
Adaptive sampling for ecological monitoring using biased1

data: A stratum-based approach2

Abstract3

Indicators of biodiversity change across large extents of geographic, temporal and
taxonomic space are frequent products of various types of ecological monitoring
and other data collection efforts. Unfortunately, many such indicators are based
on data that are highly unlikely to be representative of the intended statistical
populations. Where there is full control over sampling processes, individual
spatial units within a geographical population have known inclusion probabilities,
but these are unknown in the absence of any statistical design. This could be
due to the voluntary nature of surveys and/or because of dataset aggregation.
In these cases some degree of sampling bias is inevitable and, depending on
error tolerance relative to some real-world goal, we may need to ameliorate
it. One option is poststratification to adjust for uneven surveying of strata
assumed to be important for unbiased estimation. We propose that a similar
strategy can be used for the prioritisation of future data collection: that is,
an adaptive sampling process focused on increasing representativeness defined
in terms of inclusion probabilities. This is easily achieved by monitoring the
proportional allocation of sampled units in strata relative to that expected
under simple random sampling. The allocation of new units is thus that which
reduces the departure from randomness (or, equivalently, that equalising unit
inclusion probabilities), allowing an estimator to approach that level of error
expected under random sampling. We describe the theory supporting this, and
demonstrate its application using sample locations from the UK National Plant
Monitoring Scheme, a citizen science monitoring programme with uneven uptake,
and data on the true distribution of the plant Calluna vulgaris. This in silico
example demonstrates how the successful application of the method depends
on the extent to which proposed strata capture correlations between inclusion
probabilities and the response of interest.
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Introduction6

Ecologists are increasingly concerned with monitoring biodiversity change at7

a variety of spatial scales. Whilst this has long been an active area of research8

within conservation and related fields (e.g. Spellerberg [57]), in recent years9
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its importance has increased, with numerous species’ time trends and associ-10

ated multi-species indicators now based on a wide variety of data types [e.g.11

40, 26, 14]. One consequence of this trend has been the increasing focus on the12

use of datasets for monitoring that lack any explicit survey design relative to the13

scientific question of interest. That is, the data used to estimate species’ abun-14

dances or occupancies are frequently not a probability sample of the statistical15

target population. Unfortunately, inference using such nonprobability samples is16

considerably more difficult than has often been recognised in ecology [10]. The17

absence of sampling design typically means that model-based adjustments must18

be made to approach the answer that would have been obtained had sampling19

actually been probabilistic, and such adjustments can rarely, if ever, be shown20

to be absolutely reliable [33, 11, 65, 16, 1]. As a result, efforts to characterise21

biodiversity change from nonprobability samples have often received criticism22

for not being representative of their inferential target populations (e.g. Gonzalez23

et al. [20]), leading to a number of high-profile disagreements in the literature24

[10].25

The technical elements of sampling design underlying these issues have been26

well-known in the statistical subdiscipline of survey sampling for decades [30, 2,27

62, 33], yet many of these insights are frequently overlooked or misunderstood by28

ecologists (although by no means all, e.g. see many chapters within ref. [19]). One29

stumbling block may be the numerous definitions and types of “bias” available30

in the literature [19, 43, 49]; the lack of any well-known (to ecologists) unified31

mathematical definition of sampling bias may also have hindered communication32

and progress.33

Within survey sampling focused on descriptive inference (i.e. characterising34

some directly measurable property of a population from a sample; [24]), statistical35

error has long been known to be driven in large part by correlations between36

the probability that any unit is in the sample π, the inclusion probability,37

and the property of interest y [e.g. 21, 4]. Note that in survey sampling π is38

also sometimes designated as the “response propensity”, because there the key39

challenge is unknown probabilistic variation in subject responses to designed40

surveys, rather than the absence of design itself [30]. In ecology, this has also41

sometimes been discussed under the heading of preferential sampling [e.g. 1],42

although that label tends to imply a positive association, whereas the issue43

applies to correlations of either sign. Probability sampling ensures that this44

correlation is zero in expectation (i.e. across repeated, normally imaginary,45

realisations of the sampling mechanism; [33]). A conceptual complication here is46

that finite probability samples also have non-zero correlations between sample47

inclusion and the response variable, and that there is variation in the survey48

sampling literature relative to whether people refer to realised error in a sample49

as bias (when it may actually be a combination of sampling variance and a50

biased sampling mechanism), or whether the term sampling bias is reserved for51

situations where it is known (or strongly expected due to a lack of design) that52

