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Abstract

Social networks constitute an important approach in the study of animal social behaviour. So
far, focus has been on statistical analysis of animal social network structures. However,
social networks can also be studied by generative network models - procedures that create
simulated network structures. These models play a key role in wider network science, but
despite occasional use, have not yet been as well integrated in the animal behaviour field.
We believe that generative network models have considerable unexploited potential as a tool
for understanding animal social systems. Here: 1) we provide a general introduction to
generative network models, including a description of questions they are used for
investigating in wider network science, explanation of key model features, and an overview
of common models; 2) we consider generative network models in relation to the study of
animal social behaviour, including description of questions about animal systems they can
be used to investigate (demonstrated by case studies), an overview of animal behaviour
studies that have used generative network modelling, the relevance of the key model
features for animal behaviour studies, and consideration of how to choose a suitable
generative network model for studies of animal social systems. We hope that this can help to
further integrate generative network models into the study of animal sociality.

1. Introduction

Social systems, be they human or non-human, emerge from the pattern of relationships
between individuals within populations (Hinde 1976). Social network methodologies, which
inherently model individuals and their social connections, are therefore an attractive
framework from which to approach studying these systems. Quantitative network analysis
has been adopted from the interdisciplinary field of network science (Brask et al. 2021) and



is now a central part of the scientific investigation of animal sociality, where it has been used
to study in detail the structures of animal social systems, and the wide-ranging ecological
and evolutionary consequences that these structures have (Kurvers et al. 2014,
Snyder-Mackler et al. 2020, Cantor et al. 2021).

The study of animal social network structures has, up to this point, mainly been based on
descriptions and statistical analysis of empirically observed network structures (Webber &
Vander Wal, 2019). While data-based studies also play a large part in wider network science,
another central vein in this field is the development, study and use of models that can create
simulated (artificial) networks — often without any data input. We refer to these models as
‘generative network models". These models are used in diverse settings, ranging from
mathematical studies of networks to studies of specific real-world systems (Newman 2018).
They provide a fundamental theoretical framework with which to approach network
structures observed in nature. Generative network modelling has been used by researchers
working on animal social systems, but has not played as central a role in this research area
compared to their importance in network science more generally. This is likely in part
because tools for easy use of generative network modelling directed towards the animal
behaviour field have not been readily available. This is, however, beginning to change (Ross
et al. 2022, Silk & Gimenez 2023, Brask et al. 2024).

We believe that generative network models hold much unexploited potential as a means to
gain insights into animal social systems. First, they provide a flexible approach to investigate
the connection between individual behaviour and network structure in detail - a topic of
which we currently lack a good understanding despite its importance. And second, by
combining them with transmission simulations, they can be used to study how processes
such as cultural and pathogen transmission are linked to social structure. Furthermore, fitting
the parameters of generative network models to data can give insight into the processes
underlying observed social networks beyond those possible with standard regression-based
analyses. Generative network models are thus a highly useful tool for the study of both the
emergence and the consequences of animal social structures. Therefore, to facilitate further
integration and use of this approach in the animal behaviour field, we here provide an
introduction to generative network models and consider how they have been used in the
animal behaviour field so far, and how they can be used to increase our understanding of
animal sociality.

The paper is structured as follows. In the first half of the paper (Section 2-4), we provide a
general introduction to generative network models, and in the second half (Section 5-7), we
consider them in relation to animal behaviour research. We use this order because the first
part provides information useful for following the second part. In the first half, we consider
what generative network models are (Section 2) and what they are typically used for in wider
network science (Section 3), and we describe general features of generative network models
(Section 4). In the second half, we consider how generative network models have been used
in animal behaviour studies and may be used in this field in the future (Section 5), we
consider the relevance of each of the above-mentioned model features for animal behaviour
studies (Section 6), and we discuss how to choose generative network models for animal
behaviour studies (Section 7). We end the paper with a brief conclusion (Section 8).



2. What are generative network models?

Generative network models are algorithms that construct networks according to specific
rules. Concretely, a generative network model may be thought of as a recipe that describes
how to build a network. This recipe can then be implemented as a piece of computer code to
generate a network. The generated network simply consists of numbers indicating the
positions and strengths of network links, stored in the format of an adjacency matrix or edge
list (as with empirical network data). The models contain model parameters set by the user.
These vary between models but typically include the number of nodes, some way to tune the
density of edges, and parameters concerning how nodes link to each other. The structure of
the generated network depends on the model (i.e. the network construction rules) and the
parameter values set.

In a broad sense, any stochastic procedure that produces an adjacency matrix (or other
network data format) may be considered a generative network model. In principle, this
includes procedures based on the randomisation of existing network data — such as those
that have been widely used in the animal behaviour field for statistical inference (permutation
models; Bejder et al. 1999; Croft et al. 2011, Farine 2017, Hobson et al. 2021). However, the
term ’generative network model’ often refers to models that do not require an observed
network as input, and we here focus on such models rather than permutation models (see
Hobson et al. 2021 for a detailed review of permutation approaches and their relation to
generative modelling).

Whereas new generative network models are sometimes developed for the purpose of a
specific study, many studies use models that are already available, and some models have
been very extensively used. In Table 1 we provide an overview of some generative network
models that are widely used (across different disciplines) and/or are particularly theoretically
important, and describe them by means of model features that we consider in later sections
(Section 4 and 6).

The procedures (algorithms) that generative network models use for constructing networks
can take many forms. Many generative network models used widely in network science are
quite simple in terms of their procedures (including most of the models given in Table 1), but
they can also be more complex (such as some types of exponential random graph models;
Table 1). Many models follow one of the three following procedures. First, some models
include two steps, where they first calculate linking probabilities for all pairs of nodes based
on specified linking rules, and then draw all the links based on these probabilities; a simple
example is the Poisson model where the probability of linking is the same for all pairs of
nodes (Box 1). In other cases, the linking probabilities may depend on aspects such as node
attributes (details in the later sections about model features). Second, some models start
with an initial standard network structure, which is then rewired according to certain rules
and probabilities (for example the small-world model, Table 1). Third, some models add the
nodes sequentially and thereby grow the network to the desired size, with the linking of the
added node following specific rules and probabilities (for example preferential attachment
models, Table 1; see also the later sections about model features).



Table 1. An overview of common generative network models. For each model, information is given concerning its name(s), the type of network it
generates, five model features (which are further considered in Section 4 and 6), and a main reference. Many other generative network models have been
developed - we have selected models that are particularly well-known and are widely used (or very influential) in network science. Note that the information
given here is for the models in what may be considered their most essential form. The models may also be used in other versions (for example with network
growth, link weights, or extra parameters added).

Type of network Uses node Involves Produces
yp Linking rules Model parameters network link Reference
generated

Name(s) of model | *
attributes growth weights**

Poisson model Random network / Random linking n (number of nodes) No No No Erdds & Rényi 1959
Random graph model Poisson network p (linking probability)
Erdés-Rényi model or:
G(n,p) model n (number of nodes)
G(n,L) model L (number of links)
Small-world model Small-world network Random rewiringofa  n (number of nodes) No No No Watts & Strogatz 1998
Watts-Strogatz model (for some parameter clustered initial network k (average degree)
settings) B (rewiring probability)
Preferential attachment Directed scale-free / Preferential attachment t (number of timesteps) Intrinsic Yes No Price 1976
model power law network (linking based on node
Price model degree)
Preferential attachment Scale-free / power law  Preferential attachment moO (initial number of nodes) Intrinsic Yes No Barabasi & Albert 1999
model network (linking based on node m (number of edges for
Barabasi-Albert model degree) each added node)

t (number of timesteps)



Configuration model

Hidden variable model
Hidden parameter model
Fitness model

Stochastic block model

Exponential random
graph model
ERGM

Random network with
a specified degree
sequence

Depends on the hidden
variable distribution

Modular network with
communities (i.e.
network with
assortative mixing)

Depends on
specifications

Random linking with a
given degree sequence

Linking based on node
attributes (‘hidden
variables’)

Linking based on node
similarity (categories)

Depends on
specifications

None, but a degree
sequence is given as input

n (number of nodes)

p(x) (hidden variable
probability distribution)

f (hidden variable function)

n (number of nodes)
¢ (number of communities)
P (linking probability matrix)

Depends on specifications

No

Extrinsic

No /
extrinsic

FkKk

Depends on
specifications

No

No

No

No

No

No

No

Nolyes

Newman et al. 2003

Caldarelli et al. 2002

Holland et al. 1983

Robins et al. 2007

* For explanation of intrinsic and extrinsic node attributes, see Section 4.
**This concerns whether the original model produces link weights; links weights can always be added (see Section 4).
***Linking in this model may be interpreted as being based on community membership (i.e. the model does not use any node attributes), or being based on categorical node attributes (i.e. the
model uses extrinsic node attributes).



