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0000-0002-7355-3664.
5Institute of Evolution, Centre for Ecological Research, Konkoly-Thege Miklós út 29-33,
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Abstract

Coexistence is simultaneously one of the most fundamental con-
cepts of ecology, and one of the most difficult to define and quantify. A
particular challenge is that, despite a well-developed body of research
on the subject, several different schools of thought have developed over
the past century, leading to multiple independent, and largely isolated,
branches of literature with distinct methodologies. Here, we provide a
broad overview of the most common concepts and metrics currently
used to detect and quantify ecological coexistence. We first introduce
four classes of behaviour that describe different aspects of community
dynamics: (i) the existence of a feasible steady state, i.e. where all
coexisting species retain positive abundances in the long-term in the
absence of interference by external forces; (ii) the existence of a local
attractor that draws the community towards a feasible steady state
from within a restricted set of starting conditions; (iii): the existence of
a global attractor that draws the community towards feasible steady
states from any non-zero starting condition; and (o) a null transient
state, where species abundances vary over time irrespective of steady
states and attractors. Next, we explain how these classes of behaviour
relate to commonly used metrics for classifying and quantifying coex-
istence, including analyses of parameter sensitivity, asymptotic return
rates, invasion growth rates, and time to extinction. We then discuss
the scope and limitations of each of these behavioural classes and
corresponding metrics, with a particular focus on applications in em-
pirical systems. Finally, we provide a potential workflow for matching
empirical questions to theoretical tools, and present a brief prospec-
tus looking forward to opportunities to better advance and integrate
research on quantifying coexistence.

Key words: ecological coexistence, parameter sensitivity, structural
stability, asymptotic return rate, invasion growth rate, mutual invasi-
bility, time to extinction, empirically tractable
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1 Introduction1

Understanding how and when species coexist is one of the primary goals of2

ecology (MacArthur 1972). Accurate predictions of the circumstances un-3

der which communities of species are likely to coexist is also a fundamen-4

tal prerequisite for addressing many of the discipline’s most pressing chal-5

lenges, with potential applications including effective design of conservation6

and restoration strategies (Bradshaw 1992), identifying and managing inva-7

sive species (Moles et al. 2008), estimating rates of biodiversity change and8

turnover (Newbold et al. 2015, Blowes et al. 2024), and forecasting impacts9

of global change (Sage 2020, Usinowicz and Levine 2018, Van Dyke et al.10

2022). However, despite almost a century of theoretical advances in our un-11

derstanding of coexistence, the field remains largely fractured, resulting in12

multiple schools of thought with their own distinct definitions for what quali-13

fies as coexistence, and surprisingly few attempts to reconcile these dominant14

frameworks and their corresponding metrics (Lawton 1999, Donohue et al.15

2016).16

Within the coexistence literature, it has been especially challenging to17

synthesise insights about coexistence across empirical studies. This challenge18

arises due to both the literature’s fragmentation in the definitions and metrics19

used to quantify coexistence, and because existing metrics are often challeng-20

ing to apply in real world contexts, requiring both empirical and analytical21

expertise, ample data, and strong theoretical assumptions (Levine et al. 2017,22

Clark et al. 2019, Spaak et al. 2023). Arguably as a consequence, there are23

currently no cross-system meta-analyses or “global studies” of coexistence,24
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and surprisingly, little is known about how opportunities for coexistence com-25

pare across space, time, and species.26

This review seeks to provide a high-level overview of recent advances in27

coexistence theory, with the goal of summarising disparate literatures for28

theoreticians and empiricists alike, both for ecologists new to coexistence, or29

those who are experts in a given set of classes and metrics for determining30

coexistence. We aim for the review to highlight strengths and weaknesses be-31

tween the different threads of the coexistence literature, with an eye towards32

practical applications in real world systems. We begin with a brief sum-33

mary of the historical development of coexistence theory and explain how it34

shaped the modern concept of coexistence (Section 2). Next, we introduce35

the most common kinds of dynamical behaviour currently used by theorists36

to describe coexistence (Section 3.1), and, correspondingly, the most common37

metrics used to identify these behaviours (Section 3.2). We then provide a38

more detailed discussion of the general challenges that empirical systems pose39

for efforts to characterise and measure coexistence (Section 4.1). Finally, we40

present guidelines and a recommended workflow for matching empirical ques-41

tions to theoretical tools (Section 4.2), and suggest potential ways forward42

for the practical study of coexistence (Section 4.3).43

1.1 Glossary44

• Coexistence: For the purposes of this review, we broadly use “coexis-45

tence” to describe the ability of a community of co-occurring species to46

persist across a defined set of spatial and temporal scales. Most other47
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published sources provide more specific definitions explained below, e.g.48

related to steady states or stability – however, these definitions also vary49

widely across sub-fields and sources. To avoid ambiguity, we therefore50

refer to the specific kinds of dynamical behaviour described in section51

3.1 when more precise definitions of coexistence are necessary.52

• System state: A measurement of the dynamical variables in a sys-53

tem at a given moment in time. In ecology, states usually refer to the54

abundance or biomass of organisms within a community.55

• Parameters: Variables that govern the dynamics of states according to56

an equation, such as a population model – e.g. intrinsic growth rates,57

carrying capacities, or species interaction coefficients. Unlike states,58

parameters are constant for a given set of environmental conditions.59

• Steady State: A system state or set of states which the system remains60

within through time in the absence of interference by external forces.61

Ecological studies often focus on the concept of equilibria – e.g. a set62

of species abundances that remain fixed at a set of single values over63

time. More generally, invariant sets include a wider range of dynamical64

behavior, describing a set of states that a system will remain within65

in the absence of external interference. Invariant sets include periodic66

and quasi-periodic orbits and chaotic motions. This broader definition67

is especially important for community dynamics such as predator-prey68

oscillations or bounded chaos. For simplicity, unless specified otherwise,69

we will use the term “steady state” to refer both to classic equilibria,70

and to invariant sets more broadly.71
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• Feasibility: In ecology, feasibility describes a state in which all species72

in a community have positive abundances (i.e. greater than zero; a self-73

evident empirical requirement that is sometimes overlooked in models).74

Note, however, that a feasible state does not necessarily imply a steady75

state, nor is it necessarily stable, e.g. it need not be associated with an76

attractor.77

• Attractor: A steady state to which a system can return following78

externally driven changes to the state variables (e.g. as observed with79

the “classic” concept of a stable equilibrium). For a local attractor,80

systems only return to steady state if perturbations are sufficiently81

small (determined by the size and properties of the attractor), whereas82

for a global attractor, all feasible starting states lead to the same steady83

state. Permanence describes systems with global attractors where the84

corresponding steady state is also feasible.85

• Necessary and Sufficient Conditions: For any theoretical outcome,86

necessary conditions must be met for the outcome to take place, but87

they do not guarantee that it will. In contrast, a sufficient condition88

guarantees that an outcome will take place, but does not necessarily89

need to be met in order for the outcome to occur. For example, the90

existence of a feasible equilibrium is necessary (but not sufficient) for91

permanence, whereas permanence is sufficient (but not necessary) for92

the existence of a feasible equilibrium (Hofbauer and Sigmund 1998).93
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2 History of Theoretical Development94

Coexistence has been a central tenet of population and community ecological95

theory since the discipline’s earliest beginnings. Efforts to model community96

dynamics published in rapid succession by Lotka (1925) and Volterra (1926)97

both discuss coexistence criteria, with Volterra in particular providing a de-98

tailed theoretical derivation of the necessary conditions for various forms of99

stable coexistence across different community structures (see definitions in100

Section 1.1).101

These early theoretical and empirical findings were immensely influential102

for subsequent studies of coexistence. In particular, Gause’s empirical tests of103

Lotka’s and Volterra’s coexistence theories popularised the competitive ex-104

clusion principle, which hypothesised that in order to coexist, species needed105

to differ in terms of their biological needs or ecological niches (Gause 1934).106

This hypothesis inspired a proliferation of empirical studies that sought to107

identify the biological factors that enabled coexistence for particular groups108

of species (e.g. MacArthur 1958, Park 1962, Paine 1966). The hypothesis was109

formalised mathematically by Nicholson (1933), with a later generalization110

by Levin (1970) who showed that for a large class of models, the number111

of stably coexisting species could not exceed the number of limiting factors112

(called “control factors” in Nicholson 1933). These limiting factors are often113

interpreted as specific resources such as light or nitrogen (e.g. R∗ theory,114

Tilman 1982), though Levin was careful to note that they could also repre-115

sent any combination of variables that had independent effects on species’116

per-capita growth rates.117
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Levin’s and Nicholson’s work showed that limiting factors were critical118

for understanding the conditions under which coexistence was possible – but119

also that identifying these factors in practice was likely to be “extremely120

difficult” for at least two reasons (Levin 1970, p. 416). First, although bio-121

logical systems include many different interacting species and environmental122

variables, these variables also tend to be highly correlated in observational123

data – thereby complicating efforts to identify the number of independent di-124

mensions acting on growth rates (Ellner 1988). Second, because species often125

exhibit non-linear growth responses to factors such as resource availability or126

the abundance of competitors, spatial or temporal variability can cause indi-127

vidual variables to “act” like multiple independent factors, e.g. with periods128

of low vs. high resource availability differentially affecting different species’129

growth functions (Levins 1979, Armstrong and McGehee 1980), or changes130

in the relative availability of limiting resources leading to spatio-temporal131

variability in species abundances and dominance structures (Tilman 1982).132

To overcome these challenges, two main paradigms emerged for studying133

coexistence while circumventing the need to explicitly identify limiting fac-134

tors: analyses of asymptotic return rates and of invasion growth rates (Turelli135

