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Abstract 9 

Machine learning applications for population genetic inference are emerging due to their potential to 10 

leverage large-scale genomic datasets, offering insights that traditional statistical methods may overlook. 11 

However, I have identified certain recurring issues. First, there is sometimes confusion between power 12 

and recall, and between the false discovery rate and one minus precision. These terms are specifically 13 

designed for hypothesis testing and are not appropriate for directly evaluating classification outcomes, as 14 

classification is a different task. Second, the lack of robustness in machine learning applications 15 

complicates their verification and application across different datasets, limiting their broader impact and 16 

slowing research progress. Robustness can be improved through strategies such as employing object-17 

oriented programming for design, utilizing version control systems during development, and adopting 18 

package managers and workflow managers for distribution. I suggest by adhering to precise terminology 19 

and refining implementation practices, the impact of machine learning in population genetics can be 20 

maximized. 21 
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development. 23 

 24 

Recent advances in machine learning, particularly in deep learning, have introduced innovative 25 

methodologies for population genetic inference, enabling the development of numerous applications for 26 

tasks such as inferring population structure, identifying genomic introgression, and investigating natural 27 

selection (Schrider and Kern 2018; Korfmann et al. 2023; Yelman and Jay 2023; Huang et al. 2024). 28 

These advancements capitalize on large-scale genomic data and sophisticated models, revealing intricate 29 

patterns that traditional statistical methods might overlook. While interdisciplinary approaches can inspire 30 
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novel applications, it is crucial to apply these methods with precision, particularly regarding the 31 

terminology across different fields. Such precision enhances communication among disciplines and helps 32 

prevent misunderstandings. As machine learning models grow increasingly complex, testing and 33 

validating these approaches becomes progressively challenging (Raff 2019). Therefore, ensuring the 34 

robustness of machine learning applications is essential for maximizing their impact. In this perspective, I 35 

will first address the misuse of statistical terminology when applying machine learning to population 36 

genetics, followed by an examination of the issues of non-robustness in certain machine learning 37 

applications for population genetic inference, along with proposed strategies to enhance reproducibility 38 

and reliability in the development of these applications. 39 

Utilize Precise Terminology 40 

Several recent machine learning applications for population genetic inference (Durvasula and 41 

Sankararaman 2020; Amin et al. 2023; Arnab et al. 2023; Lauterbur et al. 2023a; Zhang et al. 2023) have 42 

used power and the false discovery rate (FDR) to evaluate the performance of their classification models, 43 

equating power to recall (or the true positive rate) and FDR to one minus precision. However, the terms 44 

‘power’ and ‘FDR’ seem to be used colloquially to describe performance in terms of aptitude or 45 

effectiveness, which can lead to confusion. These terms have specific meanings in hypothesis testing, 46 

particularly in frequentist inference, and should not be conflated with machine learning metrics, as they 47 

are not directly interchangeable. For a statistical test, power is defined as the probability of correctly 48 

rejecting the null hypothesis when it is false, while FDR, in the context of multiple testing, is defined as 49 

the expected proportion of false discoveries—not false positives—among the rejected null hypotheses 50 

(Benjamini and Hochberg 1995; Wasserman 2003; Descôteaux 2007; Shreffler and Huecker 2024).  51 

Hypothesis testing uses sample data to assess whether a population characteristic is more likely to be 52 

consistent with the null hypothesis (H0) or the alternative hypothesis (H1), for the population from which 53 

the sample was drawn. To conduct a hypothesis testing, an appropriate test statistic is needed (Wasserman 54 

2003; Alpaydin et al. 2014). For example, suppose we sample two groups of data {X1, X2, …, Xn} and {Y1, 55 

Y2, …, Yn}, a typical hypothesis task is to determine whether their means are equal. In this case, H0 is μX = 56 

μY, and H1 is μX ≠ μY, where μX and μY represent the true means of the populations from which the samples 57 

{X1, X2, …, Xn} and {Y1, Y2, …, Yn} are drawn. If we further assume that both groups are approximately 58 

normally distributed, then we can calculate a t statistic based on the collected data to test our hypothesis. 59 

If such a test is performed multiple times, a multiple testing correction may be applied. 60 