E[ρ(π, y)] ̸= 0; that is, that the sampling mechanism that produced the data53

had variable sampling unit inclusion probabilities, which, by definition, were not54

designed and so cannot be directly accounted for when estimating parameters55
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like means from the data. This means that the expected value (E[ · ]) of the56

correlation (ρ) between the sample inclusion probabilities πi and the values of57

the response variable yi is guaranteed to be non-zero, something that is only58

assured by probability sampling [33].59

Regardless of these terminological issues, Meng [33] demonstrated how a60

standard formula for statistical error (yn − yN , the difference between the mean61

of the response variable in the sample and that of the variable in the full pop-62

ulation) can be re-written as the product of three terms. One characterising63

the aforementioned correlation ρ(π, y), given the name “data quality” by Meng,64

and two others representing the population fraction sampled (“data quantity”)65

and the amount of variation in the response variable in the population (“prob-66

lem difficulty”). (Note, however, that Meng approaches the correlation ρ(π, y)67

from a finite population viewpoint, replacing the latent sampling unit inclusion68

probabilities πi with the realised, binary sample inclusion indicators Ri.) The69

implications of this algebraic identity have been hailed in some areas as a “new70

paradigm” [3], and in our opinion the formula clarifies many issues that have71

previously sometimes only been intuitively understood in ecology [11, 7, 10].72

The adjustment of nonprobability samples for approaching unbiased inference73

is one area that has been clarified by Meng’s approach: in a subsequent paper,74

Meng [34] demonstrated how all such techniques (inverse probability weighting75

and poststratification, imputation or superpopulation modelling, and doubly-76

robust approaches) can be viewed as ways to minimise the correlation ρ(π, y).77

This insight allows us to understand the assumptions of our methods, and78

therefore to justify our approaches and assess their limitations more clearly [8].79

Here we apply these insights to the use of stratification in ecology, particularly80

its post hoc use to adjust unrepresentative sampling, demonstrating its use as an81

intelligent driver of adaptive sampling for many situations involving data that82

are biased for the estimation of some “estimand” (i.e. the real-world quantity of83

interest [32]).84

A priori stratification is often used in survey design to achieve one or more of85

the following: good representation of a population relative to target variables of86

interest; to guarantee certain sample sizes within strata (which may be of intrinsic87

interest); for the convenience of survey administration, potentially including cost88

reduction via regional administration; and to increase the statistical efficiency89

of estimators [30, 62]. For the last point, error can be reduced by randomly90

sampling within strata of homogeneous units, i.e. those where subpopulation91

means and variances are expected to be similar [30].92

Post hoc stratification, or, as it is more commonly known, “poststratification”,93

can also be used to achieve this latter goal. That is, it can be used to increase94

the precision of estimators under known sampling schemes [56]. However, it95

can also be used as a way to remove potential biases arising from the use of96

nonprobability samples. In this sense it is part of the family of reweighting97

techniques intended to adjust a sample to better represent some population of98

interest [56, 65, 11].99

The poststratification estimator yps [4], or “basic poststratification identity”100
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[18], used to achieve this can be defined as:101

yps = 1
N

H∑
h=1

Nhyh (1)

where N is the population size (here the total number of spatial units), H is102

the full set of strata into which the population is divided, Nh is the overall size103

of stratum h, and yh is the mean within stratum h. The implication of (1) is104

that within-stratum means substitute for individual unit values, and it is these105

that are averaged across the entire population once relative stratum sizes in the106

population have been accounted for (see [11] for a worked ecological example).107

This formulation implies that all i units within a given poststratum receive the108

same weight [4, 65], equal to109

wi(h) = Nh/N

nh/n
(2)

where n is the total sample size, and nh is the size of the sample within stratum h.110

Equation (2) can be understood as upweighting units that are under-represented111

in the sample relative to the population and vice versa. These weights imply an112

individual unit inclusion probability of πi(h) = nh/Nh. And so it can be shown113

that114

ȳps = ȳipw = 1
N

H∑
h=1

∑
i∈nh

yi(h)

πi(h)
(3)

[65]. Thus poststratification is a special case of inverse probability weighting115

(a.k.a. quasirandomization or propensity score weighting) where πi(h) is assumed116

to be constant within strata but to (potentially) vary between strata [65]. In the117

situation where a set of randomly sampled population units are surveyed with118

full response (i.e. no “loss” of design-based survey units), then this estimator,119

whether construed as yps or the inverse probability weighted estimator yipw,120

is unbiased in expectation [56, 4]. However, as noted above, it is well known121

that in actual samples error will tend to increase as a function of the correlation122

between between inclusion probabilities π and the outcome variable y [21, 4].123

In the case of uncontrolled (i.e. nonprobability) samples, whether based on a124

single survey such as a designed citizen science scheme with some nonresponse,125

or an aggregated sample such as one might retrieve from the Global Biodiversity126

Information Facility (GBIF) or other meta-database, the lack of statistical design127

control essentially guarantees that this correlation will be appreciably different128

from zero [10]. This will not merely be the bad luck of an unrepresentative129

random sample, but the expectation of a biased sampling mechanism; that is,130

E[ρ(π, y)] ̸= 0. Here, increases in sample size will not help; in fact, they have131

been shown to make things worse in realistic scenarios, i.e. when n << N and132

the standard deviation of y, σy, does not equal zero, as will generally be the133

case for most environmental monitoring at small scales [33, 11, 3].134

With regards to poststratification, two situations will reduce this undesirable135

correlation [4]. These rely on the fact that if either of a pair of variables is fixed136

then they cannot be correlated. These are:137
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i. The response of interest yi is invariable within poststrata (i.e. σy(h) =138

0 ∀ h).139

ii. The inclusion probabilities πi are invariable within poststrata (i.e. πi(h) =140

