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Abstract4

Indicators of biodiversity change across large extents of geographic, temporal and
taxonomic space are frequent products of various types of ecological monitoring
and other data collection efforts. Unfortunately, many such indicators are based
on data that are highly unlikely to be representative of the intended statistical
populations: they are biased with respect to their estimands. Where there is full
control over sampling processes, individual units within a population have known
response propensities, but these are unknown in the absence of any statistical
design. This could be due to the voluntary nature of surveys or because of data
aggregation. In these cases some degree of sampling bias is inevitable and we
must do something to ameliorate it. One such option is poststratification to
adjust for uneven surveying of strata assumed to be important for unbiased
estimation. We propose that a similar strategy can be used for the prioritisation
of future data collection: that is, an adaptive sampling process focused on
actively increasing representativeness defined in terms of response propensities.
This is easily achieved by monitoring the proportional allocation of sampled
units in strata relative to that expected under simple random sampling. The
allocation of new units is thus that which reduces the departure from randomness
(or, equivalently, that equalising response propensities across population units),
allowing an estimator to approach that level of error expected under random
sampling. We describe the theory supporting this straightforward strategy,
and demonstrate its application using the National Plant Monitoring Scheme,
a UK-focused, structured citizen science monitoring programme with uneven
uptake.
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Introduction7

Ecologists are increasingly concerned with monitoring biodiversity change8

at a variety of scales. Whilst this has long been an active area of research9

within conservation and related fields (e.g. Spellerberg [54]), in recent years its10

importance has increased, with numerous species’ time trends, and associated11
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multi-species indicators, now based on a wide variety of data types [e.g. 37, 25, 13].12

One consequence of this trend has been the increasing focus on the use of13

datasets for monitoring that lack any explicit design relative to the scientific14

question of interest. That is, the data used to estimate species’ abundances15

or occupancies are frequently not a probability sample of the statistical target16

population. Unfortunately, inference using nonprobability samples is considerably17

more difficult than has often been recognised in ecology [9]. The absence of a18

statistical sampling design typically means that model-based adjustments must19

be made to approach the answer that would have been obtained had sampling20

actually been probabilistic, and such adjustments can rarely, if ever, be shown21

to be absolutely reliable [31, 10, 61, 15, 1]. As a result, efforts to characterise22

biodiversity change from nonprobability samples have often received criticism23

for not being representative of their inferential target populations (e.g. Gonzalez24

et al. [19]), leading to a number of high-profile disagreements in the literature25

[9].26

The technical elements of sampling design underlying these issues have been27

well-known in the statistical subdiscipline of survey sampling for decades [30, 2,28

58, 31], yet many of these insights are frequently overlooked or misunderstood29

by ecologists (although by no means all, e.g. see many chapters within ref.30

[18]). One stumbling block may be the numerous definitions and types of “bias”31

available in the literature [18, 40, 46]; the lack of any well-known (to ecologists)32

unified mathematical definition of sampling bias may also have hindered progress33

and communication.34

Within survey sampling focused on descriptive inference (i.e. characterising35

some directly measurable property of a population from a sample; [23]), statistical36

error has long been known to be driven in large part by correlations between37

the probability that any unit is in the sample (π, the “response propensity”)38

and the property of interest y [e.g. 20, 4]. In ecology, this has also sometimes39

been discussed under the heading of preferential sampling [e.g. 1], although40

that label tends to imply a positive association, whereas the issue applies to41

correlations of either sign. Probability sampling ensures that this correlation42

is zero in expectation (i.e. across repeated, normally imaginary, realisations43

of the sampling mechanism; [31]). A conceptual complication here is that44

finite probability samples also have non-zero correlations between sampling45

inclusion and the response variable, and that there is variation in the survey46

sampling literature relative to whether people refer to realised error in a sample47

as bias (when it may actually be a combination of sampling variance and a48

biased sampling mechanism), or whether the term sampling bias is reserved for49

situations where it is known (or strongly expected due to a lack of design) that50

E[ρ(π, y)] ̸= 0 [e.g. 27].51

Regardless of these terminological issues, Meng [31] demonstrated how the52

standard formula for statistical error (i.e. yn − yN , the difference between the53

mean of the response variable in the sample and that of the variable in the full54

population) can be re-written as the product of three terms. One characterising55

the aforementioned correlation ρ(π, y), given the name “data quality” by Meng,56

and two others representing the population fraction sampled (“data quantity”)57
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and the amount of variation in the population (“problem difficulty”). The58

implications of this algebraic identity have been hailed in some areas as a “new59

paradigm” [3], and, in our opinion, the formula clarifies many issues that have60

previously sometimes only been intuitively understood in ecology [10, 6, 9].61

The adjustment of nonprobability samples for approaching unbiased inference62

is one area that has been clarified by Meng’s approach: in a subsequent paper,63

Meng [32] demonstrated how all such techniques (inverse probability weighting,64

imputation or “superpopulation” modelling, poststratification and doubly-robust65

approaches) ultimately boil down to minimising ρ(π, y). This insight allows us66

to understand the assumptions of our methods better, and therefore to justify67

our approaches and assess their limitations more clearly [7]. Here we apply these68

insights to the use of stratification in ecology, particularly its post hoc use to69

adjust unrepresentative sampling, demonstrating its use as an intelligent driver70

of adaptive sampling for many situations involving data that are biased for the71

estimation of some estimand.72

A priori stratification is often used in survey design to achieve one or more of73

the following: good representation of a population relative to target variables of74

interest; to guarantee certain sample sizes within strata (which may be of intrinsic75

interest); for the convenience of survey administration, potentially including cost76

reduction via regional administration; and to increase the statistical efficiency77

of estimators [30, 58]. For the last point, error can be reduced by randomly78

sampling within strata of homogeneous units, i.e. those where subpopulation79

means and variances are expected to be similar [30].80

Post hoc stratification, or, as it is more commonly known, “poststratification”,81

can also be used to achieve this latter goal. That is, it can be used to increase82

the precision of estimators under known sampling schemes [53]. However, it83

can also be used as a way to remove potential biases arising from the use of84

nonprobability samples. In this sense it is part of the family of reweighting85

techniques intended to adjust a sample to better represent some population of86

interest [53, 61, 10].87

The poststratification estimator [4], or “basic poststratification identity” [17],88

used to achieve this can be defined as:89

yps = 1
N

H∑
h=1

Nhyh,

where N is the population size, Nh is the overall size of stratum h, and H is the90

full set of strata into which the population is divided. The implication here is91

that within-stratum means substitute for individual unit values, and it is these92

which are averaged across the entire population once relative stratum sizes in the93

population have been accounted for (see [10] for a worked ecological example).94

This formulation implies that all i units within a given poststratum receive the95

same weight [4, 61], equal to96

wi(h) = Nh/N

nh/n
,
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where n is the total sample size, and nh is the size of the sample within stratum97

h. This can be easily understood as upweighting units that are under-represented98

in the sample relative to the population and vice versa. These weights imply99

an individual unit response propensity (i.e. the probability that a unit is in the100

sample) of πi(h) = nh/Nh. And so it can be shown that101

ȳps = ȳipw = 1
N

H∑
h=1

∑
i∈nh

yi(h)

