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ABSTRACT

We present a pipeline for collecting a dataset for the detection of flying birds in videos. We treat the
creation of a dataset as an iterative task, which allows to train an inference system periodically, and to
improve gradually its performance. We follow a three stage pipeline, that includes repetitive video
recording, video annotation and frame sampling for training a Deep Learning detector. Furthermore,
we would like to point out that the end goal of our work is to protect birds flying through wind farms,
in order to take protective measures. Therefore it is crucial to find the moment that a bird enters and
exits the field of view of the camera. Thus we use our dataset to setup a Temporal Action Detection
(TAD) task, and we evaluate our inference pipeline using an appropriate measure.

Keywords wildlife protection · wind farm · machine learning · dataset compilation

1 Introduction

Training an efficient Deep Learning model requires a large and comprehensive dataset, but this is not something easy
to achieve, because it requires considerable time and resources. Therefore the only viable approach is to grow a
dataset in cycles, while in the meantime the model is retrained. This has become common knowledge for industrial
applications, and has given rise to the implementation of application specific data engines. A data engine has three
main functions: data collection, data annotation and dataset sampling for training. Herein we present the data engine
we have implemented for tackling the problem of temporal action detection for small objects (TAD4SO).

One the one hand, the focus to small objects is necessary for a system that aims to protect birds from collisions with
wind turbines. Because an early detection means that most of the time the depicted birds are small, have few salient
details, and are affected by camera lens distortion and motion blur. On the other hand, the focus to temporal action
detection is equally important, because a bird approaching a wind turbine should trigger protective measures. Therefore
detecting the starting and ending frames of the event are more important than individual detections at intermediate
frames.

Regarding our contribution, it has two axis. First, we present the design of a data engine that is adequate for a production
system. This goes beyond the mere introduction of a new dataset. Second, we argue that the appropriate way to judge
the performance of a system that protects wildlife, it is to weight how well it estimates the time interval of an event. On
that end, we present preliminary results of temporal action detection using appropriate measures from the literature,
deviating from the typical reports of precision and recall.

1.1 Prior Art

To our knowledge, there are no published data engines which can be integrated into wildlife protection systems.
However, there are several published datasets regarding bird detection, and we focus our review on them. On the
contrary, there are published measures for evaluating the performance of temporal action detection, and the brief review
that follows aims to make them known to the wider scientific community.
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1.1.1 Datasets

Early datasets of birds are focused on the task of object classification. Therefore they are quite generic regarding the
birds appearance. Namely, they contain birds in various poses, and the relative size of birds is medium or large w.r.t. the
image size. The most important datasets of this type are: CUB-200-2011 [1], Birdsnap [2], NABirds [3], VB100 [4],
LASBIRD [5, 6] and GBDD1433-2023 [7]. To highlight the scope of the most recent ones, the GBDD1433-2023
consists of 148000 images with 1433 bird species, while the LASBIRD consists of 5000000 images with 11000
species. Naturally, therein exist subsets of images with flying birds, but using them for temporal action detection is not
straightforward.

However, latter efforts have produced specialized datasets with flying birds, focused on the task of object detection. The
notable differences is that all the depicted birds are flying, their apparent size is small, and the sky is a considerable part
of the background. In the following, we give a concise description of those datasets.

The dataset NAE-LAB [8] was created with the specific purpose of recording birds in a wind park. It consists of 32000
images, with a resolution of 5616× 3744 and frame rate 0.5 fps. The images are manually labeled with bounding boxes
and class labels. The dataset contains various bird species as well as other types of relevant objects, in total there are
10 classes. Namely: undefined bird, black kite, gray-faces buzzard, eastern marsh harrier, jungle crow, carrion crow,
Japanese white-eye, airplane, helicopter, and undefined object. The total number of annotated birds is over 60000, and
the number of non-birds is 6000. Regarding the bird size, roughly 60% of the instances are 20 pixels or less.

The dataset Skagen and Klim [9, 10] was recorded at the Skagen Grey Lighthouse and the Klim Fjordeholme wind
farm. It consists of grayscale images with 4K resolution (3840× 2160), recorded at a frame rate of 5 fps. In total, there
are 1700 frames annotated with 2400 bounding boxes. Regarding the size of the depicted birds, in the Klim subset the
40% has an area of less than 500 pixels, while in the Skagen subset for the 90% the area is less then 200 pixels.