An important feature of generative network models is that they usually contain stochasticity,
which means that networks made with the same model and parameter setting are unlikely to
be identical to each other, although they will be similar. The models can therefore be used to
create large ensembles of networks, with common structural properties and random
structural variation among the networks. The networks in an ensemble may be thought of as
replicates in a simulated experiment, where different generative models - or the same model
with different parameter settings - may be used to generate different treatment groups
(ensembles). Using large network ensembles instead of single networks is highly useful
because it allows researchers to study networks with specific structural properties while
minimising bias from random structural variation, and studies involving generative network
modelling usually use network ensembles.

Box 1. Example of a simple generative network model: the Poisson model

The most fundamental generative network model may be considered to be the Poisson model
(also known as the Erdés-Rényi model or the random graph model, see also Table 1). In this
model, all pairs of nodes have the same probability of linking. This gives rise to a network
where the degrees (number of links for each node) are Poisson distributed. The model is useful
for example when Poisson degree distribution is a desired property, or when the study requires
purely random network structures (for example for comparison with other structures).

Model algorithm

1. Set the parameters n (number of nodes) and p (linking probability)

2. For each pair of nodes j and j, draw a random number g between 0 and 1
3. If g<p, place a link between i and j

Using the model
We can generate networks based on the model by running a computer code that implements
the above algorithm (either written by ourselves or from software such as R packages).

Example networks generated with the model
Three Poisson networks with 50 nodes and different linking probabilities:
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Alternative form of the model

An alternative form of the Poisson model is to set the number of links L instead of the linking
probability p, and then add a link to L randomly drawn dyads. In both cases, the parameter (p
or L) acts as a density parameter, but in the case of L the density is exactly specified, whereas
with p it is stochastic. This exemplifies how a generative network model may be implemented in
different ways depending on what is most useful for a specific study. The two forms of the
Poisson model are known as the G(n,p) and G(n,L) model, respectively.




3. What are generative network models used for in wider network
science?

To provide insights into what generative network models can be used to investigate, we here
describe some research themes where these models are utilised in wider network science
(we consider their use in animal behaviour research in Section 5).

Generative network models have been used very widely in network science and across
scientific disciplines, with diverse applications. They are used both for studying networks
from a general perspective, and with the purpose of understanding aspects of specific
real-world systems. The former is often done with studies largely based on computer
simulation, potentially incorporating some empirical network data as examples. The latter is
done both by studying ensembles of artificial networks that resemble the structure (or an
aspect of interest) of the system in question, or by using generative models as a tool for
statistical inference. Diverse types of networks have been studied with generative network
modelling, including various human social networks from policy networks (e.g. Metz &
Brandenberger 2023), through environmental collective action (e.g. Nohrstedt & Bodin 2020)
to school friendships (e.g. Mamas et al. 2020), and non-social networks such as
transportation networks (e.g. Natera Orozco 2020), and species interaction networks (e.g.
Zhang et al. 2011). The research themes below are relevant both for general and
system-specific studies.

Network emergence

Generative network models provide the primary tool to understand how network structure
emerges or, more precisely, how rules determining how nodes connect to each other affect
network structure (Newman 2018). A famous example is preferential attachment models
(e.g. Barabasi & Albert 1999, Price 1976, Table 1), which revealed that when nodes (for
example individuals) joining a network tend to attach to the most connected nodes, this
leads to a network with a scale-free degree distribution, a structural feature which has been
of great interest and debate in network science due its properties and impact on network
function (Barabasi & Albert 1999, Broido & Clauset 2019, Holme 2019).

Dynamical processes on networks

Another common use of generative network models in wider network science is for
investigations of dynamical processes on networks. For example, they have been used
extensively to investigate the spread and maintenance of cooperative strategies in structured
populations (reviewed in Szabo6 & Fath 2007, Roca et al. 2009, Jusup et al. 2022), as well as
infectious disease transmission (e.g. Moore & Newman 2000, Gross et al. 2006, Miller 2009,
Salathé & Jones 2010). While simulations of such processes can also be done using
networks quantified from real-world systems, generative network models can provide large
sets of replicated networks with specific properties (described in Section 2), which facilitates
studies of how these properties affect the processes concerned. A classic research theme in
this area concerns how clustering (the tendency of your friends to also be friends with each
other) and modular structure (social groupings within the network) influence contagions like
infectious disease or behaviour spread. Approaches using generative network models have



been central to showing that clustering typically makes it harder for infections to spread (e.g.
Miller 2009), and that when networks are highly modular (i.e. contain clear communities that
are weakly connected to each other), then infections take longer to spread and control
efforts like vaccination can be targeted at particular individuals (e.g. Salathé & Jones 2010).
By studying different contagions across networks generated using the same generative
models, we can also learn about how the effect of structural features may vary depending on
the type of contagion. For example, informational cascades can be impacted in a different
way by modular networks than infection spread if the model for transmission is different (e.g.
Nematzadeh et al. 2014).

Dynamics of networks

While generative network models are often used to produce static network structures, they
can also be used for simulating temporal network dynamics, where links change over time.
One common use of dynamic network models in wider network science is again to quantify
how networks impact infectious disease spread. Moving from static to dynamic generative
models for the underlying network structure has revealed that in many cases, the network
dynamics can be as important as network structure for how easily infections can spread
through a population (e.g. Volz & Meyers 2007). More complex generative models for
network dynamics have then been used to develop theory for how the behavioural response
of individuals to infection can alter population-level disease dynamics (e.g. Gross et al. 2006)
and to look at how informational or behavioural contagions can mitigate the spread of
disease (e.g. Silk et al. 2021). Similarly, dynamic generative network models have also been
used to study how behavioural strategies such as cooperation spread when individuals can
change their social links, for example by severing ties to uncooperative individuals (reviewed
in Gross & Blasius 2008, Perc & Szolnoki 2010, Jusup et al. 2022, Berner et al. 2023).
Network dynamics can be based on linking rules from models also used for static networks
(e.g. Table 1), or can be modelled without an underlying static model. In the latter case,
static networks can be extracted from the dynamics and these models are therefore also
‘generative’ (although this aspect may not always be relevant for a given study).

Robustness of networks

Another common theme in network science where generative network models have been
frequently used is the robustness of different network structures to perturbations or failures
of nodes and links. This is relevant in many different real-world circumstances, such as
failures of components in physical communication networks (e.g. routers), vaccination
schemes (where vaccinated individuals can correspond to removed nodes because disease
transmission cannot pass through them), and disappearance of species in ecological
networks. A common procedure for investigating network robustness is to sequentially
remove nodes (or links) from networks and study the breakdown processes (often referred to
as percolation; Artime et al. 2024). The focus is often on the connectedness of the remaining
network during the removal process, and particularly the timing of the phase transition where
the network goes from having a large main (‘giant’) component to breaking into multiple
smaller components (network parts without connection to each other). Using such removal
procedures on large ensembles of artificially generated networks (Section 2) allows for
investigating the relationship between specific structural properties and network robustness.



4. Features of generative network models

Below we describe a set of general features of generative network models that can be useful
to be aware of and consider when working with these models. The presence and form of
these features in any given model have consequences for the resulting network structures,
and for the usefulness of the model in different studies. We have used the features to
describe the models in Table 1. We consider each feature in relation to animal behaviour
research in Section 6.