1978) (see Section 3.2 for details). Asymptotic return rates describe the ten-136

dency of systems to return to steady state following small perturbations, and137

have their origins in applied mathematics and physics. Their use became138

popular in ecology following applications by MacArthur and his contempo-139

raries for analysing competitive interactions (MacArthur 1958, 1970, 1972).140

The metric proved particularly effective for assessing coexistence in systems141

with many interacting species or resources (May and MacArthur 1972, May142
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1973) – especially in cases where coexistence emerged as a direct result of143

these interactions (Holt 1977, Lawlor 1979). An important finding of these144

studies was that asymptotic recovery in ecological communities is largely145

governed by the degree to which species interaction coefficients are linearly146

independent (MacArthur 1970, Chesson 1990a), thus suggesting that empir-147

ically measuring interaction strengths might be an effective way to predict148

and classify coexistence in real world settings (May and MacArthur 1972).149

Analysis of invasion growth rates yielded a practical metric for identifying150

coexistence that could be estimated analytically, from model simulations,151

or even in invasion experiments (MacArthur and Levins 1967, Turelli 1978,152

Chesson and Warner 1981), with the general intuition that, if each species153

in a community could increase from rarity with other species at equilibrium,154

then species should generally coexist (though see Pande et al. 2020). Initially,155

studies stressed that its validity as a test for stable coexistence had “not yet156

been proven” (Turelli 1981, 1986). Indeed, an uncritical reliance on invasion157

growth rates has turned out to be mathematically naive (Barabás et al. 2018),158

though careful and mathematically rigorous justifications would eventually159

be provided through the development of permanence theory (Hofbauer 1981,160

Butler and Waltman 1986, Schreiber 2000). These analyses quickly gained161

in popularity, both because they often yielded simpler, more mathematically162

tractable predictions than analyses of asymptotic return rates, and because163

they were better able to account for effects of large disturbances and complex164

community dynamics, rather than just small perturbations around a static165

equilibrium (Turelli 1980, 1981).166

In particular, a ground-breaking series of articles by Peter Chesson lever-167

10



aged invasion analyses to catalog the ways in which coexistence can arise as168

a result of environmental fluctuations across time (Chesson 1994) and space169

(Chesson 2000b). Chesson’s theories would eventually become the dominant170

framework used for explaining why species are able to coexist in spatially or171

temporally variable environments (see Section 3.3 for more details) – to the172

point that later authors came to refer to his work as “Modern Coexistence173

Theory” (Mayfield and Levine 2010, HilleRisLambers et al. 2012, Grainger174

et al. 2019), in an apparent nod to the Modern Evolutionary Synthesis.175

3 Current Paradigms and Metrics176

Although “classic” approaches for assessing coexistence are still commonly177

used by ecologists today, many of these methods have been refined to better178

account for important aspects of real world ecological systems (see discussion179

in 4.1, below). This methodological diversity has added important tractabil-180

ity and nuance to coexistence theory, but it also poses a problem: different181

methods define coexistence in distinct, and sometimes even contradictory182

ways – and, indeed, often make conflicting predictions (Turelli 1978).183

To compare and contrast this sea of methods, we first introduce four184

broad classes of dynamical behaviour that ecologists tend to focus on when185

studying coexistence (Section 3.1). These behaviours roughly correspond to186

the different definitions of coexistence (or lack thereof) that are applied in187

contemporary theoretical studies. We then discuss metrics that are commonly188

used to identify and quantify each of these four behavioural regimes (Section189

3.2), as well as their scope and limitations. Challenges associated with ap-190
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plying these metrics in empirical systems are discussed in more detail in the191

following section (Section 4).192

3.1 Classes of Dynamic Behaviour193

Species dynamics can be broadly grouped into four main classes of behaviours194

(Fig. 1). These behaviours are: (i) feasible steady states – systems that195

can remain at steady state where all species have positive abundances (3.1.1);196

(ii) feasible local attractors – systems with local attractors that draw197

species towards feasible steady states given a specific set of positive start-198

ing abundances (3.1.2); (iii) feasible global attractors – systems with a199

global attractor that draws species towards some set of feasible steady states200

(potentially including multiple different local attractors) from any starting201

condition with a set of non-zero species abundances (3.1.3); and, finally, (o)202

transient states – a state in which species abundances vary over time either203

without or prior to settling into a steady state that may or may not yield204

coexistence (3.1.4).205

Each of these behaviours relates to somewhat different aspects of coex-206

istence and stability. In practical terms for real world communities: (i) a207

feasible steady state implies that species will persist together in the long-208

term so long as they remain undisturbed by external forces; (ii) a local209

attractor implies that species can recover back to a steady state following210

small disturbances of the population abundances; (iii) a global attractor im-211

plies that the community can recover even from large disturbances; and (o)212

transient dynamics imply that the system is in transition, and species will213
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either eventually go extinct or the system’s dynamical behaviour will switch214

to one of the three other regimes. In the absence of demographic stochas-215

ticity (see Section 4.1.3), behaviours i-iii also follow something of a nested216

hierarchy: a feasible steady state is a necessary (but not sufficient) condition217

for a feasible local attractor, which is itself a necessary (but again, not suffi-218

cient) condition for a feasible global attractor. We compare these dynamics219

to transient systems, as transient dynamics can maintain co-occurrence on220

ecologically relevant timescales, even if long-term coexistence and stability221

are not expected. Below, we introduce these behaviours in more detail.222

3.1.1 Feasible Steady State223

A feasible steady state describes conditions for which coexisting species’224

abundances remain at fixed positive values over time (when at an equilib-225

rium) or constrained within a given set of positive values (for invariant sets226

more generally, e.g. limit cycles). An intuitive example is carrying capacity in227

the logistic growth model – if a single species begins at its carrying capacity,228

then it will remain there in the absence of interference by external forces.229

Feasible steady states are necessary for long-term coexistence (although they230

do not guarantee it). Thus, the breakdown of a feasible steady state implies231

either extinction of some species, or that the system will become transient232

as it moves towards some other dynamical regime. In theoretical models,233

testing for feasible steady states is usually the first step before subsequent234

analyses of stable coexistence can proceed (Dormann 2008). This step is im-235

portant not only because negative abundances are logically impossible, but236

also because they can produce nonsensical effects in models – e.g. in the gen-237
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Class ( o ): 
Transient State 

Class ( i ): Feasible 
Steady State 

Class ( ii ): Feasible 
Local Attractor 

Class ( iii ): Feasible 
Global Attractor 

A 

B
class ( o )

class ( i )
class ( ii )

class ( ii )

class ( iii )

Figure 1: Four main classes of behaviour describing species abundance dy-
namics in the context of coexistence. (a) Conceptual illustration of abun-
dance dynamics following each of the four behaviour classes discussed in
Section 3.1, using a ball-and-cup metaphor. The position of the ball repre-
sents the system state (e.g. the abundance of a particular species), and the
rolling trajectories in panels o-iii represent a lack of steady state, the pres-
ence of a feasible steady state, a feasible local attractor, and a feasible global
attractor, respectively. Arrows around the global attractor in class iii indi-
cate that the landscape extends infinitely in both directions. (b) An example
dynamic landscape combining all four of the classes of behaviour as part of a
single system. Note that dynamical behaviours within subsections of the sys-
tem can follow different combinations of behaviours o-ii. The feasible steady
states in class i plus the two feasible local attractors in class ii jointly make
up the system’s global attractor (class iii). In this example, in the long-term,
the system is drawn away from transience and towards at least one of these
states from any feasible starting state, with the precise end-state dependent
on initial conditions.
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eralised Lotka-Volterra equations, a competitor with negative abundance has238

the same effect on other species’ per-capita growth rates as a mutualist with239

positive abundance.240

Especially in models that include many different potential steady states241

(such as alternate stable states; see the two boxes labelled “class (ii)” in Fig.242

1B), testing for feasibility can be laborious, as it requires first recognising243

and discarding all infeasible steady states that include negative abundances244

(Anderson et al. 1992, AlAdwani and Saavedra 2020, 2022). Nevertheless,245

identifying feasibility criteria can sometimes be more analytically tractable246

than other coexistence metrics (e.g. testing for the existence of an attrac-247

tor), which has led to the use of feasibility as an independent proxy for the248

possibility of coexistence in some studies (Saavedra et al. 2017, Grilli et al.249

2017, Song et al. 2018, see Section 3.2.1 for more details). Although most250

of these studies of feasible coexistence have focused on equilibria, these ap-251

proaches sometimes can be applied to more complex invariant sets – e.g. to252

identify ranges of model parameters that lead to oscillatory cycles or even253

chaos (Barabás et al. 2012, Barabás and Ostling 2013, Bunin 2017, McCann254

and Yodzis 1994).255

3.1.2 Feasible Local Attractor256

Local attractors ensure that some range of starting conditions exist from257

which the system will be drawn towards a steady state. This range of start-258

ing conditions is called the “basin of attraction” of the attractor, and is often259

visualised as valleys in classical ball-and-cup diagrams such as Figure 1. Fea-260

sible local attractors support coexistence by counteracting interference by261
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external forces, such as small environmental perturbations, that might oth-262

erwise drive species away from a feasible steady state, and towards extinction.263

Indeed, in the absence of an attractor, a sequence of arbitrarily small pertur-264

bations will, in the long-term, drive species to extinction (Schreiber 2006).265

Local attractors, however, only predict dynamics in the range of starting266

conditions from which the system tends towards the attractor. Thus, the ex-267

istence of a feasible local attractor does not necessarily guarantee long-term268

coexistence – e.g. if initial abundances fall outside of the range of influence269

of that attractor (i.e. outside of the surrounding “valley” in the ball-and-cup270

diagram), or species are subjected to sufficiently strong perturbations, then271

long-term abundance dynamics can be driven away from the initial steady272

state, and towards other system states, such as those associated with alter-273

nate community structures or even species extinction (Almaraz et al. 2024).274

Although the tractability and accuracy of different approaches for study-275

ing local attractors can vary, they all essentially share the same goal: to276

characterise dynamics around steady states based on their asymptotic re-277

turn rates, and extrapolate whether dynamics are likely to remain in that278

state or to move towards another dynamical regime (Turelli 1978). Early279

work by Lewontin (1969), Levin (1970), MacArthur (1970), and May (1973),280

for example, identified local attractors by computing the eigenvalues for the281

Jacobian matrix near model equilibria. These approaches are still popular282

today, and are discussed in more detail in Section 3.2.2. For more general283

classes of invariant sets (e.g. oscillatory dynamics, chaos), local attractors284

can be identified by calculating return rates along the entirety of the sys-285

tem’s dynamical trajectory, e.g. via bifurcation analysis or using Lyapunov286
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exponents. These approaches are discussed in Section 3.2.2.1.287

3.1.3 Feasible Global Attractor288

In ecology, feasible global attractors refer to system dynamics in which a set289

of species are drawn towards feasible steady states from any feasible starting290

abundance – thereby meeting the criteria for permanence. Feasible global291

attractors therefore ensure long-term coexistence even in the face of strong292

disturbances and major re-mixing of a community. So long as perturbations293

do not push a species to an abundance of zero, they will always be able to294

recover in the long-run. This strong form of coexistence comes at the cost of295

more strict requirements for feasible global attractors to even exist. Indeed,296

their existence necessarily excludes several classes of behaviours that might297

be considered “coexistence” under other definitions. For example, systems298

subject to Allee effects – where species must exceed some minimum abun-299

dance to achieve positive growth (Fukami and Nakajima 2011, Jang 2013)300

– preclude feasible global attractors, as do systems where co-occurrence is301

transient, even if it is long-lasting.302

The especially broad scope of global attractors also comes with technical303

challenges. Identifying and testing for them can be difficult, but invasion304

analysis was introduced as a more tractable approach for identifying these305

global attractors (Turelli 1978, Hofbauer 1981, Schreiber 2000). The general306

idea behind invasion analysis is that if all species in a community can increase307

in abundance when rare, then the system should be able to recover from308

most kinds of major disturbances – and that this behaviour is, at the very309

least, consistent with the existence of a feasible global attractor (e.g. Turelli310
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1981, 1986, though see Barabás et al. 2018 for theoretical limitations and311