πh ∀ i ∈ h), achieved by simple random sampling (SRS) within strata.141

In the first of these situations, the poststratification estimator (1) will be142

more efficient (lower variance) than the arithmetic mean, and will reduce error143

wherever a random sampling design has yielded an unbalanced sample by chance144

[25]. In the second of these situations, the poststratification estimator reduces145

the bias, but not the variance [28, 27]. This is linked to the assertion of Gelman146

and Carlin [18] that poststratification is most important when correcting for147

differential nonresponse between poststrata. Assuming that inclusion probabilities148

are uniform within poststrata, but correlated with y within the overall population,149

then adjusting for poststratum membership renders ρ(π, y) equal to zero [65, 34]:150

that is, π and y are independent conditional on some X, where here X is the151

vector of unit poststratum memberships [56].152

Whilst poststratification and its variants [e.g. see 17] can be useful tools for153

adjusting existing samples [11], where monitoring is ongoing and survey organisers154

have some power to alter data collection, combining adaptive sampling with155

poststratification may be a more efficient way to reduce error compared to156

relying on poststratification of unrepresentative samples alone [54, 52]. Larger157

samples may be also desired for other reasons irrespective of the potential158

for using the poststratification estimator on a sample in hand (increases in159

power for example). The situations in which poststratification is likely to assist160

the sampler given above suggest a simple approach to adaptive sampling for161

researchers seeking to characterise a population parameter such as a mean. As162

noted above, such descriptive targets are increasingly important for ecological163

monitoring and conservation, especially where nonprobability samples are used164

[10]. Straightforward approaches to adaptive sampling, with few assumptions,165

are therefore likely to be of wide utility [22].166

Here we propose an approach to the problem based on assessments of post-167

stratum sampling coverage. We show how this can be implemented easily with168

standard binomial formulae within an adaptive framework using data collected169

between 2015–2023 for the UK National Plant Monitoring Scheme, a designed170

citizen science programme with uneven site uptake [45]. Our approach has a171

direct link to the literature on the monitoring of survey quality via assessments of172

potential nonresponse bias [63, 38], and we use one such indicator (the R-indicator173

of Schouten, Shlomo and colleagues [50]) of variation in response propensities (or,174

as we have styled them here, inclusion probabilities) across strata to explore the175

potential improvements in survey representativeness (a measure of survey quality176

[51]) achievable using our approach. Finally, we investigate the performance177

of the approach through simulation and when confronted with a real dataset.178

Specifically, we examine how well stratum-based adaptive sampling performs179

in estimating the true 1 km2 occupancy of the subshrub Calluna vulgaris (L.)180

Hull in Great Britain. We use both simulated locations and actual sampled sites181

from the NPMS to explore the potential strengths and weaknesses of the method182
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relative to its key assumptions.183

Methods184

A stratum-based adaptive survey strategy185

The approach proceeds as follows: for the population of interest (e.g. some186

geographic area over which the mean of some attribute of a population of187

units is desired), select a set of strata H considered to have some differential188

relationship with sample inclusion and/or the response variable(s) of interest.189

Each stratum need not be a single spatially contiguous unit, but each population190

unit should be assignable to a single stratum (geographical units may often191

require assigning to the stratum with the largest overlapping area). Many such192

strata will likely already exist, although the approach is not limited to existing193

strata, as any set of geographically indexed variables could be discretised and194

crossed to create strata [e.g. see 11]. For example, in the UK “land classes”195

have previously been erected based on covariation in numerous geographical196

and environmental variables [12] and then amalgamated into broader zones [61];197

for Europe, biogeographic zones based on patterns of terrestrial and marine198

biodiversity exist [15]. Note that the strata do not have to be absolutely believed199

to have an invariable one-to-one relationship between stratum unit membership200

and inclusion probabilitiy, only that there is some nontrivial relationship, such201

that adjusting for its contribution to the correlation ρ(π, y) will be better than202

assuming that the sample is equivalent to one selected at random [34].203

For the existing sample for which future adaptive selections are required,204

compare the current distribution of units across strata to that expected for the205

same sample size under simple random sampling; this is known as proportional206

allocation in the survey sampling literature [62]. That is, a given set of strata207

H partitioning N will be sampled in proportion to n/N , such that, for stratum208

h, nh = (n/N)·Nh; if achieved, all response propensities would be equal, both209

within and between strata. The stratum for which the next unit should be210

collected will then be the one with the current largest negative departure from211

random expectation, quantified using z-statistics.212

Monitoring representativeness213

The link between inclusion probabilities and indicators of representativeness214

noted above was formalised by Schouten and colleagues [51]. They provide215

the following operational definition of “representative” in the survey sampling216

context:217

π̄h = 1
Nh

Nh∑
i=1

πi(h) = π ∀ h. (4)

Equation (4) is a weaker version of statement (ii) given in the Introduction, as it218

does not state that all unit inclusion probabilities within a stratum are identical,219

only that the means across strata are equal. Based on this, the Schouten et al.220

