 348

Yelmen B, Jay F. 2023. An overview of deep generative models in functional and evolutionary genomics. 349

Annu Rev Biomed Data Sci 6: 173–189. 350

Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE. MaLAdapt reveals novel 351

targets of adaptive introgression from Neanderthals and Denisovans in worldwide human populations. 352

Mol Biol Evol 40: msad001. 353