Schreiber 2000, Hofbauer and Schreiber 2022 for some counterexamples).312

The development of permanence theory in the early 1980’s provided more313

rigorous mathematical justification for these approaches, summarising the314

circumstances under which invasion analyses are sufficient for proving the315

existence of a global attractor (Hofbauer 1981, Butler and Waltman 1986,316

Garay 1989, Schreiber 2000). Analyses of invasion growth rates remain in317

wide use today and are discussed in more detail in Section 3.2.3.318

3.1.4 Transient State319

In ecology, transient states refer to abundance dynamics varying either before,320

or without, reaching a steady state (Hastings 2004, Fukami and Nakajima321

2011). Transient dynamics can be short or long-lasting, and may or may not322

ultimately drive communities towards feasible steady states in the long run323

– although in the absence of feasible steady states, the long-term fate of any324

species is extinction (Murdoch 1994). In practice, it can be challenging to325

determine whether a particular dynamical trajectory is truly transient, is in326

a basin of attraction, or is even part of some more complex invariant set such327

as a limit cycle. Due to this ambiguity, categorising something as a transient328

state usually implies that no steady states that influence the current state329

have yet been identified, but often does not definitively exclude the possibility330

of their existence.331
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3.2 Metrics for Characterising Behaviours332

Most contemporary studies rely on metrics that quantify specific aspects of333

coexistence, rather than focusing on general classes of dynamical behaviours334

themselves. The most widely used of these include: (i) parameter sensitiv-335

ity – the quantification of how slight changes in parameter values alter sys-336

tem attributes, such as the existence and identity of species in feasible steady337

states (3.2.1); (ii) asymptotic return rate – the rate at which systems are338

drawn towards or away from a particular steady state (3.2.2); (iii) invasion339

growth rate – the rate at which species are able to increase from low abun-340

dance (3.2.3); and (o) time to extinction – the average length of time for341

which species maintain positive population sizes (3.2.4). Importantly, each of342

these metrics relates to one or more of the dynamical behaviours discussed343

in Section 3.1: parameter sensitivity is useful for assessing the robustness of344

steady states to uncertainty in, or perturbations to, parameter values; asymp-345

totic return rates can be used to identify local attractors; invasion growth346

rates can be applied to test for the existence of a feasible global attractor;347

and time to extinction can be calculated for any kind of abundance dynamic,348

including transient states that yield co-occurrence on ecologically relevant349

timescales (Fig. 2). Below, we introduce these metrics in more detail, with a350

particular focus on how they are applied in practice.351

19



0.
0

0.
4

0.
8

0 0.4 0.8

a.

M
et

ric
 (

i)
:

P
ar

am
et

er
 S

en
si

tiv
ity

Abundance, Species A

A
bu

nd
an

ce
, S

pe
ci

es
 B

b.

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
2

0.
4

0.
6

αB,A

S
te

ad
y 

S
ta

te

0.
0

0.
4

0.
8

0 0.4 0.8

c.

M
et

ric
 (

ii)
:

A
sy

m
pt

ot
ic

 R
et

ur
n 

R
at

e

Abundance, Species A

A
bu

nd
an

ce
, S

pe
ci

es
 B

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

d.

small disturbance

Time

A
bu

nd
an

ce

0.
0

0.
4

0.
8

0 0.4 0.8

e.

M
et

ric
 (

iii
):

In
va

si
on

 G
ro

w
th

 R
at

e

Abundance, Species A

A
bu

nd
an

ce
, S

pe
ci

es
 B

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

f.

Species A invades
Species B invades

Time

A
bu

nd
an

ce

removal invasion

0.
0

0.
4

0.
8

0 0.4 0.8

g.

M
et

ric
 (

o
):

T
im

e 
to

 E
xt

in
ct

io
n

Abundance, Species A

A
bu

nd
an

ce
, S

pe
ci

es
 B

0 500 1500 2500

0
0.

4
0.

8

Time

A
bu

nd
an

ce

h.

extinction

Figure 2: Caption on next page.

20



Figure 2: Conceptual illustration of the coexistence metrics in Section 3.2.
Left column shows phase diagrams. Red and blue lines, respectively, show
abundances at which species A and B experience zero net growth (“zero net
growth isoclines”); empty circles show unstable equilibria; and filled circles
show feasible attractors. Black arrows emphasise the main dynamics of inter-
est for each metric. Right column shows corresponding time-series (b, f, h) or
impacts of parameter changes (d), for each species. Time to extinction (o) is
shown for a random walk with two species (thick black line and arrow). Re-
maining panels show results for the two-species Lokta-Volterra competition
equations. Parameter sensitivity (i) is demonstrated via changes in αB,A,
which describes the impact of species B on the per-capita growth rate of
species A. The black dashed arrow shows the shift in the isocline associated
with the parameter change, shifting the solid red isocline to the dashed red
and causing a previously unstable equilibria to become stable (light grey cir-
cle). Asymptotic return rates (ii) are demonstrated in response to a series of
small perturbations around the feasible equilibrium – small grey arrows show
the gradient of the system’s dynamics, and the thick black arrows show re-
turn trajectories. Invasion growth rates (iii) are shown with solid and dashed
arrows at the time of invasion, representing growth trajectories starting from
low abundance for species A and B, respectively, with the competitor species
at its single-species carrying capacity.

3.2.1 Parameter Sensitivity352

Parameter sensitivity is related to the general mathematical concept of “struc-353

tural stability,” which focuses on whether the topological features of a dy-354

namical system are preserved under small perturbations of its underlying355

equations or parameter values (Smale 1967, Levin 1970). Structural stabil-356

ity can be applied in studies of coexistence to examine the conditions under357

which global attractors break down into local attractors, or to identify critical358

points where small changes in parameters alter the system’s stability, such as359

switching from an equilibrium to a periodic solution (Almaraz et al. 2024).360

In a growing body of ecological studies, however, the concept of structural361
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stability has been defined somewhat more narrowly, to test whether small362

perturbations to model parameters lead to the breakdown of feasible steady363

states (Rohr et al. 2014).364

Having grown out of this focus on steady states, analyses of parameter365

sensitivity in ecology typically take one of two approaches. The first focuses366

on the range of model parameter values within which feasible steady states367

can be maintained for a particular subset of species (May 1973, Svirezhev368

and Logofet 1983, Grilli et al. 2017, Saavedra et al. 2017, 2020, Deng et al.369

2022, Allen-Perkins et al. 2023). This approach provides a general overview of370

which regions of parameter space allow for coexistence and which regions do371

not. For example, under the Lotka-Volterra competition equations, if species372

A and B initially coexist, then increasing the competitive impact of species B373

on species A will eventually drive species A extinct (Fig. 2a, b). The second374

approach examines localised effects of perturbations. It takes a known steady375

state, and examines the sensitivity of that steady state to small parameter376

perturbations (Vandermeer 1970, Levins 1974, Meszéna et al. 2006, Barabás377

et al. 2014). Steady states that are oversensitive to even very small changes378

in the parameters (e.g. with a shallow basin of attraction) are not expected379

to exist for long, and are thus assumed to not allow for coexistence in the380

long-term. While this second method forgoes giving a global description of381

coexistence in parameter space, it has key advantages. Most importantly,382

since it relies on perturbation calculus near a known feasible steady state,383

it can, in principle, be applied to arbitrarily complicated dynamics (whereas384

global descriptions are more difficult to generalise across scenarios).385

If the range of parameters allowing feasible steady states is large, those386
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steady states are said to be “robust” against parameter perturbations. In387

biological terms, species will have more opportunities to coexist by with-388

standing a larger range of external environmental changes that impact their389

parameter values (e.g. growth rates, carrying capacities). This perspective390

has been especially effective at elucidating how different processes contribute391

to coexistence – e.g., disentangling how multiple limiting factors contribute392

to coexistence and rigorously connecting these insights back to species’ eco-393

logical roles in a way that is independent of model details (Meszéna et al.394

2006, Barabás et al. 2014, Pásztor et al. 2016), quantifying the relative ef-395

fects of pairwise vs. indirect interactions on equilibria in the Lotka-Volterra396

competition equations (Saavedra et al. 2017, Garćıa-Callejas et al. 2021),397

predicting which species have larger persistence times (Allen-Perkins et al.398

2023, Domı́nguez-Garcia et al. 2024), or dividing feasibility criteria into sta-399

bilising and equalising components (Godoy et al. 2018), analogous to classic400

partitions of invasion growth rates as discussed in Section 3.3.401

For equilibria, parameter sensitivity can be computed relatively easily402

– either by identifying combinations of parameter values that lead to zero403

net population growth for all species in the community, or by simulating the404

model forward in time until it reaches a feasible equilibrium. However, param-405

eter sensitivity can also be computed for more complex dynamics (Barabás406

et al. 2012, Barabás and Ostling 2013, Barabás et al. 2014), or even based407

on empirically observed time-series data. For example, several recent studies408

have extended the scope of parameter sensitivity analyses to include effects409

of large perturbations (Tabi et al. 2020, Medeiros et al. 2021), spatially and410

temporally structured environments (Saavedra et al. 2020, Garćıa-Callejas411
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et al. 2021, Luo et al. 2022, Song et al. 2023, Long et al. 2024), and nonlinear412

conditions for specifying steady states (Cenci and Saavedra 2018a).413

3.2.2 Asymptotic Return Rate414

Asymptotic return rates describe the long-term response of a dynamical sys-415

tem to infinitesimally small perturbations by external forces. In ecological416

studies of coexistence, asymptotic return rates are usually applied to track417

the ability of species abundances to return to a particular steady state. If418

these return rates indicate that the system will always be drawn back to-419

wards that steady state regardless of the direction of the perturbation, the420

system is said to be asymptotically stable (Fig. 2c, d). Tests of asymptotic421

stability are analogous to testing for the existence of a local attractor –422

i.e. proving asymptotic stability is sufficient for identifying a local attractor.423

