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Abstract 85 

1. In most ecosystems, the increasingly strong effects of climate change on 86 

biodiversity co-occur with other anthropogenic pressures, most importantly 87 

land-use change. However, many long-term demographic studies focus on 88 

populations monitored in protected areas, and our understanding of how 89 

climate change will affect population persistence under anthropogenic land 90 

use is still limited.  91 

2. To fill this knowledge gap, we assessed the consequences of co-occurring 92 

land-use and climate change on vital rates and population dynamics of a fire-93 

adapted Mediterranean carnivorous subshrub, the dewy pine (Drosophyllum 94 

lusitanicum). We used seven years of individual data on 4,753 plants 95 

monitored in three natural heathland sites that experience primarily fire as a 96 

disturbance, and five anthropogenic sites, where fires have been replaced by 97 

persistent disturbances from browsing or mechanical vegetation removal as a 98 

consequence of land-use change. All sites are projected to experience 99 

increasingly hotter summers and drier falls and winters. We used generalised 100 

additive models to model non-linear responses of survival, growth, and 101 

reproduction to rainfall, temperature, size, density, and time since fire in 102 

anthropogenic and natural dewy-pine populations. We then projected 103 

population dynamics under climate-change scenarios using an individual-104 

based model.  105 

3. Our findings reveal that vital rates respond differently to climate change in 106 

anthropogenic compared to natural habitats. While extinction risks did not 107 

change under climate change in natural habitats, future higher summer 108 
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temperatures decreased survival and led to population declines and higher 109 

extinction probabilities in anthropogenic habitats.  110 

4. Synthesis: Our results highlight the possible dramatic effects of climate 111 

change on populations largely confined to chronically disturbed, 112 

anthropogenic habitats and provide a foundation for devising relevant 113 

management strategies aiming towards the protection of species in human-114 

disturbed habitats of the Mediterranean habitat. Overall, our findings 115 

emphasise the need for more long-term studies in managed landscapes. 116 

 117 

Keywords  118 

plant population and community dynamics, anthropogenic landscape, climate 119 

change, land-use change, disturbance regime, fire adaptation, Mediterranean 120 

habitat, population persistence 121 

  122 

Introduction 123 

 124 

Land-use change has been identified as the most important driver of 125 

biodiversity declines in most ecosystems (Sala et al., 2000; Díaz et al., 2019; IPBES, 126 

2019). Across the globe, human expansion has caused habitat loss and 127 

fragmentation through the modification of lands for urbanisation or agricultural 128 

purposes (Foley et al., 2005), with dire consequences on local and regional species 129 

persistence (Selwood et al., 2015) and cascading effects at the community and 130 

ecosystem levels (Garnier et al., 2007; Kampichler et al., 2012; Alberti, 2015). 131 

Meanwhile, the effects of land-use change on species are increasingly compounded 132 

https://www.zotero.org/google-docs/?58uQSX
https://www.zotero.org/google-docs/?58uQSX
https://www.zotero.org/google-docs/?1N8c6k
https://www.zotero.org/google-docs/?2nILEW
https://www.zotero.org/google-docs/?6dHt33
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by more severe impacts of climate change on natural systems (Brook et al., 2008; 133 

Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014).  134 

 135 

The complex interplay of land-use and climate change is reshaping ecosystems at 136 

an unprecedented rate, with profound implications for the persistence of many 137 

species (Pereira et al., 2024). Nonetheless, many studies assess the persistence of 138 

populations under climate change in protected areas (Murali et al., 2022)—which are 139 

generally sheltered from anthropogenic land use and habitat loss (Geldmann et al., 140 

2013; Watson et al., 2014; but see Clark et al., 2013), and where populations are 141 

thus overall doing better than those outside protected regions (Geldmann et al., 142 

2013; Gray et al., 2016). This means that, in many studies, the key role of land-use 143 

change in shaping the response of populations to changes in climate is omitted 144 

(Titeux et al., 2016). Land-use and climate change can have reciprocal effects on 145 

each other, leading to non-additive effects of these pressures on populations and 146 

communities (Brook et al., 2008; Mantyka-Pringle et al., 2012; Oliver & Morecroft, 147 

2014; Montràs-Janer et al., 2024). Thus, the effects of climate change might differ 148 

among land use types, and the consequences of land-use change could depend on 149 

the strength of climate change (Mantyka-Pringle et al., 2012). Understanding these 150 

dynamics beyond the confines of protected areas is crucial for devising effective 151 

conservation strategies. 152 

 153 

Land-use, climate change, and their interaction (Brook et al., 2008) can affect 154 

populations via changes in key vital rates through multiple mechanisms such as 155 

inbreeding depression (Leimu et al., 2010; Bijlsma & Loeschcke, 2012), physiological 156 

stress (Selwood et al., 2015), or phenotypic selection (Alberti, 2015). Negative 157 

https://www.zotero.org/google-docs/?Q3voDY
https://www.zotero.org/google-docs/?Q3voDY
https://www.zotero.org/google-docs/?wlcrb8
https://www.zotero.org/google-docs/?E45cvA
https://www.zotero.org/google-docs/?E45cvA
https://www.zotero.org/google-docs/?hu2cI8
https://www.zotero.org/google-docs/?hu2cI8
https://www.zotero.org/google-docs/?GCIDlD
https://www.zotero.org/google-docs/?DOjcu6
https://www.zotero.org/google-docs/?DOjcu6
https://www.zotero.org/google-docs/?lVWRAO
https://www.zotero.org/google-docs/?C1Kbvt
https://www.zotero.org/google-docs/?glMiEg
https://www.zotero.org/google-docs/?4JN3GG
https://www.zotero.org/google-docs/?CHPiot
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effects of climate change on survival could be exacerbated by anthropogenic land 158 

use, as habitat fragmentation could hamper individual dispersal, thereby preventing 159 

populations to shift their habitat range to respond to the new conditions arising under 160 

climate change (Lawson et al., 2010; Oliver & Morecroft, 2014). Additionally, 161 

negative correlations between adaptations to land use and to climate change could 162 

cause the selection for the tolerance of one pressure to reduce the capacity to adapt 163 

to the other (Chevin et al., 2010; Oliver & Morecroft, 2014). As population sizes 164 

decrease, these detrimental effects could be amplified through demographic 165 

stochasticity and inbreeding depression (Fagan & Holmes, 2006), as a decrease in 166 

genetic variability and its subsequent fitness reduction would lower the capacity of 167 

individuals to cope with challenging environmental conditions (Leimu et al., 2010; 168 

Bijlsma & Loeschcke, 2012). Nonetheless, in face of the prevalence of negative 169 

effects of both anthropogenic land use and climate change, and given their 170 

interacting effects on demographic parameters (Brook et al., 2008; Titeux et al., 171 

2016) and biodiversity (Montràs-Janer et al., 2024), exhaustively assessing 172 

population persistence under changing climatic conditions requires studying 173 

populations in anthropogenic landscapes. 174 

 175 

Mediterranean biomes are among the most sensitive to interacting pressures derived 176 

from land-use and climate change (Newbold et al., 2020). In these ecosystems, fire 177 

is a recurrent disturbance that has shaped plant traits over evolutionary time (Keeley 178 

et al., 2012) and is essential to the functioning of ecosystems (Pausas & Bond, 179 