πi(h)

[61]. Thus poststratification is a special case of inverse probability weighting102

(a.k.a. quasirandomization or propensity score weighting) where πi(h) is assumed103

to be constant within strata but to (potentially) vary between strata [61]. In the104

situation where a set of randomly sampled population units are surveyed with105

full response (i.e. no “loss” of design-based survey units), then this estimator,106

whether construed as yps or yipw, is unbiased in expectation [53, 4]. However, as107

noted above, it is well known that in actual samples error will tend to increase108

as a function of the correlation between between response propensities π and109

the outcome variable y [20, 4].110

In the case of uncontrolled (i.e. nonprobability) samples, whether based on a111

single survey such as a designed citizen science scheme with some nonresponse,112

or an aggregated sample such as one might retrieve from GBIF or other meta-113

database, the lack of statistical design control almost guarantees that this114

correlation will be appreciably different from zero [9]. This will not merely be115

the bad luck of an unrepresentative random sample, but the expectation of a116

biased sampling mechanism; that is, E[ρ(π, y)] ̸= 0. Here, increases in sample117

size will not help; in fact, they have been shown to make things worse in realistic118

scenarios, i.e. when n << N and the standard deviation of y, σy, does not equal119

zero, as will generally be the case for most environmental monitoring at small120

scales [31, 10, 3].121

With regards to poststratification, two situations will reduce this undesirable122

correlation [4]. These rely on the fact that if either of a pair of variables is fixed123

then they cannot be correlated. These are:124

1. The response of interest yi is invariable within poststrata (i.e. σy(h) =125

0 ∀ h).126

2. The response propensities πi are invariable within poststrata (i.e. πi(h) =127

πh ∀ i ∈ h), achieved by simple random sampling (SRS) within strata.128

In the first of these situations, the poststratification estimator will be more129

efficient (lower variance) than the arithmetic mean, and will reduce error wherever130

a random sampling design has yielded an unbalanced sample by chance [24].131

In the second of these situations, the poststratification estimator reduces the132

bias, but not the variance [28, 26]. This is linked to the assertion of Gelman133

and Carlin [17] that poststratification is most important when correcting for134

differential nonresponse between poststrata. Assuming that response propensities135

are uniform within poststrata, but correlated with y within the overall population,136
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then adjusting for poststratum membership renders ρ(π, y) equal to zero [61, 32].137

This puts such adjustments in the Missing At Random (MAR) category of138

Rubin’s [45] missing data framework: π and y are independent conditional on139

some X, where here X is the vector of unit poststratum memberships [53].140

Whilst poststratification and its variants [e.g. see 16] can be useful tools141

for adjusting existing samples [10], where monitoring is ongoing and survey142

organisers have some power to adapt data collection, adaptive sampling may be143

a more efficient way to reduce error compared to relying on poststratification144

of unrepresentative samples alone [51, 49]. Larger samples may be also desired145

for other reasons irrespective of the potential for using the poststratification146

estimator on a sample in hand. The situations in which poststratification is likely147

to assist the sampler given above suggest a simple approach to adaptive sampling148

for researchers seeking to characterise a population parameter such as a mean.149

As noted above, such descriptive targets appear to be increasingly important for150

ecological monitoring and conservation, especially where nonprobability samples151

are used [9]. Simple approaches to adaptive sampling, with few assumptions, are152

therefore likely to be of wide utility [21].153

We outline an approach to the problem based on assessments of poststratum154

sampling coverage. We show how this can be easily implemented using standard155

binomial formulae within an adaptive framework using an empirical example:156

data collected between 2015–2023 for the UK National Plant Monitoring Scheme,157

a designed citizen science programme with uneven site uptake to date [42]. Our158

approach has a direct link to the literature on the monitoring of survey quality159

via assessments of potential nonresponse bias [59, 35], and we use one such160

indicator (the R-indicator of Schouten, Shlomo and colleagues [47]) of variation161

in response propensities across strata to demonstrate the potential improvements162

in survey representativeness, a measure of survey quality [48], achievable using163

our approach.164

Methods165

A stratum-based adaptive survey strategy166

The approach proceeds as follows: for the population of interest (e.g. some167

geographic area over which the mean of some attribute of a population of units is168

desired), select a set of strata H considered to have some differential relationship169

with sampling response and/or the response variable(s) of interest. Each stratum170

need not be a single spatially contiguous unit, but each population unit should171

be assignable to a single stratum (geographical units may often require assigning172

to the stratum with the largest overlapping area). Many such strata will likely173

already exist, although the approach is not limited to existing strata, as any set of174

geographically indexed variables could be discretised and crossed to create strata175

[e.g. see 10]. For example, in the UK “land classes” have previously been erected176

based on covariation in numerous geographical and environmental variables [11]177

and then amalgamated into broader zones [57]; for Europe, biogeographic zones178

based on patterns of terrestrial and marine biodiversity exist [14]. Note that the179
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strata do not have to be absolutely believed to have an invariable one-to-one180

relationship between stratum unit membership and response propensity, only that181

there is some nontrivial relationship, such that adjusting for its contribution to182

the correlation ρ(π, y) will be better than assuming that the sample is equivalent183

to one selected at random [32].184

For the existing sample for which future adaptive selections are required,185

compare the current distribution of units across strata to that expected for the186

same sample size under SRS; this is known as proportional allocation in the187

survey sampling literature [58]. That is, a given set of strata H partitioning N188

will be sampled in proportion to n/N , such that, for stratum h, nh = (n/N)·Nh;189

if achieved, all response propensities would be equal, both within and between190

strata. The stratum for which the next unit should be collected will then be191

the one with the current largest negative departure from random expectation,192

quantified using z-statistics.193

Monitoring representativeness194

The link between response propensities and indicators of representativeness195

noted above was formalised by Schouten and colleagues [48]. They provide196

the following operational definition of “representative” in the survey sampling197

context:198

π̄h = 1
Nh

Nh∑
i=1

πi(h) = π ∀ h

Note that this is a weaker version of (2) given in the Introduction above, as it does199

not state that all response propensities within a stratum are identical, only that200

the means across strata are equal. Based on this, the Schouten et al. R-indicator201