R-indicator is R(π) = 1 − 2sπh
, where sπh

is the weighted standard deviation of221
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the mean inclusion probabilities across strata [51]. R(π) = 1 denotes maximum222

representativeness when the variance in inclusion probabilities across strata is223

zero.224

Adaptive sampling algorithm225

This proceeds as follows (also see the R code in Supplementary Material 1):226

Step 1: Assign all population units Ni to a unique corresponding stratum227

hi.228

Step 2: Calculate each stratum’s current z-statistic, zh, by comparing the229

current empirical count (x̄h = Nh · (nh/Nh) = nh, the current sample size)230

and binomial count standard deviation (sh =
√

Nh·nh/Nh·(1 − nh/Nh)) to the231

expected count (µ̂h) based on proportional allocation (i.e. n/N ·Nh). Then,232

zh = (x̄h − µ̂h)/sh, the difference between the empirical and expected counts in233

standard deviation units.234

Step 3: Across the H strata, select that h with the smallest zh as the235

stratum most in need of additional sampling to reach the simple random sample236

benchmark. Call this the focal stratum hf .237

Step 4: Given the addition of a new site to stratum hf , calculate the new238

values of xh and sh directly from the standard binomial formulae. The new target239

stratum site count expected under simple random sampling is also updated as240

µ̂ = (n + a)/N ·Nh. In the following examples a = 1, but it could be any positive241

integer as there is no requirement to evaluate the switch after the addition of242

every single new sampling unit.243

Step 5: After updating the current focal stratum hf with the newly added244

site(s), recalculate the z-statistics for all strata, including hf . Compare the245

updated zh(f) with the minimum zh across all strata. If zh(f) is no longer the246

smallest, switch the focus to the stratum with the new smallest zh(f) denoted247

hf∗ . Begin sampling hf∗ if required, otherwise continue with hf .248

Step 6: Repeat Steps 2 to 5 K times until the desired new sample size249

allowed by current resourcing, n + aK, is reached, or until all strata are at their250

expected simple random sampling counts (n + aK)/N ·Nh.251

We can monitor the progress of this algorithm by following the empirical252

stratum sampling proportions (nh/Nh), and by calculating the corresponding253

R-indicator at each step.254

Investigating performance255

Empirical data and initial proof-of-concept256

The UK National Plant Monitoring Scheme (NPMS) asks volunteers to record257

plant abundances in small plots located in particular habitats [64]. Plots are258

located within 1 km2 squares (hereafter “sites”) of the relevant country grid (the259

scheme currently covers Great Britain, Northern Ireland, the Isle of Man and the260

Channel Islands). The available sites within the scheme (see https://www.npms.261

org.uk/square-near-me-public) are originally a weighted-random selection,262

stratified by 100 × 100 km cells of the larger relevant grid; see [45] for more263

detail. Due to variable population density and other factors across the region,264
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uptake of these sites is uneven, and some areas have far fewer survey returns265

than others [45]. A primary aim of the NPMS is the production of nationally266

representative indicators of habitat quality [41], and so, ideally, coverage of the267

area would be relatively even. We know that inclusion probability (i.e. site268

uptake) is related to such factors as human population density and correlated269

environmental variables such as altitude and land cover type, and that these270

variables are also correlated with the local abundances and occupancies of plant271

indicator species and their habitats [45]. North-west to south-east gradients of272

all these variables are well-known for Britain and Ireland [48, 58, 44, 23, 47]. We273

therefore assume that representation of broad environmental strata, in tandem274

with poststratification of results, is likely to be a positive step towards reducing275

potential bias in monitoring scheme outputs. One widely-used set of strata276

for Great Britain is the UK Countryside Survey (UKCS) Environmental Zones277

[61], based on a larger set of “land classes” created originally for the a priori278

stratification of national ecological and biogeographical surveys [12]. To these279

we add Northern Ireland as an additional stratum to better cover our area (Fig.280

1). Surveyed NPMS sites [39] are overlaid on these zones in Figure 1 to show281

their current overall (2015–2023) coverage. We use these data to demonstrate an282

initial proof-of-concept, namely that the algorithm equalises stratum sampled283

proportions and maximises the R-indicator as proposed.284

Reducing bias in a response variable of interest285

Investigating the likely benefits of our strategy for a response variable of286

interest, such as a species’ occupancy or average abundance, is more challeng-287

ing, as it requires access to a species’ true underlying state to evaluate (or a288

good estimate of this via a probability-based survey). Whilst pure simulation289

approaches could be used, we consider that these would be less illuminating than290

investigations more closely aligned to real-world datasets, because the theoretical291

principles underlying the approach are already well characterised. We use an292

approximation of the true 1 km2 distribution (for 2000–2019) of the heathland293

subshrub Calluna vulgaris (L.) Hull (“Heather”), originally created for Boyd294

et al. [11]. This “true” distribution is based on the 2018 UKCEH Land Cover295

Map [37] (where “Heather” and “Heather grassland” are land covers derived from296

satellite images and other information) and occurrence data from the distribution297

mapping project Plant Atlas 2020 [58]. See [11] for more information on the298

construction of the Calluna map.299

Adaptive sampling based on simulated locations. First, we demonstrate the300

performance of the method when the key assumption regarding random sampling301

within strata is met. Here we only use empirical data from the NPMS [39]302

dataset to initialise stratum sample sizes for the adaptive algorithm. (Specifically303

we use data from 2019 for these investigations.) The intial samples themselves304

are new random selections within strata; the adaptive addition of sites uses305

our suggested algorithm. We refer to this approach as “Stratum SRS [Simple306

Random Sampling] + adaptive”. The iterative estimates of the mean occupancy307
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NPMS sites (2015–2023)