2020). However, many fire-adapted plant species in the Mediterranean Basin are 180 

now largely found in anthropized habitats where fire regimes have been substantially 181 

altered or suppressed altogether by changes in land use (Pausas & Keeley, 2014; 182 

https://www.zotero.org/google-docs/?qmWPyb
https://www.zotero.org/google-docs/?bN1Pky
https://www.zotero.org/google-docs/?ZX3K7U
https://www.zotero.org/google-docs/?yPAxxz
https://www.zotero.org/google-docs/?yPAxxz
https://www.zotero.org/google-docs/?8djczp
https://www.zotero.org/google-docs/?8djczp
https://www.zotero.org/google-docs/?pL1dP3
https://www.zotero.org/google-docs/?QjfQGd
https://www.zotero.org/google-docs/?R3J2nU
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Ojeda 2020), which can have strong impacts on plant population dynamics (Paniw, 183 

Quintana-Ascencio et al., 2017) and wider ecosystem processes, such as nutrient 184 

cycling (Pausas & Bond, 2020). Mediterranean plant populations are also 185 

increasingly exposed to shorter and drier winters and hotter summers, jeopardising 186 

the persistence of shrubland communities (Paniw et al., 2021). While the effects of 187 

human activities in fire-disturbed habitats on plant population persistence have 188 

previously been studied (e.g. Paniw, Quintana-Ascencio et al., 2017), we still lack a 189 

full understanding on population dynamics under the interacting pressures of land-190 

use and climate change.  191 

 192 

Here, we use a Mediterranean, fire-adapted subshrub, the dewy pine (Drosophyllum 193 

lusitanicum), as a case study to investigate the effects of changing climatic 194 

conditions on population dynamics in natural and anthropogenic habitats. We used 195 

seven years of individual-based data, collected as part of long-term demographic 196 

monitoring (since 2011) in natural and anthropogenic (i.e., highly human-dominated 197 

permanently disturbed sites) habitats, to parameterize vital-rate responses to 198 

interacting climate (temperature and rainfall) and biotic (plant size and intraspecific 199 

density) drivers and project resulting population dynamics under climate-change 200 

scenarios. We expected higher extinction probabilities in anthropogenic habitats 201 

under current climatic conditions, as previous research has shown human 202 

disturbances to have a negative effect on population dynamics (Paniw, Quintana-203 

Ascencio et al., 2017; Conquet et al., 2023), and such disturbances are likely to 204 

persist in Mediterranean heathlands (Ojeda, 2020). Additionally, given the negative 205 

effects of compound anthropogenic pressures on natural systems (Zscheischler et 206 

https://www.zotero.org/google-docs/?R3J2nU
https://www.zotero.org/google-docs/?egGBYg
https://www.zotero.org/google-docs/?NXqNMk
https://www.zotero.org/google-docs/?s1owjn
https://www.zotero.org/google-docs/?s1owjn
https://www.zotero.org/google-docs/?PuNHMi
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al., 2018), we expected sharper declines in anthropogenic populations than in 207 

natural ones under climate change. 208 

 209 

Methods 210 

 211 

 Study species 212 

 213 

 Life history  214 

 215 

The dewy pine, Drosophyllum lusitanicum (Drosophyllaceae), is a rare 216 

carnivorous subshrub endemic to the western end of the Mediterranean basin and 217 

tightly associated to fire-prone Mediterranean heathlands of southern Spain, 218 

Portugal, and northern Morocco (Correia & Freitas, 2002; Garrido et al., 2003; Paniw 219 

et al., 2015). As with many species in fire-prone habitats, dewy pines have adapted 220 

their life history to persist under recurring fire regimes that remove all aboveground 221 

vegetation. Populations rely on a persistent soil seedbank (Fig. 1), whose dynamics 222 

strongly vary with time since fire (TSFt, where t is the number of years after a fire; 223 

Paniw, Quintana-Ascencio et al., 2017; Conquet et al., 2023). When a fire occurs 224 

(TSF0), the combined effect of heat and vegetation and litter removal trigger the 225 

germination of the major part of seeds stored in the seedbank (Fig. 1; Appendix S1: 226 

Table S1; Cross et al., 2017; Paniw, Quintana-Ascencio et al., 2017; Gómez-227 

González et al., 2018). Germination from the seedbank continues in later post-fire 228 

years but greatly decreases from TSF2. New seedlings mostly grow during the first 229 

year after a fire (TSF1) and become reproductive plants from the second year after 230 

the population burned (TSF2; Fig. 1). The majority of seeds produced by these 231 

https://www.zotero.org/google-docs/?PuNHMi
https://www.zotero.org/google-docs/?YpqcD8
https://www.zotero.org/google-docs/?YpqcD8
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?42V7zp
https://www.zotero.org/google-docs/?TGAcuk
https://www.zotero.org/google-docs/?TGAcuk
https://www.zotero.org/google-docs/?TGAcuk
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individuals do not germinate directly but go to the soil seedbank to replenish the 232 

population at the next fire (Fig. 1). This occurs because dewy pines are increasingly 233 

overgrown by dominant shrub vegetation, which hinders seed germination (Gómez-234 

González et al., 2018) and insect prey capture (Paniw et al., 2018), drastically 235 

decreasing the survival of aboveground plants after TSF4 (Paniw et al., 2015).   236 

 237 

Despite being fire-adapted, active fire suppression and general degradation of 238 

heathland habitats under land-use change (for instance through vegetation removal 239 

for wide firebreaks or pine afforestations) mean that most populations of dewy pines 240 

as well as numerous other heathland species persist in highly and permanently 241 

human-disturbed (hereafter anthropogenic) habitats (Paniw et al., 2015) (see 242 

Appendix 2: Table S1 for details on study populations). In such habitats, periodic 243 

mechanical clearing of vegetation or browsing—of surrounding vegetation but not on 244 

dewy pines—and trampling by domestic ungulates act as a constant disturbance 245 

resembling the effect of fire by the removal of aboveground vegetation, but lasting 246 

much longer. This has led to important changes in the demographic processes of 247 

dewy pines (Paniw, Quintana-Ascencio et al., 2017; Conquet et al., 2023). 248 

Seedbanks in chronically disturbed, anthropogenic populations are likely depleted 249 

because the long-term clearance of vegetation means that relatively more seeds 250 

germinate immediately instead of going into the seedbank (Appendix S1: Table S1; 251 

Gómez-González et al., 2018). Vital rates of aboveground individuals are affected as 252 

well; while juvenile survival rapidly decreases after a fire in natural populations, it 253 

remains stable across time under human disturbances. However, smaller mature 254 

individuals in anthropogenic populations have a lower survival than in natural 255 

https://www.zotero.org/google-docs/?Y08dD7
https://www.zotero.org/google-docs/?Y08dD7
https://www.zotero.org/google-docs/?rQplN0
https://www.zotero.org/google-docs/?CSh7YC
https://www.zotero.org/google-docs/?t2aAZ0
https://www.zotero.org/google-docs/?q3aRdV
https://www.zotero.org/google-docs/?Kwlgoj
https://www.zotero.org/google-docs/?Kwlgoj
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populations, and reproduction is decreased as well. Moreover, negative density 256 

feedbacks are stronger in anthropogenic populations (Conquet et al., 2023).  257 

 258 

Anthropogenic pressures in dewy pine habitats are also increasingly interacting with 259 

climate change. Temperatures have been increasing in the last four decades (on 260 

average by 0.033 ºC per year) and will continue to do so in the future (Appendix S2: 261 

Fig. S1 and S2). Contrastingly, while the recent increase in rainfall variability is 262 

predicted to reverse, rainfall is forecasted to be less abundant in the future (-0.16 263 

mm per year on average). Such variations in environmental patterns have already 264 

shown to lead to population declines in natural shrublands (Paniw et al., 2023). 265 