is R(π) = 1 − 2σ2
πh

, where σ2
πh

is the variance of the mean response propensities202

across strata. R(π) = 1 denotes maximum representativeness (equivalent to203

SRS), when the variance in response propensities across strata is zero.204

Adaptive sampling algorithm205

This proceeds as follows (see also the R code in Supplementary Material 1):206

Step 1: Assign all population units Ni to a unique corresponding stratum207

hi.208

Step 2: Calculate each stratum’s current z-statistic, zh, by comparing209

the current empirical count (x̄h = Nh · (nh/Nh) = nh, the current sample210

size) and binomial standard deviation (sh =
√

Nh·nh/Nh·(1 − nh/Nh)) to the211

expected count (µ̂h) based on proportional allocation (i.e. n/N ·Nh). Then,212

zh = (x̄h − µ̂h)/sh, the difference between the empirical and expected counts in213

standard deviation units.214

Step 3: Across the H strata, select that h with the smallest zh as the215

stratum most in need of additional sampling to reach the SRS benchmark. Call216

this the focal stratum hf .217

Step 4: Given the addition of a new site to stratum hf , calculate the new218

values of xh and sh directly from the standard binomial formulae. The new target219
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stratum site count expected under SRS is also updated as µ̂ = (n + a)/N ·Nh.220

In the following example a = 1, but it could be any positive integer as there221

is no requirement to evaluate the switch after the addition of every single new222

sampling unit; the supporting code allows for this parameter to be varied.223

Step 5: After updating the current focal stratum hf with the newly added224

site(s), recalculate the z-statistics for all strata, including hf . Compare the225

updated zh(f) with the minimum zh across all strata. If zh(f) is no longer the226

smallest, switch the focus to the stratum with the new smallest zh(f) denoted227

hf∗ . Begin sampling hf∗ if required, otherwise continue with hf .228

Step 6: Repeat Steps 2 to 5 K times until the desired new sample size229

allowed by current resourcing, n + aK, is reached, or until all strata are at their230

expected SRS sampling counts (n + aK)/N ·Nh.231

We can monitor the progress of this algorithm by following the empirical232

stratum sampling proportions (nh/Nh), and by calculating the corresponding233

R-indicator at each step.234

An empirical example: the UK National Plant Monitoring Scheme235

The UK National Plant Monitoring Scheme (NPMS) asks volunteers to236

record plant abundances in small plots located in particular habitats [60]. Plots237

are located within 1 km2 squares (hereafter “sites”) of the relevant country238

grid (the scheme covers Great Britain, Northern Ireland, the Isle of Man and239

the Channel Islands). The available sites within the scheme (see https://240

www.npms.org.uk/square-near-me-public) are originally a weighted-random241

selection, stratified by 100 × 100 km cells of the larger relevant grid; see [42]242

for more detail. Due to variable population density and other factors across the243

region, uptake of these sites is uneven, and some areas have far fewer surveyed244

than others [42]. A primary aim of the NPMS is the production of nationally245

representative indicators of habitat quality [38], and so, ideally, coverage of the246

area would be relatively even. We know that response propensity (i.e. site uptake)247

is related to such factors as population density and correlated environmental248

variables such as altitude and land cover type, and that these variables are also249

correlated with the local abundances and occupancies of plant indicator species250

[42]. North-west to south-east gradients of all these variables are well-known in251

the British Isles [44, 55, 41, 22, 43]. We therefore assume that representation252

of broad environmental strata, in tandem with poststratification of results, is253

likely to be a positive step towards reducing potential bias in the monitoring254

scheme’s estimands. One widely-used set of strata for Great Britain is the UK255

Countryside Survey (UKCS) Environmental Zones [57], based on a larger set256

of “land classes” created originally for the a priori stratification of national257

ecological and biogeographical surveys [11]. To these we add Northern Ireland258

as an additional stratum to better cover our area (Fig. 1). Surveyed NPMS sites259

[36] are overlaid on these zones in Figure 1 to show their current (2015–2023)260

coverage.261
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Figure 1: UK Countyside Survey Environmental Zones plus Northern Ireland. Grey circles
are the 2015–2023 NPMS sites with survey data.

Results262

Table 1 gives the current distribution of NPMS 1 km2 sites by UKCS stra-263

tum. These are given in order of their discrepancy from proportional allocation264

(i.e. SRS) of the current sample of 1,204 sites that could be assigned to strata,265

from under- to over-sampled [36].266
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Table 1: The current distribution of NPMS sites by UKCS Environmental Zone strata, ordered
from under- to over-sampled relative to SRS. Mean prop. is the current proportion of the
stratum sampled; Discrepancy is the difference between Mean prop. and that expected under
SRS.

Stratum
no.

Stratum No.
sites

Stratum
area

(km2)

Mean
prop.

Discrepancy

5 Intermediate
Uplands and Islands,
Scotland

53 29866 1.8e-03 -2.9e-03

6 True Uplands,
Scotland

65 32034 2.0e-03 -2.7e-03

4 Lowlands, Scotland 76 23084 3.3e-03 -1.4e-03
7 Northern Ireland 73 14156 5.2e-03 4.7e-04
8 Lowlands, Wales 60 11309 5.3e-03 6.1e-04

9 Uplands, Wales 55 10272 5.4e-03 6.6e-04
1 Easterly Lowlands,

England
395 65441 6.0e-03 1.3e-03

2 Westerly Lowlands,
England

321 51815 6.2e-03 1.5e-03

3 Uplands, England 106 15739 6.7e-03 2.0e-03

Figure 2 demonstrates the progress of the stratum-based adaptive sampling267

algorithm in terms of stratum means and R-indicator. The example here uses268

600 iterations (i.e. the final target sample size was n + 600 = 1804). This amount269

of adaptive sampling may be unrealistic in most real world situations where270

there is existing nonresponse, but we use this number to demonstrate the points271

at which all strata become proportionally allocated, and to show the evolution272

of the R-indicator towards its maximum possible value of 1 (Fig. 2).273

Table 2 gives abridged output of the adaptive sampling algorithm. The top of274

the table shows how, initially, stratum number 5, the “Intermediate Uplands and275

Islands” zone of Scotland is targeted in isolation (as expected from its position276

at the top of Table 1). The bottom of Table 2 shows how, once all strata are277

undersampled relative to the addition of new sites, the target stratum switches278

with every iteration of the algorithm. The total population size of UK 1 km2 sites279

assigned to UKCS Environmental Zone strata is 257,502; 1804/257502 = 0.0070,280

hence the stratum sampled proportions acheived for the final six iterations at281

the bottom of Table 2.282
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Figure 2: Evolution of UKCS Environmental Zone stratum mean sampled proportions and
R-indicator by iteration.