The dataset AirBirds [11] was recorded in an airport. It consists of 118312 time-series images with a resolution of
1920× 1080 pixels. Those images were manually annotated with 409967 bounding boxes. The original recordings
were videos, and the parts which depicted birds were uniformly sampled at 5 fps. Regarding the apparent size of birds,
almost 90% of the cases are smaller than 10 pixels.

Finally, the dataset for Safe Drone Flight [12] was recorded with a flying drone. The birds were captured in varying
distances, from 10m and to 200m, over various backgrounds. It consist of 21837 images with a resolution of 3840×2160
pixels, while the number of annotated bounding boxes is 4467. It is worth mentioning that it was included and extended
in the context of the Small Object Detection Challenge for Spotting Birds 2023 1. The resulting dataset SOD4SB [13]
consists of 47260 images with 60971 annotated bird instances.

Table 1: Comparison of relevant datasets.

Dataset Location Resolution Images Birds
NAE-LAB Wind farm 5616× 3744 32,000 60,000

Skagena-Klim Lighthouse
Wind farm 3840× 2160 1,700 2,400

AirBirds Airport 1920× 1080 118,312 40,996
SafeDroneFlight Various 3840× 2160 47,260 60,971

1.1.2 Performance Evaluation

The typical evaluation of flying bird detection is focused on spatial localization inside individual frames [8, 10, 14, 15,
16, 17, 18]. Therefore, the performance is measured by the classical mean Average Precision (mAP) and mean Average
Recall (mAR), which were introduced for object detection in the COCO challenge [19]. However we would like to shift
the focus to temporal localization. The natural choice are measures that were introduced for temporal activity detection.

The challenge THUMOS2014 [20] introduced a dataset for temporal action detection in videos, where the action is
limited to a subset of the frames. For the evaluation of competing algorithms, they are based on the temporal Intersection
Over Union (IOU) similarity measure. The inferred actions are sorted in decreasing detection confidence, and matched
with an annotated action based on temporal IOU. Given a threshold tIOU , if the temporal overlapping between one
inferred and one annotated action is above the tIOU , this case is considered as a True Positive (TP). If more than one
detections exceed the threshold with a given annotated action, only the one with maximum tIOU is considered as True
Positive, while the rest are counted as False Positives (FP). Naturally, any detection that doesn’t exceed the tIOU with

1Challenge site: https://www.mva-org.jp/mva2023/challenge
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any annotated action is a False Positive case. Moreover, if an annotated action is not sufficiently overlapping with any
detection, it is counted as False Negative (FN). Finally, given the number of TP, FP and FN cases, they compute the
Average Precision (AP) and Average Recall (AR) for a certain tIOU . This procedure is repeated for a number of tIOU
thresholds, accounting for loose or strict temporal detections.

In [21] they introduced the 2-Class Segment Error Table (2SET), with the intention to further analyse the FP and FN
errors that occur when the inferred and annotated actions are temporally misaligned. The 2SET is an extension of the
Confusion Matrix, where the FP cases are further divided into the following:

• inserted segment IS: the detected action can’t be matched with any annotated one

• merging segment MS: the detected action has overextended duration, covering two successive annotated
actions

• overfilled head segment OHS: the detected action starts earlier than the matched annotation

• overfilled tail segment OTS: the detected action stops later that the matched annotation.

Respectively, the FN cases are further divided into the following:

• deleted segment DS: the annotated action can’t be matched with any detection.

• fragmenting segment FS: the annotated action is matched with two successive but not continuous detections

• underfilled head segment UHS: the detected action starts later than the matched annotation

• underfilled tail segment UTS: the detected action stops earlier than the matched annotation.

The aforementioned segments are defined after matching detections with annotations. For each pair or set, all the
starting and stopping timestamps are sorted by ascending order. Then every pair of consecutive timestamps defines a
video segment, which is classified according to the above definitions. Finally, the 2SET is formed by summing the
frames of each segment type. Given this table, it is straightforward to calculate percentages for the corresponding type
of errors. The details are given in Section 2.5.

2 Materials and Methods

The implemented data engine, has three stages. It starts with video recordings in the field, then follows the annotation
of the videos on premises, and concludes with selecting an appropriate dataset for training. Before presenting detailed
descriptions, we would like to mention that the design which we adopted took into account two constraints.