Dewy pines will therefore likely be increasingly affected by interactions of climate 266 

change and human disturbance. Therefore, understanding their response to climate 267 

effects will help us discern the joint role of different pressures on plants persisting in 268 

anthropogenic habitats. 269 

   270 

Demographic data  271 

 272 

We used individual demographic data collected on 4753 dewy pines from eight 273 

populations of southern Spain, located in two types of habitats: Mediterranean 274 

heathlands experiencing recurrent fire regimes and low levels of anthropogenic 275 

pressures such as cattle browsing and trampling (natural populations; n = 3); and 276 

Mediterranean heathlands that have not burned in the past 40 years but where high 277 

anthropogenic pressures constantly remove aboveground vegetation (anthropogenic 278 

populations; n = 5) (Appendix S2: Table S1). In each population, we obtained 279 

information on size, reproduction (probability of flowering and number of flowers), and 280 

https://www.zotero.org/google-docs/?crqK72
https://www.zotero.org/google-docs/?uLXzzZ
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survival from individually marked plants located in 40 1´1m plots; all individuals, 281 

including new recruits, in a given plot were marked and censused every spring in the 282 

last week of April or first week of May (see Appendix S1 for details). The Andalusian 283 

Consejería de Medio Ambiente issued the requisite permits to undertake fieldwork 284 

(permit number Rs-33/13). 285 

Figure 1 – Dewy-pine life cycle. Conditional on seed survival (σseed), seeds in 286 

the seedbank germinate, with germination probability outSB, to become seedlings of 287 

a given size (Φ), or remain dormant underground (staySB). Aboveground individuals 288 

then survive (σ) and grow (φ), depending on their size (size-dependent survival and 289 

growth is highlighted in orange); and become reproductive from two years after a fire 290 

occurred in natural habitats. Reproductive individuals produce seeds conditional on 291 

size-dependent flowering probability (pfl), the number of flowers (nflowers), and the 292 

number of seeds per flower (nseeds). These seeds, conditional on their survival (σseed), 293 

either germinate directly (goCont; dashed black arrows) and become seedlings of a 294 

given size (Φ) or contribute to the underground seedbank (goSB; dashed blue arrow). 295 

 296 
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Estimation of seedbank parameters 297 

 298 

To parameterize variation among different habitat types in probabilities of seed 299 

germination (goCont for seeds germinating without going to the seedbank and outSB 300 

for seeds germinating from the seedbank), dormancy (staySB) and transition to the 301 

seedbank (goSB) (Fig. 1), we used published data from seed-burial and greenhouse 302 

germination experiments (Paniw, Quintana-Ascencio et al., 2017; Gómez-González 303 

et al., 2018). Previous research has shown that in natural populations, most 304 

produced seeds (97.4%; 95% confidence interval [96.3%–98.4%]) go to the 305 

underground seedbank (Appendix S1: Table S1). While 81% [77.4%-85.2%] of the 306 

seeds germinate from the seedbank right after a fire (TSF0), that proportion greatly 307 

decreases in later post-fire habitat stages (6.09% [4.44%–7.75%] in TSF1 and 3.47% 308 

[2.31%–4.63%] in later TSFs). In contrast, in chronically disturbed, anthropogenic 309 

populations, a much lower proportion of the produced seeds goes to the seedbank 310 

(82.2% [65.3%–97.5%]). In these populations, although 59.8% [56.6%–63.0%] of the 311 

underground seeds remain underground, seedbanks are depleted due to the 312 

decreased proportion of seeds produced by aboveground plants entering dormancy.  313 

 314 

Estimation of aboveground vital rates 315 

 316 

We investigated how rainfall, temperature, and density affect the survival, growth, 317 

and reproduction of individuals, for natural and anthropogenic dewy-pine populations 318 

separately (Appendix 2: Table S1). We used Generalised Additive Models—fitted 319 

with the gam function of the mgcv package (Wood, 2011; Wood et al., 2016; Wood, 320 

2017)—to estimate (1) survival (σ) and flowering probability (pfl) (using a binomial 321 

https://www.zotero.org/google-docs/?Alu7S5
https://www.zotero.org/google-docs/?Alu7S5
https://www.zotero.org/google-docs/?x6xeHC
https://www.zotero.org/google-docs/?x6xeHC
https://www.zotero.org/google-docs/?x6xeHC


 

 15 

distribution), (2) the number of flowers per individual (nflowers; using a negative 322 

binomial distribution instead of a simple Poisson model as the data were 323 

overdispersed), and (3) growth (φ) and seedling size (Φ), with size = log(number of 324 

leaves × length of the longest leaf (cm)) (Fig. 1; Paniw, Quintana-Ascencio et al., 325 

2017). We modelled the latter two vital rates using a scaled t distribution (“scat” in 326 

the family parameter of the gam function) instead of a Gaussian distribution to 327 

accommodate the heavy-tailed nature of the response variables (see Appendix 1: 328 

Table S4). We tested for the nonlinear responses of all vital rates to lag cumulative 329 

rainfall and average daily maximum temperature, and aboveground density of large 330 

(i.e., size > 4.5) intraspecific neighbours. In addition, to account for effects of post-331 

fire habitat stages, we tested for nonlinear effects of time since fire (TSF) on vital 332 

rates of natural populations. We used a cubic spline basis with three dimensions (k = 333 

3) for all these covariates (except for the size effect on the number of flowers, where 334 

we used k = 4 to model a decline in the number of flowers of large individuals as has 335 

been observed in all populations), and a gamma value of 1.4, as is commonly used 336 

to reduce the risk of overfitting (Wood, 2017). We also included random year and 337 

population effects on the model intercept in all models using a random-effect spline. 338 

We performed all analyses in R 4.2.2 via RStudio (R Core Team, 2022; Posit team, 339 

2023). 340 

 341 

Vital-rate responses to climatic variables (cumulative rainfall and 342 

average maximum daily temperature) 343 

  344 

We chose rainfall and maximum temperatures as climatic predictors based on recent 345 

publications showing the importance of these two drivers on vital rates of 346 

https://www.zotero.org/google-docs/?GXTHgx
https://www.zotero.org/google-docs/?GXTHgx
https://www.zotero.org/google-docs/?BHSgpy
https://www.zotero.org/google-docs/?1yADxT
https://www.zotero.org/google-docs/?1yADxT
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Mediterranean plants (García-Callejas et al., 2017; Paniw et al., 2023) and based on 347 

our a priori expectations given the biology of the study species (Appendix 1: Table 348 

S2). We extracted daily rainfall and maximum temperature data with a resolution of 349 

0.1 degree for all dewy-pine population locations from the E-OBS dataset from the 350 

EU-FP6 project UERRA and the Copernicus Climate Change Service (Cornes et al., 351 

2018; see Appendix S2 for details). We obtained the monthly cumulative rainfall and 352 

average maximum temperature in each population by averaging the values recorded 353 

within a buffer of 0.1×1.5 degrees (i.e. 1.5 times the grid resolution) around the 354 

population coordinates. We assessed the presence of rainfall and temperature lag 355 

effects on dewy-pine vital rates using GAMs including cumulative rainfall and 356 

average maximum daily temperature across several biologically relevant periods. We 357 

defined these periods based on prior knowledge of seasonal climatic effects in 358 

Mediterranean shrublands (Paniw et al. 2023; Appendix 1, Table S2); and did not 359 

use a sliding-window approach to assess lagged effects to avoid spurious 360 

correlations (Evers et al., 2021). For survival and growth, we assessed the effect of 361 

climate following the annual population census (set to the 1st of May), while for 362 

reproductive parameters (i.e., flowering probability, number of flowers, and seedling 363 

size), we assessed the effect of climate in periods prior to the census. More 364 

specifically, we considered the effect of post-census average maximum temperature 365 

in summer (May–September) and of cumulative rainfall in fall (September–366 

November), winter (January–April), or both (September–April), on survival and 367 

growth. We tested for the effect of pre-census average maximum daily temperature 368 

in winter (January–April), and of cumulative rainfall in fall (September–November) 369 

and winter (January–April) on reproductive rates. We considered that the effects of 370 

longer lag periods are effectively absorbed by changes in plant size.  371 

https://www.zotero.org/google-docs/?rVEp8o
https://www.zotero.org/google-docs/?rVEp8o
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 372 