Discussion283

Nonprobability samples of different types are now routinely used within284

ecology and conservation for various monitoring aims [9]. Not infrequently these285

relate to the desire to produce large-scale indicators of biodiversity change, with286

representativeness of large geographical areas often implied as a consequence.287

Whilst estimates based on such data can potentially be partially adjusted for288

sampling bias using a family of reweighting techniques, including poststratifica-289

tion [10, 32], targeting new effort in order to reduce such biases is likely to be a290

useful complementary strategy [49, 51]. We suggest that the use of poststrata,291

considered to capture important relationships between response propensities and292

the variable(s) of interest, is a straightfoward starting point for adaptive sampling293

for projects with descriptive goals (i.e. those where the aim is to estimate some294

directly measurable property of a population from a sample; [23]).295

If the strata are well-chosen relative to their potential to reduce correlations296

driving sampling bias, our adaptive approach aimed at a random sample stratified297

using proportional allocation will improve matters. An example would be where298

a common plant has near 100% occupancy at some broad scale (e.g. a 10 x299

10 km grid), but its local cover (e.g. at the square-metre scale) varies with an300

environmental gradient. If sampling co-varies along the same gradient (e.g. due301

to population density, as in the UK National Plant Monitoring Scheme; [42]) then302

estimates of average abundance are likely to exhibit important bias. However, if303

some set of strata partition the environment into areas where sampling is close304

to random with respect to regional variation in the species’ abundance, then305

this bias will be significantly reduced: the national correlation is removed by306

estimating means within smaller areas and then combining these in relation to307

10



Table 2: Abridged adaptive sampling output for the first and last six added sites across 600
iterations. Stratum no. = stratum number of focal stratum (see Table 1 for stratum name);
Mean prop. = sampled proportion for target stratum; SD = binomial st. dev. for site count
within stratum.

Iteration Stratum no. z-value Mean prop. Site count SD

1 5 -1.2e+01 1.8e-03 54 7.3
2 5 -1.2e+01 1.8e-03 55 7.4
3 5 -1.2e+01 1.8e-03 56 7.5
4 5 -1.2e+01 1.9e-03 57 7.5
5 5 -1.1e+01 1.9e-03 58 7.6

6 5 -1.1e+01 1.9e-03 59 7.7
... ... ... ... ... ...
595 3 1.1e-01 7.1e-03 111 10.5
596 1 1.0e-01 7.0e-03 460 21.4
597 5 9.9e-02 7.0e-03 214 14.6

598 4 9.1e-02 7.0e-03 164 12.8
599 2 8.7e-02 7.0e-03 368 19.1
600 7 8.5e-02 7.1e-03 102 10.1

their expected national proportions to better represent the total population [10].308

Whilst it is true that in such a case the poststratification estimator will309

reduce bias anyway [4, 17, 12, 50], the combination of adaptive sampling and310

reweighting has been shown to be superior to relying on reweighting alone, both311

in theory and in empirical investigations in the survey sampling literature [49, 50].312

This is because a MAR assumption underpinning standard poststratification313

may well be incorrect if it has been based on the available sample; however,314

adding new sites to the sample always admits of the possibility that new elements315

of the relationship between response propensity and a target variable will be316

uncovered. Regardless of this, monitoring programs will often have a focus on317

increasing uptake for other reasons (e.g. engagement, increasing power; [21]), and318

so targeted approaches to selecting new sites are likely to be required irrespective319

of existing analytical options for potential bias reduction of the sample in hand320

[10].321

If the strata are in fact random with respect to both y and π (i.e. they explain322

nothing), then new locations based on them should not contribute to estimator323

bias, although variance may be increased. However, if the analyst is unlucky,324

it is theoretically possible that the “true” poststrata that would have reduced325

bias are totally uncaptured by the prioritised selection. The worse case might be326

that they constitute a set nested within some other stratum that appears to be327

well-sampled relative to the proportional allocation implied by random sampling.328

The use of researcher domain knowledge should help to avoid this situation [50],329

just as it has been repeatedly flagged as essential for the choice of adjustment330

variables in the first place [10, 12, 33]. A similar situation might occur if an331

adaptive sampling strategy was applied to a finite pool of interested surveyors,332

and the strategy ended up merely shifting attention from one area to another,333

introducing a bias that might change over time if left unadjusted. This situation334
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could in theory be remedied by applying the poststratification estimator within335

time-slices, although no doubt survey organisers and metadatabase curators336

would also want to monitor such situations. Adjusting sampling behaviour337

is obviously not cost-free, and there would be little point in attempting to338

manipulate data collection if it merely led to a new sample configuration with339

biases of a similar size (although not necessarily direction), unless other inferential340

targets were in play (e.g. the desire to cover some environmental gradient to341

better estimate predictive or causal regression coefficients for use in species342

distribution modelling or similar across broader time-slices; [34]). Ultimately,343

if large biases are suspected to remain, even after the exploration of adaptive344

sampling or poststratification, then other bias reducton strategies should be345

explored, the simplest being to adjust the estimand to a population that one has346

confidence is actually sampled representatively. That is, do not make inferential347

claims that are significantly larger than the evidence [7]. An example would348

be claiming that the time series of a butterflies’ local abundance in England349

was actually indicative of that average across the whole of Great Britain when350

there is clear evidence for temporal shifts in sample coverage of the statistical351

population [5].352

Adaptive sampling in environmental monitoring is not new [e.g. 52], however,353

a majority of previous investigations in this area have primarily aimed at taking354

“advantage of population characteristics to obtain more precise estimates of355

population abundance or density, for a given size or cost, than is possible with356

conventional designs” [56]. Indeed, work in this area of ecology has tended to357

focuse on the reduction of variance conditional on controlled design, and seems358

rarely to have asked the question from the point of view of adding units to359

reduce estimator bias relative to a baseline of unrepresentative sampling for360

descriptive inference [21]. Whilst there is considerable mathematical overlap361

between these existing approaches to adaptive sampling [56] and that considered362

here, those approaches have tended to use the response values of interest to363

guide the selection of new sampling locations [56], whereas here we follow the364

recently developed survey sampling approach of focusing on how to equilibriate365

response propensities across units to reduce correlations between these and the366

variable(s) of interest [50]. Such approaches fall within the second category of367

Wagner’s typology of nonresponse bias indicators [59], as they require data on368

survey response and sampling frame information at the population level (here369

stratum membership), but not on the survey outcome variables themselves.370

Conclusion371

We have laid out the relationship between poststratum-based adjustment372

strategies and inverse propensity weighting in the context of reducing bias (or,373

equivalently, improving representation) for descriptive inference. Following Meng374