The first constraint is limitations to the network connection. Because the inference servers are deployed on-the-edge,
namely a server at each wind turbine generator, and all generators are connected to the substation of the wind park, in
order to transmit data to the internet. Although the generators are connected to the substation with a low latency and
high bandwidth link, the connection from the substation to the web could be limited by: bandwidth (e.g. satellite link),
data volume (e.g. bellow 5GB), and time window (e.g. after business-hours).

The second design constraint is the sparsity of relevant recordings. Most of the time, the most of the cameras are
recording uninformative scenes without birds. Even certain false events that are useful for optimizing the detector, like
flying insects or airplanes, do not happen very often. Moreover, the distance of the object to the camera deteriorates the
situation, because as the distance increases the observable details are diminished. Therefore we have to block such
cases from entering the dataset, making the relevant recordings even more sparse.

2.1 Video Sampling Pipeline

The first stage of the adopted data engine is recording events from cameras in the field. We are interested in both TP and
FP events, so we have implemented a dedicated procedure for each case, the periodic-sampling and the filtered-sampling
correspondingly.

The periodic-sampling consists of recording short 4K (3840× 2160 pixels) videos a few times per hour, during the time
of maximum bird activity. The duration of each video is 5 min, and the recording starts every 15 minutes. In total, we
get 20 min per hour. The optimal interval of the day for recording is provided by experts in ornithology, who take into
account the habits of the local bird population. Initially, the videos are stored locally at the edge, in a dedicated hard
disk. The older videos are deleted in order to free space for the new ones, so we have always available the most recent
recordings. Periodically, all videos from all wind turbine generators are transferred to the Network Attached Storage
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Figure 1: Two pipelines for collecting high-resolution videos from the field. Due to bandwidth limitations it is not
feasible to stream straight from the edge to the cloud, so we retreat to sampling and gathering videos in the substation
of the park, for manual collection. (a) Periodic-sampling of videos based on a time schedule. (b) Filtered-sampling of
videos based on events that have been manually assigned as False-Positive ones.

(NAS) that is installed to the substation of the park. Then a technician collects all hard disks of the NAS, and transfers
them in the premises for further processing. This procedure is depicted in Figure 1 (a).

The filtered-sampling involves an expert annotator, and has three stages. Initially, when the inference node at the edge
detects a bird, uploads the HD (1920 × 1080 pixels) video of the event on the cloud and keeps a 4K copy locally.
Periodically, the annotator reviews all the uploaded events, and flags the errors. Finally, when enough videos have
been identified as False Positive events, the corresponding high-resolution videos are transferred from the edge to the
substation, for collection by the technicians. This procedure is depicted in Figure 1 (b).

2.2 Semi-Automated Annotation of Videos

The second stage of the adopted data engine is annotating the collected videos, using a semi-automated pipeline that
involves expert annotators. The end result is a dataset increment stored in a database. We use the term increment in
order to emphasize that we build our dataset iteratively.

The pipeline is built using six components:

• source volume: the hard disk drive (4 TB) with the videos

• swap volume: the hard disk drive (16 TB) with the frames

• destination volume: the hard drive (4 TB) with the datasets

• inference server: a server for deploying various CNN models

• FiftyOne2 server: a server for storing and viewing datasets

• CVAT3 server: a sever for annotating datasets.

For each new hard disk drive that arrives from the wind park we follow a seven steps pipeline, as depicted in Figure 2.
First, the 4K videos are converted to full-resolution frames. Only a subset of the frames is kept in the swap volume,
namely the 1/8th of frames distributed uniformly in time. Second, the frames are fed into the inference server, which
detects any objects of interest therein and returns the corresponding bounding boxes. Third, given the frames and
the bounding boxes, the annotation is compiled using the FiftyOne format. Fourth, the annotation is transferred to

2FiftyOne site: https://voxel51.com/fiftyone/
3CVAT site: https://www.cvat.ai/
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Figure 2: The pipeline for the semi-automated annotation of the videos that where collected in the field. The first stage
of the annotation is automatic and based on the detector that we deploy in production. The second stage is manual, and
the annotator updates the initial results.

the destination volume and imported into the FiftyOne server. Fifth, the annotation is imported to the CVAT server
for manual revision. Sixth, an expert annotator reviews the initial annotation of the dataset and produces the final
annotation. Finally, the revised annotation is imported back to the FiftyOne server.