Vital-rate responses to large aboveground individual density 373 

 374 

To understand how intraspecific interactions affect dewy-pine vital rates, we included 375 

in our models the density of aboveground individuals, specific to a 1-m2 quadrat in a 376 

given population. This spatial resolution matches the study design—where plants are 377 

censused in four transects of ten 1-m2 quadrats (Paniw, Quintana-Ascencio et al., 378 

2017)—and corresponds to the observed scale at which the plant-plant interactions 379 

affecting the demography of dewy pines occur. We only considered individuals of 380 

size > 4.5, which corresponds to the minimum observed size of reproductive plants. 381 

Smaller plants are largely seedlings which have relatively weak effects on plant vital 382 

rates, as large individuals are unlikely to be affected by small plants and small plants 383 

are primarily affected by large shrubs (Brewer et al., 2021). We did not use a 384 

spatially explicit formulation of density dependence (e.g. using the crowding 385 

approach described in Adler et al., 2010), as such an approach requires knowledge 386 

of the spatial distribution of individuals and seeds, which we lacked for some sites 387 

and years. 388 

 389 

Vital-rate model selection 390 

 391 

We selected the best vital-rate models using the Akaike Information Criterion (AIC, 392 

using a threshold of ΔAIC > 2 to identify a model as performing better than another; 393 

Burnham et al., 2011; Wood, 2017) and the number of degrees of freedom. Prior to 394 

model selection, we standardised and checked for correlations between all 395 

covariates (see Appendix S1 for more details). We first selected the best lag period 396 

https://www.zotero.org/google-docs/?Z4zaly
https://www.zotero.org/google-docs/?XwlPgi
https://www.zotero.org/google-docs/?XwlPgi
https://www.zotero.org/google-docs/?XwlPgi
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for the effect of rainfall and temperature and then added—in a forward selection 397 

framework—density and size to the model selection and, for natural populations, 398 

time since last fire (Appendix S1: Table S3 for more details). We considered two-way 399 

interactions among the climatic variables, density, size, and TSF as well as site-400 

specific random slopes (e.g., site-specific effects of density or size) in our model 401 

selection, using random-effect splines.  402 

 403 

Population projections under climate change scenarios 404 

 405 

 Individual-Based Model definition 406 

 407 

We used the estimated vital rates to parameterize an Individual-Based Model (IBM) 408 

and project each natural and anthropogenic dewy-pine population under current and 409 

predicted climate conditions. The following is a summary of the IBM specificities; a 410 

more detailed description of the different modules of the projection model following 411 

the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 2006; 2020) 412 

can be found in Appendix S3. We performed 500 30-year projections of each dewy-413 

pine population under two scenarios: (1) a control scenario corresponding to current 414 

climatic conditions where 30 years—and the corresponding rainfall and temperature 415 

values—were sampled at random among the past observed ones (2016–2021); and 416 

(2) two climate-change scenario where the rainfall and temperature values 417 

corresponded to projected climatic conditions from 2021 to 2050 according to the 418 

RCP4.5 and RCP8.5 climate-change scenarios (Riahi et al., 2011). The climate-419 

change scenario comprised 11 sets of 500 population projections, each set 420 

corresponding to future rainfall and temperature conditions extracted from 11 global 421 

https://www.zotero.org/google-docs/?GYTp0Q
https://www.zotero.org/google-docs/?Jmb8rn
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circulation models (GCM; Appendix S2: Table S2) from the Coupled Model 422 

Intercomparison Project 6 (CMIP6; Eyring et al., 2016; Pascoe et al., 2020; Waliser 423 

et al., 2020) available from the Earth System Grid Federation’s (ESFG; Petrie et al., 424 

2021) web application accessible at https://aims2.llnl.gov/search. These models 425 

have been used in several studies on ecological systems (Tredennick et al., 2016; 426 

Paniw et al., 2022) and differ in their parameterisation, enabling us to project the 427 

dewy-pine populations under a wide range of possible future climatic conditions and 428 

thereby reduce bias in our population projections (Sanderson et al., 2015). 429 

 430 

Because most GCMs comprised projected rainfall and temperature values beyond 431 

the values observed in our populations, we capped these values to the maximum 432 

and minimum observed. This approach allowed us to investigate the response of 433 

dewy-pine populations to substantial increases in the frequency of extreme climatic 434 

conditions, rather than changes in absolute rainfall and temperature values.  435 

 436 

Each population projection started with a population vector of z-sized individuals 437 

from 2021—the last year used to estimate vital rates—, and the initial population 438 

thus comprised individuals observed in the population in that year. This also applies 439 

to the initial rainfall and temperature values, and the aboveground density of large 440 

individuals. While we assumed no fire occurred in anthropogenic populations, we 441 

simulated a sequence of 30 post-fire habitat stages for each projection of natural 442 

populations. The first post-fire state corresponded to the one observed in 2021, and 443 

the subsequent ones were determined based on a Markov matrix containing the 444 

among-TSF transition probabilities based on a fire frequency of 1/30 representing 445 

https://www.zotero.org/google-docs/?MdyThc
https://www.zotero.org/google-docs/?MdyThc
https://www.zotero.org/google-docs/?MdyThc
https://www.zotero.org/google-docs/?MdyThc
https://www.zotero.org/google-docs/?VUaiZL
https://www.zotero.org/google-docs/?VUaiZL
https://aims2.llnl.gov/search
https://www.zotero.org/google-docs/?bkwD09
https://www.zotero.org/google-docs/?bkwD09
https://www.zotero.org/google-docs/?loMmyR
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the stochastic fire regime occurring in natural dewy-pine populations (see Appendix 446 

S3 for details; see also Conquet et al., 2023).  447 

 448 

We projected each initial population in discrete yearly steps determining which 449 

aboveground individuals reproduced, survived, and grew, and how many seeds 450 

germinated—from the seedbank or directly after reproduction—or entered or 451 

remained in the seedbank. Each of these processes was represented by a sub-452 

model within the general IBM. As annual censuses took place during the flowering 453 

period (pre-reproductive census), each projected year started with the reproduction 454 

sub-model. This sub-model sampled reproductive individuals (0 or 1) based on a 455 

binomial distribution parameterised with the estimated mean flowering probability 456 

(pfl). If any individual reproduced, its number of flowers was sampled from a negative 457 

binomial distribution based on the estimated mean number of flowers per plant 458 

(nflowers); and the number of seeds per flower (nseeds) was sampled from a Poisson 459 

distribution with a mean of 9.8—the average number of seeds per flower used in 460 