Thus, asymptotic stability around a feasible steady state implies coexistence,424

provided that species initial abundances fall within the region of the local425

attractor and that interference by external forces is sufficiently small that it426

does not push species out of this region.427

For equilibria, asymptotic stability is tested by quantifying the return428

rates from small perturbations around the equilibrium by computing the429

eigenvalues of the Jacobian matrix. The details of this procedure are beyond430

the scope of this review (see Otto and Day 2011 for an excellent introduction),431

but in essence, eigenvalues summarise rates of change along a set of trans-432

formed axes (analogous to principal component axes), which make it easier433

to quantify net effects of different combinations of perturbations and species434

dynamics. If the eigenvalues indicate that all species are drawn back towards435
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equilibrium following small perturbations, then the system is asymptotically436

stable. Different indicator criteria must be used depending on the kind of437

system. For continuous-time systems in which population dynamics play out438

smoothly over time, e.g. as might be expected for algae or bacteria, the re-439

turn towards equilibrium occurs if the real part of the leading eigenvalue is440

negative (i.e. the eigenvalue with the largest non-imaginary component). For441

discrete-time systems in which population dynamics occur at regular inter-442

vals, e.g. as might be assumed for annual plants or some insects, the absolute443

value of the largest eigenvalue in magnitude (the “dominant” eigenvalue)444

must be less than one. Several studies have also proposed methods for uni-445

fying the concepts of structural stability (described above) and asymptotic446

stability as part of a single analysis (Arnoldi and Haegeman 2016, Song and447

Saavedra 2018, Medeiros et al. 2021) – although these approaches are not yet448

in wide use.449

There are several important considerations for interpreting asymptotic re-450

turn rates. First, eigenvalues alone do not indicate whether a corresponding451

equilibrium is feasible; as such, equilibria that include non-positive species452

abundances must be discarded prior to analysis (Dormann 2008, Saavedra453

et al. 2017). Moreover, assessing only a subset of eigenvalues, or focusing454

only on their sign but not their magnitude, can give a misleading picture of455

community dynamics as a whole. This is because species within a community456

can present different recovery dynamics. For example, the leading eigenvalue457

– which is often reported as a stand-alone index of asymptotic stability –458

is primarily determined by the long-term recovery rate for the slowest dy-459

namical component of the system. Thus, even if only a single rare species460
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fails to recover from a perturbation, the real part of the corresponding lead-461

ing eigenvalue will still indicate a lack of asymptotic stability for the entire462

community (Arnoldi et al. 2016, 2018). Similarly, this property can be mis-463

leading in systems that are subject to repeated perturbations, as the leading464

eigenvalue typically only includes information on long-term responses, rather465

than short-term dynamics (Arnoldi et al. 2018).466

3.2.2.1 Dynamic approaches for assessing return rates Real world467

communities tend to be highly dynamic, which limits the utility of meth-468

ods that focus on systems near equilibrium (Pimm et al. 2019). Although469

theoretical methods exist for analysing asymptotic stability in systems with470

more complex dynamics – e.g. that converge towards invariant sets such as471

limit cycles or quasi-periodic orbits (Sell 1966, Hirsch et al. 1970, Breunung472

2022) – applying these metrics in practice can be difficult. The problem is473

two-fold. First, given an observed dynamical trajectory, it no longer suffices474

to test asymptotic return rates around a single fixed point – rather, return475

rates must be calculated along the entirety of that trajectory. Second, even if476

the observed part of a trajectory can be shown to be an attractor such that477

nearby states will always converge to it, there is no guarantee that the tra-478

jectory corresponds to long-term coexistence. For example, given any feasible479

starting abundance, dynamical trajectories for a logistic growth model with480

r < 0 will converge, but that convergence will be towards extinction rather481

than coexistence.482

To address these challenges, an increasingly common approach is to apply483

forecasting tools such as empirical dynamic modelling (EDM) to approximate484
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community dynamics, and then analyse the stability of the resulting model485

(Sugihara 1994, Deyle et al. 2016). EDM uses time-series observations to fit486

a series of piecewise locally weighted linear regressions that jointly describe487

how abundance dynamics, interactions among species, and environmental488

covariates change over time. Estimates of the Jacobian matrix describing489

community dynamics at each time step can then be computed directly from490

these piece-wise regressions. Asymptotic stability is then tested in one of two491

ways: either individual estimates of the Jacobian matrix are used to iden-492

tify a potential equilibrium towards which the system is drawn (Ushio et al.493

2018), or the full set of Jacobian Matrices can be applied to approximate494

their corresponding “Lyapunov spectrum” (effectively a time-varying gen-495

eralisation of eigenvalues, which describe return rates along a dynamic tra-496

jectory) (Oseledec 1968). In addition to assessing asymptotic return rates,497

these time-varing estimates of the Jacobian matrix can also be used to assess498

parameter sensitivity, as discussed in 3.2.1 (Cenci and Saavedra 2019). For499

a more detailed review of EDM, including a discussion of available software500

for carrying out analyses, see Munch et al. (2022).501

3.2.3 Invasion Growth Rates502

Invasion growth rates quantify the average per-capita growth rate of a species503

when it is relatively rare (termed the “invader”), and the rest of the com-504

munity is at steady state (termed the “resident”). Intuitively, if the invasion505

growth rate of a species is positive, the species can increase from rarity and,506

thereby, escape extinction risk at least in the short term if not in the long-507

term (Case 1995, Arnoldi et al. 2022). Alternatively, if the invasion growth508

27



rate of a species is negative, then once a species reaches low abundance,509

it would decline to extinction under current conditions. Independently in510

the mathematical literature, invasion growth rates are used to characterise511

whether coexistence occurs in the sense of a feasible global attractor (also512

known as permanence or uniform persistence Hofbauer 1981, Schreiber 2000,513

Patel and Schreiber 2018). Only recently have the more heuristic approaches514

in the ecological literature and the rigorous approaches in the mathematical515

literature begun to merge, providing a unique opportunity to simultaneously516

evaluate whether coexistence in the sense of permanence occurs in a math-517

ematically rigorous manner, and to probe the mechanisms underlying this518

coexistence in ecologically meaningful ways.519

In practice for coexistence analyses, invasion growth rates are frequently520

used to understand when two competing species could coexist at a global521

feasible attractor. Invasion growth rates are quantified for both species, and522

when both of these invasion growth rates are positive, then each species523

would increase from rarity and thus they would coexist at a global feasible524

attractor (Fig. 2e, f). This condition for coexistence is known as the “mu-525

tual invasibility” criterion. The mutual invasibility criterion has been used526

extensively to assess scenarios that yield coexistence and their corresponding527

mechanisms (Chesson 1994, Adler et al. 2007, Chesson 2018, Barabás et al.528

2018, Ellner et al. 2020) (see Section 3.3), and has been extended to com-529

munities composed of more than two species by assuming that whenever a530

species became rare, the remaining species would approach a steady state at531

which their densities are positive. The invasion growth rate of the rare species532

would be its average per-capita growth rate at this steady state. Provided533
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that invasion growth rates are positive for all species, coexistence at a global534

feasible attractor is assumed to occur; as we discuss below, this condition is535

necessary, but not sufficient for coexistence.536

The mutual invasibility framework has several advantages. First, as long537

as the removal of the species does not incite any co-extinctions of other538

species, invasion analysis effectively tests whether each species in a commu-539

nity can successfully reestablish itself from low density after being driven540

locally extinct. For this reason, mutual invasibility is often presented as a541

more biologically meaningful metric in systems that are subject to strong542

stochastic influences or frequent large disturbances (Turelli 1981). Indeed,543

mathematical theory for coexistence in the face of environmental stochastic-544

ity relies almost exclusively on this metric (Schreiber et al. 2011, Hening and545

Nguyen 2018, Benäım and Schreiber 2019). Second, because mutual invasi-546

bility focuses on system dynamics when the focal species is effectively absent547

from the community, invasion analysis can (at least in theory) ignore feed-548

backs between the invading species and the rest of the community, which can549

simplifies mathematical analyses, especially if the total number of species in550

the community is small.551

In empirical studies, invasion rates are often parameterised using data552

from pairwise competition experiments, where the fitness (e.g. seed produc-553

tion) of individuals of a focal species is evaluated along a density gradient of554

its competitor (Godoy and Levine 2014, Kraft et al. 2015, Wainwright et al.555

2019). However, these pairwise tests are not necessarily indicative of species’556

performance in diverse communities, e.g. due to effects of intransitive compe-557

tition, higher-order interactions, or other emergent mechanisms that stabilise558
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(or destabilise) coexistence only under higher diversity and not in pairwise559

scenarios (May and Leonard 1975, Edwards and Schreiber 2010, Mayfield560

and Stouffer 2017, Barabás et al. 2018). As such, an increasingly popular561

alternative approach is to fit models directly to time-series observations of562

diverse community dynamics (Ovaskainen et al. 2017) or to natural variation563

in fitness and neighborhood composition across spatial scales (Lanuza et al.564

2018). Once parameterised, the model can either be used to estimate invasion565

rates for each species in the community (Ellner et al. 2020), or fitted param-566

eter values can be compared to formula describing the necessary or sufficient567

conditions for mutual invasibility in the model (e.g., if species compete more568

strongly with themselves than each other) (Broekman et al. 2019). Especially569

popular models for these applications include the Lotka-Volterra competition570

equations (Chesson 2018) and various augmentations of the Chesson (1990b)571

annual plant model – though many other models, such as the MacArthur or572

Tilman resource competition frameworks have also been analysed (Chesson573

1990a, Letten et al. 2018). For a more detailed review of these methods, see574

Grainger et al. (2019), Barabás et al. (2018), and Godwin et al. (2020).575
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Figure 3: Invasion graphs for three empirically parameterised Lotka-Volterra
models. Invasion graph (a) is acyclic and as all subcommunities are invadible,
the entire community is permanent (gold vertex). Invasion graph (c) is cyclic
with all subcommunities invadible, but requires verifying an additional con-
dition (Schreiber 2000) to ensure permanence of the entire community (gold
vertex). Invasion graph (b) is acyclic but has two uninvadible subcommuni-
ties (gold vertices) which are non-feasible attractors and, consequently, the
entire community is not permanent. The vertices in the graphs correspond to
steady states of the Lotka-Volterra model and the directed edges correspond
to potential community trajectories connecting the steady states as identified
by invasion growth rates. Thick edges correspond to transitions due to single
species invasions, while thin edges correspond to transitions due to multiple
species additions. The colored edges indicate sequences of single species in-
vasions terminating at an attractor for the model.
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3.2.3.1 Permanence theory A common critique of coexistence anal-576

yses based on invasion growth rates is that, at least superficially, they seem577

unable to address important nuances of real world systems. For example,578

how can invasion rates be calculated for predator and prey species, or for579

obligate mutualists, where the removal of one species necessarily leads to580

the extinction of the other – or, what of cases where invasions merely lead581

to subsequent extinctions, such as in “rock-paper-scissors” models (Barabás582

et al. 2018)?583

While in some cases, these concerns have been addressed by model-specific584

solutions (e.g. Chesson and Kuang 2008, Ke and Wan 2020, Song and Spaak585

2024), the mathematical theory of permanence (i.e. a global feasible attrac-586

tor) provides a general approach for addressing these kinds of questions.587

While the general abstract mathematical theory was developed in the 1980s588

(Hutson 1984, Butler et al. 1986, Hofbauer and So 1989) with the connection589

to invasion growth rates made in 2000 (Schreiber 2000), the theory was too590

technical for general application in ecology (see, however, Law and Morton591

1996 who used an important special case of this theory; Hofbauer 1981). To592

help demystify this theory, Hofbauer and Schreiber (2022) introduced inva-593

sion graphs (Fig. 3). These graphs use invasion growth rates to identify all594

community trajectories that connect non-feasible steady states (i.e. where595

at least one species is missing from the community). Provided this invasion596

graph has no cycles (i.e. no rock-paper-scissor like dynamics), coexistence597

occurs if and only if, for every non-feasible steady state, at least one missing598

species has a positive invasion growth rate (Fig. 3a). Hence, in the absence599

of rock-paper-scissor type cycles, the sign of the invasion growth rates fully600
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determines whether coexistence occurs or not. When the invasion graph, how-601

ever, has a cycle, one can often use a condition depending on the magnitudes602

of the invasion growth rates to identify whether the cycle is repelling (Hof-603

bauer 1981, Schreiber 2000, Patel and Schreiber 2018) and, consequently, the604

community has a global feasible attractor (Fig. 3a).605

3.2.4 Time to Extinction606

Even in transient systems where coexistence is not predicted, co-occurrence607

of species can still take place over ecologically meaningful timescales (Lewon-608

tin and Cohen 1969, Turelli 1980). Time to extinction provides a quantita-609

tive measurement of this tendency, with longer time to extinction indicating610

longer periods of transient coexistence before extinction occurs (Fig. 2g, h).611