In contrast, classification is a predictive task that focuses on assigning a label or category to each newly 61 

observed data point, rather than making inferences about population characteristics. Unlike hypothesis 62 
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testing, classification does not rely on a test statistic to make decisions. Instead, it employs an algorithmic 63 

approach to learn patterns from the data and apply those patterns to new observations. For example, 64 

consider a dataset {(X1, Y1), (X2, Y2), …, (Xn, Yn)}, where {X1, X2, …, Xn} are instances and {Y1, Y2, …, 65 

Yn} are their corresponding classes; classification uses these data to find a function f: X → Y that predicts 66 

the class Yn+1 of a new instance Xn+1, where Yn+1 = f(Xn+1) (Wasserman 2003). Since no hypothesis testing 67 

is involved in this prediction, I suggest that when applying techniques such as classification to fields like 68 

population genetics, it is important and necessary to adhere to the established terminology specific to 69 

those techniques. 70 

Several metrics to assess the performance of a classifier exist, such as error, which represents the 71 

proportion of incorrectly classified instances out of the total number of instances (Alpaydin et al. 2014). 72 

Error is equal to one minus accuracy, where accuracy is the proportion of correctly classified instances 73 

(Alpaydin et al. 2014). However, accuracy is often an inadequate metric for evaluating performance, 74 

which is why receiver operating characteristic (ROC) curves have become popular in the machine 75 

learning community (Fawcett 2006). To conduct ROC analysis, various performance metrics are 76 

calculated from elements organized in a confusion matrix, which may sometimes be mistakenly equated 77 

with the outcomes of hypothesis testing or multiple testing due to their similar structure (Figure 1). 78 

 79 

Figure 1 Outcomes in different scenarios. (A) Binary classification outcomes. (B) Hypothesis testing 80 

outcomes. (C) Multiple testing outcomes.  81 

One should note that ‘positive’ and ‘negative’ in machine learning are defined on a case-by-case basis. 82 

For example, when detecting introgressed fragments, ‘positive’ can refer to the detection of introgressed 83 

fragments, whereas when detecting introgression deserts, ‘positive’ can refer to the detection of these 84 

deserts. Instead, conventional statistical terminology emphasizes concepts like rejecting or failing to reject 85 

the null hypothesis, identifying significant results, or making discoveries, without framing these outcomes 86 
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in terms of ‘positive’ or ‘negative’ (Figure 1B). The null hypothesis typically represents a statement of no 87 

effect, such as no difference between groups, which does not align naturally with the binary language of 88 

‘positive’ or ‘negative.’ This is because statistical results often involve complex interpretations that cannot 89 

be easily reduced to such terms. For instance, a statistically significant result does not necessarily imply 90 

scientific significance, and a non-significant result does not necessarily indicate the absence of an 91 

effect—it may simply mean the effect was not detectable with the given data (Wasserman 2003). In this 92 

context, a ‘discovery’ typically refers to the rejection of the null hypothesis (Soric 1989). The original 93 

definition of FDR describes it as ‘the expected proportion of falsely rejected hypotheses,’ without 94 

employing the term ‘positive’ (Benjamini and Hochberg 1995). This suggests that, in hypothesis testing, 95 

conclusions are made carefully and conditionally based on the data, while in classification, the focus is on 96 

confidently assigning labels to instances, reflecting the fundamental difference in how results are 97 

interpreted. 98 

Moreover, FDR is the expected value of the false discovery proportion (FDP; Wasserman 2003), a 99 

random variable Q = V / (S + V) (Figure 1C). Although FDP, V / (S + V), resembles the formula for FP / 100 

(TP + FP), it is important to note that S and V are unobserved random variables; only the total number of 101 

tests declared significant (S + V) is known after experimentation and analysis of the collected data 102 

