1 Making sense of the virome in light of evolution and ecology

- 2 3
- 4 Abstract
- 5

6 Understanding the patterns and drivers of viral prevalence and abundance is of key 7 importance for understanding pathogen emergence. Over the last decade, metagenomic 8 sequencing has exponentially expanded our knowledge of the diversity and evolution of 9 viruses associated with all domains of life. However, as most of these 'virome' studies are 10 primarily descriptive, our understanding of the predictors of virus prevalence, abundance and diversity, and their variation in space and time, remains limited. For example, we do not yet 11 understand the relative importance of ecological predictors (e.g., seasonality, habitat) versus 12 evolutionary predictors (e.g., host and virus phylogenies) in driving virus prevalence and 13 14 diversity. Few studies are set up to reveal the factors that predict the virome composition of 15 individual hosts, populations, or species. In addition, most studies of virus ecology represent 16 a snapshot of single species viromes at a single point in time and space. Fortunately, recent 17 studies have begun to use metagenomic data to directly test hypotheses about the evolutionary and ecological factors which drive virus prevalence, sharing and diversity. By 18 19 synthesising evidence across studies, we present some over-arching ecological and 20 evolutionary patterns in virome composition, and illustrate the need for additional work to quantify the drivers of virus prevalence and diversity. 21

22 1. Introduction

23 Viruses are ubiguitous across life on earth, but we have much to learn about what determines communities of viruses (i.e. the "virome" or "virosphere") across hosts and 24 25 ecosystems. Virus community composition can be characterised in different ways: 26 prevalence (proportion of hosts infected), abundance (the viral load of a host/population) and 27 distribution (temporally or spatially) of viruses within those communities. Large scale 28 metagenomic sequencing projects have expanded our knowledge of the diversity and 29 composition of eukaryotic viromes [1], with the number of published viral metagenomics papers increasing more than six-fold in the last decade, and the number of classified virus 30 31 species increasing more than three-fold (5,542 released virus RefSeq genomes on NCBI in 32 September 2014 versus 18,668 in September 2024). This number is expected to increase dramatically following the implementation of discovery models that utilize protein structure as 33 34 well as sequence data, with a single recent study using an AI-based approach identifying 35 >160,000 novel virus species [2]. Similarly, structural prediction models have the potential to improve our understanding of virus evolution over long timescales as well as host-virus 36 interactions [3,4]. Consequently, the rate of virus discovery is greatly out-pacing virus 37 classification. Despite this revolution in virus discovery, the field is only just beginning to 38 39 move from being purely descriptive "molecular natural history" to being hypothesis driven. 40

41 Over the last decade the metagenomic sequencing of animal, plant and soil-associated bacterial communities - often referred to as microbiome research - has transitioned from a 42 43 descriptive state toward directed hypothesis testing (see reviews [5,6]). Continuous 44 monitoring of wild populations has allowed the analysis of long-term data sets to study the determinants and fine-scale variation in microbiomes. Examples include global variation in 45 46 amphibian skin bacterial communities linked to climate [7], variation in the bacterial microbiomes of birds linked to foraging behaviour [8], and seasonality in gut parasite 47 48 communities [9] and bacterial microbiotas [10] in mammals. In contrast, most virus-focused

49 metagenomic studies can only be interpreted as a single snapshot of the virome of an individual, population, species or environment at a particular point in time and space (e.g. 50 [5]). Testing explicit ecological and evolutionary hypotheses on the causes and 51 52 consequences of variation in the virome requires that we (i) integrate extensive spatial and 53 longitudinal virome sampling alongside ecological data; and (ii) embed the virosphere in a 54 whole community context by considering viruses not only as potential zoonotic diseases, but 55 as participants in their wider ecosystems. Collectively, this will allow us to determine their 56 importance in maintaining whole ecosystem functionality and stability [11].

57

58 Addressing this knowledge gap is currently hampered by biases in the metagenomic 59 literature, which could lead us to overstate broad-scale patterns or drivers of virome diversity [12]. For example, large databases of host-virus associations (e.g. [13,14]) are biased 60 61 towards mammalian viruses, and groups such as bats with high research interest. Such 62 biases can lead to dogmas in the literature, for example it has been suggested that more 63 zoonotic diseases originate from particular host groups because of their inherent immunology or ecology, although in some instances this could simply reflect inherent 64 sampling biases [14]. As a result, compilation of databases is urgently needed for less well 65 66 sampled groups, as currently being attempted in insects [15].

67

Understanding the determinants of and barriers to successful cross-species transmission of viruses is crucial to understanding the potential of a virus to emerge in a new species. Identifying the factors that enable or inhibit virus transmission among hosts involves taking a whole ecosystem (i.e., One Health) approach [16] and has a broad implications for public and agricultural health. For example, the evolutionary and ecological factors that structure species viromes directly influence disease emergence in wildlife [17–20], pollinators [21,22], and livestock [23,24], and have clear connections to spill-over into humans. In addition,

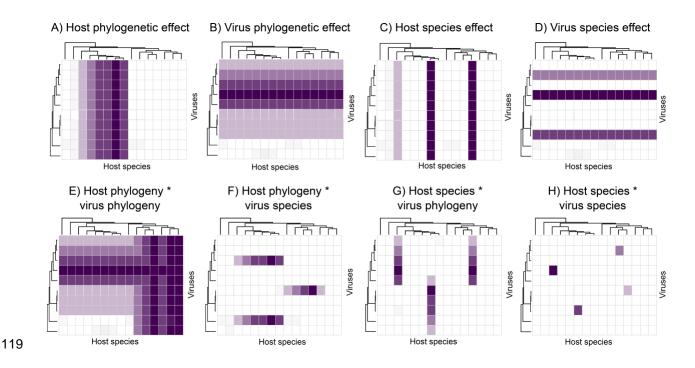
viruses interact, both directly and indirectly, within ecosystems (for example, host disease
caused by one virus may prevent the transmission of other viruses) [25]. Here, we
summarise our current knowledge of the ecological and evolutionary factors determining
virome composition, and propose how we can expand this with future research (box 1).

79

80 2. Evolutionary factors driving the composition of species viromes

81

Viruses, like bacteria and fungi [26], are often preferentially shared between closely related 82 hosts [27], and traits shared between phylogenetically closely related species will shape the 83 84 composition of the virome. These traits, such as host receptors, physiology and immunity, present a similar environment for a virus and are the result of the history of selection on 85 hosts (and viruses), in part caused by their exposure history [28]. However, the importance 86 87 of host relatedness does not necessarily present as a linear relationship between 88 susceptibility and host phylogenetic distance. Closely related hosts may have similar levels of susceptibility to a given virus (or group of viruses), independent of their distance from the 89 viruses 'natural' host. This "clade effect" can result in viruses being clustered in a patchwork 90 91 of clades on the host phylogeny [29-31].


92

93 This concept also holds true for surveys of viral presence/absence in natural populations. 94 Host phylogenetic relatedness is a significant predictor of the likelihood of viral sharing 95 between primates [32]. As a particular case in point, rabies virus sequences sampled from 96 single viruses across multiple bat host species reveal that cross-species transmission events 97 and successful host shifts are more likely in closely related host species [17,33]. Importantly, in this system, range overlap is less important than phylogenetic relatedness in predicting 98 sustained host shifts compared to spillover events (although current estimates of geographic 99 range are used to test this, rather than historical range). Additionally, host phylogenetic 100

effects have been demonstrated for particular viruses in a range of hosts both experimentally
[34–37] and in nature [31], although we do not know how such effects impact virome
structure.