An advantage of this metric is that it can be applied across ecological sys-612

tems, regardless of its dynamical behaviour – making it especially useful for613

characterising transient dynamics in which other coexistence metrics do not614

apply, or in systems where little is known about underlying steady states and615

attractors.616

At least in theory, the timing of extinctions resulting from deterministic617

dynamics can be forecast exactly as a function of observed system states618

and dynamics. However, most modelling frameworks require additional con-619

siderations – e.g. in dynamical systems models, abundances approach zero620

asymptotically, such that they come infinitely close to, but never quite reach,621

extinction. Common solutions to this problem include including an extinction622

“cut-off” (quasi-extinction) at an arbitrarily small population size, or include623

a stochastic component when modelling small populations (Holmes et al.624
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2007). For models where extinctions result from random fluctuations, time625

to extinction is typically reported in terms of an expected waiting time (i.e.626

the average time to extinction that might be observed over many repeated tri-627

als). How, exactly, stochasticity influences time to extinction depends on how628

randomness is structured at the level of individuals vs. populations (Kendall629

and Fox 2003) (see Section 4.1.3 for more details).630

Given relatively simple dynamics and strong theoretical assumptions,631

mean time to extinction can often be computed using both analytical ap-632

proximations (Lande and Orzack 1988). For more complex systems, it can633

often be more efficient to estimate time to extinction directly through long-634

term simulations of a fitted model (van Nes and Scheffer 2004, Schreiber et al.635

2023). Simulation-based approaches for studying time to extinction are espe-636

cially well developed in population ecology, where carefully tuned integrated637

population models and integral projection models (IPMs) can be applied to638

accurately forecast population dynamics for well-studied species (Plard et al.639

2019). Recently, more general methods have been developed that attempt640

to make similar forecasts using less data and fewer biological assumptions,641

e.g. based insights from statistical mechanics (Arani et al. 2021) and delay642

embedding approaches (Clark et al. 2022).643

3.3 Quantifying Mechanisms that Promote Coexistence644

While our focus is on methods for detecting whether species coexist, a parallel645

and highly complementary body of work focuses on explaining mechanisms646

that promote, or alternatively hinder, coexistence in a given community.647
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Broadly, mechanisms that promote coexistence allow species to differentiate648

among one another in their degree of niche overlap, yielding differences in649

the strength of intra- and interspecific density dependence (Adler et al. 2018,650

Chase and Leibold 2009). Coexistence mechanisms can arise in a multitude of651

ways, such as via trait trade-offs among species (e.g. competition-colonization652

trade offs; Levins and Culver 1971, Yu and Wilson 2001), specilization of nat-653

ural enemies and pathogens (e.g. Janzen-Connell hypothesis; Janzen 1970,654

Connell 1971), differences between species in their limiting resources, or par-655

titioning of variable environmental conditions—as described below. Many656

studies seek to understand both the potential for coexistence, as we focus657

on here, and the underlying mechanisms that allow for coexistence. While658

an in-depth review of these mechanisms falls outside of our scope, we briefly659

highlight several of the prominent literature on mechanisms of coexistence.660

Resource-Ratio Hypothesis and Limiting Resources The resource ra-661

tio hypothesis, commonly referred to as R∗ theory, states that, given a single662

limiting resource, whichever species can persist at the lower resource equi-663

librium level (e.g. R∗) will outcompete all other species (MacArthur 1972,664

Tilman 1980, 1982). Extending to multiple resources, n species can coex-665

ist on n resources within a single site if each species has the lowest R∗ for666

a given resource (and arbitrarily many species can coexist given sufficient667

spatial heterogeneity), suggesting that niche differences in terms of species’668

limiting resources can promote species coexistence (Tilman 1982). Since its669

formalization, the resource-ratio hypothesis has been experimentally tested,670

with strong support for the theory, although mostly in select grassland and671
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phytoplankton systems due to logistical constraints (reviewed in Miller et al.672

2005).673

Stabilizing and Equalizing Mechanisms Under a given set of environ-674

mental conditions, coexistence is promoted when average fitness differences675

(i.e. equalizing mechanisms) and niche differences (i.e. stabilizing mecha-676

nisms) are balanced (Chesson 1990a, 2008, Barabás et al. 2018): if niche dif-677

ferences are small, then coexistence requires that average fitness differences678

are correspondingly small, otherwise the species with lower fitness will be679

competitively excluded. Alternatively, when niche differences between species680

are large, species can coexist even when average fitness differences are large681

(Adler et al. 2007, Spaak et al. 2023). However, model parameters, such as682

intra- and inter-specific competition coefficients, contribute to both niche683

and fitness differences, leading to a complex interdependency between the684

two mechanisms, and a need to focus on their aggregated, rather than indi-685

vidual, effects (Song et al. 2019).686

While the exact formula for determining niche and fitness differences clas-687

sically depended on the underlying population model and methodological688

approach (Godoy and Levine 2014, Letten et al. 2017, Spaak et al. 2023),689

niche differences and fitness differences can be relatively easily quantified690

for pairs of species, leading to empirical comparisons of mechanisms across691

species traits (Kraft et al. 2015), phenology (Godoy and Levine 2014), and692

environmental conditions (Wainwright et al. 2019, Van Dyke et al. 2022).693

Methods for quantifying these mechanisms have recently been expanded to694

consider facilitation (Bimler et al. 2018), plant-soil feedbacks (Ke and Wan695
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2020, Kandlikar et al. 2019, 2021, Ke and Wan 2022), and cross-trophic level696

interactions (Spaak et al. 2021, Song and Spaak 2024), thus extending beyond697

the traditional focus on within-trophic level competition.698

Spatial and Temporal Environmental Variability Variability in envi-699

ronmental conditions can increase available niche space, promoting coexis-700

tence of competing species. This idea dates back decades (MacArthur 1958,701

Armstrong and McGehee 1980, May and MacArthur 1972, Turelli 1978,702

Levins 1979), but was formalised into a general mathematical framework703

by Chesson (1994) for temporal, and (Chesson 2000b) for spatially variable704

environments. Broadly, environmental variability can promote coexistence,705

even when fluctuation-independent growth rates may yield competitive ex-706

clusion, via multiple mechanisms: (i) the storage effect, where species par-707

tition environmental variation, and time periods or locations with beneficial708

environmental conditions correspond with reduced competition; (ii) relative709

non-linearity, where species each experience their maximum average growth710

rate at different levels of a fluctuating environmental factor; and (iii) growth-711

density covariance (which only applies for spatial variation), which promotes712

coexistence if species aggregate in regions where they have high growth rates713

(Chesson 2000a, 2018, Barabás et al. 2018, Ellner et al. 2019).714

A recent simulation-based approach allows for alternative formalisation of715

mechanisms that promote coexistence under variable conditions, in essence716

by simulating invasion growth rates for each species under scenarios where717

spatial or temporal structure is disrupted (Ellner et al. 2019). The relative718

importance and strength of different coexistence mechanisms can then be719
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quantified by comparing invasion rates with and without each structuring720

aspect (e.g. spatial or temporal heterogeneity), broadly categorizing mech-721

anisms based on resource availability (Letten et al. 2018), environmental-722

competitive mechanisms (Hallett et al. 2019, 2023, Aoyama et al. 2022), trait723

differences (Ellner et al. 2019), top-down and bottom-up forces (Shoemaker724

et al. 2020), or alternative frameworks.725

4 Reconciling Theory and Practice726

Recent coexistence research has made great strides in developing effective727

strategies to bring coexistence theory and practical applications into greater728

harmony. In the following sections, we first discuss key challenges in integrat-729

ing coexistence theory with empirical tests (Section 4.1). We then present730

some general guidelines and a recommended workflow for applying the coex-731

istence metrics discussed in Section 3.2 to characterise dynamical behaviour732

in empirical contexts (Section 4.2). Finally, we end with a brief prospectus,733

in which we outline ongoing challenges in empirical coexistence research, and734

suggest potential ways forward (Section 4.3).735

4.1 Special Challenges in Empirical Systems736

Empirical systems are typically highly complex, diverse, and interconnected737

across space and time. Moreover, ecologists have limited a priori knowledge738

about the species, environments, and underlying biological processes that739

structure real world systems. Consequently, in addition to the theoretical740

caveats and scope limitations associated with each of the metrics discussed741
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above, empirical systems present several general classes of challenges that742

must be considered regardless of the metric applied. These challenges are743

discussed in detail below, and include: (4.1.1) the underlying biology of em-744

pirical systems is often poorly understood; (4.1.2) empirical systems tend to745

be measured with large sampling uncertainty and (4.1.3) are subject to both746

demographic and environmental stochasticity; (4.1.4) the spatial and tempo-747

ral scale of empirical observations are usually highly constrained; and (4.1.5)748

key ecological properties of empirical systems often violate assumptions that749

are necessary in analysis of theoretical models.750

4.1.1 Incomplete Biological Understanding751

There is currently no generally agreed upon “standard model” for describ-752

ing dynamics in ecological systems. All ecological models must, therefore,753

be thought of as simplified abstractions, which are at best accurate within a754

limited scope of times, places, and conditions (MacArthur 1970, Levin 1992).755

The same caveat is inherited by any coexistence metric applied in empirical756

contexts: coexistence criteria can be tested for particular theoretical models757

or mechanisms, but there is no guarantee that these insights can be trans-758

ferred to any given empirical system. Estimates of time to extinction forecasts759

illustrate this point particularly well. In a theoretical model, average extinc-760

tion times can usually be estimated either through analytical formula, or by761

simulation (Lande et al. 1998, Arani et al. 2021, Schreiber et al. 2023). When762

applied in practice, however, these forecasts can fail for any number of rea-763

sons – e.g. because the wrong equations are chosen to represent the system,764

the model is improperly parameterised, or simply because initial conditions765
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are imperfectly characterised (Auger-Méthé et al. 2016, Plard et al. 2019,766