[31] and others [4, 61], we have characterised this bias as a non-zero correlation375

between response propensities and the variable(s) of interest and clarified the376

assumptions required to justify this approach. A recent review of adaptive377

sampling in ecology [21] suggested that the complexity of some techniques378

in the literature likely constituted an important barrier to uptake, and our379

12



simple approach may help overcome this problem. The approach proposed380

here relies on MAR assumptions that are typically impossible to verify without381

separate survey efforts, but this is no different to the assumptions required382

to reweight existing samples to improve representativeness [3, 2, 10], and the383

ongoing development of R-indicators and related tools points to numerous384

opportunities for ecologists in these areas [e.g. 49, 35, 50]. We have focused on a385

single categorical driver of sampling bias to target adaptive sampling, but, in386

principle, one could cross-tabulate many categorical variables and/or discretise387

continuous ones for crossing [58]. It may be that modelling response propensities388

using multivariable approaches, and using “partial” R-indicators based on these,389

will allow finer-grained exploration and control of adaptive sampling strategies390

relative to response propensity variance in the future [51].391

We reiterate that our approach is not a panacea. In general, if the missing392

data mechanism is still Missing Not At Random [29] even after poststratification393

(i.e. |ρ(πi(h), yi(h))| >> 0), then calculated statistics may still contain important394

bias relative to any given research question. However, this applies to all such395

strategies based on weighting adjustments, and certainly applies to ignoring396

the problem altogether (i.e. assuming that the sampling mechanism is already397

MCAR without critical inspection). Best practice is likely to involve sensitivity398

analyses [29, 39], and both quantitative [8] and qualitative assessments of the399

potential for bias relative to key research goals [7, 40].400

Acknowledgements401

OP and RB acknowledge NERC award number NE/R016429/1 as part of the402

UK Status, Change and Projections of the Environment (UK-SCAPE) program403

delivering National Capability and Joint Nature Conservation Committee funding404

to the NPMS. GP was supported through NERC award number NE/V006878/1405

as part of the DRUID (Drivers and Repercussions of UK Insect Declines) project.406

Supplementary Material 1407

https://doi.org/10.5281/zenodo.13736327408

References409

[1] Aubry, P., Francesiaz, C., Guillemain, M., 2024. On the impact of pref-410

erential sampling on ecological status and trend assessment. Ecological411

Modelling 492, 110707. doi:10.1016/j.ecolmodel.2024.110707.412

[2] Bailey, M., 2023a. Polling at a Crossroads: Rethinking Modern Survey413

Research. Cambridge University Press, New York, NY.414

[3] Bailey, M.A., 2023b. A New Paradigm for Polling. Harvard Data Science415

Review 5. doi:10.1162/99608f92.9898eede.416

13

https://doi.org/10.5281/zenodo.13736327
http://dx.doi.org/10.1016/j.ecolmodel.2024.110707
http://dx.doi.org/10.1162/99608f92.9898eede


[4] Bethlehem, J., 2002. Weighting nonresponse adjustments based on auxiliary417

information, in: Groves, R., Dillman, D., Eltinge, J., Little, R. (Eds.),418

Survey Nonresponse. John Wiley & Sons, Inc., New York, pp. 275–288.419

[5] Boyd, R.J., Botham, M., Dennis, E., Fox, R., Harrower, C., Middlebrook,420

I., Roy, D., Pescott, O., 2024a. Using causal diagrams and superpopula-421

tion models to correct geographic biases in biodiversity monitoring data.422

ecoEvoRxiv .423

[6] Boyd, R.J., Bowler, D.E., Isaac, N.J.B., Pescott, O.L., 2024b. On the424

trade-off between accuracy and spatial resolution when estimating species425

occupancy from geographically biased samples. Ecological Modelling 493,426

110739. doi:10.1016/j.ecolmodel.2024.110739.427

[7] Boyd, R.J., Powney, G.D., Burns, F., Danet, A., Duchenne, F., Grainger,428

M.J., Jarvis, S.G., Martin, G., Nilsen, E.B., Porcher, E., Stewart, G.B.,429

Wilson, O.J., Pescott, O.L., 2022. ROBITT: A tool for assessing the risk-430

of-bias in studies of temporal trends in ecology. Methods in Ecology and431

Evolution 13, 1497–1507. doi:10.1111/2041-210X.13857.432

[8] Boyd, R.J., Powney, G.D., Carvell, C., Pescott, O.L., 2021. occAssess: An433

R package for assessing potential biases in species occurrence data. Ecology434

and Evolution 11, 16177–16187. doi:10.1002/ece3.8299.435

[9] Boyd, R.J., Powney, G.D., Pescott, O.L., 2023. We need to talk about436

nonprobability samples. Trends in Ecology & Evolution doi:10.1016/j.437

tree.2023.01.001.438

[10] Boyd, R.J., Stewart, G.B., Pescott, O.L., 2024c. Descriptive inference439

using large, unrepresentative nonprobability samples: An introduction for440

ecologists. Ecology 105, e4214. doi:10.1002/ecy.4214.441

[11] Bunce, R.G., Barr, C.J., Gillespie, M.K., Howard, D.C., 1996. The ITE442

Land classification: Providing an environmental stratification of Great443

Britain. Environmental Monitoring and Assessment 39, 39–46. doi:10.444

1007/BF00396134.445

[12] Caughey, D., Berinsky, A.J., Chatfield, S., Hartman, E., Schickler, E.,446

Sekhon, J.S., 2020. Target Estimation and Adjustment Weighting for Survey447

Nonresponse and Sampling Bias. Elements in Quantitative and Computa-448

tional Methods for the Social Sciences doi:10.1017/9781108879217.449

[13] Dornelas, M., Antão, L.H., Moyes, F., Bates, A.E., Magurran, A.E., Adam,450

D., Akhmetzhanova, A.A., Appeltans, W., Arcos, J.M., Arnold, H., Ayyap-451

pan, N., Badihi, G., Baird, A.H., Barbosa, M., Barreto, T.E., Bässler, C.,452

Bellgrove, A., Belmaker, J., Benedetti-Cecchi, L., Bett, B.J., Bjorkman,453

A.D., Błażewicz, M., Blowes, S.A., Bloch, C.P., Bonebrake, T.C., Boyd,454

S., Bradford, M., Brooks, A.J., Brown, J.H., Bruelheide, H., Budy, P.,455

Carvalho, F., Castañeda-Moya, E., Chen, C.A., Chamblee, J.F., Chase,456

14

http://dx.doi.org/10.1016/j.ecolmodel.2024.110739
http://dx.doi.org/10.1111/2041-210X.13857
http://dx.doi.org/10.1002/ece3.8299
http://dx.doi.org/10.1016/j.tree.2023.01.001
http://dx.doi.org/10.1016/j.tree.2023.01.001
http://dx.doi.org/10.1016/j.tree.2023.01.001
http://dx.doi.org/10.1002/ecy.4214
http://dx.doi.org/10.1007/BF00396134
http://dx.doi.org/10.1007/BF00396134
http://dx.doi.org/10.1007/BF00396134
http://dx.doi.org/10.1017/9781108879217