Paniw et al. (2017). To avoid excessive reproductive values in natural populations, 461 

we capped the number of flowers per individual to the maximum observed number of 462 

flowers in each population. In natural populations, where fires could occur, the 463 

reproduction sub-model was skipped in the first year after fire, as dewy pine adults 464 

are killed by fire and postfire recruits do not reproduce until two years after 465 

germination. 466 

 467 

The reproduction sub-model was followed by the survival and growth sub-model, 468 

which sampled the surviving individuals from a binomial distribution based on the 469 

mean estimated survival rate, and assigned them a size to which they would grow at 470 

https://www.zotero.org/google-docs/?0ZavCc
https://www.zotero.org/google-docs/?0ZavCc
https://www.zotero.org/google-docs/?fZyarO
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the next time step by sampling from a scaled t distribution (to accommodate for 471 

heavy-tailed size values when fitting the growth model) based on the mean, standard 472 

deviation, and degrees of freedom of the fitted growth model. Sporadically sampled 473 

positive infinite sizes were set to the maximum observed size in the population in the 474 

currently projected year, while negative infinite sizes were set to zero.  475 

 476 

Finally, at the end of each projected year, the seedbank sub-model sampled seeds 477 

from the seedbank that remained dormant or germinated from binomial distributions 478 

based on the respective probabilities (staySB and outSB). The seeds that did not 479 

survive—i.e., neither germinated or stayed dormant—were removed from the 480 

seedbank. The seeds germinating without going through the seedbank were 481 

sampled from a binomial distribution based on the probability of continuous 482 

germination (goCont). Some seedbank processes are hidden processes that cannot 483 

be easily determined in the field without perturbing the populations. To reduce the 484 

resulting bias, we applied a correction factor representing seed survival (σseed) to the 485 

seedbank parameters in anthropogenic populations (see Appendix S1 and Paniw, 486 

Quintana-Ascencio et al., 2017 for more details), and further corrected outSB and 487 

goCont in Sierra Carbonera Disturbed by reducing them to 40 % of their values. We 488 

also capped the number of recruits to the maximum number of seedlings observed in 489 

all natural populations as well as in two anthropogenic populations: Bujeo and Sierra 490 

Carbonera Disturbed. Ultimately, all recruits were assigned a size by sampling from 491 

a scaled t distribution based on the estimated mean seedling size as well as its 492 

standard deviation and degrees of freedom. 493 

 494 

https://www.zotero.org/google-docs/?aT935Z
https://www.zotero.org/google-docs/?aT935Z
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At the end of a projected year, we updated the size of individuals that grew during 495 

the previous year as well as the aboveground density for each 1-m2 quadrat in the 496 

population. We also calculated and recorded the annual population growth rate 497 

(annual log 𝜆), which we used to calculate the stochastic growth rate log 𝜆S for each 498 

projection (see Appendix S3 for more details; see also Conquet et al., 2023). In each 499 

projection, the population was considered extinct if it went below the quasi-extinction 500 

threshold set at 5 aboveground individuals and 50 seeds in the seedbank.  501 

 502 

Model validation 503 

  504 

We calibrated our vital-rate and individual-based models by projecting each dewy-505 

pine population from the year it was first censused to 2022. We then compared 506 

observed and projected aboveground population sizes and population growth rates, 507 

as well as individual size distributions across time. For natural populations, we used 508 

the observed post-fire habitat stages and did not simulate fire frequencies. This 509 

process enabled us to validate our IBM by assessing its ability to well represent the 510 

dynamics of the dewy-pine populations in years that were not used in the model-511 

fitting part of our analysis (i.e., years before 2016 when available, and 2022).  512 

 513 

Sensitivity analyses 514 

  515 

We assessed which demographic rates contribute most to changes in population 516 

dynamics under climate change in anthropogenic and natural populations. To do so, 517 

we repeated climate-change projections, as described in the previous section, for 518 

each population, but we changed climatic drivers under the RCP 8.5 climate-change 519 

https://www.zotero.org/google-docs/?FNH3cU
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scenario in specific vital rate models only (survival, growth, flowering probability, 520 

number of flowers or seedling size), while assuming current climatic conditions in the 521 

remaining vital rates. We performed 100 30-year projections, and calculated 522 

sensitivities as: 523 

 524 

Sensitivity =  
∑ (#$%	'!_#$%&'%($)_*	(	#$%	'!_+,-&%,._*)/#$%	'!_+,-&%,._*
/0122
301

+
, 525 

 526 

where i = one of 100 log 𝜆S, and log 𝜆S_control represent population dynamics 527 

assuming current climatic conditions in all vital rates. We calculated 500 sensitivity 528 

values for each population by randomly sampling 100 log 𝜆S_control from the 500 529 

available and comparing them to the 100 available log 𝜆S_perturbed. 530 

 531 
Results 532 

 533 

Vital-rate responses to habitat disturbance 534 

 535 

Dewy-pine vital rates varied between natural and anthropogenic habitats (Fig. 536 

2). Survival was on average higher in anthropogenic (mean = 0.42 and 95% 537 

confidence interval = [0.18, 0.70]) than in natural habitats (0.27 [0.17, 0.40]; Fig. 2). 538 

In contrast, we found the opposite pattern for growth (i.e., plant size at t+1), which 539 

was higher in natural (size 5.0 [4.7, 5.2] at the next time step, calculated as 540 

log(number of leaves × length of the longest leaf (cm))) than in anthropogenic sites 541 

(4.7 [4.4, 4.9]), as well as flowering probability (0.039 [0.013, 0.11] in natural and 542 

0.025 [0.013, 0.045] in anthropogenic populations), and seedling size (3.4 [3.2, 3.5] 543 

and 3.0 [2.8, 3.3], respectively; Fig. 2). However, there was no difference between 544 
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habitat types in the number of flowers per individual (6.9 [6.2, 7.7] on average in 545 

natural populations and 6.7 [5.8, 7.8] in anthropogenic populations; Fig. 2). Notably, 546 

we found more among-site variation in anthropogenic than in natural conditions, 547 

possibly because the level of anthropogenic disturbance differed between sites 548 

(Appendix S1: Fig. S3).  549 
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 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

Figure 2 – Predicted and observed average vital-rate values in natural 561 

and anthropogenic populations. The boxplots represent the distribution of the 562 

predicted average values of habitat-specific survival, growth, i.e., log(number of 563 

leaves × length of the longest leaf (cm)), and flowering rates, as well as the number 564 

of flowers and seedling size estimated for each population and year from GAMs. The 565 

whiskers represent the 2.5th and 97.5th percentiles and the black triangle the mean 566 

estimate. We kept covariates at their mean values (scaled value = 0) except for the 567 

number of flowers, where we used the mean size of reproducing individuals. The 568 

coloured dots represent the observed average vital rates in each population and 569 

year.  570 
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Vital-rate responses to climatic variables 571 

 572 

In both anthropogenic and natural habitats, the variation of most vital rates was 573 

associated with changes in at least one of the two climatic variables considered in 574 

our analysis: monthly cumulative rainfall (hereafter rainfall) or monthly average daily 575 

maximum temperature (hereafter temperature) (Fig. 3; Appendix S1: Table S4). Most 576 

vital rates were more strongly associated with the same climatic variable in the same 577 

period of the year in both habitats (e.g. variation in survival was associated with 578 

changes in summer temperatures and fall rainfall in both natural and anthropogenic 579 

populations). Overall, larger variations in vital rates were associated with changes in 580 

temperature than with rainfall (Fig. 3; Appendix S1: Table S4). 581 
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Figure 3 – Relationships between dewy-pine vital rates and climatic 582 

variables and aboveground density of large individuals. Predictions from the 583 

GAM models show variation in (a) survival and (b) flowering probability with changes 584 

in temperature (next summer and previous winter, respectively) and rainfall (next and 585 

previous fall), (c) flowering probability with changes in previous fall rainfall and 586 

density, and growth, i.e., log(number of leaves × length of the longest leaf (cm)), with 587 

(d) changes in next fall rainfall, and (e) aboveground density of large individuals (size 588 

> 4.5). Lines show the mean vital-rate values and shaded areas the associated 95% 589 

confidence interval.  590 

 591 
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In both natural and anthropogenic populations, survival was the only vital rate for 592 

which variation was associated with changes in both rainfall and temperature (i.e., 593 

the fixed effects of both climatic variables were retained in the model selection). With 594 

all other covariates held constant at their average value in the respective habitat 595 

types, survival was negatively associated with an increase in summer temperatures 596 