(Benjamini and Hochberg 1995). This differs from common metrics for evaluating classification model 103 

performance, such as recall and precision, which are calculated using elements (TP, FP, TN, and FN) 104 

directly observed in the data (Figure 1A). These metrics directly measure performance based on 105 

prediction outcomes, without requiring a statistical hypothesis. Hence, the claim that FDR represents ‘the 106 

proportion of false positives among all positives detected’ is inaccurate (Lauterbur et al. 2023a; Romieu et 107 

al. 2024).  108 

FDP, precision, and recall are dataset-dependent metrics, meaning they vary based on the characteristics 109 

of the data and the model performance, which are often beyond direct control. In contrast, the power of a 110 

statistical test remains theoretically consistent for a given null and alternative hypothesis, as long as test 111 

conditions—such as sample size, significance level, and effect size—are held constant. This is because 112 

power reflects the probability of detecting an effect when one exists, and these test conditions can be 113 

controlled in advance (Shreffler and Huecker 2024). Although we can adjust the significance level in 114 

hypothesis testing to influence the power of the test, this differs from how thresholds are used in 115 

classification to determine whether an instance belongs to the positive or negative class based on the 116 

probability output from a classifier. The significance level controls the probability of making a type I 117 

error (Figure 1B) in deciding whether to reject the null hypothesis based on the entire dataset, and 118 

adjusting it involves balancing the risk of making a type I error with the power of the test. Conversely, the 119 
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threshold in machine learning is a flexible parameter used to classify individual instances, and adjusting it 120 

balances precision and recall, impacting how confidently we can classify each instance. For example, 121 

when detecting introgressed fragments in genomes, we might choose a threshold that prioritizes high 122 

precision to obtain highly confident results for candidate segments. Additionally, power analysis is 123 

typically conducted during the experimental design phase, before data collection, to ensure that the study 124 

is adequately powered to detect the expected effects (Descôteaux 2007). Although retrospective power 125 

analysis can be conducted after experimentation, it is a controversial practice and may be fundamentally 126 

flawed (Thomas 1997; Hoenig and Heisey 2001). These fundamental differences highlight why directly 127 

equating FDR with one minus precision, or power with recall (or the true positive rate), is inappropriate.  128 

Consequently, misusing these metrics can lead to misunderstandings about the distinct focuses, 129 

workflows, and methodologies, thereby hindering effective communication and collaboration across 130 

disciplines. However, these approaches can be complementary. For example, machine learning can 131 

introduce novel methods for controlling FDR, offering new perspectives beyond traditional approaches 132 

like the Benjamini-Hochberg procedure and independent hypothesis weighting (Xia et al. 2017). Although 133 

hypothesis testing can be employed to evaluate the performance of classification algorithms or to compare 134 

the efficacy of different classifiers (Dietterich 1998; Demšar 2006; Alpaydin et al. 2014), it is crucial to 135 

clearly define the hypothesis, as hypothesis testing requires a well-defined hypothesis (Wasserman 2003). 136 

For example, when assessing the performance of a classifier, one might test whether the probability p that 137 

the classifier makes an error is less than or equal to a specified value p0. In this scenario, H0 would be p ≤ 138 

p0, while H1 would be p > p0; statistical tests, such as the binominal test, can then be utilized to evaluate 139 

this hypothesis (Alpaydin et al. 2014). In this context, we could discuss the power of these statistical tests 140 

rather than the power of the classifier. 141 

Develop Robust Implementation 142 

Machine learning is fundamentally dependent on code, making robust implementation crucial for 143 

ensuring the accuracy and validity of results. A robust implementation encompasses both reliable 144 

programs and reproducible analyses. Such an implementation not only allows other researchers to 145 

replicate experiments and verify outcomes but also facilitates the application of established machine 146 

learning approaches to different datasets. This, in turn, enhances our understanding of evolution across 147 

various species and populations, which is certainly a motivating intention of the researchers developing 148 

such methods. More generally, there is a reproducibility crisis in life sciences (Collins and Tabak 2014; 149 

Baker 2016), which can only be addressed by proper implementations. Conversely, a lack of robustness 150 

forces potential users to painstakingly examine the code and analysis, possibly leading to reinventing the 151 

wheel, which almost certainly slows down the pace of research and causes unnecessary duplication of 152 
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efforts. As noted by Nekrutenko et al. (2018), truly usable software in evolutionary biology is currently in 153 

short supply, and this issue could be exacerbated in the context of machine learning applications.  154 

For example, a recent study by Romieu et al. (2024) evaluated the performance of several methods for 155 

detecting adaptive introgression, including two newly developed machine learning approaches, 156 

genomatnn (Gower et al. 2021) and MaLAdapt (Zhang et al. 2023). This study found that the Q95 statistic 157 