Linking rules

All generative network models necessarily contain rules for how nodes link to each other,
and these linking rules may be considered to be the essence of the models, as they play a
key role for the structures produced. Linking rules can be very simple, such as in the
Poisson model (Box 1, Table 1) where each pair of nodes connect to each other with the
same probability (set by the user), or they can be complex, such as in exponential random
graph models (Table 1) where multiple factors may influence the linking probability of each
pair of nodes. Linking rules for a given model may have been constructed either with the
purpose of reflecting a specific linking behaviour of real systems (for example a social
strategy), or for the purpose of creating networks with specific structural properties, or both.

Model parameters

Generative network models contain parameters that are set by the user and affect the
structure of the outcome network. The number and types of parameters differ between
models (see Table 1 for examples). In most cases, the structural metrics of the network
(such as the level of clustering, the average path length, etc.) are not directly set by the
parameters. Instead the parameters usually have to do with the nodes and their linking
(likely because of the fact that the models work by modelling linking processes). However,
the parameters often correlate with structural properties to some extent. The parameters
may also affect a range of interlinked structural properties, and this means that when a
model is used to produce networks with a given structural feature (e.g. high modularity), this
can induce constraints on other structural properties, which can be important to be aware of.
In some cases, a structural feature is given directly as an input to the model and is thus fully
specified by the user (for example degree distributions in the configuration model, Table 1).

Node attributes and dyadic attributes

Some generative network models do not involve any node-related attributes — in other
words, all nodes are considered identical, and the placing of links does not depend on any
features of the nodes (for example the Poisson model; Box 1, Table 1). However, in
real-world systems the properties of nodes are often important for the network structure, and
they can therefore be relevant to take into account in generative network models. This can
be done by including node-related attributes in the models. We distinguish between node
attributes, which concern each single node, and dyadic attributes, which concern each pair



of nodes. We further divide node attributes into two categories: extrinsic and intrinsic. The
latter are derived from the network, whereas the former are not.

Extrinsic node attributes are any node characteristics that are not derived from the
network. This could be, for example, the size of airports in an air transport network, the
species in an ecological network, or traits and characteristics of individuals (such as their
age and sex) in a social network. Such node attributes are known to affect the probability
and weights of links in many real-world systems. For example, the size of airports are likely
to correlate with the number of flights between them, and the age and sex of individuals are
likely to affect how they interact socially. Some general generative network models include a
value for each node (e.g. the hidden parameter model, Table 1), and exponential random
graph models (Table 1) can include multiple node attributes. Extrinsic node attributes used in
generative network modelling may be simulated or derived from real-world data.

Intrinsic node attributes describe the network positions of nodes, and typically take the
form of standard node-based network metrics (e.g. degree, strength, betweenness, etc.).
Intrinsic node attributes can be used in growth models (where the network is constructed by
adding nodes sequentially; see ‘network growth’ below and in Section 6), by letting the
network metrics of current nodes affect the linking of the next added node. This introduces a
temporal dependency in the network construction, where a nodes’ probability of linking to
others depends on the links that have already been placed. In a social setting this reflects
the assumption that the building of social ties depends on the social positions of potential
social partners. For example, in preferential attachment models (Table 1), each new node
connects to existing nodes with a chance that is proportional to the existing nodes’ current
degree (i.e. individuals prefer to link to well-connected others). Intrinsic node attributes have
also been used in models of temporal network dynamics (see for example Fefferman & Ng
2007a,b).

Dyadic attributes are attributes that concern each dyad (pair of nodes) rather than each
single node. They typically consist of measures of distance (or closeness) between the two
nodes (in terms of node attributes), such as their genetic relatedness or age difference.
Given that they are derived from properties of the individual nodes, dyadic attributes may in
some models be given to the model as node attributes, whereafter the model calculates the
dyadic attributes (for example, the model may require ages as input even if it uses age
differences). To know whether a model uses node or dyadic attributes, it is therefore not
enough to know which are given as input.

Network growth

The process that a generative network model uses to construct the network may or may not
involve network growth, where the nodes are added to the network sequentially (see also
Section 2). Growing the network is often used in models that involve intrinsic node attributes
(i.e. where nodes use the network position of others to determine who to connect to, see
above), as is for example the case in preferential attachment models (Table 1). Models that
calculate dyadic linking probabilities (Section 2) typically do not require growth procedures,
but can be used with them. They are typically used without growth because it is faster and
leads to the same network structures, but using them with growth can be relevant if the
growth process itself (rather than the final network) is of interest.
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Edge weights

Edge weights are used to describe the strength, magnitude or load of network links (edges),
such as the strength of social relationships. In wider network science, working with
unweighted networks (where all present links are considered of equal strength) is common,
for simplicity and mathematical tractability. Many common generative network models
therefore do not in themselves contain a procedure for assigning weights to the links (Table
1). Weighted networks can, however, still be produced based on any of these models. This
may for example be done by using dyadic linking probabilities from a given model as
expected link weights and drawing link weights from distributions that have these
probabilities as means (for example as in Brask et al. 2024). In terms of modelling
procedures, there are at least three options for how link weights can be modelled: 1) the link
weights are not dependent on the structure of the unweighted network (although they could
depend on the same features, e.g. extrinsic node attributes); 2) the link weights depend
intrinsically on features of the unweighted network (e.g., links in closed triads have higher
weights); or 3) the generative model is inherently weighted (i.e. there is no step that
generates an unweighted network). Which of these will be most relevant depends both on
the research question and, in the case where a specific real-world system is being modelled,
the extent to which they each fit with relevant properties of that system.

5. Uses of generative network models in animal social behaviour
research

Generative network models have already been used in diverse animal behaviour studies
(see Table 2 for examples of such studies, and Table A1 in the Appendix for a more
comprehensive list). Many of these studies use models developed specifically for that study,
with some also (or only) using standard models from network science (or variations on
them). Here we consider research themes that seem particularly relevant for the existing and
future use of generative network models in animal social behaviour research. For each
theme, we highlight relevant existing studies, and we provide an example case study that
uses generative network modelling to investigate a research question within the theme, with
R code included in the Supplementary Material.

Emergence of animal social network structures

By providing formal descriptions of the connection between linking rules (individual
behaviour) and network structure, generative network modelling constitutes a key
methodology for investigating the processes underlying the structure of animal social
systems. One approach for such studies is where a model based on a known or assumed
key generative process of animal social structures is developed, and its network structures
investigated. For example, llany & Akcay (2016a) suggested that simple rules around
maternal inheritance of social connections can explain apparently complex social structures,
and showed this by a generative network model based on such social inheritance. Another
study (Brask et al. 2024) investigated how different preferences for traits (i.e. preferences for
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Table 2. Examples of (non-human) animal behavioural ecology papers that deploy generative network models. A more comprehensive list of
studies is available in Table A1.

Paper Main aim of paper Model category Study species Citation

Sampling animal association networks with

the gambit of the group Methodological Mixed (linking probability Theoretical Franks et al. 2010

and group-based)

An Individual-Oriented Model on the

A Dominance hierarchies  Spatial Theoretical / Hemelrijk &
Emergence of Support in Fights, Its
Reciprocation and Exchange macaques Puga-Gonzalez 2012
Friendship, reciprocation, and interchange in . . .
onasnip P g Behavioural theory Spatial Theoretical Puga-Gonzalez et al. 2015
an individual-based model
The consequences of unidentifiable . .
L 9 . . Methodological Group-based Brent geese Silk et al. 2015
individuals for the analysis of an animal
social network
Social inheritance can explain the structure . . L -
of animal social networks Social dynamics Linking probability Spotted hyena, llany & Akgay 2016a
rock hyrax,
bottlenose dolphin,
sleepy lizard
Indirectly connected: simple social . . .
y P Behavioural theory Group-based Theoretical Firth et al. 2017

differences can explain the causes and
apparent consequences of complex social
network positions
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Social style and resilience of macaques’
networks, a theoretical investigation

Behavioural theory

Spatial

Theoretical /

Puga-Gonzalez et al. 2019

macaques

Structural trade-offs can predict rewiring in . . . . .
shrinking social networks Behavioural theory Linking probability Theoretical Farine 2021
Common datastream permutations of animal . . L - . .
social network data are ot appropriate for Methodological Mixed (linking probability Theoretical Weiss et al. 2021a
hypothesis testing using regression models and group-based)
Generation and applications of simulated . . L - . . .