(i.e., average maximum daily temperature from May to September) (Fig. 3a). For 597 

example, when temperature increased from 25.5 to 26.5 °C, the average survival 598 

rate decreased from 0.47 [0.29, 0.66] to 0.23 [0.14, 0.35] in natural populations, and 599 

from 0.51 [0.24, 0.78] to 0.31 [0.12, 0.60] under anthropogenic conditions. In both 600 

habitats, variation in survival was also associated with changes in the amount of 601 

rainfall in fall (i.e., September–November; Fig. 3a, Appendix S1: Table S4 and Fig. 602 

6e). In natural populations, this association was on average positive (from 0.25 [0.14, 603 

0.39] under 80 mm of rain to 0.28 [0.16, 0.45] under 200 mm). In contrast, in 604 

anthropogenic populations, average survival across sites did not change with rainfall, 605 

but investigating this relationship at the site level revealed important among-606 

population variability, with positive associations in some sites (e.g. from 0.39 [0.16, 607 

0.67] under 80 mm of rain to 0.46 [0.21, 0.74] under 200 mm in Sierra del Retín 608 

Disturbed) and negative associations in others (e.g. from 0.46 [0.21, 0.74] to 0.36 609 

[0.15, 0.65] in Prisioneros; Appendix S1: Fig. S3). Such among-site differences were 610 

almost ubiquitous across vital rates in anthropogenic populations (Appendix S1: Fig. 611 

S4), but not in natural habitats. For example, on average across all natural sites, 612 

individuals grew more with higher amounts of rainfall. More specifically, the longest 613 

leaf of an average-sized individual grew from 4.3 to 4.9 [4.6, 5.1] in a year under 80 614 

mm of rain but to 5.0 [4.8, 5.3] under 200 mm (Fig. 3b). 615 

 616 
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Vital-rate responses to aboveground density of large plants 617 

 618 

 In both anthropogenic and natural habitats, plants grew less when densities of 619 

large individuals increased (Fig. 3c). Under human disturbance, an average-sized 620 

individual grew from 4.1 to 4.7 [4.4, 4.9] in a year with 2 large individuals/m2 but to 621 

4.6 [4.3, 4.8] with 10 ind./m2 (Fig. 3c). In natural conditions, an individual grew from 622 

4.3 to 5.0 [4.7, 5.2] with a density of 2 ind./m2 but only to 4.6 [3.9, 5.2] with 10 ind./m2 623 

(Fig. 3c). Seedling size also decreased with higher numbers of large individuals 624 

aboveground (Appendix S1: Fig. S5a). Interestingly, the direction of the association 625 

between density and flowering probability differed between habitat types, as the 626 

flowering rate was positively associated with density in anthropogenic populations 627 

(from 0.50 [0.28, 0.72] with 2 ind./m2 to 0.65 [0.35, 0.86] with 15 ind./m2), but strongly 628 

negatively in natural ones (from 0.68 [0.41, 0.87] with 2 ind./m2 to 0.10 [0.013, 0.50] 629 

with 7 ind./m2) (Fig. 3d).   630 

 631 

Vital-rate responses to interactions between climate, density, size, 632 

and post-fire habitat conditions 633 

 634 

 In natural—but not in anthropogenic—populations, high amounts of rainfall 635 

mitigated the strength of the negative association between temperature and survival, 636 

which decreased from 0.48 [0.30, 0.67] at 25.5 ºC to 0.23 [0.14, 0.36] at 26.5 ºC 637 

under 150 mm of rainfall but only from 0.43 [0.26, 0.63] at 25.5 ºC to 0.25 [0.13, 638 

0.41] at 26.5 ºC under 200 mm (Fig. 3a). We found a similar pattern for the 639 

association between previous winter temperatures and flowering probability, which 640 
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decreased from 0.72 [0.45, 0.89] at 17.5 ºC to 0.29 [0.076, 0.66] at 18.5 ºC with 150 641 

mm of rain but only from 0.73 [0.43, 0.90] to 0.46 [0.15, 0.80] with 180 mm (Fig. 3e).  642 

 643 

Additionally, in natural populations, survival increased with rainfall at low densities 644 

(Fig. 3f; from 0.26 [0.16, 0.40] to 0.28 [0.16, 0.44] for 100 and 200 mm of rain at 2 645 

ind./m2); but these variables had a u-shaped relationship at high densities, with 646 

lowest survival rates reached for about 145 mm of rain (e.g. 0.076 [0.021, 0.24] at 10 647 

ind./m2). The decline in survival with increasing summer temperatures was also 648 

weaker at low (e.g. from 0.47 [0.29, 0.66] at 25.5 °C to 0.22 [0.14, 0.35] at 26.5 °C 649 

with 2 ind./m2) than at high densities (from 0.45 [0.26, 0.65] to 0.14 [0.077, 0.25] with 650 

6 ind./m2) (Fig. 3f). We also found density-dependent variation in flowering 651 

probability and growth with rainfall and seedling size with temperature (Appendix S1: 652 

Fig. S5). Additionally, the strength and direction of the association between survival 653 

rates and both rainfall and temperature in natural populations were also size 654 

dependent (Appendix S1: Fig. S6g,h).  655 

 656 

Individual Based Model 657 

  658 

Population projections 659 

 660 

 The projections of our individual-based model over the observed period 661 

showed that our parameterization enabled us to correctly represent the population-662 

specific pattern of changes in mean annual change in aboveground population size 663 

and of population abundance (Fig. 4; Appendix S1: Fig. S1). Additionally, observed 664 
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and projected time-varying size distributions were largely overlapping, with a slight 665 

bias towards small individuals in some populations (Appendix S1: Fig. S2).  666 

Discrepancies between projection and observed population dynamics 667 

occurred both at observed abundance peaks and troughs, and this may in part be 668 

explained by the fact that the GAMs parameterized to predict vital rates were 669 

smoothed to avoid overfitting to extreme data values. This then constrained 670 

estimates of population dynamics (Paniw et al. 2021), but, at the same time, did not 671 

extrapolate the latter beyond biologically realistic values. In addition, discrepancies 672 

between projection and observed population dynamics may also occur because our 673 

models did not consider (due to a lack of data) other processes that may affect vital 674 

rates and thus population dynamics, such as density dependent germination of 675 

seeds from the seedbank or interspecific interactions (Brewer et al. 2021). 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

Figure 4 – Observed and projected average change in aboveground 704 

population abundance. We projected each natural and anthropogenic population 705 

for 500 times across the range of observed years available for each population 706 

(maximum range from 2011 to 2022) to perform an out-of-sample validation of our 707 

individual-based model parameterization. For each projection, we calculated the log 708 

of the average change in aboveground population abundance between years (i.e., 709 

log(Nt/Nt-1) with Nt the aboveground population size in year t) and obtained the 710 

average (line) and 25th and 95th percentile of the population-specific distribution 711 

(shaded ribbon). We compared these projected values to the observed ones (dots). 712 

 713 
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Projecting natural and anthropogenic populations under a control scenario (i.e., 714 

assuming similar environmental conditions in the future as currently observed) 715 

showed that the average population growth rates (log 𝜆S) did not vary much between 716 

habitat types (mean = -0.15, 2.5 and 97.5% quantiles = [-0.62, 0.33] in natural and -717 

0.19 [-0.89, 0.63] in anthropogenic populations; Fig. 5). On the other hand, the 718 

probability of quasi-extinction (pq-ext) was on average higher in anthropogenic (0.56 719 