104

105 Large databases of host-virus associations have also shown an increased proportion of zoonotic viruses in species that are closely related to humans [38], and that species-rich 106 host taxonomic groups harbour more viruses [14]. This again supports that idea that viruses 107 108 can preferentially jump between closely related host species. In addition, these databases 109 demonstrate that some virus lineages have a greater propensity to change hosts [39] and 110 that viruses with broad host ranges have a greater propensity to jump host [40]. However, an 111 important caveat is that these analyses are based on our current incomplete understanding 112 of global viral diversity [12]. There is also some evidence that host species may vary in their 113 overall susceptibility to viral infection, or cross-species transmission [18,34]. However, at 114 least among mammalian viruses, there is no evidence that particular host taxonomic groups are inherently more likely to be virus reservoirs because of host traits. On the contrary, host 115 taxonomic orders with greater species richness simply appear to harbour more diverse 116 viromes, and are therefore more often the source of cross-species transmission events 117 [14,41]. 118

120 Figure 1. Host and virus species level and phylogenetic effects on virus prevalence and viral host range. The y axis represents a hypothetical virus phylogeny, and the x axis a 121 hypothetical host phylogeny. Asterisk (*) indicates model interaction terms. Each panel 122 represents different possible scenarios. A: The incidence and prevalence of viruses across 123 host species is predictable by host phylogeny (i.e. closely related host species have a similar 124 incidence of viruses). B: The incidence and prevalence of viruses across host species is 125 predictable by virus phylogeny (i.e. closely related viruses have a similar infectivity across 126 host species). C: Certain host species are inherently more or less susceptible to viruses, in a 127 128 way not predictable by the host phylogeny (i.e. due to ecological or physiological traits). D: Certain viruses are particularly infectious, or not, irrespective of host species, in a way not 129 predictable by virus phylogeny. E: Related hosts have similar incidences of clades of related 130 viruses (i.e. virus incidence and prevalence is predictable by both host and virus 131 132 phylogenies). F: Related hosts have similar incidences of some viruses, but not all, and not 133 in a phylogenetically predictable manner. G: Related viruses show similar infectivity to only some host species - not all - and not in a way predicted by host phylogeny. H: Host 134 135 susceptibility depends on specific host x virus interactions not predictable by either host or 136 virus phylogeny. Based on [42,43].

137

To quantify the relative importance of host and virus relatedness requires analysis of many
related hosts and viruses. The evolutionary drivers of virome composition can be broken
down into a series of 'species level' and 'phylogenetic' effects (Figure 1) [42,43]. Host

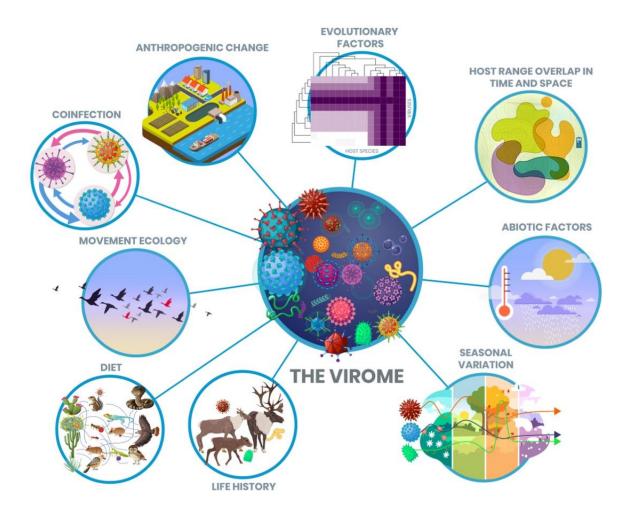
141 species effects and phylogenetic effects capture how hosts vary in their overall prevalence of viral infection and whether related hosts tend to have similar overall viral prevalence for the 142 143 host (Fig 1A/C). Virus species effects and phylogenetic effects capture how viruses vary in 144 the overall size of their host range, and whether related viruses have similar host ranges (Fig 145 1B/D). By examining these effects it is possible to ask whether some hosts are more 146 susceptible than others, whether some viruses are more generalist than others, and if these 147 traits are similar among related hosts or viruses. In addition, hosts may vary systematically in 148 the composition of their virome, and viruses may vary systematically in the composition of 149 their host range. For example, it is well established that viruses generally transmit more 150 easily between more closely related host species [35] and that host-virus co-divergence also occurs [44], although less commonly than cross-species transmission in many groups [45]. 151 Importantly, both of these processes mean that related hosts (or viruses) will have more 152 153 similar viromes (or host ranges) [46,47], sometimes referred to as "phylosymbiosis" [48]. Moreover, we expect related hosts (or related viruses) to be more similar in their virome 154 composition (or host range). We can examine these questions by looking at interactions 155 between the terms described above (Figure 1) [42]. 156

157

158 Interactions between host and virus species-level effects correspond to unique species-byspecies interactions in susceptibility or resistance that are not predictable from the relatives 159 of either the host or virus (Fig 1H). An interaction between host phylogeny and virus species 160 corresponds to an individual virus being a specialist on (or limited to) specific clades of the 161 162 host (Fig 1F); and an interaction between virus phylogeny and host species corresponds to specific clades of viruses showing similar infectivity on a specific host (Fig 1G). The 163 phylogenetic interaction term corresponds to particular clades of the host being more prone 164 165 to infection by particular clades of the virus—as predicted by co-divergence or near-166 neighbour preferential host-switching models (Fig 1E) [49].

167

168 Recent metagenomic sequencing studies are beginning to generate data that can address these questions confirming, for example, that the host phylogeny predicts a significant 169 170 proportion of variance in the structure of virus communities. As a case in point, the viromes of marine fish are predominantly shaped by the phylogenetic history of their hosts [50], 171 172 influencing both alpha and beta virome diversity [51]. Likewise, host taxonomy in birds is 173 important in explaining differences in virus community structure [52]. Additionally, host order 174 explains significant variation in the viral richness and prevalence in wild bats, rodents and 175 shrews [18]. Likewise, viral richness in species sampled across an entire island ecosystem 176 clusters by host taxonomy, with viral order explaining the most variation in virus community 177 composition [53]. These studies also demonstrate how we can simultaneously quantify the relative importance of both phylogeny and ecology in determining virome composition and 178 179 diversity [see also 54].


180

181 Importantly, these studies fit taxonomic groups as categorical/random effects in models, rather than the effect of the host phylogeny directly. A more sophisticated – although data 182 intensive – approach is to simultaneously fit species level and phylogenetic (relatedness) 183 effects (box 1). For example, in a study of 13 bumblebee species and 20 viruses 184 185 approximately a quarter of the variation in virus prevalence was explained by the evolutionary histories of the hosts and viruses (i.e., the sum of the host and virus 186 phylogenetic effects illustrated in Figure 1 A, B, E, F and G) [43]. However, individually each 187 of the host and virus effects explained only a small proportion of the variance in prevalence 188 189 with large amounts of uncertainty around these estimates, which may reflect a lack of power 190 to detect such effects on a relatively small number of hosts and viruses. Indeed, even when sampling a larger number of hosts and viruses, the best-fit models of the predictors of viral 191 192 richness and prevalence in wild rodents, bats, and shrews explained less than 40% of 193 deviance, highlighting the challenges in accurately explaining the patterns of viral diversity 194 and abundance across species [18]. In addition to aspects of virus ecology and evolution,

the analysis of individual sequencing libraries offer the potential to make inferences on

196 aspects of virus population genetics, such as examining the effects of changes in population

197 size on virome composition.

198

199 **Figure 2. The ecological and evolutionary drivers of viromes.** Viromes can be

200 considered at multiple levels: individual organisms, populations, species or whole

201 ecosystems. Factors influencing the virome may interact. For example, seasonal changes in

- 202 host range may coincide with seasonal peaks in infection burden, with coinfection
- 203 interactions shifting components of the virome.