! pplicatt mi Methodological Mixed (linking probability Theoretical Silk and Gimenez 2023

datasets to integrate social network and
demographic analyses

and group-based)

Ageing in a collective: The impact of ageing
individuals on social network structure

Social ageing

Linking probability

Rhesus macaque

Siracusa et al. 2023

Far-reaching consequences of trait-based
social preferences for the structure and
function of animal social networks.

Behavioural theory and
methodological

Linking probability

Theoretical

Brask et al. 2024
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social partners with a certain sex, age, relatedness etc.) affect social network structure and
function, and found that the specific trait preferences used in a population can have effects
on the populations’ risk of epidemics and robustness against social breakdown when
individuals disappear. Other studies have used generative network models in combination
with analysis of empirical data to understand the role of different factors in social structuring
(for example social aging, Siracusa et al. 2023; cooperativeness, Darden et al. 2020). In
Figure 1, we describe a case study where generative network modelling is used to
investigate how social preferences for one’s own matriline affect network structure (the code
is available in the Supplementary Material).
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Fig. 1. An example of how generative network modelling may be used to study the emergence
of animal social networks. We are interested in how social preferences for individuals similar to
oneself (homophily) affect social network structure, in a social system where there are five matrilines
and individuals prefer to socialise with those of their own matriline. We compare this to a case where
individuals do not have such preferences (i.e. they are socialising is random). An example of each
type of network is shown in a). For each type, we generate an ensemble of 100 networks and
measure four network metrics on each network. The results are shown in b). We see that the matriline
preferences lead to increased tendency for individual's friends to be connected to each other
(unweighted and weighted clustering) and increased average social distance between individuals
(unweighted and weighted pathlength). The results show how preferences for one’s own matriline
affect structural network properties, and they furthermore imply that such preferences are likely to
influence factors that are dependent on these network properties, such as the spread of information
and disease.
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Dynamical processes on animal social networks

Generative network models have been used regularly to investigate dynamics happening on
animal social networks, especially the spread of pathogens, information and behaviour. In
this context, being able to generate ensembles of networks that either: a) share particular
structural properties; or b) are similar to an empirically observed network but incorporate
additional stochasticity is very valuable for investigating the link between social structure to
epidemiological dynamics. For example, generative network models have been used to test
how the modular structure of animal social networks influences the spread of pathogens and
behaviours (Sah et al. 2017, Romano et al. 2018, Evans et al. 2021), with results suggesting
that the modular structure and module size can mitigate the potential trade-off between
behaviour spread and infection spread in groups (Evans et al. 2020). Generative models
have also been fitted to empirical datasets and then used to simulate network ensembles
resembling the empirical data, to study how social behaviour influences wildlife disease
dynamics (e.g., Reynolds et al. 2015, Rozins et al. 2018), and this offers great potential as a
tool to partially account for the observation process and ensure robustness of
epidemiological dynamics to weak or chance interactions, especially as generative models
for animal behaviour become more accessible. In our case study in Fig. 2 we provide some
simple examples of generative network models being used as the basis for epidemiological
modelling in this way.

Dynamics of animal social networks

While it is convenient to focus on only the (static) structure of animal social systems, social
interaction patterns change across time and context (Silk et al. 2017, Smith et al. 2018,
Prehn et al. 2019), and these social dynamics can be important for many ecological and
evolutionary processes (Farine 2017). Despite this, few studies have used dynamic
generative network models in animal behaviour. One exception is in wildlife disease, where
generative network models have been used to show how seasonal social dynamics can
influence how fast infection spreads (Reynolds et al. 2015). Perhaps even more powerful is
to integrate the generative network model with individual states or population-level
processes to facilitate the modelling of feedback loops. For example, there is growing
interest in how social networks respond to demographic change (Shizuka & Johnson 2019)
and pathogen spread (Ezenwa et al. 2016, Stockmaier et al. 2021). Similarly, within-group
theoretical models of dominance hierarchies (Hemelrijk & Puga-Gonzalez 2012) and
collective behaviour (Bode et al. 2012) can benefit from generative network modelling. For
example, Gupte et al. (2023) used an agent-based social movement model to study how
individual behaviour and population social network structure may evolve in response to
pathogen emergence. In our epidemiological case study example (Fig. 2, code available in
the Supplementary Material), we include dynamics of the networks themselves in two ways.
In the first (Fig. 2a-c), the extent of social connectivity differs between two seasons, and in
the second (Fig. 2d), the network connections also depend on the current epidemiological
state of the group as a whole. This highlights how dynamic generative network models can
help answer general questions related to the co-dynamics of social behaviour and infection
(Ezenwa et al. 2016).
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Figure 2. Examples of how generative network models may be used to study dynamics on and
of animal social networks. We are interested in the spread of diseases in social networks. On the
left we use a generative model of random temporal social dynamics unrelated to the disease model.
a) the model consists of two seasons (illustrated by dark and light grey boxes) that differ in the extent
of connectivity of the social network (the underlying model is the basic Poisson model introduced
earlier). b) If we simulate susceptible-infected-susceptible (SIS) disease dynamics over this
seasonally dynamic network, we can track the infection prevalence across time. c) We can use this
time series to show that prevalence tends to increase during the highly-connected season and reduce
during the lowly-connected season, potentially providing valuable information on how the infection
persists in the population. On the right we extend our generative model so that the temporal social
dynamics of the network are also influenced by the prevalence of disease in the population (social
connectivity is reduced when infection prevalence reaches 30%). In d) we show the infection
prevalence resulting from this new model (blue lines) and compare this scenario to the original model
(red lines). Semi-transparent lines show the prevalence from individual simulation runs, and the thick
line shows the mean prevalence calculated across all simulation runs.

Animal social network robustness

Studying the robustness of animal social networks can provide insights into the resilience of
animal social systems to perturbations — both natural and human-induced. As described in
Section 3, network robustness has often been studied by sequentially removing nodes or
links from networks and studying their structural breakdown. In relation to animal social
networks, node removal can correspond to loss of individuals (e.g. via death or dispersal),
and link removal can correspond to loss of social connections or opportunities to interact
(e.g. due to habitat fragmentation). In animal behaviour research, robustness studies of
generated networks have for example been used in investigations of the effect of poaching
on social structures (Wisniewska et al. 2022), and the robustness of network structures that
are based on different types of social partner preferences (Brask et al. 2024). Simulated
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Figure 3. An example of how generative network modelling may be used to investigate the
robustness of animal social networks. We are interested in the robustness of structures
characterised by modularity (network communities), which is frequently observed in animal systems.
Using the trait preference model (Brask et al. 2024), we generate an ensemble of networks where
individuals belong to five types (such as different matrilines) and the structure is driven by preference
for own type (as in Fig. 1). For comparison, we generate two standard types of networks: random
(Poisson) networks (generated with the Erd6s-Rényi model, Table 1), and scale-free networks based
on preferential attachment (generated with the Barabasi-Albert model, Table 1). We then measure the
networks’ robustness to different node removal procedures reflecting different real-world scenarios,
where the loss of individuals is either random or correlated with their levels of social connectedness
(high degree) or isolation (low degree). We see that the robustness of the modular networks is quite
similar to that of the other network types under random loss of individuals. In contrast, they have
higher robustness than the scale-free networks when loss correlates with social connectedness, and
they have lower robustness than both random and scale-free networks when loss correlates with
social isolation. Modularity in animal social networks (such as matriline-based structure) can thus
affect their robustness, and the effect depends on whether and how the risk of death or dispersal is
linked to individual social connectivity. RD = random, SF = scale-free, MD = modular.
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removal experiments may also be carried out on observed animal social networks (Flack et
al. 2006, Williams & Lusseau 2006), and combining robustness simulations on real and
simulated networks may be rewarding for future studies. It should be kept in mind that in real
populations, individuals may react to the loss of individuals by adjusting their social linking.
Removal studies can, however, still be used to give an indication of the inherent robustness
of the structures themselves (and thus how much reaction would be necessary to keep a
well-connected network). Adjustment of social links can also be incorporated into robustness
simulations (i.e. using a dynamic generative network modelling approach, e.g. Farine 2021).
In Fig. 3 we show an example case study of how generative network models combined with
node removal may be used to study the robustness of animal social networks (code
available in the Supplementary Material). We are interested in the robustness of networks
with a modular structure, and we investigate this by measuring the resilience of such
networks to different types of loss of individuals (node removal) and comparing this to the
robustness of two types of reference structures made with standard network models.