T.J., Siegwart Collier, L., Collinge, S.K., Condit, R., Cooper, E.J., Cor-457

nelissen, J.H.C., Cotano, U., Kyle Crow, S., Damasceno, G., Davies, C.H.,458

Davis, R.A., Day, F.P., Degraer, S., Doherty, T.S., Dunn, T.E., Durigan, G.,459

Duffy, J.E., Edelist, D., Edgar, G.J., Elahi, R., Elmendorf, S.C., Enemar,460

A., Ernest, S.K.M., Escribano, R., Estiarte, M., Evans, B.S., Fan, T.Y.,461

Turini Farah, F., Loureiro Fernandes, L., Farneda, F.Z., Fidelis, A., Fitt,462

R., Fosaa, A.M., Daher Correa Franco, G.A., Frank, G.E., Fraser, W.R.,463

García, H., Cazzolla Gatti, R., Givan, O., Gorgone-Barbosa, E., Gould,464

W.A., Gries, C., Grossman, G.D., Gutierréz, J.R., Hale, S., Harmon, M.E.,465

Harte, J., Haskins, G., Henshaw, D.L., Hermanutz, L., Hidalgo, P., Higuchi,466

P., Hoey, A., Van Hoey, G., Hofgaard, A., Holeck, K., Hollister, R.D.,467

Holmes, R., Hoogenboom, M., Hsieh, C.h., Hubbell, S.P., Huettmann, F.,468

Huffard, C.L., Hurlbert, A.H., Macedo Ivanauskas, N., Janík, D., Jandt, U.,469

Jażdżewska, A., Johannessen, T., Johnstone, J., Jones, J., Jones, F.A.M.,470

Kang, J., Kartawijaya, T., Keeley, E.C., Kelt, D.A., Kinnear, R., Klanderud,471

K., Knutsen, H., Koenig, C.C., Kortz, A.R., Král, K., Kuhnz, L.A., Kuo,472

C.Y., Kushner, D.J., Laguionie-Marchais, C., Lancaster, L.T., Min Lee,473

C., Lefcheck, J.S., Lévesque, E., Lightfoot, D., Lloret, F., Lloyd, J.D.,474

López-Baucells, A., Louzao, M., Madin, J.S., Magnússon, B., Malamud,475

S., Matthews, I., McFarland, K.P., McGill, B., McKnight, D., McLarney,476

W.O., Meador, J., Meserve, P.L., Metcalfe, D.J., Meyer, C.F.J., Michelsen,477

A., Milchakova, N., Moens, T., Moland, E., Moore, J., Mathias Moreira,478

C., Müller, J., Murphy, G., Myers-Smith, I.H., Myster, R.W., Naumov, A.,479

Neat, F., Nelson, J.A., Paul Nelson, M., Newton, S.F., Norden, N., Oliver,480

J.C., Olsen, E.M., Onipchenko, V.G., Pabis, K., Pabst, R.J., Paquette, A.,481

Pardede, S., Paterson, D.M., Pélissier, R., Peñuelas, J., Pérez-Matus, A.,482

Pizarro, O., Pomati, F., Post, E., Prins, H.H.T., Priscu, J.C., Provoost, P.,483

Prudic, K.L., Pulliainen, E., Ramesh, B.R., Mendivil Ramos, O., Rassweiler,484

A., Rebelo, J.E., Reed, D.C., Reich, P.B., Remillard, S.M., Richardson,485

A.J., Richardson, J.P., van Rijn, I., Rocha, R., Rivera-Monroy, V.H., Rixen,486

C., Robinson, K.P., Ribeiro Rodrigues, R., de Cerqueira Rossa-Feres, D.,487

Rudstam, L., Ruhl, H., Ruz, C.S., Sampaio, E.M., Rybicki, N., Rypel, A.,488

Sal, S., Salgado, B., Santos, F.A.M., Savassi-Coutinho, A.P., Scanga, S.,489

Schmidt, J., Schooley, R., Setiawan, F., Shao, K.T., Shaver, G.R., Sherman,490

S., Sherry, T.W., Siciński, J., Sievers, C., da Silva, A.C., Rodrigues da Silva,491

F., Silveira, F.L., Slingsby, J., Smart, T., Snell, S.J., Soudzilovskaia, N.A.,492

Souza, G.B.G., Maluf Souza, F., Castro Souza, V., Stallings, C.D., Stanforth,493

R., Stanley, E.H., Mauro Sterza, J., Stevens, M., Stuart-Smith, R., Ron-494

don Suarez, Y., Supp, S., Yoshio Tamashiro, J., Tarigan, S., Thiede, G.P.,495

Thorn, S., Tolvanen, A., Teresa Zugliani Toniato, M., Totland, Ø., Twilley,496

R.R., Vaitkus, G., Valdivia, N., Vallejo, M.I., Valone, T.J., Van Colen, C.,497

Vanaverbeke, J., Venturoli, F., Verheye, H.M., Vianna, M., Vieira, R.P.,498

Vrška, T., Quang Vu, C., Van Vu, L., Waide, R.B., Waldock, C., Watts,499

D., Webb, S., Wesołowski, T., White, E.P., Widdicombe, C.E., Wilgers, D.,500

Williams, R., Williams, S.B., Williamson, M., Willig, M.R., Willis, T.J.,501

Wipf, S., Woods, K.D., Woehler, E.J., Zawada, K., Zettler, M.L., 2018.502

15



BioTIME: A database of biodiversity time series for the Anthropocene.503

Global Ecology and Biogeography 27, 760–786. doi:10.1111/geb.12729.504

[14] EEA, 2002. Europe’s Biodiversity – Biogeographical Regions and Seas.505

Biogeographical Regions in Europe. Technical Report.506

[15] Elliott, M.R., Valliant, R., 2017. Inference for Nonprobability Samples.507

Statistical Science 32, 249–264. doi:10.1214/16-STS598.508

[16] Gelman, A., 2007. Struggles with Survey Weighting and Regression Model-509

ing. Statistical Science 22, 153–164. arXiv:27645813.510

[17] Gelman, A., Carlin, J.B., 2002. Poststratification and weighting adjust-511

ments, in: Groves, R., Dillman, D., Eltinge, J., Little, R. (Eds.), Survey512

Nonresponse. John Wiley & Sons, Inc., New York, pp. 289–302.513

[18] Gitzen, R.A., Millspaugh, J.J., Cooper, A.B., Licht, D.S. (Eds.), 2012.514

Design and Analysis of Long-term Ecological Monitoring Studies. Cambridge515

University Press, Cambridge, UK.516

[19] Gonzalez, A., Cardinale, B.J., Allington, G.R.H., Byrnes, J., Arthur Endsley,517