UKCS Environmental Zones
Easterly Lowlands,
 England (27.2%)
Intermediate Uplands and Islands,
 Scotland (−62.6%)
Lowlands,
 Scotland (−30.6%)
Lowlands,
 Wales (8.7%)

Northern Ireland (12.8%)

True Uplands,
 Scotland (−57.2%)
Uplands,
 England (41.9%)
Uplands,
 Wales (11.8%)
Westerly Lowlands,
 England (30.5%)

Figure 1: UK Countyside Survey (UKCS) Environmental Zones plus Northern Ireland. The
numbers following the UKCS zone names give the difference between the empirical National
Plant Monitoring Scheme (NPMS) square count and that expected under simple random
sampling (SRS), expressed as a percentage difference (+/-) relative to the expected count.
Percentages closer to zero therefore approach SRS counts. Grey circles are surveyed NPMS
sites, 2015–2023.
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of Calluna for this scenario use the poststratification estimator from the R308

package “survey” [31].309

Adaptive sampling based on empirical locations. Second, we investigate the310

performance of the method using the actual sampled sites from 2019 in the311

NPMS [39] dataset. This approach provides insight into how the method might312

perform when the key assumption of random sampling within strata is unlikely313

to be fully met. We refer to this approach as “NPMS + adaptive”. Again,314

iterative estimates of Calluna occupancy use the poststratification estimator315

from the R “survey” package [31]. We also include a scenario where our proposed316

strata are ignored, and new sites added to the existing NPMS 2019 sample are317

chosen randomly from the total site population of Great Britain. We call this318

approach “NPMS + SRS”. Calluna occupancy estimates from this procedure319

are the simple (i.e. unadjusted) mean rather than the poststratified mean. For320

all three scenarios new sites added to the sample are labelled as unavailable for321

future iterations of the algorithm.322

Results323

Table 1 gives the current distribution of NPMS 1 km2 sites by UKCS En-324

vironmental Zone stratum. These are given in order of their discrepancy from325

proportional allocation (i.e. simple random sampling) of the 2015–2023 sample326

of 1,204 sites that could be assigned to strata, from under- to over-sampled [39].327

Figure 2 demonstrates the progress of the stratum-based adaptive sampling328

algorithm in terms of stratum sampled proportions and R-indicator. The example329

here uses 600 iterations (i.e. the final target sample size was n+600 = 1804). This330

amount of adaptive sampling may be unrealistic in most real world situations331

where there is existing nonresponse, but we use this number to demonstrate332

the point at which all strata become proportionally allocated, and to show the333

evolution of the R-indicator towards its maximum possible value of 1 (Fig. 2).334

As per Table 1, Figure 2a shows how, initially, only the Intermediate Uplands335

and Islands and True Uplands of Scotland are underallocated. These have the336

lowest stratum proportions sampled initially: up to around the 100th iteration it337

is only these sites that are being selected for new sampling locations. The other338

strata “flatline” up to this point, indicating that they are over-sampled relative339

to the number of samples they would expect if the total sample had actually340

been proportionally allocated. The most over-sampled stratum is the Uplands341

of England, as this does not see its sample size increased until around the 500th342

iteration. This is also the point at which the R-indicator (Fig. 2b) approaches343

its maximum value of 1 and itself flatlines; this indicates that all strata are now344

being sampled relative to the proportions expected under proportional allocation.345

Table 2 gives abridged output of the adaptive sampling algorithm underlying346

Figure 2. The top of the table shows how, initially, stratum number 5, the347

“Intermediate Uplands and Islands” zone of Scotland is targeted in isolation348

(as expected from its position at the top of Table 1). The bottom of Table 2349

shows how, once all strata are undersampled relative to the addition of new350
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Table 1: The current distribution of NPMS sites by UKCS Environmental Zone strata, ordered
from under- to over-sampled relative to simple random sampling (SRS). Exp. count is the
expected number of squares under SRS. Pct sampled is the current percentage of the stratum
area sampled; Count discrepancy is the difference between the actual square count and the
expected count expressed as a percentage difference (+/-) relative to the expected count.

Stratum
no.

Stratum No. sites Exp.
count

Stratum
area

(km2)

Pct
sampled

(%)

Count
discrep-

ancy (%
of

expected)

5 Intermediate
Uplands and
Islands, Scotland

53 142.2 29866 0.18 -62.7

6 True Uplands,
Scotland

65 152.5 32034 0.20 -57.4

4 Lowlands,
Scotland

76 109.9 23084 0.33 -30.9

7 Northern Ireland 73 67.4 14156 0.52 8.3
8 Lowlands, Wales 60 53.8 11309 0.53 11.4

9 Uplands, Wales 55 48.9 10272 0.54 12.5
1 Easterly

Lowlands,
England

395 311.6 65441 0.60 26.8

2 Westerly
Lowlands,
England

321 246.7 51815 0.62 30.1

3 Uplands, England 106 74.9 15739 0.67 41.5
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(a) Stratum sampled proportions by iteration
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(b) R−indicator by iteration

Figure 2: Evolution of UKCS Environmental Zone stratum mean sampled proportions and
their R-indicator by iteration.
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Table 2: Abridged adaptive sampling output for the first and last six added sites across 600
iterations. Stratum no. = stratum number of focal stratum (see Table 1 for stratum name);
Mean prop. = sampled proportion for target stratum; SD = binomial st. dev. for site count
within stratum.