3. Ecological drivers of virome composition

- Host ecological traits have a major impact on the composition and diversity of viromes,
- 207 operating primarily through influencing the likelihood of exposure at multiple scales and

208 interacting with each other and with evolutionary factors (Figure 2). First, spatial and temporal differences in a host's distribution affect the likelihood of exposure and virus 209 sharing. Indeed, some studies have revealed a positive relationship between host 210 211 geographic range overlap and the likelihood of viral sharing, cross species transmission, and 212 viral richness [13,17,38,55]. Second, within communities of sympatric organisms, biotic 213 factors limit exposure between host individuals through food webs or trophic networks. 214 dietary preferences, age structures, and predator-prey networks. At both scales, 215 anthropogenic driven climate and land-use change will alter host dynamics, with knock-on 216 effects on virome composition and diversity. Within-host ecological interactions can also 217 modulate the likelihood of virus acquisition [56], for example through co-infection with other viruses or non-viral pathogens, or through interactions with the resident microbiota. These 218 219 interactions can alter infection outcomes and onward spread, and hence larger population 220 level virus diversity, prevalence, or abundance [57].

221

3.1. Abiotic associations with virome diversity and abundance

223

Key abiotic factors such as temperature, humidity, and rainfall, all shape the prevalence of
individual viruses by modulating host population behaviour or viral
transmission/environmental persistence [58]. We might therefore expect that virus

227 prevalence and diversity will follow similar trends to those seen in other microbes, exhibiting

broad-scale elevational/depth and latitudinal gradients, with these abiotic factors driving

changes in virome diversity and composition.

230

231 Ocean temperature modulates the abundance and composition of both marine

bacteriophage communities [59] and the viral communities of fish [51]. In terrestrial

233 organisms, increases in elevation are associated with a decline in viral richness in vampire

bats, with colonies at lower elevations in the Amazon rainforest having higher viral richness

235 and distinct community composition [60]. Given that host species richness generally increases towards the equator via the latitudinal diversity gradient, latitude (as well as 236 longitude) has been identified as a modulator of virus communities, acting as a proxy for 237 both the biotic and abiotic variables described above. For example, marine virus diversity 238 239 showed higher diversity at lower latitudes, with decreasing virus diversity moving poleward, 240 mirroring that of most aquatic and terrestrial host diversity patterns [61]. In addition, 241 longitude is a significant factor in explaining virus diversity in bats [60], while both latitude 242 and longitude had a very strong impact on the human gut virome even when accounting for 243 ethnicity and other demographic factors [62]. However, in contrast to these clear latitudinal 244 and longitudinal trends, the viruses infecting fish species and individuals in Antarctica are just as diverse and abundant as those from warmer marine environments [63], despite the 245 host diversity gradient. It may therefore be that our relative lack of knowledge on virus 246 247 diversity in many groups obscures caveats to the assumption that virome diversity increases with host diversity. For example, phylogenetic rarity (the phylogenetic distance between 248 species in a community) may be more important in determining virome diversity, and 249 temperate areas may facilitate larger aggregations of species, increasing contact rates, and 250 251 the transmission of viruses [64].

252

253 254

3.1.2 Seasonal variation in viromes

255

If temperature, humidity and rainfall can drive species viral diversity and composition, then viromes will vary seasonally, particularly in temperate regions. Indeed, seasonal trends in virus prevalence have been observed with individual viruses [65], particularly with respiratory viruses, with the highest prevalence in autumn months [66]. From the few virome studies which have addressed seasonality, viral prevalence, evenness and richness also display seasonal trends [67]. Additionally, in surveys of wastewater, viral alpha and beta diversity varies significantly by season [68]. However, in a study of seasonality in the *Picornaviridae*

component of rodent viromes, evenness peaks in spring/summer, pre-dating peaks in virus
prevalence seen in autumn [69]. Indeed, the intrinsic link between seasonal trends and
abiotic factors such as temperature, humidity and rainfall, daylight, and biotic factors such as
host immune response, physiology, movement or other behaviours, make the precise drivers
of these trends both difficult to disentangle, and worthy of further detailed study (box 1).
Even for the best-studied viruses of humans, such as influenza, we are only just beginning to
unravel the complexity of seasonal trends [70].

Box: What data do we need for informative studies in virus ecology and evolution?

To design experiments and sampling schemes that allow the quantification of the ecological and evolutionary factors that structure species' viromes we need:

Sampling Design

How can we create balanced sampling from both a virus and host perspective?

- Viruses:
 - Identification of the host that a virus is actually infecting, because of the existence of multiple hosts in metagenomic samples (e.g. the bacterial microbiome, host dietary components, and eukaryotic parasites or symbionts). Can be done by comparing novel virus genomes to existing viral phylogenies. Non-host associated viruses can then be used as an internal control, as they should not be affected by trends in host-associated viruses.
 - Increased attention to DNA viruses to ascertain whether there is a dearth of DNA viruses in some ecosystems or groups
 - Aim to characterise the within-host diversity of viral communities, and therefore its drivers, possibly by combining short and long read sequencing [71] to distinguish between co-circulating haplotypes and structural variants.
- Hosts:
 - Utilising carefully designed, systematic sampling of species/ecosystems

 using power analyses (with simulations based on existing/pilot data) to
 determine the number of individuals, and species sampled, rather than
 haphazard approach
 - Sampling multiple individuals of a host species, and in a variety of habitat types/seasons to estimate virus prevalence, climatic, seasonal or habitat effects, and scale dependencies [72].
 - Sampling complete food webs/trophic networks/ecosystems by considering which systems allow more complete sampling of potential host taxa (e.g. islands [53,57], tree fogging, ponds)
 - Gathering data from traditionally under-sampled ecosystems will enable us to examine the effect of different ecologies and life history traits on the structure of the virome. Current sampling biases have likely skewed our view of the ecology of even well sampled host virospheres. Predictions of viral sharing [13] or potential host-shifting will not be able to be expanded out of

well sampled (e.g. mammalian) groups without more detail on the host range and ecological context in non-mammalian viral metagenomics.

Utilising species distribution & demographic history data

How can we expand the possible virome predictors we can test using public data?

- Testing drivers of prevalence and diversity by making use of historic climatic data, and data on anthropogenic environmental changes such as land use change (introduction of agriculture, urbanization) and habitat disturbance levels
- By making use of data from public citizen science projects [e.g. 73,74], and the expertise of local forums or naturalist communities [e.g. 75,76] we can examine how more factors, e.g., Migration/range shifts, impact virus prevalence and diversity.
- By incorporating public data on the presence/absence of symbionts, or coinfecting macro-parasites (e.g., Varroa mites with DWV), we can assess their impact on viral prevalence and virome composition - ultimately aiming for data from whole macro, symbiont, microbiome and virome datasets.

<u>Analysis</u>

How can we quantify the effect size of both ecological and evolutionary drivers of species viromes?

- By utilising a mixed-model approach [e.g. 77], including co-phylogenetic mixed models, it's possible to draw out both evolutionary and ecological predictors of virus prevalence and host range [42,78]
- By **estimating diversity directly from linear models,** we may be able to quantify the effect of factors on virus diversity, as well as prevalence. [79]
- By accounting for spatial and temporal autocorrelation in analyses of the drivers of virus prevalence, we can not only make our identified drivers more robust but quantify the influence of spatial and temporal effects.
- Developing the equivalent tools for the analysis of virome data that are already available for the analysis of bacterial microbiomes

270

271 3.2. Host biotic factors that shape virome composition

- A number of potential biotic moderators of virus community diversity and structure have
- been identified. These include life history traits, species migration histories and demography.