Rogers et al. 2022). Moreover, even if model predictions perform well for a767

particular community and context, there is no guarantee that it will continue768

to do so for other times, places, and species (Carpenter et al. 2001).769

Analogous issues exist for all other coexistence metrics. Parameter sen-770

sitivity analyses, for example, usually focus either on the steady states that771

are implied by a particular theoretical model (Saavedra et al. 2017), or on772

local approximations of these states expanded around an observed dynamic773

trajectory (Cenci and Saavedra 2019). Similarly, although eigenvalue-based774

estimates of asymptotic stability can be calculated with few assumptions775

about underlying system dynamics or governing equations (Deyle et al. 2016),776

these estimates are necessarily only accurate around the specific equilibria777

under consideration. Thus, changes to the system state (e.g. movement away778

from a fixed-point equilibrium due to large perturbations) or changes to un-779

derlying system dynamics (e.g. due to community turnover or environmental780

variability) will also lead to changes in the corresponding coexistence metrics781

(Tilman 1982).782

At least in theory, analyses of invasion growth rates can be generalised783

across a wider range of system states than is true for other metrics. Neverthe-784

less, empirical estimates of species invasion rates have been shown to change785

dramatically across environmental conditions (Mat́ıas et al. 2018, Germain786

et al. 2018, Hallett et al. 2019, Wainwright et al. 2019, Van Dyke et al.787

2022). Thus, whether or not a species successfully invades when introduced788

into a community at low abundance might be indicative of its average inva-789

sion rate, or it could simply be a function of the specific conditions that were790
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tested – potentially overlooking the effects of local vs. regional environmen-791

tal heterogeneity, inter-annual variability, random chance, etc. While these792

uncertainties can usually be accounted for in analyses, doing so requires mak-793

ing strong theoretical assumptions about underlying dynamics and functional794

forms (Letten et al. 2017, Spaak et al. 2023, Weiss-Lehman et al. 2022).795

4.1.2 Observation and Detection Errors796

Empirical observations in ecology are notoriously noisy, leading both to high797

rates of observation error (e.g. differences between true vs. measured species798

abundances), and detection errors (i.e. failing to detect species or incorrectly799

classifying species identities). Both of these kinds of error can have major800

ramifications for studies of coexistence. Most obviously, detection error can801

bias estimates of time to extinction, asymptotic return rates, and invasion802

success (Kindsvater et al. 2018, Dornelas et al. 2019). For example, if a species803

is classified as going extinct even though it is still present in the community,804

extinction rates and occurrences will be under-estimated – or, alternatively,805

if surveys fail to detect small populations where extinction times are faster,806

then extinction estimates will be too high (Kuczynski et al. 2023). Many807

methods have been developed to help reduce such biases (Shimadzu et al.808

2016), though again, these tend to require large amounts of data, or strong809

assumptions about species dynamics and error structure.810

Even if all species in a community are correctly detected and identified,811

observation error in abundance estimates can still confound analyses. For812

example, even small errors in abundance measurements can lead to large bi-813

ases in model parameters (Bowler et al. 2022), as well as in corresponding814
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estimates of coexistence metrics (Clark and Neuhauser 2018). Particularly815

strong biases can occur when observation error is large relative to species av-816

erage abundances. For example, if invasion rates are calculated using ratios,817

then measurement error can lead to estimates that have no defined mean or818

variance, which makes them exceedingly difficult to parameterise from em-819

pirical data (Marsaglia 2006). Similar problems can occur for any kind of820

ratio distribution where noise is large relative to the quantity being observed821

– for example, when estimating interaction coefficients based on species’ per-822

formance in mixture relative to monoculture (Carrara et al. 2015), or even823

when calculating estimates of species relative abundance or density.824

4.1.3 Environmental and Demographic Stochasticity825

Thus far, we have focused on deterministic models of species interactions.826

However, ecological systems often experience extrinsic and intrinsic noise,827

known as environmental and demographic stochasticity, respectively (Lande828

et al. 2003, Schreiber 2017). Environmental stochasticity arises from stochas-829

tic fluctuations in demographic rates due to stochastic fluctuations in envi-830

ronmental conditions such temperature, precipitation, or nutrient availability.831

In contrast, demographic stochasticity arises from populations consisting of832

a finite and discrete number of individuals whose demographic fates are not833

perfectly correlated – independent coin flips are determining whether each834

individual survives, grows, or survives.835

Models with environmental stochasticity share many properties with their836

deterministic analogs (Levins 1979, Chesson and Ellner 1989, Chesson 1994,837

Schreiber et al. 2011, Hening and Nguyen 2018, Benäım and Schreiber 2019).838
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The stochastic analog of a feasible steady states is a feasible statistical equi-839

librium that describes, in the long-term, the fraction of time spent near840

any feasible state (Schreiber et al. 2011, Hening and Nguyen 2018, Benäım841

and Schreiber 2019). Unlike deterministic models, however, these statistical842

equilibria are typically stochastic attractors. For example, if environmen-843

tal stochasticity is added to a Lotka-Volterra model with bistable competi-844

tors, there is no “unstable” statistical equilibrium that separates exclusion845

of one species from another. Instead, any feasible initial state may lead to846

the loss of either species with positive probability (Schreiber 2021, Hening847

et al. 2022). The stochastic analog of global feasible steady state is known as848

stochastic persistence. Invasion growth rates are a key metric for identifying849

whether stochastic persistence occurs or not (Schreiber et al. 2011, Hening850

and Nguyen 2018, Benäım and Schreiber 2019). Indeed, the use of invasion851

growth rates in coexistence theory stemmed from Chesson’s work on the stor-852

age effect for models accounting for environmental stochasticity (Chesson and853

Warner 1981, Chesson 1994).854

For models with environmental stochasticity, extinction typically only855

occurs asymptotically as population densities approach zero exponentially856

quickly (Hening and Nguyen 2018, Benäım and Schreiber 2019). Hence, ex-857

tinction risk is typically measured by introducing a quasi-extinction threshold858

below which the species is considered effectively extinct (Fieberg and Ellner859

2000). In sharp contrast, extinction typically occurs in finite time for models860

accounting for demographic stochasticity (Schreiber 2017). Hence, coexis-861

tence is always transient in models with demographic stochasticity. However,862

these transients may be exceptionally long and well described by mean-field863
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models which average out the effects of demographic stochasticity. In par-864

ticular, when a mean field model has a feasible local attractor, the time to865

extinction increases exponentially with community size (Faure and Schreiber866

2014, Schreiber 2017). Hence, extinction risk can often be safely ignored for867

sufficiently large populations (Schreiber et al. 2023). In contrast, if the mean868

field models lacks feasible local attractors, impacts of demographic fluctua-869

tions mount over time, such that time to extinction can be ecologically rel-870

evant even for large populations (Faure and Schreiber 2014, Schreiber et al.871

2023).872

The simultaneous effects of environmental and demographic stochastic-873

ity are complex and only beginning to be understood. For example, even if874

invasion growth rates are positive for the mean field model averaging out875

the effects of demographic stochasticity, long-runs of unfavorable environ-876

mental conditions can generate negative transients in the per-capita growth877

rates of rare species. Under these situations, coexistence times only scale878

as a power function of community size (Ellner et al. 2020, Prodhomme and879

Strickler 2021). Hence, even communities with large population sizes may880

be highly vulnerable to extinction. For these situations, positive invasion881

growth rates can be a poor metric of coexistence times. For example, Dean882

and Shnerb (2020) and Pande et al. (2020) showed that increasing envi-883

ronmental stochasticity can simultaneously make invasion growth rates more884

positive yet shorten coexistence times; a similar phenomena occurs in models885

of competing species with Allee effects (Schreiber et al. 2019).886
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4.1.4 The Problem of Scale887

One of the most pervasive challenges in ecology is that of scale dependence888

– i.e. that the processes that drive ecological dynamics vary substantially889

across space, time, and contexts Levin (1992). These cross-scale problems890

typically manifest in coexistence studies as a result of differences between the891

scales at which systems are observed and experimentally manipulated, vs. the892

scales that are most relevant for coexistence (Chesson 2000a). As a simple893

illustration, consider the random walk model in Fig. 2 (g, h). The relative894

abundances of species in this model are entirely determined by demographic895

stochasticity – thus, at the “global” scale (i.e. considering all individuals896

in the simulation), all but one species will eventually drift to extinction.897

However, the system can “appear” to be both asymptotically stable and898

mutually invasible at smaller observational scales due to mass effects (Hubbell899

2001, Clark et al. 2019) – perturbations that reduce local species abundances900

below the global average are counteracted by immigration from outside of901

the local patch, and perturbations that increase local abundances above the902

global average are counteracted because immigration from outside the patch903

is slower than within-patch mortality.904

Similar problems arise for many other kinds of ecological processes and905

coexistence metrics, though the underlying mechanisms are often more diffi-906

cult to identify and compensate for (Leibold and Chase 2017). For example,907

invasion analysis can be challenging to implement using field experiments, as908

most theoretical frameworks require that invasion rates be averaged across909

the full range of spatial and temporal variability experienced by the com-910
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munity, whereas most experiments are carried out across a limited range of911

relatively homogeneous spatial replicates over just a few years. Thus, it can912

be unclear whether results are indicative of real biological phenomena, or913

whether they reflect the limited range of conditions that were tested (Kraft914

et al. 2015). Moreover, these problems cannot be alleviated by simply in-915

creasing the scale at which observations and experiments are conducted, as916

observational scales that are too large can also lead to erroneous conclusions917

about coexistence (Clark et al. 2019). Indeed, it seems likely that different as-918

pects of coexistence (e.g. for different species, or different temporal periods)919

are driven by processes that act across many different scales, thereby requir-920

ing measurements across many different observational scales to accurately921

capture their effects (MacArthur 1972).922

Another challenge for temporal scale is the correct estimation of genera-923

tion times and effective population sizes (Ne). Understanding these param-924

eters helps in assessing the viability and extinction risk of populations, as925

they determine the rate of reproduction and genetic diversity, which in turn926

influence a population’s response to disturbances and demographic fluctua-927

tions (Jonasson et al. 2022). Incorrect estimates of generation times can have928

major impacts on long-term forecasts – especially in systems that include de-929

mographically structured population dynamics (Leslie 1966, Brussard et al.930

1971). Similarly, Ne is particularly important in small or fluctuating popu-931

lations, where genetic drift and inbreeding can have significant impacts on932

the long-term persistence of species. Nevertheless, in practice, these impacts933

are often omitted from models, either due to the technical complexity of in-934

cluding them, or due to a lack of empirical data or proper genetic markers935
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(Waples and Yokota 2007).936

4.1.5 Violations of Theoretical Assumptions937

Aspects of real world ecological systems can clash in important ways with938

common assumptions that are made to simplify theoretical analyses. For ex-939

ample, many empirical systems lack equilibria (DeAngelis and Waterhouse940

1987), and some appear to lack any kind of discernible steady state at all941

(Pimm et al. 2019) – thereby limiting the kinds of coexistence metrics that942

can be computed. Even in systems that include feasible steady states, com-943

plex dynamics can impede efforts to approximate system dynamics using sim-944

ple models. Different community assembly pathways, for example, have been945

shown to lead to fundamentally different kinds of dynamical behaviour and946

long-term steady states (Fukami 2015), potentially requiring many different947

measurements and augmented models to accurately characterise coexistence948

dynamics (Letten and Stouffer 2019). Moreover, many routine challenges that949

arise in empirical studies – e.g. transfer shock during invasion experiments,950

carryover effects from the environment in which young organisms are reared,951

or even germination failure or high mortality rates – are, in practice, ex-952

ceedingly difficult to model or quantify without making resulting analyses953

intractably complicated.954

An additional challenge is that real world systems are often highly diverse955

– including anywhere from dozens to thousands of species or taxonomic units956

even at the smallest possible observational scales (Jurburg et al. 2022). For957

diversity metrics that rely on measurements of species’ monoculture perfor-958

mance, pairwise interactions, or invasion growth rates, this high diversity can959
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necessitate impractically large numbers of experimental replicates (but see960