[0.026, 1.0]) than in natural populations (0.17 [0.062, 0.26]). Extinction probabilities 720 

also varied much more among anthropogenic than among natural populations in the 721 

control scenario (Fig. 5). In natural populations, the stochastic fire regime in our 722 

projections increased the population growth rate substantially after fires, avoiding the 723 

quasi-extinction threshold (i.e., 5 aboveground individuals and 50 seeds in the 724 

seedbank) in simulations where fires occurred regardless of the population (Conquet 725 

et al., 2023). Anthropogenic populations, on the other hand, varied substantially in 726 

size, and the high variation in pq-ext reflects the consistently higher variation in 727 

dynamics among populations (Appendix S1: Fig. S7).728 

https://www.zotero.org/google-docs/?BJ689K
https://www.zotero.org/google-docs/?BJ689K
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  729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

Figure 5 – Demographic consequences of climate change in natural and 740 

anthropogenic populations of dewy pines. We projected each natural and 741 

anthropogenic population 500 times for 30 years under a control (keeping 742 

temperature and rainfall conditions as currently observed) and two climate-change 743 

scenarios (RCP4.5 and RCP8.5). Here, results from scenario RCP8.5 are shown. To 744 

assess the demographic consequences of climate change in populations 745 

experiencing different levels of human disturbance, we computed for each 746 

population: (a) the stochastic population growth rate across 30 years for each 747 

population projection (log 𝜆S; including both the seedbank and aboveground 748 

individuals) and (b) the probability of quasi-extinction (pq-ext). Here we summarise 749 

these metrics per habitat type, and the variability in the values therefore correspond 750 

to among-population and among-projection differences.  751 

 752 
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In contrast with the control scenario, population growth rates differed between 753 

habitats under climate change (Fig. 5). While the population growth rate (-0.12 [-754 

0.28, 0.072]) and extinction probability (0.17 [0.070, 0.26]) of natural populations did 755 

not vary under climate change, under climate change scenario RCP8.5, our 756 

projections show a decrease in log 𝜆S in anthropogenic sites (-0.47 [-1.3, 0.45]), 757 

accompanied by an increase in the extinction probability (0.99 [0.97, 1.0]) (Fig. 5). 758 

Results were very similar for scenario RCP4.5 (Appendix S2: Fig. S3), highlighting 759 

that anthropogenic populations are at a high risk of local extinction even under 760 

moderate climate change. In anthropogenic habitats, changes in population 761 

dynamics under climate change were largely driven by the adverse effects of climate 762 

change on plant survival (Appendix S4: Figs. S1-S2). In natural habitats, climate 763 

change effects on survival and growth increased log 𝜆S in some populations, likely 764 

through compensatory density feedbacks, and only climate change effects on 765 

reproduction resulted in consistent decreases in log 𝜆S compared to the control 766 

scenario (Appendix S4: Figs. S1-S2). 767 

 768 

Discussion 769 

 770 

Our individual-based models projecting natural and anthropogenic populations 771 

of dewy pines using habitat-specific survival, growth, and reproductive rates revealed 772 

that the current decline of anthropogenic populations will worsen under climate 773 

change, leading to increased extinction risk. While the increasing frequency of 774 

extreme high summer temperatures affected both natural and anthropogenic 775 

populations negatively, occasionally high rainfall and compensatory density 776 

dependence greatly reduced this effect in natural populations. Under chronic, 777 
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anthropogenic disturbance, however, the decline in survival was not compensated by 778 

either of these factors. Consequently, with the frequency of extreme climatic 779 

conditions increasing under climate change, populations in anthropogenic habitats—780 

which are currently already decreasing—were negatively affected by future climatic 781 

conditions. Habitat dynamics shaped by fires also dominated the effects of 782 

environmental perturbations in natural habitats, highlighting the importance of fire 783 

regimes in Mediterranean heathlands (Ojeda, Pausas, and Verdú, 2010; Keeley et 784 

al., 2011). Adaptations to anthropogenic disturbances meanwhile can lead to 785 

changes in vital-rate responses to climate and density, with detrimental 786 

consequences on population persistence. The implications of our findings extend 787 

beyond ecological theory, offering tangible guidance for conservation policies. Under 788 

contrasting responses of natural and anthropogenic populations to climate change, 789 

management would need to be adapted to allow periodic vegetation clearance (most 790 

importantly through burning) in heathlands which would provoke mass germination 791 

from the seed bank of dewy pines and other seeder species, increasing local 792 

biodiversity (Fernandes et al., 2013; Ojeda, 2020). In anthropogenic habitats, on the 793 

other hand, further disturbances should be prevented (Lawson et al. 2010). As our 794 

results highlight climate changes drives population dynamics through adverse effects 795 

on survival in anthropogenic habitats, management should focus on improving the 796 

survival of large plants, for instance by allowing for moderate shrub cover that 797 

shields dewy pines from climatic extremes (Brewer et al. 2021).  798 

 799 

Land-use change (e.g. grazing) often has stronger effects on populations than 800 

climate change (Sirami et al., 2017). However, few studies assess how interactions 801 

between these two environmental pressures affect different vital rates and how such 802 
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effects then scale to population dynamics, despite evidence of land-use change 803 

mediating the effect of climate change on species abundance and diversity 804 

(Mantyka-Pringle, Martin, and Rhodes, 2012; Oliver and Morecroft, 2014). Such 805 

interactions are likely to be strong drivers of vital-rate responses in habitats such as 806 

Mediterranean heathlands, which are among the ecosystems most affected by 807 

climate and land-use change (Newbold et al., 2020), the latter leading to changes in 808 

disturbance regimes in the habitats. Consequently, interactions between these two 809 

pressures might have strong effects on systems such as the dewy pine, where we 810 

observe differences among disturbance levels in vital-rate responses to climate, 811 

density, and their interactions among natural and highly disturbed habitats.  812 

 813 

Our projections of natural and anthropogenic dewy-pine populations under climate 814 

change indicate that future changes in climate will spare populations in natural 815 

habitats but will have adverse effects on populations experiencing anthropogenic 816 

disturbances, which is the majority of dewy pine populations (Garrido et al., 2003), 817 

as well as many other Mediterranean shrublands (Newbold et al., 2020). We also 818 

note that we capped the effects of projected climate extremes to the maximum past 819 

observed values in order to not project population dynamics outside the observed 820 

range of responses to climate (Fronzek et al., 2010). However, climate-change 821 

projections show increases in extreme temperature values that are clearly outside 822 

the range of past observed values (Fig. S1), indicating that our projections are likely 823 

conservative and local extinction risks for this endangered species may be further 824 

exacerbated.     825 

 826 
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As previously observed in our study populations, anthropogenic disturbances not 827 

only lead to increased continuous seed germination and decreased seed dormancy 828 

(Appendix S1), but also allowed aboveground individuals to survive longer in the 829 

absence of shrub encroachment (Paniw, Quintana-Ascencio et al., 2017). 830 

Consequently, dewy pines in chronically disturbed, anthropogenic habitats reached 831 

higher sizes than those in natural habitats. This is contrary to many studies 832 

assessing trait-level consequences of land-use change—and more specifically 833 

grazing—on plants. In these studies, plants in grazed sites adapted to this 834 

disturbance by shrinking over time to avoid being consumed by herbivores (Fischer 835 

et al., 2011; Kerns et al., 2011; Völler et al., 2017). However, with their mucilage-836 

covered leaves, dewy pines are not palatable to herbivores (Ojeda et al., 2021), and 837 

therefore do not require such an adaptation. On the contrary, the small amount or 838 

absence of damage dealt to plants by herbivores along with the removal of other 839 

plants and the subsequent release of both intra- and interspecific competition, might 840 

allow dewy pines in anthropogenic populations to grow without surrounding 841 

vegetation hampering their nutrient acquisition (Paniw et al., 2018) and growth 842 