276	This is an area of huge potential expansion into topics such as how social networks [e.g.
277	80,81] and behaviour [82] impact virus transmission. Here we will address four descriptive
278	factors; the composition of the population by life history traits (here host age and sex), host
279	dietary preferences, and a host species history of range movement/migration.
280	
281 282	3.2.1. Life history traits
283	
284	Host age is a key feature of virus susceptibility and host immune response, as, at least in
285	vertebrates, young animals are more susceptible to viral infections, and show a consistently
286	higher prevalence compared to adults [89,90]. At the level of whole viromes, host age is
287	arguably the most studied demographic factor affecting virome diversity and composition,
288	across a wide range of species, from humans [85] to echinoderms [86]. In the future, we
289	need an increased understanding of the impact of host age structure on virome diversity and
290	composition in invertebrates, where antibodies do not mediate susceptibility, and therefore
291	could show vastly different trends.
292	
293	In contrast to host age, host sex has not yet clearly been associated with whole virome
294	composition [60,67,87]. From studies in some individual pathogens, it might be predicted
295	that males will show higher prevalences of viruses due to behaviour and physiology, with
296	knock-on effects on whole virome composition, perhaps decreasing alpha diversity.
297	However, studies have not all shown a clear trend in this direction, perhaps reflecting the
298	varied impact of host sex on individual viruses [88], lack of behavioural or immune
299	differences between sexes in some systems [89], the taxonomic groups considered, or a
300	result of study design.
301	
302 303	3.2.2. Diet

304

The impact of ecosystem food web structure on species virome diversity and composition is 305 as yet unknown, despite viruses playing an integral part in food webs, the recycling of 306 organic matter, and transfer of energy across trophic levels [90]. At an individual level, 307 308 studies of human gut viromes have provided some limited evidence that dietary variation can 309 impact gut virome community structure [91], as it does for bacterial microbiomes [92]. 310 However, at a broader species level, we do not know if certain types of diet, or a more 311 phylogenetically diverse diet, drives higher virome diversity. Dietary preferences and 312 increased dietary phylogenetic breadth could increase the opportunity for viral host shifts, 313 and a more diverse virome. However, when predator-prey, or herbivore-plant pairings are phylogenetically distant, current data from animal viromes suggests that viruses are not 314 often shared during these interactions [93], and that host phylogeny plays a larger role in 315 316 virus sharing [53]. In the future, the study of whole food webs, and multi-species, 317 phylogenetically controlled comparisons, will enable the effect of species diet on virome diversity and composition to be better quantified. However, in studies of wild populations it is 318 extremely important to distinguish between the transient gut virome, which are likely to be 319 320 actually infecting dietary or prey species, and 'resident' viruses that cause sustained infections and go on to persist in their new host (box 1). 321 322 323 3.2.3. Movement ecology and virome composition 324 325 326 Species migration, dispersal, as well as their history of invasion or introduction, are likely to have significant impacts on current virome composition. The idea that an individual's 327 movement ecology and demographic history influence the prevalence and diversity of 328

329 parasites is not a novel one [94]. To date, however, such factors have rarely been

330 considered in studies of virus ecology.

331

332 There is a pressing need to understand the role of species' histories of introduction and dispersal in shaping the current virome, given how rapidly distributions are shifting in tandem 333 with climate change, and the frequency of introductions via global trade and travel [95]. For 334 example, increasing ocean temperatures are likely to drastically shift marine species' 335 336 distributions [96]. As these ranges shift poleward in response to changing climates, species 337 will be pushed into contact with novel viruses [97]. They will also expose native and naïve 338 host species to novel viruses, perhaps with devastating consequences. Species invasions 339 may also change species-virus relationships, and the diversity of the whole host ecosystem 340 - with potential knock-on effects such as the 'dilution effect' [98]. The outcome of these species-virus interactions will also be influenced by the phylogenetic relationships between 341 hosts, including their evolutionary rarity (i.e., how phylogenetically distant a host is from the 342 rest of the host community). For example, introduced hosts that are phylogenetically isolated 343 344 from other members of the host community have lower disease pressure [99]. However, we lack a comprehensive understanding of whether dispersing individuals act as sources or 345 sinks for viral infection, and how these patterns vary with host taxonomy. For instance, do 346 recent arrivals in an ecosystem exhibit reduced virus diversity or abundance, or do they tend 347 348 to act as sources of novel viruses?

349

Species movement also affects virome composition through the life history strategy of 350 351 migration. For example, host migration may lead to escape from pathogens (with small founding populations less likely to carry acute infections), to infected individuals being 352 353 removed from populations, and to recovery from infection or spatially isolated infected and 354 uninfected individuals [100]. Studies of viruses such as avian influenza and West Nile virus 355 have shown that migration might have increased the spread of disease in general by 356 increasing contacts and thus, virus exposures [83]. Future work should investigate how 357 migratory strategies shape variation in both virome composition and risk of transmission at 358 the individual level.

359

360 3.3. Anthropogenic factors that influence virome community structure

361

Human driven changes to the natural environment, such as climate change, urbanisation,
habitat disturbance, and altered nutrient cycling, have a profound impact on host
biodiversity, and alter the ecology of systems governed by the abiotic and biotic factors
described above. However, we poorly understand the broader consequences of such
changes to virome community diversity.

367

Studies in humans suggest that urbanisation can have a profound impact on the diversity and composition of viromes [101], with important differences observed between the viromes of urban and rural-living humans [104]. An important caveat is that, to date, studies involving humans have largely focussed on the gut virome (i.e. bacteriophages) rather than viruses that infect human cells, so what we are observing could be driven by differences in the bacterial microbiome.

374

In wild populations, anthropogenic factors have a profound impact on the distribution and
home ranges of many host species, with the potential to facilitate the cross-species
transmission of viral pathogens, affecting wildlife conservation, agriculture and human health
[105]. While few studies have assessed the impact of host biodiversity changes on the
virome, our limited evidence suggests some pristine/undisturbed habitats have increased
viral diversity, likely related to an increase in host species diversity in some systems [106].

381

382

3.4. Coinfection as a modulator of species viromes

Coinfections, in which a host is simultaneously infected with multiple viruses, parasites or 385 386 symbiotic microbiota, are common in nature and may alter the outcomes of individual infections [25]. Within coinfected hosts, viruses can interact directly – such as in the 387 388 transactivation of one virus's gene expression by the proteins of another [107]. Similarly 389 viruses can interact indirectly (with other viruses, microbes or parasites) through modulation of host components such as immune activity or resource availability [108]. These 390 391 interactions can create synergistic, exploitative, or competitive relationships between 392 pathogens.

393 There is not yet a clear link between coinfection interactions, coinfection prevalence, and virome composition. However, the consequences of interactions between pathogens in 394 395 individual hosts can affect the prevalence of viruses across host populations. For example, negative interactions between influenza A virus and Rhinovirus in humans can lead to 396 397 fluctuating and asynchronous seasonal prevalences of each virus [109], and has been suggested to have delayed the introduction of the 2009 H1N1 influenza virus pandemic to 398 Europe [110,111] (after which H1N1 is thought to have disrupted the epidemic transmission 399 400 of another respiratory virus [112]).

401

402 Compared to single infections, coinfections can alter the relative fitness of different viruses and virus genotypes [113,114], and may play a role in generating and maintaining virus 403 404 diversity. For example, in nucleopolyhedrovirus coinfections of pine beauty moths (Panolis 405 flammea), the relative fitness of virus genotypes during single infection does not correspond 406 to fitness during coinfection, and are further influenced by the ecological context of the 407 infected host [115]. At a population level, coinfection-induced changes in the rank order of virus fitness are expected to fluctuate with coinfection prevalence [116]. Additionally, the 408 outcome of coinfections is likely to be heavily influenced by the sequential timing of 409 410 infections [117], with within-host viral diversity sometimes dependant on the order in which

19

viral infections occur. In this way, coinfection may be an important – yet relatively
understudied – mechanism for the maintenance of virus diversity and the shaping of host
viromes [118].