K., Brown, D.G., Hooper, D.U., Isbell, F., O’Connor, M.I., Loreau, M.,518

2016. Estimating local biodiversity change: A critique of papers claiming no519

net loss of local diversity. Ecology 97, 1949–1960. doi:10.1890/15-1759.1.520

[20] Groves, R.M., 2006. Nonresponse Rates and Nonresponse Bias in Household521

Surveys. Public Opinion Quarterly 70, 646–675. doi:10.1093/poq/nfl033.522

[21] Henrys, P.A., Mondain-Monval, T.O., Jarvis, S.G., 2024. Adaptive sampling523

in ecology: Key challenges and future opportunities. Methods in Ecology524

and Evolution n/a. doi:10.1111/2041-210X.14393.525

[22] Hill, M.O., 1991. Patterns of Species Distribution in Britain Elucidated by526

Canonical Correspondence Analysis. Journal of Biogeography 18, 247–255.527

doi:10.2307/2845395, arXiv:2845395.528

[23] Hodges, J.S., 1996. Statistical Practice as Argumentation: A Sketch of529

a Theory of Applied Statistics, in: Lee, J.C., Johnson, W.O., Zellner, A.530

(Eds.), Modelling and Prediction Honoring Seymour Geisser. Springer, New531

York, NY, pp. 19–45. doi:10.1007/978-1-4612-2414-3_2.532

[24] Holt, D., Smith, T.M.F., 1979. Post Stratification. Royal Statistical Society.533

Journal. Series A: General 142, 33–46. doi:10.2307/2344652.534

[25] Ledger, S.E.H., Loh, J., Almond, R., Böhm, M., Clements, C.F., Currie, J.,535

Deinet, S., Galewski, T., Grooten, M., Jenkins, M., Marconi, V., Painter,536

B., Scott-Gatty, K., Young, L., Hoffmann, M., Freeman, R., McRae, L.,537

2023. Past, present, and future of the Living Planet Index. npj Biodiversity538

2, 1–13. doi:10.1038/s44185-023-00017-3.539

16

http://dx.doi.org/10.1111/geb.12729
http://dx.doi.org/10.1214/16-STS598
http://arxiv.org/abs/27645813
http://dx.doi.org/10.1890/15-1759.1
http://dx.doi.org/10.1093/poq/nfl033
http://dx.doi.org/10.1111/2041-210X.14393
http://dx.doi.org/10.2307/2845395
http://arxiv.org/abs/2845395
http://dx.doi.org/10.1007/978-1-4612-2414-3_2
http://dx.doi.org/10.2307/2344652
http://dx.doi.org/10.1038/s44185-023-00017-3


[26] Little, R., 2009. Weighting and Prediction in Sample Surveys. Working540

Paper 81. University of Michigan. University of Michigan School of Public541

Health.542

[27] Little, R.J., 2023. The “Law of Large Populations” Does Not Herald543

a Paradigm Shift in Survey Sampling. Harvard Data Science Review 5.544

doi:10.1162/99608f92.6b049957.545

[28] Little, R.J.A., 1986. Survey Nonresponse Adjustments for Estimates of546

Means. International Statistical Review / Revue Internationale de Statis-547

tique 54, 139–157. doi:10.2307/1403140, arXiv:1403140.548

[29] Little, R.J.A., Rubin, D.B., 2020. Statistical Analysis with Missing Data.549

3rd ed., Wiley, Hoboken, N.J.550

[30] Lohr, S., 2019. Sampling: Design and Analysis. 3rd ed., CRC Press, Boca551

Raton, FL.552

[31] Meng, X.L., 2018. Statistical paradises and paradoxes in big data (I): Law of553

large populations, big data paradox, and the 2016 US presidential election.554

The Annals of Applied Statistics 12, 685–726. doi:10.1214/18-AOAS1161SF.555

[32] Meng, X.L., 2022. Comments on “Statistical inference with non-probability556

survey samples” – Miniaturizing data defect correlation: A versatile strategy557

for handling non-probability samples. Survey Methodology 48, Paper avail-558

able at http://www.statcan.gc.ca/pub/12–001–x/2022002/article/00006–559

eng.htm.560

[33] Mercer, A.W., Kreuter, F., Keeter, S., Stuart, E.A., 2017. Theory and561

Practice in Nonprobability Surveys: Parallels between Causal Inference and562

Survey Inference. Public Opinion Quarterly 81, 250–271. doi:10.1093/poq/563

nfw060.564

[34] Mondain-Monval, T., Pocock, M., Rolph, S., August, T., Wright, E., Jarvis,565

S., 2024. Adaptive sampling by citizen scientists improves species distri-566

bution model performance: A simulation study. Methods in Ecology and567

Evolution 15, 1206–1220. doi:10.1111/2041-210X.14355.568

[35] Nishimura, R., Wagner, J., Elliott, M.R., 2016. Alternative indicators for the569

risk of non-response bias: A simulation study. International statistical review570

= Revue internationale de statistique 84, 43–62. doi:10.1111/insr.12100.571

[36] NPMS, 2024. National Plant Monitoring Scheme survey data (2015-2023).572

doi:10.5285/eb135726-9039-441c-8335-1aab5f6dda21.573

[37] Outhwaite, C.L., Powney, G.D., August, T.A., Chandler, R.E., Rorke, S.,574

Pescott, O.L., Harvey, M., Roy, H.E., Fox, R., Roy, D.B., Alexander, K., Ball,575

S., Bantock, T., Barber, T., Beckmann, B.C., Cook, T., Flanagan, J., Fowles,576

A., Hammond, P., Harvey, P., Hepper, D., Hubble, D., Kramer, J., Lee, P.,577

MacAdam, C., Morris, R., Norris, A., Palmer, S., Plant, C.W., Simkin, J.,578

17

http://dx.doi.org/10.1162/99608f92.6b049957
http://dx.doi.org/10.2307/1403140
http://arxiv.org/abs/1403140
http://dx.doi.org/10.1214/18-AOAS1161SF
http://dx.doi.org/10.1093/poq/nfw060
http://dx.doi.org/10.1093/poq/nfw060
http://dx.doi.org/10.1093/poq/nfw060
http://dx.doi.org/10.1111/2041-210X.14355
http://dx.doi.org/10.1111/insr.12100
http://dx.doi.org/10.5285/eb135726-9039-441c-8335-1aab5f6dda21