Animal social network methodology

One area where generative network models have already seen considerable application in
animal behaviour is as a tool to evaluate data collection and analysis methodologies for
empirical social networks (Table 2, and Table A1 in the Appendix). Here, the purpose of the
models is to generate networks that can be used as ground truth in studies investigating, for
example, the effect of incomplete sampling and observation biases, or the effectiveness of
statistical procedures in detecting known effects. In such studies, the general procedure is to
use a generative network model to create “true” social networks, simulate sampling (data
collection) from those networks, and then run downstream analyses on the simulated
datasets. Such analyses have investigated the impact of unidentifiable or missing individuals
on network analysis (Silk et al. 2015), evaluated methods for dealing with uncertainty and
bias in data collection (Farine & Strandburg-Peskin 2016; Weiss et al. 2021a), and examined
the impact of different sampling schemes on inferred network structures (Franks et al. 2010).
The underlying network models in such studies are often quite simple, typically either
random linking models or stochastic block models (Table 1). The networks generated with
these models are then used as the basis of simulated sampling of interactions, associations,
or even grouping events. For example, the genNetDem R package (Silk & Gimenez 2023)
allows the simulation of interaction or grouping events (either dyadic or including groups
bigger than two) that are based on an underlying network of social preferences. The
likelihood of individuals occurring in these events together is a function of their dyadic social
preference, as well as their social preferences to other event members. This provides a
flexible tool to generate realistic social data for methodological questions rather than simply
the network that would be measured. Aside from general examinations of data collection and
analysis methods, the above described procedure can be used to develop power analyses
for specific studies prior to data collection from empirical networks. In Fig. 4 we show an
example of this (code available in the Supplementary Material). Here, we are interested in
determining how many sampling periods are needed to detect assortment by a trait in a
(‘real’) network, and we therefore repeatedly simulate sampling on networks generated to
have different levels of assortment, and run our statistical analysis on each replicate (Fig. 4).
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Figure 4. An example of how generative network models may be used for power analysis in
animal social networks studies. In this example, we are interested in testing for social homophily by
some categorical trait in a (‘real’) group of 20 individuals. We intend to measure association networks
through a series of complete scan samples of the group, recording which individuals are associated at
each time period. To understand how many samples need to be collected to achieve a target power of
0.8, we simulate networks with different levels of trait preferences using the algorithm from Brask et
al. 2024 (right), then simulate either 5, 10, 20, or 50 sampling periods (left), and then fit a binomial
generalised linear model testing whether association probabilities are higher within vs. between
classes (i.e. testing for homophily). When preferences are strong (homophily is pronounced), very few
samples are needed (yellow line), however with more subtle preferences even 50 samples would be
inadequate to detect homophily with the desired power.

6. Model features in relation to animal social behaviour research

We here revisit the model features described in section 4 and consider how and when they
are relevant in animal behaviour research. This can be useful for example when planning
studies on animal behaviour that involve generative network models.

Linking rules

Many generative network models have been developed to investigate the effect of a specific
type of linking, or to produce networks with a specific structural property (Table 1). Such
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models often have simple linking rules where a single factor affects the linking, whereas in
real animal social networks, multiple factors are likely to affect the linking. Models with
simple linking rules can be relevant for animal behaviour studies if the particular linking rules
or structural features of the output networks are of interest for the research question, or as
standard reference models (e.g. as in Fig. 3). If the generative process should resemble
those of animal social systems more closely, then models where multiple factors can affect
the linking may be more relevant (e.g. several simultaneous trait preferences: Brask et al.
2024, Table 2; or several simultaneous substructure-building processes: exponential random
graph models, Table 1). Models that are explicitly based on grouping dynamics may be
relevant particularly in cases where the networks should resemble those from
gambit-of-the-group data (see for example Silk & Gimenez 2023).

Model parameters

In relation to animal behaviour studies, parameters of generative network models can be
considered both as a way of setting aspects of the social behaviour of individuals in the
simulated population, and as a way of tuning the structure of the networks. Which of these
interpretations are relevant depends on the focus of the study (whether the purpose of the
modelling is to model specific social behaviour or simply generate networks with specific
structural properties). Parameter settings may be chosen by the user or may be set based
on measurements from real animal social systems. The first can be very useful for example
for studies of general questions that do not concern a specific system, and here it may often
be relevant to study networks across the parameter range (e.g. as in Brask et al. 2024). The
latter approach may be particularly useful if the research question concerns a specific
system. For example, Rozins et al. (2018) used a generative model that included group
membership and the distance between refuge locations to develop an ensemble of social
networks that closely matched an empirically observed network, and Siracusa et al. (2023)
studied the effect of individuals’ ageing on social networks with a generative model where
linking between ages and kin groups was parameterized based on real networks.

Node attributes and dyadic attributes

The empirical research in animal social networks imply that node and dyadic attributes play
an important role for the structures of these networks, and generative network models that
include attributes are therefore relevant for many questions about animal social systems.

The traits of individuals play a key role for the network structures (reviewed in Brask et al.
2024). Extrinsic node attributes can therefore be important if generative network models
are to create structures that match real-world animal social structures well, and for
understanding the real-world social linking processes and the role that individual
heterogeneity plays in them. The trait preference model (Brask et al. 2024) is an example of
a model which is based on empirical knowledge about animal social structures and
generates social network structures from different types of social preferences for one or
multiple traits (or equivalent processes related to node attributes). Models based on group
dynamics can also incorporate node attributes, for example by letting the chance of joining a
group depend on a trait.
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Effects of intrinsic node attributes (i.e. attributes derived from network positions) on social
linking could be realistic for some animal social systems. For example, if information access
is important for fithess, then individuals could be expected to prefer well-connected
individuals as social partners - a behaviour which is epitomised by preferential attachment
models (Table 1). A study on lemurs implied that individuals in this system become more
central when they are knowledgeable (Kulahci et al. 2018), suggesting that connectivity (i.e.
an intrinsic node attribute) in this system could be used as a useful indicator of knowledge.
Empirical research on the effect of individual attributes on animal social networks has mostly
focused on traits (i.e. extrinsic node attributes), and it is an open question to which extent
intrinsic node attributes are important in these systems. In any case, models with intrinsic
node attributes could be useful in studies of animal social structures for generating networks
with specific structure, or as reference models.

Dyadic attributes that derive from the traits of individuals have shown to be widely
important in animal social networks. These include genetic relatedness (e.g. De Moor et al.
2020), as well as differences between individuals in traits such as their age and sex (e.g.
Weiss et al. 2021b). Models where social linking is dependent on dyadic attributes can
therefore be very relevant for studies of animal social systems. To select a model that uses
dyadic attributes, it is good to be aware that some models take only node (individual)
attributes as input and then change them to dyadic attributes within the model (see also
‘dyadic attributes’ in Section 4).

Network growth

Models that include a network growth process can be relevant for animal behaviour studies
for at least two reasons. Firstly, the network position of others could potentially affect social
partner choice in animal species (see intrinsic node attributes above). In this case, a growth
process (or another dynamic process) can be necessary to simulate the generative process,
because individuals use the network position of others to decide who to socialise with.
Secondly, the network growth processes in themselves can be relevant to study (whether or
not individuals use network positions in partner choice) for understanding various aspects of
animal social systems, such as the the establishment of social groups.