414

415 To date, virome studies have often had limited opportunity to study coinfections due to pooling of samples from multiple individuals. However, reduced sequencing costs are now 416 making single individual sequencing libraries increasingly viable (box 1), although an 417 418 enormous amount of data will be generated. As such, more studies will be able to examine 419 the role co-infections and interactions between viruses play in driving virome composition 420 within hosts, and how this determines population level dynamics. Metagenomics approaches 421 also allow for the inference of co-occurrence and interaction networks between viruses and 422 any organisms sequenced alongside them, allowing viromes to be linked to the wider 423 microbial community within a host. For example, in a study of *lxodes* ticks, positive 424 associations were detected between multiple virus species, the causative agent of Lyme disease (Borrelia burgdorferi), and Rickettsia spp [119]. In humans, the presence of 425 Pseudomonas bacteria in lung tissue is both positively and negatively associated with 426 multiple viruses, and the direction of this interaction can change depending on individual co-427 morbidities [120]. Integrating these networks with environmental data may ultimately allow 428 for a greater understanding of how microbial and ecological contexts combine to influence 429 virome composition and dynamics [121]. 430

431

432 4. Perspectives

433 434

Although we have attempted to synthesise the current evidence on what drives the diversity
and composition of species viromes, the majority of data still come from single-host, singlevirus studies. Such studies may not generalise to whole virus communities, and could be

focused on viral 'oddities' such as extremely virulent viruses, that are unlikely to represent
the majority of the virome. With ever decreasing costs of RNA sequencing, hypothesisdriven and structured sampling of viromes from multiple host individuals, populations, and
species in a community, is becoming more affordable. As such, collecting high-quality data
(box 1) to improve our of understanding of the key ecological and evolutionary drivers of the
virome is increasingly within reach.

444

445 Despite the unique challenges that virome studies bring, there are many exciting areas for expansion in this field, and many outstanding questions about the basic relationships driving 446 447 the distribution of viruses across host species. For example, do areas with a greater diversity of host species generate higher virome diversity, or is this dependant on the phylogenetic 448 composition of the host community? Are species with more diverse viromes more likely to 449 450 acquire more viruses, and are generalist viruses more likely to infect new species than 451 specialist ones [122]? At a population level, what is the relationship between population size, and virome diversity [e.g. 60]? This is particularly interesting to consider in the tropics, as 452 numerous studies have shown the role temperature or UV play on virus transmission by 453 reducing environmental persistence. Another unexplored aspect of the drivers of virome 454 455 composition are social networks, and how associations within social networks drive virus transmission [e.g. 81]. In the future, can we determine the mechanistic basis of the host-456 457 virus associations, in particular, the phylogeny-related variation? Can we use trait, gene, or motif-based models/phylogenies of viruses to test the predictive power of these features in 458 459 driving the distribution of viruses? Perhaps we can also move towards a more holistic, 460 whole-microbial community approach to these studies, with exciting opportunities to study 461 covariation among viruses, bacteria and fungi across a broad host phylogeny [26].

462

These questions are particularly timely due to ongoing global and climate change. Will increasing urbanisation and global movement drive an increase in the virome diversity of the urban populations of wildlife, or a decrease in virome diversity due to lower host diversity? With global changes in non-urban areas, such as conversion to monoculture, what are their impacts on virome diversity downstream? Or, as in the case of habitat fragmentation, will the break-up of diverse ecosystems result in increased prevalences for the most abundant viruses and a corresponding reduction in virome evenness?

470

By understanding the evolutionary and ecological drivers of the virosphere, particularly the 471 472 proliferation of zoonotic pathogens through communities and landscapes, we can also provide data that will help mitigate these risk factors. For example, methods of reducing the 473 prevalence of harmful viruses, such as reducing the prevalence of vector-borne viruses 474 475 through dilution effects (selectively increasing livestock densities), have been proposed 476 [123]. However, their effectiveness will depend on the degree to which virus prevalence is driven by specific host densities, and how this changes with local spatial and temporal 477 variation in abiotic factors. In addition, obtaining sufficient data on drivers of virus abundance 478 to forecast or predict outbreaks will be challenging. Perhaps a more achievable shorter-term 479 480 goal is to develop clear rules of thumb to build qualitative frameworks for understanding the ecology and evolution of the virome. With a greater understanding of the drivers of virus 481 482 dynamics. we can aim to control viruses with impacts on human, agricultural and wildlife 483 health, and also understand the role viruses play as components of whole ecosystems.

484

485 Acknowledgements

486 Thanks to the editor and two anonymous reviewers for useful comments on the manuscript.

487 For the purpose of Open Access, the author has applied a CC BY public copyright licence to

488 any Author Accepted Manuscript version arising from this submission.

References

- 1. Zhang YZ, Shi M, Holmes EC. 2018 Using Metagenomics to Characterize an Expanding Virosphere. *Cell* **172**, 1168–1172. (doi:10.1016/j.cell.2018.02.043)
- 2. Hou X *et al.* 2024 Using artificial intelligence to document the hidden RNA virosphere., 2023.04.18.537342. (doi:10.1101/2023.04.18.537342)
- 3. Mifsud JCO, Lytras S, Oliver MR, Toon K, Costa VA, Holmes EC, Grove J. 2024 Mapping glycoprotein structure reveals Flaviviridae evolutionary history. *Nature* **633**, 695–703. (doi:10.1038/s41586-024-07899-8)
- 4. Nomburg J, Doherty EE, Price N, Bellieny-Rabelo D, Zhu YK, Doudna JA. 2024 Birth of protein folds and functions in the virome. *Nature* **633**, 710–717. (doi:10.1038/s41586-024-07809-y)
- Marsh KJ, Bearhop S, Harrison XA. 2024 Linking microbiome temporal dynamics to host ecology in the wild. *Trends in Microbiology*, S0966842X2400132X. (doi:10.1016/j.tim.2024.05.001)
- Koskella B, Hall LJ, Metcalf CJE. 2017 The microbiome beyond the horizon of ecological and evolutionary theory. *Nat Ecol Evol* 1, 1606–1615. (doi:10.1038/s41559-017-0340-2)
- Kueneman JG *et al.* 2019 Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. *Nat Ecol Evol* 3, 381–389. (doi:10.1038/s41559-019-0798-1)
- 8. Jones I, Marsh K, Handby TM, Hopkins K, Slezacek J, Bearhop S, Harrison XA. 2023 The influence of diet on gut microbiome and body mass dynamics in a capital-breeding migratory bird. *PeerJ* **11**, e16682. (doi:10.7717/peerj.16682)
- 9. Hayward AD *et al.* 2022 Long-term temporal trends in gastrointestinal parasite infection in wild Soay sheep. *Parasitology* **149**, 1749–1759. (doi:10.1017/S0031182022001263)
- 10. Marsh KJ *et al.* 2022 Synchronous Seasonality in the Gut Microbiota of Wild Mouse Populations. *Front Microbiol* **13**, 809735. (doi:10.3389/fmicb.2022.809735)
- 11. Soliveres S *et al.* 2016 Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. *Nature* **536**, 456–459. (doi:10.1038/nature19092)
- 12. Wille M, Geoghegan JL, Holmes EC. 2021 How accurately can we assess zoonotic risk? *PLOS Biology* **19**, e3001135. (doi:10.1371/journal.pbio.3001135)
- Albery GF, Eskew EA, Ross N, Olival KJ. 2020 Predicting the global mammalian viral sharing network using phylogeography. *Nature Communications* 11. (doi:10.1038/s41467-020-16153-4)
- Mollentze N, Streicker DG. 2020 Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. *Proc Natl Acad Sci U S A* **117**, 9423– 9430. (doi:10.1073/pnas.1919176117)