(Racimo et al. 2017) outperformed other methods, which differs from the results reported in the original 158 

studies for genomatnn and MaLAdapt. This discrepancy is likely due to the reliance on pre-trained 159 

models from the original studies, which were trained using simulated data based on specific human 160 

demographic models that differ from the new dataset, particularly since it originates from a different 161 

species. As a result, this mismatch may lead to model misspecification when the pre-trained models are 162 

applied to the new data. The current implementation of these methods makes training new models on 163 

novel datasets difficult, restricting their application to pre-trained models or a limited set of predefined 164 

human demographic models for simulating training data. This may lead to reduced performance when 165 

applied to diverse datasets, especially those from different species. 166 

Hence, this suggests that non-robust implementation could lead to inconsistencies in model performance, 167 

particularly when new datasets are involved, ultimately hindering the broader applicability of these 168 

methods. Several recommendations to enhance the reproducibility of machine learning applications in life 169 

sciences have been proposed (Heil et al. 2021; Walsh et al. 2021). For instance, Heil et al. (2021) 170 

proposed a gold standard for reproducibility and emphasized that the entire analysis is reproducible with a 171 

single command, requiring minimal effort to replicate. Building on these recommendations and best 172 

practices from fields such as software development, I propose additional practical approaches to further 173 

promote the development of robust machine learning applications in population genetics (Table 1). 174 

Table 1 Practical approaches for implementing robust machine learning applications 175 

Phase Design Development Distribution 

Approach 

• Object-oriented 

programming for 

organizing the code 

• Unified Modeling 

Language for mapping 

relation among different 

modules 

• Version control tools for 

documenting 

development history 

• Unit tests for ensuring 

code functionality 

• Code review for 

improving code quality 

• Package managers for 

maintaining 

dependencies and 

facilitating installation 

• Workflow managers for 

automating and 

managing complex tasks 

To develop reliable code, developers can start with object-oriented programming (OOP), a paradigm that 176 

efficiently organizes complex software by structuring code around objects representing real-world entities 177 
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or concepts. OOP encapsulates data and behavior within self-contained modules, allowing for 178 

independent development, testing, and maintenance. Through inheritance, OOP enables the construction 179 

of complex modules from simpler ones, increasing code reusability and reducing redundancy. These 180 

principles—encapsulation and inheritance—enhance code flexibility and extensibility, thereby improving 181 

reliability by making it easier to modify, extend, and maintain. Familiarity with OOP is also beneficial for 182 

understanding machine learning frameworks like PyTorch (Paszke et al. 2019), which are built on OOP 183 

concepts. Additionally, Unified Modeling Language can aid in complex software design by visualizing 184 

the structure and behavior of software systems. 185 

During code development, developers can utilize version control tools such as Git, which enable tracking 186 

changes and automatically documenting the development history of the application—a practice 187 

recommended by DOME (Walsh et al. 2021). In addition to writing code, developers should implement 188 

unit tests to ensure that individual components function correctly and to maintain the integrity of the 189 

codebase as it evolves. Developers can use Git and deposit their code on various platforms, such as 190 

GitHub, Bitbucket, and Hugging Face (specialized for machine learning). These platforms provide 191 

automated workflows for running unit tests, streamlining the coding and testing process, and ensuring 192 

continuous integration. Furthermore, these platforms facilitate collaboration, which can improve code 193 

quality through peer review, collective problem-solving, and user feedback. For instance, the development 194 

guidelines of the PopSim Consortium (Adrion et al. 2020) require that code contributions undergo peer 195 

review for validation in their GitHub repository, exemplifying how collaboration on platforms like 196 

GitHub can enhance code quality and reliability. This collaborative approach aligns with 197 

recommendations to employ reproducibility collaborators for validating machine learning studies (Heil et 198 

al. 2021). 199 

To further enhance reproducibility, developers can apply package managers for distributing code 200 

(Nekrutenko et al. 2018) and workflow managers for streamlining analysis. Package managers—such as 201 