Link weights

The types of social connections studied in animal social systems are typically inherently
weighted (that is, they can be stronger or weaker, rather than only being present or absent),
and the inclusion of link weights in modelled animal social networks is therefore often
relevant (see ‘link weights’ in Section 4 for how weights may be generated). Unweighted
generated networks can also be relevant for some types of investigations of animal social
systems - for example theoretical investigations where complexity reduction can be useful,
or analyses that do not use weighted network metrics. When using weighted networks, it can
be important to use a weight-adding procedure that gives a biologically realistic weight
distribution over the network. For example, if the chance of being socially connected is
correlated with a node attribute, then it may be more realistic to also let the link weights
correlate with this attribute, rather than adding random weights. For example, Rozins et al.
(2018) use a zero-inflated negative binomial generalised linear mixed model as a generative
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model for weighted European badger (Meles meles) contact networks, with edge weights
related to dyadic attributes (shared group membership and distance between groups), while
agent-based model approaches such as GrooFiWorld (Hemelrijk & Puga-Gonzalez 2012,
Table 2) can naturally track the frequency of proximity events or interactions each individual
is involved in.

7. Choosing the right generative network model for an animal
behaviour study

Generative network models can be useful for many different research questions concerning
animal behaviour (Section 5), and which model would be most relevant to use will depend on
the research question and approach. Choosing the right model for the right purpose — and
being aware of its limitations and the structural properties in its networks — is important for
avoiding biases and incorrect conclusions. One key thing to consider is to what extent the
networks and the linking process (i.e. the modelled social behaviour), respectively, should
resemble those of real-world animal social networks (e.g. a specific system/species). It is
also important to be aware that if a model replicates a real structure well, it does not
necessarily mean that the modelled generative processes correspond to those that have
created the real network, as similar structures can arise from different processes (Hobson et
al. 2021). Below we consider different kinds of models and when to use them. The model
features considered in Section 4 and 6 are also relevant to consider when selecting or
constructing a model. See Box 2 for where to find tools and code for generating networks
with generative network models.

Box 2. Where to find tools for generative network modelling

e R functions for some common standard models can be found in network-focused R
packages such as igraph (Csardi & Nepusz 2006), sna (Butts 2023), statnet and ergm
(Handcock et al. 2018). Many standard models can also be implemented with relatively
few lines of code, and programming-experienced researchers may prefer this option for
flexibility and control.

e R packages for general generative network models inspired by animal social
networks have recently started appearing, including the genNetDem package (Silk &
Gimenez 2023) and the okaapi package (based on the trait preference model described in
Brask et al. 2024).

e Code for specific generative network models may be found as supplementary material
to the research papers where the model was developed.
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Common standard models

Common standard generative network models, such as those listed in Table 1, have been
used relatively little in the animal behaviour field - in particular considering their ubiquity in
network science. This is maybe because they have been deemed unlikely to generate
networks that resemble animal social networks well, and not all of them have been
presented in the setting of social systems. There are, however, a number of ways in which
these models may be useful in animal behaviour research. For example, if the research
question concerns how specific structural properties affect network function (such as disease
transmission), it may be relevant to use a model that allows for varying the property of
interest while keeping the rest of the structure random. Standard models can also function
as benchmark cases (‘control groups’) that are for example compared to more realistic or
real-world networks (as in Fig. 3). For example, Rozins et al. (2018) used both the Poisson
(Erdés-Rényi) model and the configuration model (Table 1) as “control” ensembles to
illustrate how individual variation in social connectivity and group structure could both
influence infectious disease spread in European badgers. It should be noted that while it is
perfectly valid to use such standard models for comparison, they are rarely suitable as
statistical null models, as constraints on behaviour or imposed by the sampling process will
be important to account for (De Moor et al. 2024). Another reason why standard generative
network models can be useful in animal behaviour studies is that some standard models can
be interpreted as models for specific behavioural strategies, which could potentially be
relevant for animal systems. Furthermore, given their widespread use, the standard models
can also be useful for comparison of results from other parts of network science, which is
relevant because many of the types of questions investigated with generative network
models outside animal behaviour (Section 3) are also of interest in this field (Section 5).
Additionally, these standard generative models could be adapted or combined to create new
valuable tools in animal behaviour research. For example, the social inheritance model
builds on an existing social science model for network growth (llany & Akgay 2016a), and the
GenNetDem R package (Silk & Gimenez 2023) combines features of a simple (two
dimensional) latent space model and stochastic block model (Table 1) in its generation of
underlying social networks. Given these considerations, it seems that standard generative
network models may be more useful in animal behaviour research than their current use
reflects (as long as it is made sure that they are the suitable choice for the research question
at hand) and could offer new insights into these systems.

Models based on animal social systems

A few general generative network models have been developed specifically based on
empirical knowledge about animal social systems (such as the social inheritance model,
llany & Akcay 2016a, and the trait preference model, Brask et al. 2024). These may be used
when the linking mechanisms and behavioural strategies they simulate are of interest, and/or
when the structures they produce are relevant. Similarly to many standard models, these
models create networks directly from linking probabilities — meaning that the data from which
empirical networks are usually created (e.g. data streams of interactions or group
memberships) are not in themselves simulated. In some cases it may be necessary to create
artificial data streams of social interactions or associations (for example when studying
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sampling effects), and there are also tools available for this made specifically for animal
social systems (Silk & Gimenez 2023).

Models parameterized by real networks

If the purpose of using a generative network model is to generate network structures that
closely resemble those of a specific species or population — for example to act as substrate
for a theoretical study of transmission processes in that species or population — then it may
be relevant to parameterise the model by one or more real network structures (see for
example Siracusa et al. 2023). This makes it possible to generate large ensembles of
networks that are similar to the given real network but not identical to it (the networks should
ideally catch important aspects of the structure while also reflecting natural stochasticity). It
should be kept in mind that there are limitations to how closely the generated networks will
resemble those of the input. Firstly, the similarity between the modelled networks and the
real network depends on how much of the variation in the data the model explains, and the
generated networks are likely to only contain structural aspects that have been explained by
the model. Therefore, it may often be relevant to check to what extent the model explains the
data, and to what extent and in which aspects networks generated from the parameterized
model resembles the real network (see e.g. Hunter et al. 2008). Secondly, the generated
networks will reflect the real social structure at the time the data were collected, and thus
they may not represent the species well if there is high between-population or temporal
variation in social structure. However, in cases where the generated networks are not highly
similar to the real networks, it can still be relevant to use parameterized models for network
generation if these models catch key generative processes of interest.

Generative network models for statistical inference

While we have here focused on generative network models as a tool for simulation
modelling, these models can also be used as tools for statistical inference. This can be done
by combining them with inference methods (such as Bayesian inference) and parameterising
them based on the observed network of interest. Such statistical inference can in principle
be done with any model that estimates linking probabilities; in this context, the linking
probabilities of pairs of individuals is the outcome variable, and the statistical model
estimates the importance of factors included in the model that can influence this probability
(see Brask et al. 2024 for a conceptual example). Vice versa, this also means that some of
the generalized linear mixed models that are frequently used for statistical analysis of
observed networks can be used as generative models, as artificial networks can be
generated from these models after they have been parameterized with data.

8. Conclusion

Generative network models are an essential tool for studies of animal social structures,
where they can help in investigating a wide range of questions, and can create new
fundamental insights as well as predictions for empirical studies. They also provide a
promising direction for statistical inference of drivers of animal social network structures. A
more extensive use of generative network models in studies of animal social systems could
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therefore strengthen both the empirical and theoretical side of research in animal sociality.
This development is facilitated by increasing accessibility of such models via R packages
(Box 2), and by models and code being developed specifically with animal systems in mind
(lany & Akcay 2016a, Silk & Gimenez 2022, Brask et al. 2024). We hope that the
introduction and overview given above will be useful for researchers taking part in this
adventure.

Acknowledgements

JBB received funding from the Carlsberg Foundation (CF20-0663). MJS received funding from the
European Union's Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement (No. 101023948) and from a Royal Society University Research
Fellowship (URF\R1\221800).

Supplementary material

Code for the example case studies are available at:
https://github.com/bohrbrask/Generative-network-models-intro

25



Appendix

Table A1. Non-exhaustive list of (non-human) animal behavioural ecology papers that deploy generative network models. Studies highlighted in
green are also given in Main Text Table 2. The references in this table are listed below the table.