Song et al. 2022, for a discussion of efficient sampling strategies). In systems961

that include many feasible local steady states, this problem is magnified,962

as each of these states might need to be separately assessed as a poten-963

tial local attractor (Song et al. 2021). And, even when testing for global964

attractors, high diversity can present a challenge – e.g. even for relatively965

well-understood classes of dynamical behaviour, building invasion graphs for966

communities that include more than a few dozen species is technically in-967

feasible given current algorithms and computational performance (Hofbauer968

and Schreiber 2022, Spaak and Schreiber 2023).969

4.2 Suggested Workflow970

Below, we describe a potential workflow for matching available coexistence971

metrics to different empirical contexts. For each step, we reference a corre-972

sponding section in this review where more details and relevant citations can973

be found. Additionally, the general links between dynamical behaviours (Sec-974

tion 3.1), coexistence metrics (Section 3.2), and empirically relevant research975

questions and data types are summarised in Fig. 4. Recall that these metrics976

assess whether species can coexist, and additional methods are needed to977

determine why coexistence occurs (Section 3.3).978

4.2.1 Select Dynamical Behaviours979

The first step is to decide which class of dynamical behaviour (or which com-980

bination thereof) you wish to focus on. As discussed in Section 3.1, each of981
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these behaviours relates to a distinct definition of coexistence. Existing hy-982

potheses about the kinds of dynamics that are biologically relevant in your983

system should be a primary determinant of your choice. For example, if there984

is reason to believe that your system lacks any discernible feasible steady985

states, then analyses that focus on transient states may be well-suited. Alter-986

natively, if dynamics seem to occur in the vicinity of one or more fixed-point987

equilibria (or well-defined invariant sets), then analyses of feasible steady988

states or local attractors may offer a good balance between ease of applica-989

tion and breadth of insight. Finally, if species appear to be able to coexist990

in the long-term despite large perturbations, but dynamics are highly com-991

plex and variable – then global attractors may provide the broadest possible992

insights about coexistence in your system.993

4.2.2 Identify Relevant Metrics994

The combination of coexistence metrics and analyses that you need to apply995

will depend on the classes of dynamical behaviours that you want to assess.996

Section 3.2 includes a detailed discussion of metrics that can be applied for997

each class of dynamic behaviour. There is a rough hierarchy to these metrics998

– e.g. time to extinction can be calculated for almost any kind of system,999

but provides relatively little information about broader system dynamics,1000

whereas invasion growth rates can, at least in theory, be used to characterise1001

the overall global stability of coexistence in a system, but in exchange require1002

making very strong theoretical assumptions about the processes that govern1003

system dynamics. This hierarchy does not, however, imply that any one met-1004

ric is “better” or “more desirable” than the rest – rather, each metric simply1005
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elucidates a different aspect of system behavior, each of which is relevant for1006

describing different facets of coexistence.1007

4.2.3 Assess Available Data and Theory1008

Coexistence metrics differ greatly in the kinds of data, theory, and models1009

that are required to apply them (see details in Section 3.1, and citations to1010

example applications in Table 4). Thus, it may be necessary to constrain1011

the classes of dynamical behavior that you choose to study based on the1012

availability of this information for your system. For example, if you are will-1013

ing to assume that community dynamics in your system follow the general1014

Lotka-Volterra equations, then applying most coexistence metrics becomes1015

relatively simple – e.g. parameter sensitivity and asymptotic return rates1016

can be computed directly from species interaction coefficients (measured ei-1017

ther from time-series data, or from pairwise interaction experiments), and1018

even analysis of global attractors via permanence theory follows a relatively1019

simple, established protocol.1020

Alternatively, if theory suggests that interactions in the system are more1021

complex – e.g. including Allee effects, non-linear growth responses, or even1022

higher order interactions – then analyses become more complicated, poten-1023

tially limiting the kinds of behaviour that can be studied, and usually requir-1024

ing larger quantities and different kinds of data (e.g. from multi-species mix-1025

tures). For instance, current structural approaches for assessing parameter1026

sensitivity are generally limited to models that describe species interactions1027

through a series of linear coefficients – and thus, the approaches cannot yet1028

be applied in systems dominated by non-linear interactions, as might arise1029
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from “higher-order” interactions, or from some kinds of resource competition1030

(AlAdwani and Saavedra 2022, Buche et al. 2024). At the far extreme, if1031

there are no existing models or theories about the kinds of biological pro-1032

cesses that govern community dynamics in your system, then your analyses1033

will necessarily be constrained by available data. For these kinds of systems,1034

flexible data-driven methods such as EDM may be especially useful (see Sec-1035

tion 3.2.2.1).1036

4.2.4 Interpret Your Results1037

Finally, recall that empirical systems are not interchangeable with theoreti-1038

cal models. As discussed in Section 4.1, many biologically important aspects1039

of empirical systems tend not to be implemented in common classes of theo-1040

retical models (e.g. uncertainty in functional forms of biotic interactions, ob-1041

servation error, cross-scale processes, etc), and some aspects are so complex1042

as to preclude tractable model-based representations at all. Consequently,1043

predictions about coexistence will only ever be as reliable as the assumptions1044

that are used to produce them. Given great uncertainty, it may be prudent to1045

apply simpler, less informative coexistence metrics as well as to avoid mak-1046

ing unfounded theoretical assumptions. Even given solid theoretical backing,1047

assumptions and underlying models used to assess coexistence should always1048

be clearly articulated along with other research findings. Additionally, wher-1049

ever possible, predictions should be tested across multiple different models1050

or theoretical frameworks, both to ensure the robustness of results, and to1051

help distinguish among different potential hypotheses about the processes1052

that are driving community dynamics.1053
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4.2.5 Rinse and Repeat1054

After interpreting your results, you may find that you need to collect more1055

(or different) kinds of data, plan new experiments, develop alternate theo-1056

retical models, etc. You may also find that the behaviours and metrics that1057

you initially chose to focus on are not, in fact, those that are most relevant1058

(or most readily testable) in your system. We therefore strongly suggest an1059

iterative approach to studying coexistence – i.e. returning to previous steps1060

as needed to match your theory, data, and practical needs.1061
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Data type Metric Example study descriptions and citations
Time-series observations

Time series

Time to extinction Fit a stochastic dynamical model to observed time-series of algal 
dynamics to predict average time to extinction for individual 
species (Clark et al. 2022).

Parameter 
sensitivity

Quantified uncertainty in estimates of how strongly species 
interactions influence community dynamics (Cenci & Saavedra 
2018).

Asymptotic return 
rate

Used multivariate autoregressive models (MAR) to estimate 
species interactions and stability properties of naturally varying 
plankton communities (Ives et al. 2003). 

Natural 
disturbance

Parameter 
sensitivity

Tracked transient dynamics of an altered marine ecosystem and 
its current return path towards benthic fish species domination 
(Frank et al. 2011).

Asymptotic return 
rate 

Measured multiple stability parameters, including return rates, 
from vegetation anomalies in remote sensing data (White et. al. 
2020).

Invasion growth 
rate & Asymptotic 
return rate

Documented average rate of increase when rare, as well as 
asymptotic divergence rates across spatial replicates, for 
grassland plant species following agricultural abandonment, 
based on a century-long chronosequence (Clark et al. 2019).

Observations of spatial variation

Parameter 
sensitivity

Computed niche and fitness differences across gradients of 
pollinators and soil conditions using an annual plant population 
dynamics model (Lanuza et al. 2018).

Invasion growth 
rate

Applied a Bayesian modelling approach to estimate invasion 
criteria for an annual plant community (Bowler et al. 2022).

Experimental manipulations

Disturbance
Parameter 
sensitivity

Fit a resource competition model to observations of two diatom 
species grown across a temperature gradient. Simulated models 
with and without temperature fluctuations to test impacts on 
coexistence (Descamps-Julien & Gonzalez 2005).

Asymptotic return 
rate

Documented the recovery of freshwater microbial communities 
following experimental mixing of a thermally stratified lake 
(Shade et al. 2012).

Pairwise growth

Time to extinction Simulated how third-party species can prolong or shorten 
competitive outcomes between species pairs (Deng et al. 2022).

Parameter 
sensitivity 

Used density manipulations to estimate interactions between 
pairs of annual plants, and used those estimates to predict 
coexistence in communities with more than two species 
(“geometric projection”) (Buche et al. 2024).

Asymptotic return 
rate

Measured algae species and resource concentrations in 
monoculture to parametrise resource competition models. 
Analysed model asymptotic stability characteristics to identify 
local attractors. Model predictions of coexistence were then 
tested against empirical observations of two-species mixtures 
(Tilman 1977). 

Invasion growth 
rate

Estimating stabilising niche differences and average fitness 
differences for a pairwise grassland plant competition 
experiment using an annual plant competition model, and 
applied the fitted models to predict competitive outcomes (Kraft 
et al. 2015).

Multispecies 
growth

Parameter 
sensitivity

Studied how adding nitrogen and removing leaf pathogens affect 
the coexistence of species in communities with different 
numbers of species considering the natural variations in species 
density and abundance (Granjel et al. 2023).

Asymptotic return 
rate & Invasion 
growth rate

Fit resource competition models based on species characteristics
measured in grassland monocultures, and analysed model 
asymptotic stability and invasion rates to identify local and global
attractors. Validated predictions of coexistence against 
experimentally assembled multi-species mixtures (Clark et al. 
2018).

Invasion growth 
rate

Tracked invasion and establishment success of a microbial 
invader in laboratory microcosms after disturbing (i.e., heat) at 
different levels (Liu et al. 2012).

Knock-outs Parameter 
sensitivity

Removed macroinvertebrate in the sequences in which they are 
predicted to disappear in response to disturbances and analysed 
the leaf breakdown rates (Jonsson et al. 2002).

Invasion growth 
rate

Removed microbial diversity from soil to create a large diversity 
gradient and tracked the ability of an invader to grow at each 
point in the gradient (Mallon et al. 2015).

Invasion Invasion growth 
rate

A general analytical method that uses both resident community 
and invader dynamical features to predict whether an invasion 
causes large long-term impacts on the invaded community 
(Arnoldi et al. 2022).

Figure 4: Caption on next page.
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Figure 4: Linking data types and analytical methods for quantifying coexis-
tence in empirical contexts. Rows show different data types and the corre-
sponding metrics (Section 3.2) used to assess coexistence in previous studies.
Citations show example applications of each approach, with a short discus-
sion of the work.