Conda and Mamba—automate the installation of dependencies, manage different software environments, 202 

and ensure that all necessary packages are available and correctly configured. This is particularly 203 

important in machine learning, where packages evolve rapidly, and version conflicts are a common cause 204 

of reproducibility issues. By controlling the exact versions of all dependencies (Figure 2A), these tools 205 

help mitigate inconsistencies and ensure that the environment in which the code runs remains stable and 206 

reproducible. Workflow managers, such as NextFlow (Tommaso et al. 2017) and Snakemake (Mölder et 207 

al. 2021), allow developers to define and automate complex workflows, ensuring that each step in the 208 

analysis is executed in the correct order and under consistent conditions each time. This is notably 209 

valuable in machine learning, as it often involves multiple steps, such as data preprocessing, model 210 
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training, hyperparameter tuning, and performance evaluation (Figure 2B). Additionally, workflow 211 

managers can optimize the use of computing resources by distributing tasks across different machines and 212 

even integrating local and cloud servers (Huang et al. 2023). This capability is especially beneficial when 213 

working with massive datasets, ensuring that machine learning applications are both scalable and 214 

efficient. Together, package managers and workflow managers provide a robust framework for achieving 215 

the reliability and reproducibility required in modern machine learning applications. To demonstrate, I 216 

implemented a Snakemake workflow (see Data availability) to reproduce the results for detecting 217 

introgressed loci using pop_gen_cnn (Flagel et al. 2019). Users can replicate the entire analysis with a 218 

single command, aligning with the gold standard suggested by Heil et al. (2021).  219 

 220 

Figure 2 An example illustrating how package managers and workflow managers can facilitate the 221 

implementation of robust machine learning applications for population genetic inference. (A) The 222 

dependencies and their versions for an application can be recorded in a YAML file, which is then used by 223 

the package manager Conda to create a virtual environment. This ensures a reproducible and consistent 224 

environment for executing the application. (B) Different steps in the Snakemake workflow, such as data 225 

downloading, model training, and testing, can be streamlined into a single file. The specific details of 226 

each step can then be documented in separate modules. This approach enables users to configure the 227 

appropriate environments for each step within the workflow. For instance, the training process in 228 

pop_gen_cnn uses Python 3 and TensorFlow 2 (Abadi et al. 2016), while the evaluation process requires 229 

Python 2 and TensorFlow 1 to maintain compatibility with the original model.  230 

Besides source code, it is essential to make training and test datasets, model checkpoints, and trained 231 

models publicly available. This is particularly important because machine learning often relies on 232 

stochastic algorithms, where sharing model checkpoints and trained models helps in examining how 233 

randomness affects model performance. For supervised learning-based applications that utilize simulated 234 

data as training data—a new paradigm in population genetics (Schrider and Kern 2018)—sharing the 235 

simulation scripts and simulated datasets is crucial. These resources not only help users verify findings 236 

but also enable them to generate their own training data for similar research questions, for example, when 237 

working on different species. Moreover, it is vital to use established simulators, such as ms, msprime, and 238 

SLiM (Hudson 2002; Baumdicker et al. 2022; Haller and Messer 2023), and curated demographic 239 
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models, such as those from the PopSim Consortium (Lauterbur et al. 2023b), for generating simulated 240 

data. These tools have been extensively tested by the community, reducing the likelihood of producing 241 

unreliable datasets. As examples of such problems, customized versions of ms were used in two recent 242 

machine learning applications—ArchIE and IntroUNET—to simulate training data and detect 243 

introgressed fragments or alleles in genomes (Durvasula and Sankararaman 2019; Ray et al. 2024). In 244 

ArchIE, a variable representing the introgression proportion in the simulated data was introduced into ms, 245 

which causes this customized version of ms to fail when no introgression occurs between populations. 246 

Additionally, the recipient population—the population receiving genetic material during introgression—247 

must be defined as the first subpopulation in the demographic model; otherwise, the variable cannot 248 

accurately report the introgression proportion, limiting its applicability across different species or 249 

population structures. Furthermore, while a four-population human demographic model was used to 250 

simulate the training data, a three-population model was reported in the paper, resulting in 251 

inconsistencies. In IntroUNET, modifications to the seed argument in ms introduced bugs, causing the 252 

same training data to be simulated periodically, which raises concerns about the actual performance of 253 

IntroUNET. These examples underscore the importance of transparency and the use of reliable, well-254 

tested tools in the simulation process. 255 

In conclusion, while machine learning holds great potential for addressing complex evolutionary 256 

problems, I believe that its full power can only be realized through precise terminology and robust 257 

implementation. 258 
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