Main aim of Model . Code o
Paper Key model features Study species , Citation
paper category available
Friendship, reciprocation, and . . , , .
interchange in an Behavioural Spatial Fnenc(sWorld ~ an extension of  Theoretical No Puga-Gonzalez et al.
individual-based model theory GroofiWorld that incorporates 2015
stronger social influence of a set
of individuals with the strongest
social bonds (top 25%)
Indirectly connected: simple . . . . . .
. . Behavioural Group-based Individuals vary in group size Theoretical Yes Firth et al. 2017
social differences can explain )
theory preferences and also display
the causes and apparent some assortativity (b
consequences of complex ) ) Y , Y
social network positions e I el G S e
previous associations)
Social style and resilience of . . . . .
macaqueJ;’ networks. a Behavioural Spatial GrooFiWorld model — a spatial Theoretical / No Puga-Gonzalez et al.
, theory ABM with strong social macaques 2019

theoretical investigation

component to movement and
interactions within set radius
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Structural trade-offs can

P e G S Behavioural Linking Edge probabilities — Uses both Theoretical Yes Farine 2021
social networki g theory probability Poisson and llany et al. social
inheritance model to build initial
networks then dynamic model
based on second-order
connections.
A complex social structure . . .
with fission-fusion properties Behavioural Spatial ABM of movement between Theoretical / No Ramos-Fernandez et
can emerge from a simple theory patches spider monkeys al. 2006
foraging model
Personality and social . - ) .
networks: A generative model Behavioural Linking Adapts llany et al. social Theoretical No llany & Akgay 2016b
‘Ag th babilit inheritance model with a nodal
approach eory probability '
attribute (“boldness”)
Emergence of complex social . . . . .
netwgrks from sp aZaI Behavioural Spatial GrooFiWorld model — a spatial Theoretical / No Puga-Gonzalez &
structure and rules of thumb: a theory ABM with strong social macaques Sueur 2017a
modellina aoproach ’ component to movement and
g app interactions within set radius
Simple foraging rules in . . . . . . .
comI;etitivegengironm ents can Behavioural Mixed Directed Poisson model with Theoretical Yes Cantor & Farine
generate socially structured theory (linking fixed interaction probability. 2018
opulations probability These networks then used to
pop and define groups.
group-based)
The role of habitat . . .
configuration in shaping social Behavioural Spatial Agent-based model of Theoretical Yes He et al. 2019
g g theory movement between patches.

structure: a gap in studies of
animal social complexity

Co-occurrence at a patch is a
network connection.
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Social influence and

interaction bias can drive Behavioural Mixed Edge probabilities using a Theoretical Yes Tokita & Tarnita 2020
emergent behavioural theory (linking stochastic block model type  (social insect)
specialization and modular probability approach to generate homophily
social networks across and dyadic and het'e'r'oph//y. Edge
systems interactions) probabilities are then used to
4 generate dyadic interactions.
Social inheritance of . - . L . . N
avoidances shapes the Behavioural Linking Extension of social inheritance Theoretical Yes Frere et al. 2023
structure of animal social theory probability model (llany et al.)
networks
Far-reaching consequences of . . e .
trait-based gocia | p;ferences Behavioural Linking Edge probabilities depend on Theoretical Yes Brask et al. 2024
for the structure and function theory and probability SOCI?I prefgrences for traits.
of animal social networks methodological Muiltiple traits and preference
types can affect the network
simultaneously.
Sampling animal association . . L . . .
netw,:)rkg with the aambit of Methodological Mixed Edge probabilities with dyadic Theoretical No Franks et al. 2010
the arou g (linking random effect and binary trait
group probability assortativity. Then formation of
and groups based on these edge
ights.
group-based) welgnts
The consequences of . .
o Methodological Group-based  Groups generated based on Brent geese No Silk et al. 2015

unidentifiable individuals for
the analysis of an animal
social network

family clusters
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Common datastream

ST TTE a T S Methodological Mixed Various, including: Theoretical Yes Weiss et al. 2021
network data are not (linking Edge probabilities with a dyadic
i random effect;
appropriate for hypothesis probability o
testing using regression and Group-based with individual
models group-based) level random effect for group
size preference
Generation and applications of . . L . . .
S GRS o e Methodological Mixed Edge probabilities based on a Theoretical Yes Silk and Gimenez
social network and (linking simplified SBM (within and - 2023
demographic analyses probability between block edge probabilities
and only) and two dimensional latent
roup-based) space model with individual level
group variation linked to nodal
attributes. Simulation of groups
based on these networks
A note on reconstructin . - . . .
animal social networks fmm Methodological Linking Basic theoretical network Theoretical No Perreault 2010
, 3 probability models: Poisson,
Zfs efrig::zr’:;small group Watts-Strogatz, Barabasi-Albert
Correcting for the impact of . - g .
ng © Impa Methodological Linkin Edge probabilities based on Theoretical No Godde et al. 2013
regariousness in social 9 9
ge tg/ork analvses probability individual traits and modified by
4 dyadic random effects
Measuring phenotypic . o e . . .
ass0 rtmeg tpin anirigl social Methodological Linking Edge probadbilities including an Theoretical No Farine 2014
probability assortativity between similar

networks: weighted
associations are more robust
than binary edges

nodes
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Estimating uncertainty and

reliability of social network Methodological Linking Modified stochastic block model  Theoretical Yes Farine &
data using Bayesian inference probability with edges weighted by Strandburg-Peshkin
individual variation in nodal 2015
attribute
Measuring the robustness of . - . . . . .
network i mmunity structure Methodological Linking Modified stochastic block model  Theoretical Yes Shizuka & Farine
using assortativity probability with an individual level random 2016
effect
The next steps in the study of . L e . .
missing in diCi duals in y Methodological Linking Edge probabilities based on a Theoretical Yes Silk 2018
networks: a comment on probability simplified SBM (within and
Smith et ; 1. (2017) between block edge probabilities
’ only) and two-dimensional latent
space model
Measuring the complexity of . - e . .
social associations using Methodological Linking Edge probabilities based loosely ~ Theoretical Yes Weiss et al. 2019
mixture models probability on a stochastic block model with
dyadic random effects
The performance of . . L . .
permutations and exponential Methodological Mixed Edge 'p'robablht/es'ba?sed ona Theoretical No Evans et al. 2020
random graph models when (linking simplified SBM (within and o *hroken
analyzing animal networks probability between block edge probabilities repositor
d only) and two-dimensional latent link
an o ylin
roup-based) space model with individual level
group variation linked to nodal
attributes. Simulation of groups
based on these networks.
Calculating effect sizes in . - L . .
animal social network analysis Methodological Linking Edge probabilities as a function ~ Theoretical Yes Franks et al. 2021
probability of anodal attribute
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Modelling associations

between animal social Methodological Linking A simplified stochastic block Theoretical Yes Clements et al. 2022
structure and demography probability model with within and between

block edge probabilities only
Common permutation . L L .
methods ,’; animal social Methodological Linking Edge probabilities based on Theoretical Yes Hart et al. 2022
network analysis do not probability /?odal attriputes (anq )
control for non-independence /ncorporgt/ng a mod/f/eq

stochastic block model in the

second part). Also a

matrix-based simulation based

on quadratic assignment

procedure
A new method for . . . . .
characterising shared space Methodological Spatial Movement-based ABM Theoretical Yes Wanelik & Farine
use networks using animal 2022
trapping data
A guide to choosing and . . . e .
,-mi,em enting refergn ce Tutorial Mixed Various (edge probabilities and ~ Theoretical Yes Hobson et al. 2021a
models for social network (linking group-basea) largely specified
analvsis probability on a modified stochastic block