4.3 Summary and Outlook1062

Above all else, we remind readers that it is vital to define coexistence in terms1063

of specific dynamical behaviours and metrics. We recommend that studies1064

specifically state which behaviours and metrics they are applying (e.g. “we1065

analysed asymptotic return rates to test for the existence of a positive local1066

attractor”), facilitating comparisons across studies of coexistence. Similarly,1067

we urge researchers to remain humble and open-minded when interpreting1068

results from coexistence studies. In practice, there is no such thing as single1069

metric that is always right – both because metrics can only test for specific1070

kinds of dynamical behaviour, and because these behaviours describe the-1071

oretical abstractions of complex empirical systems. To paraphrase the old1072

adage about models: metrics will always be imperfect, but different metrics1073

are useful under different circumstances.1074

Given that multiple, mutually inclusive, behaviours can occur in a given1075

system, we suggest that future empirical studies of coexistence move away1076

from single binary tests of whether a particular community can coexist or1077

not, and instead towards applications of a diverse mixture of coexistence1078

metrics. Similar shifts in scope away from individual metrics and towards1079

holistic multidimensional tests have met with much success in general stud-1080

ies of ecological stability, yielding a complementary mix of different kinds of1081
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qualitative and quantitative understanding (Donohue et al. 2013, Domı́nguez-1082

Garćıa et al. 2019, Radchuk et al. 2019, Medeiros et al. 2021, Allen-Perkins1083

et al. 2023). It is likely that the same insights apply to coexistence. For exam-1084

ple, by quantifying both parameter sensitivity and asymptotic return rates,1085

studies can account for the effect of perturbations on both rate constants1086

(e.g. growth rates, interaction coefficients) and state variables (e.g. species1087

abundances) (Medeiros et al. 2021). Similarly, jointly reporting asymptotic1088

return rates and invasion growth rates within the same study can help show1089

how coexistence is likely to respond to large vs. small perturbations (Clark1090

et al. 2019).1091

Additionally, we note that a little bit of theory can go a long way – and1092

making a few targeted theoretical assumptions can greatly reduce the scope1093

of empirical data needed to test many coexistence hypotheses. For example,1094

Hallett et al. (2019) used data from rainfall manipulation experiments to1095

parameterise a demographic model – thereby enabling tests of coexistence1096

along a global attractor even with limited spatial and temporal replication.1097

Nevertheless, it is also important to remember that if these a priori hypothe-1098

ses, and corresponding assumptions, are poorly supported, then they can also1099

lead to misleading conclusions. We therefore recommend explicit considera-1100

tion of these underlying assumptions, and assessment of the robustness of1101

results when assumptions are not met. For example, impacts of demographic1102

stochasticity are often assumed sufficiently small such that they have min-1103

imal impacts on invasion success in tests of mutual invisibility. To test the1104

impact of these small effects, Schreiber et al. (2023) reported the probability1105

of invasion success averaged across a large number of replicates. Similarly,1106
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West and Shnerb (2022) show that even in highly complex systems, average1107

predictions from a simple comparison of pairwise competition experiments1108

correlated closely (but not perfectly) with those from more complex coex-1109

istence criteria. In general, it seems plausible that most classic coexistence1110

metrics will, on average, produce qualitatively similar results when applied1111

to empirical data even if all underlying assumptions are not met – so long as1112

practitioners are careful to acknowledge that these results should be inter-1113

preted with care.1114

Lastly, we stress a balance between building on past hypotheses and equa-1115

tions – which can significantly reduce the data requirements for analyses of1116

coexistence – and testing alternative hypotheses and corresponding equa-1117

tions or even behaviours that might better fit the study system. For ex-1118

ample, many studies of grassland coexistence use identical model structure1119

(e.g. Levine and HilleRisLambers 2009, Hallett et al. 2019, Kraft et al. 2015,1120

Van Dyke et al. 2022), facilitating cross study comparison. Simultaneously,1121

however, Terry and Armitage (2024) has noted that using the same model1122

structure repeatedly has impeded inferences of coexistence in some empirical1123

settings, potentially leading to model-specific dependencies of results. To help1124

avoid this problem, combining insight from across multiple different theoreti-1125

cal frameworks (ideally representing multiple different dynamical behaviours1126

and metrics) can help test the generality of results, and facilitate analysis1127

both within and across ecosystems – e.g. by comparing predictions about1128

coexistence across different sets of theoretical assumptions or environmental1129

conditions (Ellner et al. 2019, Walker and Gilbert 2023).1130
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4.3.1 Future Challenges1131

We believe that a preeminent challenge for coexistence research in the com-1132

ing years will be the development of new analytical methods that are built1133

hand-in-hand with empirical applications. These new methods need not (and1134

probably should not) seek to define new classes of dynamical behaviour (i.e.1135

Section 3.1) or even new coexistence metrics (3.2) – however, the current1136

generation of methods for matching data to metrics and behaviours has been1137

largely inherited from theoretical studies, and often leave major gaps between1138

theoretical assumptions and practical applications. In particular, these new1139

methods should focus on making testable predictions that can be validated1140

against available data (e.g. “will this species or community persist for the1141

next X years?”), including long-term observations, controlled field experi-1142

ments, and the growing body of proxy data coming from genetic, trait, and1143

remote sensing studies (Borer et al. 2017, Gonzalez et al. 2023). Moreover,1144

before new methods are introduced to a broader audience, they should be1145

validated extensively against real world data to make their scope and limi-1146

tations as clear as possible.1147

Another important next step in coexistence research will be to compare1148

relationships between different coexistence metrics and dynamical behaviours1149

in real world systems. While these relationships are well understood in the-1150

ory, it is not yet clear how well these theoretical links apply in practice. For1151

example, insights from studies of ecological stability suggest that multivari-1152

ate relationships across different metrics are often much more constrained in1153

empirical systems than is predicted by theory (Donohue et al. 2013, Rad-1154
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chuk et al. 2019). Interestingly, these constrained relationships could greatly1155

simplify many analyses – e.g. if abundance dynamics for species with very1156

long predicted time to extinction are, in practice, likely to be associated with1157

feasible global attractors, then even relatively “simple” metrics could be used1158

to test for complex dynamical behaviours.1159

Finally, an enduring challenge for coexistence research is to better match1160

both the spatial and temporal scales at which empirical data are available to1161

the scales that are most relevant for coexistence (Chesson 2000a, Clark et al.1162

2019). Improving this link is critical under ongoing global change, which chal-1163

lenges many of the assumptions of classic coexistence theory. Strengthening1164

this link will be important for validating new methods, assessing how well our1165

mathematical theory translates to empirical predictions, and thus for using1166

theory to for make predictions that are directly useful for conservation and1167

restoration applications (HilleRisLambers et al. 2012, Hallett et al. 2023).1168

Additionally, more general scaling approaches will be critical for identifying1169

the spatial, temporal, and context-based limits to our ability to understand1170

and forecast coexistence – e.g. the maximum time horizons across which pre-1171

dictions about coexistence can be made (Maris et al. 2018, Tredennick et al.1172

2021).1173

4.4 Conclusions1174

1. ecological coexistence has historically been described using a wide range1175

of independently developed (and sometimes mutually exclusive) defini-1176

tions and metrics1177
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2. most kinds of community dynamics fall into one of four classes: feasi-1178

ble steady states, feasible local attractors, feasible global attractors, or1179

transient states1180

3. these four classes of behaviour can be used to define different aspects1181

of ecological coexistence, and can be identified and tested using well-1182

established theoretical metrics: parameter sensitivity (for feasible steady1183

states), asymptotic return rate (for feasible local attractors), invasion1184

growth rates (for feasible global attractors), and time to extinction (in1185

the case of transient states)1186

4. empirical systems present special challenges for studying ecological co-1187

existence, e.g. due to incomplete biological understanding, impacts of1188

observation error and stochasticity, the problem of scale, other aspects1189

of real world systems that violate common theoretical assumptions1190

5. identifying and quantifying ecological coexistence in empirical systems1191

therefore requires careful consideration of the class of dynamic be-1192

haviour of interest, the kinds of metrics that can be applied to identify1193

that behaviour, and the breadth of conclusions that can be drawn given1194

available data and theoretical understanding1195

6. we stress that there is no single “correct” class of behaviour or metric1196

for defining and classifying coexistence – we therefore recommend that1197

future studies take a more holistic approach, e.g. by assessing coexis-1198

tence across a range of dynamic behaviours and metrics, and carefully1199

articulating their scope and limitations1200

59



5 Acknowledgements1201

We would like to thank the IITE Theoretical Ecology Seminar Series, in-1202

cluding its organisers, speakers, and audience participants for their help and1203

inspiration. This series of online talks spans many of the topics that we discuss1204

in this paper, and the speakers and audience discussions in these seminars1205

were immensely helpful to us in planning this review. We also thank Cal-1206

lum Lawson for helpful discussions and comments on an early outline of this1207

paper. ATC acknowledges support from the University of Graz, and from1208

the Austrian Science Foundation (FWF, project number I 6578). LGS was1209

supported by NSF #2019528. OG acknowledges financial support provided1210

by the Spanish Ministry of Science and Innovation and the European social1211

fund through the grant (TASTE, PID2021-127607OB-100).1212

6 Author Contributions1213

ATC planned and wrote the first draft of the review. Sebastian Schreiber1214

(SJS) proposed the structure for organising different classes of dynamical1215

behaviours and metrics, with feedback from ATC and LS. All authors con-1216

tributed significantly to planning, outlining, and writing the final text of the1217

review, and contributed significantly to revising the text and figures. ATC1218

and LS then significantly revised the text to unify concepts, language, and1219

style across sections. Lead authors for revising individual sections of the text1220

include: GB, OG, and SS (parameter sensitivity); ATC and CK (asymptotic1221

stability and dynamic approaches); SJS (invasion growth rates, permanence,1222

60



and environmental and demographic stochasticity); LS (section on quantify-1223

ing mechanisms); and ATC (empirical challenges and workflow). CK designed1224

the framework for Fig. 4 with feedback from ATC, RG, OG, and LH.1225

References1226

Peter B Adler, Janneke HilleRisLambers, and Jonathan M Levine. A niche1227

for neutrality. Ecology letters, 10(2):95–104, 2007.1228

Peter B Adler, Danielle Smull, Karen H Beard, Ryan T Choi, Tucker Furniss,1229

Andrew Kulmatiski, Joan M Meiners, Andrew T Tredennick, and Kari E1230

Veblen. Competition and coexistence in plant communities: intraspecific1231

competition is stronger than interspecific competition. Ecology letters, 211232

(9):1319–1329, 2018.1233

M. AlAdwani and S. Saavedra. Ecological models: higher complexity in,1234

higher feasibility out. J. of the Roy. Soc. Interface, 17:20200607, 2020.1235

Mohammad AlAdwani and Serguei Saavedra. Feasibility conditions of eco-1236

logical models: Unfolding links between model parameters. Ecological Mod-1237

elling, 466:109900, 2022.1238
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