- 15. Dallas TA, J. Carlson C, Stephens PR, Ryan SJ, Onstad DW. 2022 insectDisease: programmatic access to the Ecological Database of the World's Insect Pathogens. *Ecography* **2022**, e06152. (doi:10.1111/ecog.06152)
- Cunningham AA, Daszak P, Wood JLN. 2017 One Health, emerging infectious diseases and wildlife: two decades of progress? *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160167. (doi:10.1098/rstb.2016.0167)
- 17. Faria NR, Suchard M a, Rambaut A, Streicker DG, Lemey P. 2013 Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* **368**, 20120196. (doi:10.1098/rstb.2012.0196)
- 18. Chen Y-M *et al.* 2023 Host traits shape virome composition and virus transmission in wild small mammals. *Cell* **186**, 4662-4675.e12. (doi:10.1016/j.cell.2023.08.029)
- Fisher CR, Streicker DG, Schnell MJ. 2018 The spread and evolution of rabies virus: conquering new frontiers. *Nature Reviews Microbiology* 16, 241–255. (doi:10.1038/nrmicro.2018.11)
- 20. Kilpatrick AM, Wheeler SS. 2019 Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. *Journal of Medical Entomology* **56**, 1491–1497. (doi:10.1093/jme/tjz149)
- Fearon ML, Tibbetts EA. 2021 Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. *Ecology* **102**, 1–14. (doi:10.1002/ecy.3305)
- Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, Boots M. 2016 Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. *Science* 351, 594 LP – 597. (doi:http://dx.doi.org/10.1126/science.aac9976)
- 23. Chen W, Zhang X, Zhao W, Yang L, Wang Z, Bi H. 2022 Environmental factors and spatiotemporal distribution characteristics of the global outbreaks of the highly pathogenic avian influenza H5N1. *Environ Sci Pollut Res* **29**, 44175–44185. (doi:10.1007/s11356-022-19016-1)
- 24. Wille M, Barr IG. 2022 Resurgence of avian influenza virus. *Science* **376**, 459–460. (doi:10.1126/science.abo1232)
- Petney TN, Andrews RH. 1998 Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. *International Journal for Parasitology* 28, 377–393. (doi:10.1016/S0020-7519(97)00189-6)
- 26. Harrison XA *et al.* 2021 Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. *Proceedings of the Royal Society B: Biological Sciences* **288**, 20210552. (doi:10.1098/rspb.2021.0552)
- Charleston MA, Robertson DL. 2002 Preferential Host Switching by Primate Lentiviruses Can Account for Phylogenetic Similarity with the Primate Phylogeny. Systematic Biology 51, 528–535. (doi:10.1080/10635150290069940)
- 28. Antonovics J, Boots M, Ebert D, Koskella B, Poss M, Sadd BM. 2013 The origin of specificity by means of natural selection: evolved and nonhost resistance in host-pathogen interactions. *Evolution* **67**, 1–9. (doi:10.1111/j.1558-5646.2012.01793.x)

- Longdon B, Brockhurst M a., Russell C a., Welch JJ, Jiggins FM. 2014 The Evolution and Genetics of Virus Host Shifts. *PLoS Pathogens* 10, e1004395. (doi:10.1371/journal.ppat.1004395)
- Waxman D, Weinert LA, Welch JJ. 2014 Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys. *Am Nat* 184, 65–74. (doi:10.1086/676589)
- 31. Wille M *et al.* 2023 Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. *Proceedings of the Royal Society B: Biological Sciences* **290**, 20222237. (doi:10.1098/rspb.2022.2237)
- 32. Davies TJ, Pedersen a. B. 2008 Phylogeny and geography predict pathogen community similarity in wild primates and humans. *Proceedings of the Royal Society B: Biological Sciences* **275**, 1695–1701. (doi:10.1098/rspb.2008.0284)
- 33. Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. 2010 Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. *Science (New York, N.Y.)* **329**, 676–679. (doi:10.1126/science.1188836)
- Imrie RM, Roberts KE, Longdon B. 2021 Between virus correlations in the outcome of infection across host species: Evidence of virus by host species interactions. *Evolution Letters* 5, 472–483. (doi:10.1002/evl3.247)
- 35. Longdon B, Hadfield JD, Webster CL, Obbard DJ, Jiggins FM. 2011 Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts. *PLoS Pathogens* **7**, e1002260. (doi:10.1371/journal.ppat.1002260)
- Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, Cao C, Jiggins FM. 2015 The causes and consequences of changes in virulence following pathogen host shifts. *PLoS pathogens* 11, e1004728. (doi:10.1371/journal.ppat.1004728)
- Mollentze N, Streicker DG, Murcia PR, Hampson K, Biek R. 2020 Virulence mismatches in index hosts shape the outcomes of cross-species transmission. *Proceedings of the National Academy of Sciences of the United States of America* **117**, 28859–28866. (doi:10.1073/pnas.2006778117)
- Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. 2017 Host and viral traits predict zoonotic spillover from mammals. *Nature* 546, 646–650. (doi:10.1038/nature22975)
- 39. Washburne AD, Crowley DE, Becker DJ, Olival KJ, Taylor M, Munster VJ, Plowright RK. 2018 Taxonomic patterns in the zoonotic potential of mammalian viruses. *PeerJ* 6, e5979. (doi:10.7717/peerj.5979)
- 40. Cleaveland S, Laurenson MK, Taylor LH. 2001 Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. *Phil. Trans. R. Soc. Lond. B* **356**, 991–999. (doi:10.1098/rstb.2001.0889)
- Rodríguez-Nevado C, Lam TT-Y, Holmes EC, Pagán I. 2018 The impact of host genetic diversity on virus evolution and emergence. *Ecology Letters* 21, 253–263. (doi:10.1111/ele.12890)

- 42. Hadfield JD, Krasnov BR, Poulin R, Nakagawa S. 2014 A tale of two phylogenies: Comparative analyses of ecological interactions. *American Naturalist* **183**, 174–187. (doi:10.1086/674445)
- 43. Pascall DJ, Tinsley MC, Obbard DJ, Wilfert L. 2019 Host evolutionary history predicts virus prevalence across bumblebee species. *bioRxiv*, 498717.
- 44. Geoghegan JL, Duchêne S, Holmes EC. 2017 Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. *PLOS Pathogens* **13**, e1006215. (doi:10.1371/journal.ppat.1006215)
- de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. 2013 Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. *New Phytologist* **198**, 347–385. (doi:10.1111/nph.12150)
- Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. 2018 Finer-Scale Phylosymbiosis: Insights from Insect Viromes. *mSystems* 3, e00131-18. (doi:10.1128/mSystems.00131-18)
- 47. Xu Y, Jiang J, Lin X, Shi W, Cao C. 2021 Full title : Identification of diverse viruses associated with grasshoppers unveils phylogenetic congruence between hosts and viruses. *bioRxiv Preprint*
- Brooks AW, Kohl KD, Brucker RM, Opstal EJ van, Bordenstein SR. 2016 Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. *PLOS Biology* 14, e2000225. (doi:10.1371/journal.pbio.2000225)
- Cuthill JH, Charleston MA. 2013 A simple model explains the dynamics of preferential host switching among mammal RNA viruses. *Evolution* 67, 980–990. (doi:10.1111/evo.12064)
- 50. Costa VA, Bellwood DR, Mifsud JCO, Geoghegan JL, Harvey E, Holmes EC. 2024 Limited transmission of microbial species among coral reef fishes from the Great Barrier Reef, Australia. , 2024.02.24.581894. (doi:10.1101/2024.02.24.581894)
- 51. Geoghegan JL *et al.* 2021 Virome composition in marine fish revealed by metatranscriptomics. *Virus Evolution* **7**, 5. (doi:10.1093/ve/veab005)
- Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. 2019 Virome heterogeneity and connectivity in waterfowl and shorebird communities. *ISME Journal* 13, 2603–2616. (doi:10.1038/s41396-019-0458-0)
- 53. French RK *et al.* 2023 Host phylogeny shapes viral transmission networks in an island ecosystem. *Nat Ecol Evol* **7**, 1834–1843. (doi:10.1038/s41559-023-02192-9)
- 54. Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. 2024 Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. *mSystems* **9**, e00124-24. (doi:10.1128/msystems.00124-24)
- Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, Balloux F. 2020 The phylogenetic range of bacterial and viral pathogens of vertebrates. *Molecular Ecology* 29, 3361–3379. (doi:10.1111/mec.15463)