4 and model and/or two dimensional
I /
group-based) atent space mode

Ageing in a collective: The . . . L .
infpac?of ageing individuals Social ageing Linking Edge probabilities depend on Rhesus Yes Siracusa et al. 2023
on social network structure probability Leah B /o e macaque
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Social inheritance can explain

the structure of animal social Social dynamics Lmkmgl . Edge p'robat'n/:t{es —'network Spotted hyena, Yes llany & Akgay 2016a
networks probability dynamics with inheritance. rock hyrax,
Interaction probabilities depend bottlenose
on interaction probability with its dolphin, sleepy
parent lizard
Animal social networks as . . - . A . .
substrate for cultural Social learning Linking Adaptations of a simplified Theoretical No Whitehead &
: v theory probability stochastic block model Lusseau 2012
behavioural diversity (within/between block edge
probabilities differ only) and two
dimensional latent space model
Social network architecture . - . .
and the tempo of cumulative Cultural evolution  Linking Range of theoretical network Theoretical Yes Cantor et al. 2021
cultural evolution probability models: Poisson,
Watts-Strogatz, Lattice, Basic
modular
The effect of individual . L g .
variation on the structure and Social o L|nk|ng. . Edge probabilities. Harvester ants No Pinter-Wollman et al.
function of interaction transmission probability . _ 2011
. Adaptations of Poisson model
networks in harvester ants
So that ants varied in their edge
probabilities or increased them
over time.
Social transmission in . _ . ; .
networks: Global efficiency Social Linking Barabasi-Albert preferential Primates No Romano et al. 2018
transmission probability attachment model

peaks with intermediate levels
of modularity
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Group size and modularity

interact to shape the spread of Social Linking Modified, iterative Theoretical Yes Evans et al. 2021
infection and information transmission probability implementation of a simplified
throuah animal societies stochastic block model to
9 generate networks with known
modularity.
When to choose dynamic vs. . o , . . . .
static social ne tw::'k analysis Social Linking Dynamic Poisson model with Theoretical Yes Farine 2018
transmission probability networks at each timestep
independent
Disease ecology
Unravelling the disease . L . - . .
consequegces and Social Linking Modified Havel-Hakimi model (in  Theoretical / Yes Sah et al. 2017
mechanisms of modular transmission probability two parts for between and within - comparative
structure in animal social community edges).
networks Disease ecology
See also:
https.//doi.org/10.1186/1471-210
5-15-220
Raccoon contact networks . L . . ;
predict seasonal susceptibility Social Linking Simulations from exponential Raccoon No Reynolds et al. 2015
to rabies outbreaks and transmission probability random graph models fitted to
limitations of vaceination empirically-derived contact data
Disease ecology
Which mechanisms drive . o . . ; .
seasonal rabies outbreaks in Social Linking Simulations from exponential Raccoon No Hirsch et al. 2016
transmission probability random graph models fitted to

raccoons? A test using
dynamic social network
models

Disease ecology

empirically-derived contact data
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Spatial utilization predicts

animal social contact networks Disease ecology  Spatial Spatial ABM with contacts Brushtail No James et al. 2017
are not scale-free (based on proximity) emerging possums
from individual movement
Social structure contains . L . . . .
epidemics and regulates Social Linking Simulations from dyadic European Yes Rozins et al. 2018
individual roles in disease transmission probability regresgoqs (ze'ro-/n'f lated badger
transmission in a group-living nega't/.ve bmorryal) fitted to
mammal Disease ecology empirically-derived contact data.
Also Poisson model.
Novel pathogen introduction . . L .
trigge :; rap iill evolution in Disease ecology  Spatial ABM of individual movement Theoretical Yes Gupte et al. 2023
animal social movement with social influence
strategies
Emergent patterns of social . . . ,
organization in captive Behavioural Spatial GrooFiWorld model — a spatial Red-capped No Dolado & Beltran
Cercocebus torquatus: Testing ecology ABM with strong social mangabey 2012
the GrooFiWorld agent-based gomp onlent to 'mgvement {:znd
model interactions within set radius
Friendships and Social . . . . .
Networks‘;n an Behavioural Spatial FriendsWorld — an extension of  Theoretical / No Puga-Gonzalez &
Individual-Based Model of ecology GroofiWorld that incorporates macaques Sueur 2017b

Primate Social Behaviour

stronger social influence of a set
of individuals with the strongest
social bonds (top 25%)
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Mechanisms of reciprocity and

diversity in social networks: a Behavioural Mlxeq 3 models: Macaques No Puga-Gonzalez et al.
modeling and comparative ecology (spatial and . 2018
FriendsWorld
Reaper — a non-spatially explicit
version of the above models
which effectively operates as a
network growth/change model
based on previous interactions
The impact of social networks . C . . . .
on animal collective motion Collec.tlve L|nk|ng. . Basic tﬁeorgtlcal network Theoretical No Bode et al. 2011
behaviour probability models: Poisson,
Watts-Strogatz, Barabasi-Albert
Leading from the front? Social . N . .
networks in navigating groups Collec.tlve L|nk|ng. . Ba§lc edge-based model for a Theoretical No Bode et al. 2012
behaviour probability weighted network
From social network Collecti Linki Edge probabilities with one Theoretical N S tal. 2012
(centralized vs. decentralized) ° ecllve n |ng. . . g 'p . . eoretica ° ueuretat
to collective decision-making Behaviour probability /nd/wdu.al having different
(unshared vs. shared properties to others (more
consensus) ’ central) in small networks
Behavioural variation amon L . .
g Social insects Spatial Movement-based ABM Theoretical Yes Easter et al. 2022

workers promotes
feed-forward loops in a
simulated insect colony
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Social structure modulates the

evolutionary consequences of Evolutionary Linking Edge probabilities based on a Theoretical Yes Montiglio et al. 2018
social plasticity: A social theory probability two dimensional latent space
network perspe;: tive on model with added homophily or
interacting phenotypes heterophily
An Individual-Oriented Model . . . . . ..
o e ETEEE R S Dominance Spatial GrooFiWorld model — a spatial Theoretical / No Hemelrijk &
in Fights, Its Reciprocation hierarchies ABM with strong social macaques Puga-Gonzalez 2012
and Exc I;an e component to movement and
g interactions within set radius
Emergent Patterns of Social . . . . .
Affilia‘zion in Primates. a Model 2°Minance Spatial GrooFiWorld model — a spatial Theoretical No Puga-Gonzalez et al.
’ hierarchies ABM with strong social 2009
component to movement and
interactions within set radius
Empathy versus Parsimony in . . . .
Understanding Post-Conflict Dominance Spatial GrooF/World model -a spatial  Tonkean No Puga-Gonzalez et al.
Affiliation in Monkeys: Model ~ Nierarchies ABM with strong social macaque 2014
and Empirical Data : component to movement and
P interactions within set radius
Targeting or supporting, what . . . ,
drives patterns of aggressive Dominance Spatial GrooFiWorld model — a spatial Bonnet No Puga-Gonzalez et al.
intervention in fights? hierarchies ABM with strong social macaques 2016
) component to movement and
interactions within set radius
Aggression heuristics underlie . . . .
animal dominance hierarchies Dominance Interactions ABM based on directed Theoretical Yes Hobson et al. 2021b
hierarchies interaction rules for each

and provide evidence of
group-level social information

individual
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Trinidadian guppies use a

social heuristic that can Cooperative Group-based Agent-based model of grouping ~ Guppy No Darden et al. 2020
support cooperation among behaviour decisions. The network is an
non-kin emergent property.
Alarm communication . . . . . .
networks as a driver of Mixed species Group-based  ABM of grouping behaviour African No Meise et al. 2020
community structure in groups (model is individual-based but savannah
African savannah herbivores networks are analysed at herbivores (12
species level) species)
Social information-mediated . . . . P
population dynamics in Predator-prey / Spatial Movement-based ABM with Theoretical Yes Toth & Kémiives
non-grouping prey Community interz.aczfions based on spatial 2022
ecology pI‘OXImIty
Responses of Bat Social . . . . . -
szps to Roost Loss: More Conservation and  Spatial Spatial ABM of roost site choice  Northern No Silvis et al. 2016
Questions Than Answers applied research that also incorporates use of long-eared bat (book chapter)
social information
Simulated poaching affects . o s . o
global conge ctivitygan d Conservation and Linking Edge probabilities depend on African elephant No Wisniewska et al.
efficiency in social networks of apPplied research  probability age, kinship and group 2022

African savanna
elephants—An exemplar of
how human disturbance
impacts group-living species

membership (i.e. stochastic
block model features). Edge
probabilities then used to

simulate association events.
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