Regarding the inference server, it is worth mentioning that it supports various CNN models that will be deployed in
production for detection or even classification of birds. Specifically for the task of detection, the model is deployed with
a lower confidence threshold, that allows to collect negative examples.

2.3 Data Handling for Training

The third stage of the adopted data engine creates an appropriate dataset for training CNN models, taking care of: the
cross-validation subsets, selecting the most informative training samples, and updating the dataset. The end result is a
set of files in the destination volume, that can be directly used for training a CNN model. The corresponding pipeline is
depicted in Figure 3, and it consists of five steps.

Given a new dataset that is created by the semi-automated annotation, the first step is extracting the metadata of the
frames. The relevant metadata include:

• the size of the annotated bounding box

• the date of recording

• the time of recording

• the type of camera

• the ID of camera

• the ID of the wind turbine generator

• the ID of the wind farm.

The next step is optional, and is responsible for merging the datasets that are periodically collected in the field. Moreover,
it is also able to merge datasets from alternative sources, for example public and private datasets. The third step is
applying various filters in order to select the most valuable cases for training. The meaningful filters could vary a lot
depending on the training scenario, because the ultimate goal is to focus the training in challenging cases. However we
would like to list a few that we found useful:

• a lower threshold on the size of the bird, for baseline training

• an upper threshold on the size of the bird, for training with distant targets
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Figure 3: The pipeline for data handling, which creates a set of files ready for loading by a training function.

• selected date and time intervals, for training with specific environmental conditions, like a storm or the sunrise

• selected wind farms and wind turbines, for training with challenging cases of background objects.

The fourth step is to take care of the cross-validation. More specifically, it splits the data in the necessary k folds for the
stages of training, validation and testing. Moreover it exploits the metadata in order to avoid target leakage, by making
sure that frames from the same camera do not cross folds. In the final step, the dataset is exported on the file system of
the destination volume, in a format that is appropriate for the CNN model we wish to train.

2.4 Pipeline for Temporal Action Detection

The pipeline for TAD accepts as input a sequence of frames, and returns the interval with flying birds. The pipeline
consists of three components, as it is depicted in Figure 4. The first component is a CNN model that detects birds in
individual frames. The model has been trained using various types of objects, including airplanes, insects and wind
turbine blades. However, only the birds class is considered during inference. The next component is a tracker that
ensures time consistency, by dropping isolated detections and also estimating the individual trajectories of concurrent
objects. Finally, there is a number of filters based on the estimated trajectories. Those are optimized for rejecting
erroneous detections caused by airplanes, insects, etc. If a trajectory passes all the filters, then it is considered as an
event of flying bird.

In order to approximate as much as possible the inference during real world deployment, we have adopted for the testing
a number of constraints. First, only one-pass forward scanning of the frames is allowed, and only the current frame
can be identified as the start or the end of the event. Therefore we are not allowed to optimize the event interval by
considering a previous frame as the limit. Second, we are forced to uniformly skip a few frames. Because we would
like to match the throughput of the production, where we have achieved an inspection rate of 3 frames per second per
camera. Therefore during testing we have implemented a uniform sampling of the videos with the same frame rate.
Third, in the case of birds flying together a single event should be reported. Because in production only one protective
measure can be triggered each time, the one with the highest priority.

Finally, a consequence of the first constraint is that we have introduced some inertia in the estimation of the starting and
stopping frames of the event. Because we would like to avoid reporting an event based on very little evidence in the
input. Therefore we wait for 4 detections before identifying the starting frame, and we wait for 3 empty frames before
identifying the stopping frame.

2.5 Evaluation of Temporal Action Detection

Given the starting and stopping timestamps assigned by the annotator and the ones detected by the inference pipeline, we
split each video into segments. All the timestamps are projected onto a common timeline, and every pair of consecutive
timestamps (including the first and last frame) defines a new segment. Then the detection for each segment is judged as
correct or wrong, specifying eight types of error. In order to take into consideration the length of a segment, the number
of frames per segment is used in the calculations of error rates.
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Figure 4: The inference pipeline for the temporal action detection consists of a CNN detector, a tracker and set of
trajectory filters.