- 56. Pedersen AB, Fenton A. 2007 Emphasizing the ecology in parasite community ecology. *Trends in Ecology & Evolution* **22**, 133–139. (doi:10.1016/j.tree.2006.11.005)
- Norberg A, Susi H, Sallinen S, Baran P, Clark NJ, Laine A-L. 2023 Direct and indirect viral associations predict coexistence in wild plant virus communities. *Current Biology* 33, 1665-1676.e4. (doi:10.1016/j.cub.2023.03.022)
- Lowen AC, Mubareka S, Steel J, Palese P. 2007 Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. *PLOS Pathogens* 3, e151. (doi:10.1371/journal.ppat.0030151)
- 59. Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, Dutilh BE, Thompson FL. 2017 Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. *Nat Commun* **8**, 15955. (doi:10.1038/ncomms15955)
- 60. Bergner LM, Orton RJ, Benavides JA, Becker DJ, Tello C, Biek R, Streicker DG. 2020 Demographic and environmental drivers of metagenomic viral diversity in vampire bats. *Molecular Ecology* **29**, 26–39. (doi:10.1111/mec.15250)
- 61. Gao Chen *et al.* 2021 Viral Characteristics of the Warm Atlantic and Cold Arctic Water Masses in the Nordic Seas. *Applied and Environmental Microbiology* **87**, e01160-21. (doi:10.1128/AEM.01160-21)
- 62. Zuo T *et al.* 2020 Human-Gut-DNA Virome Variations across Geography, Ethnicity, and Urbanization. *Cell Host & Microbe* **28**, 741-751.e4. (doi:10.1016/j.chom.2020.08.005)
- 63. Grimwood R, Waller S, Wierenga J, Lim L, Dubrulle J, Holmes E, Geoghegan J. 2024 Viromes of Antarctic fish resembles the diversity found at lower latitudes. (doi:10.1101/2024.04.29.591789)
- 64. Wille M, Holmes EC. 2020 The Ecology and Evolution of Influenza Viruses. *Cold Spring Harb Perspect Med* **10**, a038489. (doi:10.1101/cshperspect.a038489)
- George DB, Webb CT, Farnsworth ML, O'Shea TJ, Bowen RA, Smith DL, Stanley TR, Ellison LE, Rupprecht CE. 2011 Host and viral ecology determine bat rabies seasonality and maintenance. *Proceedings of the National Academy of Sciences* **108**, 10208–10213. (doi:10.1073/pnas.1010875108)
- 66. van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. 2014 Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. *Journal of Animal Ecology* **83**, 266–275. (doi:10.1111/1365-2656.12131)
- 67. Feng Y, Gou QY, Yang WH, Wu WC, Wang J, Holmes EC, Liang G, Shi M. 2022 A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. *Virus Evolution* **8**, 1–14. (doi:10.1093/ve/veac006)
- 68. Smith MF, Maqsood R, Sullins RA, Driver EM, Halden RU, Lim ES. 2024 Seasonality of respiratory, enteric, and urinary viruses revealed by wastewater genomic surveillance. *mSphere* **9**, e0010524. (doi:10.1128/msphere.00105-24)
- 69. Raghwani J *et al.* 2023 Seasonal dynamics of the wild rodent faecal virome. *Molecular Ecology* **32**, 4763–4776. (doi:10.1111/mec.16778)

- Lipsitch M, Viboud C. 2009 Influenza seasonality: Lifting the fog. Proceedings of the National Academy of Sciences of the United States of America 106, 3645. (doi:10.1073/pnas.0900933106)
- Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, Sullivan MB, Temperton B. 2019 Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. *PeerJ* 7, e6800. (doi:10.7717/peerj.6800)
- 72. McLeish M, Sacristán S, Fraile A, García-Arenal F. 2017 Scale dependencies and generalism in host use shape virus prevalence. *Proceedings of the Royal Society B: Biological Sciences* **284**, 20172066. (doi:10.1098/rspb.2017.2066)
- 73. Gonzalez J. 2016 Melanogaster: Catch the Fly! See https://melanogaster.eu/ (accessed on 23 July 2024).
- North AC, Hodgson DJ, Price SJ, Griffiths AGF. 2015 Anthropogenic and Ecological Drivers of Amphibian Disease (Ranavirosis). *PLOS ONE* 10, e0127037. (doi:10.1371/journal.pone.0127037)
- 75. In press. Dipterists Forum. See https://dipterists.org.uk/home (accessed on 23 July 2024).
- 76. In press. eBird. See https://ebird.org/home (accessed on 23 July 2024).
- 77. Sweeny AR, Lemon H, Ibrahim A, Watt KA, Wilson K, Childs DZ, Nussey DH, Free A, McNally L. 2023 A mixed-model approach for estimating drivers of microbiota community composition and differential taxonomic abundance. *mSystems* **8**, e00040-23. (doi:10.1128/msystems.00040-23)
- 78. Wille M *et al.* 2022 Strong phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. *bioRxiv*, 2022.02.14.480463.
- Shutt JD, Nicholls JA, Trivedi UH, Burgess MD, Stone GN, Hadfield JD, Phillimore AB. 2020 Gradients in richness and turnover of a forest passerine's diet prior to breeding: A mixed model approach applied to faecal metabarcoding data. *Molecular Ecology* 29, 1199–1213. (doi:10.1111/mec.15394)
- 80. Sarkar A *et al.* 2020 Microbial transmission in animal social networks and the social microbiome. *Nat Ecol Evol* **4**, 1020–1035. (doi:10.1038/s41559-020-1220-8)
- 81. Sarkar A *et al.* 2024 Microbial transmission in the social microbiome and host health and disease. *Cell* **187**, 17–43. (doi:10.1016/j.cell.2023.12.014)
- Vuong HE, Yano JM, Fung TC, Hsiao EY. 2017 The Microbiome and Host Behavior. *Annual Review of Neuroscience* 40, 21–49. (doi:10.1146/annurev-neuro-072116-031347)
- 83. van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. 2014 Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. *Journal of Animal Ecology* **83**, 266–275. (doi:10.1111/1365-2656.12131)
- Wille M, Shi M, Hurt AC, Klaassen M, Holmes EC. 2021 RNA virome abundance and diversity is associated with host age in a bird species. *Virology* 561, 98–106. (doi:10.1016/j.virol.2021.06.007)