Iteration Stratum no. z-value Mean prop. Site count SD

1 5 -1.2e+01 1.8e-03 54 7.3
2 5 -1.2e+01 1.8e-03 55 7.4
3 5 -1.2e+01 1.8e-03 56 7.5
4 5 -1.2e+01 1.9e-03 57 7.5
5 5 -1.1e+01 1.9e-03 58 7.6

6 5 -1.1e+01 1.9e-03 59 7.7
... ... ... ... ... ...
595 3 1.1e-01 7.1e-03 111 10.5
596 1 1.0e-01 7.0e-03 460 21.4
597 5 9.9e-02 7.0e-03 214 14.6

598 4 9.1e-02 7.0e-03 164 12.8
599 2 8.7e-02 7.0e-03 368 19.1
600 7 8.5e-02 7.1e-03 102 10.1

sites, the target stratum switches with every iteration of the algorithm. The351

total population size of UK 1 km2 sites assigned to UKCS Environmental Zone352

strata is 257,502; 1804/257502 = 0.0070, hence the stratum sampled proportions353

achieved for the final six iterations at the bottom of Table 2 (“Mean prop.”354

column).355

Figure 3 shows the results of applying our algorithm to the case of estimating356

our “true” 1 km2 occupancy of Calluna vulgaris (0.27). The simple (i.e. unad-357

justed) mean occupancy of the existing 2019 NPMS data for Calluna is 0.33.358

Taken together, the four elements of Figure 3 reveal both the potential strengths359

and weaknesses of the proposed method in improving on the unadjusted sample360

mean through the adaptive sampling algorithm. Figure 3a demonstrates how361

three different data/model scenarios can lead to better estimates of the true362

mean with increasing sample size. Given that both simple random sampling and363

stratified random sampling are standard methods in survey sampling, this is not364

surprising; it is the differences between the strategies investigated that provide365

useful insights into the likely performance of our approach when applied to366

real-world datasets. Figure 3a also shows that the initial poststratified estimate367

(iteration 1) of Calluna occupancy using the 2019 NPMS locations (“NPMS +368

adaptive”; see also Table 3) leads to the most biased estimate (0.41). In addition,369

the “NPMS + adaptive” estimates are worse than those estimated using the370

sample mean with new sites added through simple random sampling (“NPMS +371

SRS”). However, the “NPMS + adaptive” poststratified estimates approach the372

true value more quickly than “NPMS + SRS”, presumably due to the important373

variation in Calluna occupancy across the strata used (Fig. 3d).374

The third scenario, “Stratum SRS + adaptive”, indicates the reason for375

the initially poor poststratified estimates under “NPMS + adaptive”: the 2019376

NPMS locations are biased towards the presence of C. vulgaris within all strata.377
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Table 3: Initial and final mean occupancies (with standard errors) of Calluna vulgaris for
different adaptive sampling methods and starting data.

Iteration Mean SE Method Estimator

1 0.33 0.024 NPMS + SRS Unadjusted
600 0.28 0.014 NPMS + SRS Unadjusted

1 0.41 0.021 NPMS + adaptive Poststratified
600 0.31 0.012 NPMS + adaptive Poststratified

1 0.25 0.021 Stratum SRS + adaptive Poststratified

600 0.27 0.011 Stratum SRS + adaptive Poststratified

Evidence for this can be seen within Figure 3c; for example, the estimated378

occupancy within the Uplands of England is very strongly overestimated before379

it is incorporated into the adaptive sampling algorithm. Other strata show380

weaker patterns, but the pattern of initial overestimation is clear (Fig. 3d381

provides the “true” values for comparison). This means that some stratum382

occupancy estimates require the addition of many new sampling locations before383

their estimates increase in accuracy: before this point the poststratification384

estimator simply weights the biased stratum estimates according to their areas,385

resulting in important residual bias in the overall estimate. The “Stratum386

SRS + adaptive” scenario shows that rejecting the existing locations within387

the 2019 NPMS dataset and selecting new random sets of sites within strata388

results in more accurate poststratified estimates that rapidly improve (Fig. 3a,389

“Stratum SRS + adaptive”). This highlights that if the assumptions of the390

poststratification model are approximately correct (i.e. sampling is random391

conditional on the strata), then our approach can perform well: the estimates392

also show slightly decreased standard errors over the iterative series relative393

to the simple random sampling site-addition approach (Table 3). Finally, the394

R-indicators shown in Figure 3b demonstrate how these metrics are only as395

useful as the accuracy of the underlying assumptions [53]: the R-indicator for the396

“NPMS + adaptive” scenario shows the expected pattern of decreasing variation397

in the mean sample inclusion probability across strata (note that “Stratum SRS398