Assuming that |PS| is the total number of frames in the positive frames according to the annotator, and |NS| the total
number of frames in the negative segments, in [21] they define the following 2SET metrics:

• the rate of deletion: DR = |DS|
|PS|

• the rate of fragmentation: FR = |FS|
|PS|

• the rate of underfilled head: UHR = |UHS|
|PS|

• the rate of underfilled tail: UTR = |UTS|
|PS|

• the rate of insertion: IR = |IS|
|NS|

• the rate of merging: MR = |MS|
|NS|

• the rate of overfilled head: OHR = |OHS|
|NS|

• the rate of overfilled tail: OTR = |OTS|
|NS|

It is straightforward to show that the loss of true positive rate is:

(1− TPR) = DR+ FR+ UHR+ UTR.

Similarly, the loss of true negative rate is:

(1− TNR) = IR+MR+OHR+OTR.

3 Results

3.1 The NVbirds Dataset

The deployment of the proposed data engine in our production system has resulted in the creation of a reach dataset for
bird detection. The videos that we collected have been recorded by 19 cameras, which were installed in 7 wind turbine
generators across Europe. The dataset contains 1118 videos with a total duration of 3.2 hours. The total number of
frames is 220000 and the total number of annotated birds is 73000.

In Figure 5 we show a few typical examples contained in our dataset. It is worth to comment on the inclusion of blades.
Although most wind turbines have blades with a smooth ending, there are a few manufacturers that offer blades with a
bended ending. This variation used to cause a lot of FP errors in production, so we used the proposed data engine to
specifically target wind turbines with that shape.

In Figure 6 we present the histogram of apparent bird size, based on the diagonal of the bounding box. The most
frequent bird size is between 15 and 20 pixels, while the 65% of the cases are less than 25 pixels.

3.2 Performance Evaluation

For the evaluation of our TAD method we used the subset of the NVbirds dataset which has been annotated with bird
trajectories and the corresponding time intervals. In Figure 7 we show an example of the annotated trajectory. The
evaluation dataset consists of 31 videos with 15000 frames and 15600 bounding boxes. In these videos there are 31
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Figure 5: A sample of the objects in the NVbirds dataset, from top to bottom: birds, insects, clouds and wind turbine
generators. 8
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Figure 6: The histogram of apparent bird size in pixels for the NVbirds dataset.

Figure 7: The annotated trajectory of an event (all video frames are superimposed in one image).

events, with a duration that varies between 3.2 and 72.8 seconds, while the median duration is 11.6 seconds. The
application of the proposed inference pipeline has achieved the following 2SET metrics: DR = 13.0%, FR = 1.5%,
UHR = 15.8%, UTR = 2.8%, IR = 0.1%, MR = 8.4%, HOR = 0.0% and TOR = 13.2%.

An example of inference is depicted in Figure 8, showing the annotated event and the corresponding inference. In this
case the event has an underfilled head segment with a length of 23 frames, it is followed by a true positive segment with
the 128 frames, and finally there is an underfilled tail segment with 9 frames.
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Figure 8: An example of the inferred trajectory (on the left) and the corresponding annotation (of the right).

4 Discussion

We have presented the pipeline for compiling the dataset of the NVbirds system. This is data engine which is actively
used to this day, and constantly optimized. It has allowed us to create the NVbirds dataset, that has become an extended
and rich dataset, on par with the published ones. Moreover the iterative compilation of the dataset gave us the ability to
gradually shift the focus of data collection to cases that are challenging for our inference method, as the aforementioned
case of blades with bended edge. Therefore we consider the implementation of a data engine as an indispensable part of
any wildlife protection system.

Besides the data engine, we have reframed the task of bird detection as temporal action detection. By using appropriate
metrics, we gathered refined results, and a better understanding of the errors that our inference system makes. We have
seen that the frames with missed detections are almost equally divided between deleted segments and underfilled head
segments. However the latter cases are easily explained by the inertia that we have introduced in the detection of the
start of the event. Thus in the future we should focus on the former cases, in order to gain a considerable improvement
of the CNN model. Similarly the error in overfilled tail segments is explained by the inertia in the detection of the end of
the event. So it is not a sign of poor performance, as long as the event is not extended beyond one second. Concluding,
we consider that the metrics for temporal action detection offer valuable insights, and they are worth becoming a widely
accepted tool.
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