Stubbs, A., Sutton, P., Telfer, M., Wallace, I., Isaac, N.J.B., 2019. Annual579

estimates of occupancy for bryophytes, lichens and invertebrates in the UK,580

1970–2015. Scientific Data 6, 1–12. doi:10.1038/s41597-019-0269-1.581

[38] Pescott, O., Walker, K.J., Powney, G., 2019a. Developing a Bayesian Species582

Occupancy/Abundance Indicator for the UK National Plant Monitoring583

Scheme. Unpublished Report to JNCC/Defra.. NERC/Centre for Ecology584

& Hydrology and BSBI. Wallingford, UK.585

[39] Pescott, O.L., 2023. Seek a Paradigm and Distrust It? Statistical Arguments586

and the Representation of Uncertainty. Harvard Data Science Review 5.587

doi:10.1162/99608f92.a02188d0.588

[40] Pescott, O.L., Boyd, R.J., Powney, G.D., Stewart, G.B., 2023. Towards a589

unified approach to formal risk of bias assessments for causal and descriptive590

inference. doi:10.48550/arXiv.2308.11458, arXiv:2308.11458.591

[41] Pescott, O.L., Preston, C., 2014. Some environmental factors influencing592

the distribution of bryophytes in Britain and Ireland, in: Blockeel, T.,593

Bosanquet, S., Hill, M., Preston, C. (Eds.), Atlas of British and Irish594

Bryophytes. Pisces Publications, Newbury, UK. volume 1.595

[42] Pescott, O.L., Walker, K.J., Harris, F., New, H., Cheffings, C.M., Newton,596

N., Jitlal, M., Redhead, J., Smart, S.M., Roy, D.B., 2019b. The design,597

launch and assessment of a new volunteer-based plant monitoring scheme598

for the United Kingdom. PLoS ONE 14, e0215891. doi:10.1371/journal.599

pone.0215891.600

[43] Preston, C.D., Hill, M.O., Harrower, C.A., Dines, T.D., 2013. Biogeo-601

graphical patterns in the British and Irish flora. New Journal of Botany 3,602

96–117.603

[44] Preston, C.D., Pearman, D.A., Dines, T.D. (Eds.), 2002. New Atlas of the604

British and Irish Flora. Oxford University Press, Oxford, England.605

[45] Rubin, D.B., 1976. Inference and missing data. Biometrika 63, 581–592.606

doi:10.1093/biomet/63.3.581.607

[46] Sackett, D., 1979. Bias in analytic research. Journal of Chronic Diseases 32,608

51–63.609

[47] Schouten, B., Bethlehem, J., Beullens, K., Kleven, Ø., Loosveldt, G., Luiten,610

A., Rutar, K., Shlomo, N., Skinner, C., 2012. Evaluating, Comparing,611

Monitoring, and Improving Representativeness of Survey Response Through612

R-Indicators and Partial R-Indicators. International Statistical Review 80,613

382–399. doi:10.1111/j.1751-5823.2012.00189.x.614

[48] Schouten, B., Cobben, F., Bethlehem, J., 2009. Indicators for the represen-615

tativeness of survey response. Survey Methodology 35, 101–113.616

18

http://dx.doi.org/10.1038/s41597-019-0269-1
http://dx.doi.org/10.1162/99608f92.a02188d0
http://dx.doi.org/10.48550/arXiv.2308.11458
http://arxiv.org/abs/2308.11458
http://dx.doi.org/10.1371/journal.pone.0215891
http://dx.doi.org/10.1371/journal.pone.0215891
http://dx.doi.org/10.1371/journal.pone.0215891
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1111/j.1751-5823.2012.00189.x


[49] Schouten, B., Cobben, F., Lundquist, P., Wagner, J., 2014. Theoretical and617

Empirical Support for Adjustment of Nonresponse by Design. Discussion618

Paper 2014-15.619

[50] Schouten, B., Peytchev, A., Wagner, J., 2017. Adaptive Survey Design. 1st620

ed., Chapman and Hall/CRC, New York.621

[51] Schouten, B., Shlomo, N., 2017. Selecting Adaptive Survey Design Strata622

with Partial R-indicators. International Statistical Review 85, 143–163.623

doi:10.1111/insr.12159.624

[52] Seber, G., Thompson, S., 1994. Environmental Adaptive Sampling, Elsevier625

Science B.V.. number 12 in Handbook of Statistics.626

[53] Smith, T.M.F., 1991. Post-Stratification. Journal of the Royal Statistical627

Society. Series D (The Statistician) 40, 315–323. doi:10.2307/2348284,628

arXiv:2348284.629

[54] Spellerberg, I.F., 2005. Monitoring Ecological Change. Cambridge University630

Press, Cambridge, UK.631

[55] Stroh, P., Walker, K., Humphrey, T., Pescott, O., Burkmar, R. (Eds.), 2023.632

Plant Atlas 2020. Mapping Changes in the Distribution of the British and633

Irish Flora. Botanical Society of Britain and Ireland & Princeton University634

Press, Princeton.635

[56] Thompson, S.K., 2012. Sampling. Wiley Series in Probability and Statistics,636

John Wiley & Sons, Hoboken, N.J.637

[57] UKCEH Countryside Survey, 2013. Countryside Survey Environmental638

Zones. doi:10.5285/0cfd454a-d035-416c-80dc-803c65470ea2.639

[58] Valliant, R., Dever, J., Kreuter, F., 2018. Practical Tools for Designing640

and Weighting Survey Samples. 2nd ed., Springer International Publishing,641

Cham, Switzerland.642

[59] Wagner, J., 2012. A Comparison of Alternative Indicators for the Risk of643

Nonresponse Bias. Public Opinion Quarterly 76, 555–575. doi:10.1093/644

poq/nfs032.645

[60] Walker, K., Pescott, O., Harris, F., Cheffings, C., New, H., Bunch, N., Roy,646

D., 2015. Making plants count. British Wildlife 26, 243–250.647

[61] Wu, C., 2022. Statistical inference with non-probability survey samples. Sur-648

vey Methodology 48, Paper available at http://www.statcan.gc.ca/pub/12–649

001–x/2022002/article/00002–eng.htm.650

19

http://dx.doi.org/10.1111/insr.12159
http://dx.doi.org/10.2307/2348284
http://arxiv.org/abs/2348284
http://dx.doi.org/10.5285/0cfd454a-d035-416c-80dc-803c65470ea2
http://dx.doi.org/10.1093/poq/nfs032
http://dx.doi.org/10.1093/poq/nfs032
http://dx.doi.org/10.1093/poq/nfs032

	Introduction
	Methods
	A stratum-based adaptive survey strategy
	Monitoring representativeness
	Adaptive sampling algorithm

	An empirical example: the UK National Plant Monitoring Scheme

	Results
	Discussion
	Conclusion

	Acknowledgements
	Supplementary Material 1