+ adaptive” is not shown as it is identical to “NPMS + adaptive”), whereas the399

simple random sampling additions to the original NPMS sample do not aim to400

harmonise stratum sampling proportions on this basis.401

Discussion402

Nonprobability samples of different types are now routinely used within403

ecology and conservation for various monitoring aims, often with minimal critical404

assessment [8, 10]. Not infrequently such projects relate to the desire to produce405

large-scale indicators of biodiversity change, with representativeness of large406

geographical areas implied as a consequence. Whilst estimates based on such407

data can potentially be partially adjusted for sampling bias using a family of408

reweighting techniques including poststratification [11, 34], targeting new effort409
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Figure 3: Adaptive sampling of Calluna vulgaris occupancy within the National Plant
Monitoring Scheme, 2019. (a) Overall Great Britain occupancy estimates for different adaptive
sampling scenarios, with binomial proportion standard error ribbons, compared to the "true"
mean (0.27). The simple (i.e. unadjusted) mean of the initial 2019 NPMS data is 0.33 (the
starting point of the NPMS + SRS curve plotted in green). The estimates shown by the
orange (NPMS + adaptive) and blue (Stratum SRS + adaptive) curves use our adaptive
algorithm coupled with poststratified estimates of the mean; (b) R-indicators for stratum unit
inclusion probabilities, NPMS + adaptive and + SRS scenarios; (c) Stratum occupancies for
the NPMS + adaptive method by iteration, colour-coding follows (d); (d) Estimated "true"
mean occupancies of Calluna by UKCS Environmental Zone stratum (these are displayed at,
or near, stratum centroids on the map).

14



in order to reduce such biases is likely to be a useful complementary strategy410

[52, 54]. We suggest that the use of strata, hypothesized to capture important411

relationships between inclusion probabilities and the response variable(s) of412

interest, is a useful and simple theoretical starting point for adaptive sampling413

for projects with descriptive goals (i.e. where the aim is to estimate some directly414

measurable property of a population from a sample; [24]).415

If the strata are well-chosen relative to their potential to reduce correlations416

representing sampling bias, our adaptive approach aimed at a random sample417

stratified using proportional allocation can improve matters. An example would418

be where a common plant has near 100% occupancy at some broad scale (e.g. a419

10 x 10 km grid), but its average local cover (e.g. at the square-metre scale)420

varies with an environmental gradient. If sampling co-varies along the same421

gradient (e.g. due to population density, as in the UK National Plant Monitoring422

Scheme; [45]) then estimates of average abundance are likely to exhibit important423

bias. However, if some set of strata partition the environment into areas where424

sampling is close to random with respect to regional variation in the species’425

abundance, then this bias will be significantly reduced: the national correlation426

is removed by estimating means within smaller areas and then combining these427

in relation to their expected national proportions to better represent the total428

population [11]. Whilst it is true that in such a case the poststratification429

estimator will theoretically reduce bias anyway [4, 18, 13, 53], the combination430

of adaptive sampling and reweighting has been shown to be superior to relying431

on reweighting alone, both in theory and in empirical investigations in the survey432

sampling literature [52, 53]. Adding new sites to the sample in this way can433

reduce variance, as well as keeping bias low [66]. Regardless of this, monitoring434

programs will often have a focus on increasing uptake for other reasons (e.g.435

engagement, increasing power; [22]), and so targeted approaches to selecting436

new sites are likely to be required irrespective of existing analytical options for437

potential bias reduction of the sample in hand [11]. In theory, such approaches438

could also be applied to sampling in other dimensions, e.g. to prioritise the439

digitisation of literature or museum records to improve spatial and/or temporal440

representativeness in historic time periods.441

Researcher domain knowledge is crucial to the successful application of the442

strategy explored here and elsewhere [53]. Reweighting nonprobability samples443

via any analytical technique requires a substantive understanding of plausible444

relationships between variables driving the sampling process and those driving445

the response [11, 13, 35]. If strata are in fact random with respect to both y and446

π, that is they have no relationship with the correlation between sample inclusion447

and variable of interest, then new locations based on them should not contribute448

to estimator bias, although variance may be increased. It is also possible that449

selected strata increase bias. As our Calluna example demonstrates, this may450

be due to the poststratification step amplifying poor within-stratum estimates451

(i.e. those with substantial remaining biases). Theoretically the adaptive sampling452

step itself should not increase bias if it is a probability-based selection. In reality,453

constraints on the sampling of new locations within strata could increase or454

maintain bias for the same reasons that the sample in-hand was initially biased,455
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for example due to land access issues.456

A similar situation might occur if an adaptive sampling strategy was applied457

to a finite pool of interested surveyors, and the strategy ended up merely shifting458

attention from one area to another, introducing a bias that might change over459

time if left unadjusted. Whilst poststratification could continue to reduce such460

biases if the underlying strata were effective, survey organisers would presumably461

want to monitor such situations given that they may represent no net gain in462

accuracy. There would be little point in attempting to manipulate data collection463

if it merely led to a new sample configuration with biases of a similar size unless464

other inferential aims were in play: the desire to cover some environmental465

gradient to better estimate predictive or causal regression coefficients for use in466

species distribution modelling or similar across broader time-slices, for example467