- 85. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. 2020 The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. *Cell Host & Microbe* **28**, 724-740.e8. (doi:10.1016/j.chom.2020.08.003)
- 86. Jackson EW, Wilhelm RC, Buckley DH, Hewson I. 2022 The RNA virome of echinoderms. *Journal of General Virology* **103**, 001772. (doi:10.1099/jgv.0.001772)
- 87. Campbell SJ *et al.* 2020 Red fox viromes in urban and rural landscapes. *Virus Evol* **6**, veaa065. (doi:10.1093/ve/veaa065)
- Roberts KE, Longdon B. 2023 Heterogeneities in infection outcomes across species: sex and tissue differences in virus susceptibility. *Peer Community J* 3, pcjournal.242. (doi:10.24072/pcjournal.242)
- Sheridan LAD, Poulin R, Ward DF, Zuk M. 2000 Sex differences in parasitic infections among arthropod hosts: is there a male bias? *Oikos* 88, 327–334. (doi:10.1034/j.1600-0706.2000.880211.x)
- Weitz JS *et al.* 2015 A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. *ISME J* 9, 1352–1364. (doi:10.1038/ismej.2014.220)
- 91. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. 2011 The human gut virome: Inter-individual variation and dynamic response to diet. *Genome Res* **21**, 1616–1625. (doi:10.1101/gr.122705.111)
- 92. Jones I, Marsh K, Handby TM, Hopkins K, Slezacek J, Bearhop S, Harrison XA. 2023 The influence of diet on gut microbiome and body mass dynamics in a capital-breeding migratory bird. *PeerJ* **11**, e16682. (doi:10.7717/peerj.16682)
- 93. Harvey E, Holmes EC. 2022 Diversity and evolution of the animal virome. *Nature Reviews Microbiology* **0123456789**. (doi:10.1038/s41579-021-00665-x)
- 94. Young HS, Parker IM, Gilbert GS, Guerra AS, Nunn CL. 2017 Introduced Species, Disease Ecology, and Biodiversity–Disease Relationships. *Trends in Ecology & Evolution* **32**, 41–54. (doi:10.1016/j.tree.2016.09.008)
- Hulme PE. 2021 Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679. (doi:10.1016/j.oneear.2021.04.015)
- 96. Campana SE, Stefánsdóttir RB, Jakobsdóttir K, Sólmundsson J. 2020 Shifting fish distributions in warming sub-Arctic oceans. *Sci Rep* **10**, 16448. (doi:10.1038/s41598-020-73444-y)
- Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. 2022 Climate change increases cross-species viral transmission risk. *Nature* 607, 555–562. (doi:10.1038/s41586-022-04788-w)
- 98. Keesing F, Ostfeld RS. 2021 Dilution effects in disease ecology. *Ecology Letters* **24**, 2490. (doi:10.1111/ele.13875)
- Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS. 2015 Phylogenetic structure and host abundance drive disease pressure in communities. *Nature* 520, 542–544. (doi:10.1038/nature14372)

- 100. Wille M, Klaassen M. 2023 Should I stay, should I go, or something in between? The potential for parasite-mediated and age-related differential migration strategies. *Evol Ecol* **37**, 189–202. (doi:10.1007/s10682-022-10190-9)
- 101. Guernier V, Hochberg ME, Guégan J-F. 2004 Ecology Drives the Worldwide Distribution of Human Diseases. *PLOS Biology* 2, e141. (doi:10.1371/journal.pbio.0020141)
- 102. Rampelli S *et al.* 2017 Characterization of the human DNA gut virome across populations with different subsistence strategies and geographical origin. *Environmental Microbiology* **19**, 4728–4735. (doi:10.1111/1462-2920.13938)
- 103. Qiao Y, Li S, Zhang J, Liu Q, Wang Q, Chen H, Ma Z (Sam). 2021 Integrated diversity and shared species analyses of human viromes. *Arch Virol* **166**, 2743–2749. (doi:10.1007/s00705-021-05157-0)
- 104. Zuo T *et al.* 2020 Human-Gut-DNA Virome Variations across Geography, Ethnicity, and Urbanization. *Cell Host & Microbe* **28**, 741-751.e4. (doi:10.1016/j.chom.2020.08.005)
- Becker DJ, Streicker DG, Altizer S. 2015 Linking anthropogenic resources to wildlifepathogen dynamics: a review and meta-analysis. *Ecol Lett* 18, 483–495. (doi:10.1111/ele.12428)
- 106. Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. 2021 Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. *bioRxiv* (doi:10.1101/2021.02.04.429754)
- 107. Van de Perre P, Segondy M, Foulongne V, Ouedraogo A, Konate I, Huraux J-M, Mayaud P, Nagot N. 2008 Herpes simplex virus and HIV-1: deciphering viral synergy. *The Lancet Infectious Diseases* 8, 490–497. (doi:10.1016/S1473-3099(08)70181-6)
- 108. DaPalma T, Doonan BP, Trager NM, Kasman LM. 2010 A systematic approach to virus–virus interactions. *Virus Research* **149**, 1–9. (doi:10.1016/j.virusres.2010.01.002)
- Nickbakhsh S *et al.* 2019 Virus–virus interactions impact the population dynamics of influenza and the common cold. *Proceedings of the National Academy of Sciences* **116**, 27142–27150. (doi:10.1073/pnas.1911083116)
- 110. Casalegno JS, Ottmann M, Duchamp MB, Escuret V, Billaud G, Frobert E, Morfin F, Lina B. 2010 Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. *Clinical Microbiology and Infection* **16**, 326–329. (doi:10.1111/j.1469-0691.2010.03167.x)
- 111. Linde A, Rotzén-Ostlund M, Zweygberg-Wirgart B, Rubinova S, Brytting M. 2009 Does viral interference affect spread of influenza? *Euro Surveill* **14**, 19354.
- 112. Mak GC, Wong AH, Ho WYY, Lim W. 2012 The impact of pandemic influenza A (H1N1) 2009 on the circulation of respiratory viruses 2009–2011. *Influenza and Other Respiratory Viruses* **6**, e6–e10. (doi:10.1111/j.1750-2659.2011.00323.x)
- 113. Alizon S, de Roode JC, Michalakis Y. 2013 Multiple infections and the evolution of virulence. *Ecology Letters* **16**, 556–567. (doi:10.1111/ele.12076)

- 114. Wille M, Eden J-S, Shi M, Klaassen M, Hurt AC, Holmes EC. 2018 Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. *Mol Ecol* **27**, 5263–5278. (doi:10.1111/mec.14918)
- 115. Hodgson DJ, Hitchman RB, Vanbergen AJ, Hails RS, Possee RD, Cory JS. 2004 Host ecology determines the relative fitness of virus genotypes in mixed-genotype nucleopolyhedrovirus infections. *Journal of Evolutionary Biology* **17**, 1018–1025. (doi:10.1111/j.1420-9101.2004.00750.x)
- 116. Seppälä O, Jokela J. 2016 Do Coinfections Maintain Genetic Variation in Parasites? *Trends in Parasitology* **32**, 930–938. (doi:10.1016/j.pt.2016.08.010)
- 117. Karvonen A, Jokela J, Laine A-L. 2019 Importance of Sequence and Timing in Parasite Coinfections. *Trends Parasitol* **35**, 109–118. (doi:10.1016/j.pt.2018.11.007)
- 118. Seabloom EW, Borer ET, Gross K, Kendig AE, Lacroix C, Mitchell CE, Mordecai EA, Power AG. 2015 The community ecology of pathogens: coinfection, coexistence and community composition. *Ecology Letters* **18**, 401–415. (doi:10.1111/ele.12418)
- 119. Cross ST, Kapuscinski ML, Perino J, Maertens BL, Weger-Lucarelli J, Ebel GD, Stenglein MD. 2018 Co-Infection Patterns in Individual Ixodes scapularis Ticks Reveal Associations between Viral, Eukaryotic and Bacterial Microorganisms. *Viruses* **10**, 388. (doi:10.3390/v10070388)
- 120. Mac Aogáin M *et al.* 2021 Integrative microbiomics in bronchiectasis exacerbations. *Nat Med* **27**, 688–699. (doi:10.1038/s41591-021-01289-7)
- 121. Faust K, Raes J. 2012 Microbial interactions: from networks to models. *Nat Rev Microbiol* **10**, 538–550. (doi:10.1038/nrmicro2832)
- 122. Chen Y-M *et al.* 2023 Host traits shape virome composition and virus transmission in wild small mammals. *Cell* **186**, 4662-4675.e12. (doi:10.1016/j.cell.2023.08.029)
- 123. Miller E, Huppert A. 2013 The Effects of Host Diversity on Vector-Borne Disease: The Conditions under Which Diversity Will Amplify or Dilute the Disease Risk. *PLOS ONE* **8**, e80279. (doi:10.1371/journal.pone.0080279)