[36]). A related issue is that our algorithm only considers the addition of new468

sampling units, not their removal. In theory, removing existing sites could also469

reduce bias: for example, in our Calluna example, even if we did not have access470

to the “true” distribution, a coarser map of habitat types might clearly indicate471

oversampling of heathland and other relevant habitats within strata. Whether472

or not reducing survey effort in this way is a sensible option will of course be473

survey specific.474

Other practical issues also need considering. Spatial bias in citizen science475

surveys is not unexpected given the vounteer effort underpinning them [46], and476

so it may not be realistic to recruit surveyors for locations selected according to477

theories of statistical optimisation. Some schemes may be able to avoid this issue478

through the combination of volunteer and professional effort; for example, the479

UK Pollinator Monitoring Scheme currently relies on both [60]. In other cases480

low uptake in some areas can be very challenging, and substantial effort may be481

required to understand the reasons for nonresponse. An example is the “Upland482

Rovers” scheme of the UK Breeding Bird Survey, where substantial effort has483

gone into trialling different approaches to increasing surveyor uptake of upland484

squares [5].485

Even if practical implementation is difficult, our approach can have value as a486

conceptual tool for the investigation of existing biases via simulation exercises in487

a similar way to the Calluna example given here. Discretised species distribution488

models, or simply habitat or land cover maps, could still provide insight into likely489

biases affecting the sampling of a species’ abundance or occupancy, and this type490

of information could be used to better construct adjustment poststrata and/or491

adjust uncertainty intervals for estimates [11, 42]. If large biases are suspected to492

remain, even after the exploration of adaptive sampling or poststratification, then493

other bias reducton strategies should be explored, the simplest being to adjust494

the estimand to a population that one has more confidence of being sampled495

representatively. That is, do not make inferential claims that are significantly496

larger than the evidence [8]. An example would be claiming that a time series of497

a butterfly’s local abundance was actually indicative of that across the whole of498

a country in the face of strong evidence for geographic bias and temporal shifts499

in such over time [cf. 6].500

Adaptive sampling in environmental monitoring is not new [e.g. 55], however,501
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a majority of previous investigations in this area have primarily aimed at taking502

“advantage of population characteristics to obtain more precise estimates of503

population abundance or density, for a given size or cost, than is possible with504

conventional designs” [59]. Indeed, work in this area of ecology has tended to505

focus on the reduction of variance conditional on controlled design, and seems506

rarely to have asked the question from the point of view of adding units to507

reduce estimator bias relative to a baseline of unrepresentative sampling for508

descriptive inference [22]. Whilst there is considerable mathematical overlap509

between these existing approaches to adaptive sampling [59] and that considered510

here, those approaches have tended to use the response values of interest to guide511

the selection of new sampling locations [59], whereas here we follow the recently512

developed survey sampling approach of focusing on how to equilibriate inclusion513

probabilities across units to reduce correlations between these and the response514

variable(s) of interest [53]. Such approaches fall within the second category of515

Wagner’s typology of nonresponse bias indicators [63], as they require data on516

survey response and sampling frame information at the population level (here517

stratum membership), but not on the survey outcome variables themselves.518

Conclusion519

We have laid out the relationship between poststratum-based adjustment520

strategies and inverse probability weighting in the context of reducing bias521

(or, equivalently, improving representation) for descriptive inference. Following522

Meng [33] and others [4, 65], we have characterised this bias as a non-zero523

correlation between inclusion probabilities and the variable(s) of interest and524

clarified the assumptions required to justify this approach. A recent review525

of adaptive sampling in ecology [22] suggested that the complexity of some526

techniques in the literature likely constituted an important barrier to uptake,527

and our simple approach may help to overcome this problem. The approach528

proposed here relies on assumptions that are typically impossible to verify529

without separate survey efforts, but this is no different to the assumptions530

required to reweight existing samples to improve representativeness [3, 2, 11],531

and the ongoing development of R-indicators and related tools points to numerous532

opportunities for ecologists in these areas [e.g. 52, 38, 53]. We have focused on a533

single categorical driver of sampling bias to target adaptive sampling, but, in534

principle, one could cross-tabulate many categorical variables and/or discretise535

continuous ones for crossing [62]. It may be that modelling inclusion probabilities536

using multivariable approaches, and using “partial” R-indicators based on these,537

will allow finer-grained exploration and control of adaptive sampling strategies538

relative to inclusion probability variance in the future [54].539

We reiterate that our approach is not a panacea. In general, if sample inclusion540

probabilites and the response variable are still correlated after poststratification541

(i.e. |ρ(πi(h), yi(h))| >> 0), then calculated statistics may still contain important542

bias relative to any given research question. However, this applies to all such543

strategies based on weighting adjustments, and certainly applies to ignoring544

the problem altogether (i.e. assuming that the sampling mechanism is already545

equivalent to a probability sample without critical inspection). Best practice546
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is likely to involve sensitivity analyses [29, 42], and both quantitative [9] and547

qualitative assessments of the potential for bias relative to key research goals548

[8, 43].549
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