(Grime, 1973; Hjalten et al., 1993; Kambatuku et al., 2011; Fig. 3c).  843 

 844 

While anthropogenic disturbances allow dewy pine plants to survive and grow better 845 

than in natural conditions, this comes at the cost of reproduction, with flowering 846 

probability decreasing in the largest individuals. Although the consequences of land-847 

use change on plant reproduction are clearly species- and site-dependent (Kerns et 848 

al., 2011; Völler et al., 2017), tradeoffs similar to those observed in our populations 849 

are common across taxa (Stearns, 1989). Such negative correlations between vital 850 

rates might be more striking under stressful conditions such as low resource 851 
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availability (Villellas & García, 2018). This might be the case in anthropogenic 852 

populations of dewy pines particularly. Plants rely almost exclusively on capturing 853 

prey invertebrates for nutrient uptake (Paniw, Gil-Cabeza et al., 2017; Skates et al., 854 

2019). In natural populations, invertebrates, especially insect pollinators, are 855 

abundant after fires, when many post-fire ephemeral species flower, and dewy pine 856 

plants are more conspicuous to insects, thus facilitating prey capture and nutrient 857 

uptake (Paniw et al., 2018). In anthropogenic habitats, intense browsing or 858 

mechanical vegetation removal are likely to decrease invertebrate abundances with 859 

respect to natural sites (Mayer, 2004; Carpio et al., 2014). When shrub cover is 860 

chronically low or sparse, dewy pine plants are more conspicuous to prey insects but 861 

they may also be more exposed to wind and solar radiation, thus resulting in 862 

relatively more stressful environmental conditions (Paniw et al., 2018). In turn, while 863 

populations in these chronically disturbed, anthropogenic habitats appear to persist, 864 

a low reproductive output may generate an extinction debt, where the population 865 

structure is skewed towards old individuals that cannot be replaced in the long term 866 

(Matías et al., 2019).    867 

 868 

Adverse disturbance effects on vital rates can be exacerbated under unfavourable 869 

climatic conditions (e.g. Hindle et al., 2023; see also; Nolan et al., 2021 and 870 

references therein). Plants commonly suffer from extreme temperatures and drought, 871 

which affect individuals through processes such as heat stress, photosynthesis 872 

inhibition, or reduced soil moisture and water resources (e.g. Larcher, 2000; 873 

McDowell et al., 2008; Nolan et al., 2021). While dewy pines are somewhat adapted 874 

to dry and hot summer conditions (Darwin 1875; Adlassnig et al., 2006; Adamec, 875 

2009), survival greatly decreased with increasing summer temperatures. In addition 876 
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to the aforementioned processes reducing the survival of plants experiencing high 877 

temperatures, such extreme conditions could lead to a great reduction in prey 878 

availability. These carnivorous subshrubs indeed rely on droplets of mucilage on 879 

their leaves to capture insects, from which they obtain nutrients (Paniw, Gil-Cabeza 880 

et al., 2017). However, increasing temperatures and the subsequent decrease in 881 

humidity could prevent plants from forming these droplets, and thereby from 882 

accessing these resources.  883 

 884 

Rainfall also played an important role in shaping dewy-pine demography. In addition 885 

to limiting water resources (McDowell et al., 2008), extremely low amounts of rain do 886 

not provide enough moisture for dewy pines to produce mucilage on their leaf-traps 887 

(Darwin 1875; Adlassnig et al., 2006; Adamec, 2009). As a result, plants might not 888 

get enough nutrients to allocate to the different demographic processes. However, in 889 

natural populations, high amounts of rainfall seemed to slightly buffer negative 890 

temperature effects, likely by compensating the low humidity and water resources 891 

under high temperatures. This process did not seem to occur in anthropogenic 892 

populations, where the increased exposure to extreme temperatures due to sparse 893 

vegetation cover might be too intense to counterbalance.       894 

  895 

In addition to interactions between climatic variables, density-dependent effects of 896 

climate are common across taxa and can play a key role in shaping population 897 

dynamics, for example by enhancing or mitigating adverse environmental effects 898 

(Gamelon et al., 2017; Paniw et al., 2019). In plant populations, vital-rate density 899 

dependence can be attributed to two main biological processes: competition (e.g. for 900 

light or pollinators; Craine & Dybzinski, 2013) and facilitation (i.e., the positive effect 901 
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of neighbours on a focal individual, e.g., through shading or protection from 902 

herbivory; Callaway & Pugnaire, 2007; Graff et al., 2007; Le Bagousse-Pinguet et al., 903 

2012). According to the stress-gradient hypothesis, variations in environmental 904 

conditions can lead to shifts between these two processes in a given population 905 

(Bertness & Callaway, 1994; Maestre et al., 2005), for example under increased 906 

levels of disturbance (Graff et al., 2007; Villarreal-Barajas & Martorell, 2009; Le 907 

Bagousse-Pinguet et al., 2012) or extreme climatic conditions (Callaway & Pugnaire, 908 

2007; Grant et al., 2014; Olsen et al., 2016). This was the case in dewy pines, where 909 

intraspecific density had opposite effects on some vital rates between natural—910 

where competition prevailed—and anthropogenic populations—where facilitation 911 

was at play.  912 

 913 

As commonly observed in plant communities (Villalobos et al., 2016; Adler et al., 914 

2018), increasing intraspecific densities in natural conditions led to declining 915 

survival—with the exception of early post-fire conditions, where facilitation generally 916 

predominates in fire-adapted plant communities (Vilà & Sardans, 1999; Paniw et al., 917 

2018). For dewy pines, in addition to the more common resources for which plants 918 

compete (e.g. light or pollinators), such negative effects of conspecifics on survival 919 

could arise from competition for prey (Craine & Dybzinski, 2013). Contrastingly, 920 

individuals in anthropogenic populations benefited from higher intraspecific densities. 921 

In addition to the competition release stemming from the removal of surrounding 922 

vegetation (Catling et al., 2024), increasing levels of disturbance such as browsing 923 

might lead to a shift from competition to facilitation, as neighbours might act as a 924 

barrier against browsers (Le Bagousse-Pinguet et al., 2012). 925 

 926 
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In addition to the consequences on vital rates, future increases in temperatures and 927 

decreases in rainfall under climate change are expected to lead to higher frequency 928 

and intensity of wildfires (Turco et al., 2019; Nolan et al., 2021). In populations where 929 

land-use change led to seedbank depletions through increase in continuous 930 

germination and dormancy loss, returning fire regimes will likely have strong 931 

negative consequences on population persistence, as reduced soil seedbanks will 932 

not be enough to replenish populations following the removal of aboveground 933 

individuals by fire. Decrease in the ability of fire-adapted plants to germinate or 934 

resprout after more frequent and intense fire could have dramatic consequences for 935 

the persistence of plant communities in fire-prone habitats (Enright et al., 2015; 936 

Nolan et al., 2021).  937 

 938 

Overall, our findings highlight the existence of demographic responses to climate 939 

and land-use change and call for conservation policies taking into account the 940 

detrimental effects of climate change on populations persisting under human 941 

alterations to their habitats, more specifically in fire-adapted systems. Moreover, 942 

species-specific effects of interactions between climate and land-use change 943 

highlight the need for studies assessing these effects at the community level—944 

accounting for the effects of both climate and intra- and inter-specific density—to 945 

understand how interactions between these pressures might affect fire-prone and 946 

more generally anthropogenic landscapes.   947 
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Appendix S1 – Methodological details and additional results 1 

 2 

1. Seedbank parameters 3 

 4 

 We used previously published data obtained from seed-burial and 5 

greenhouse-germination experiments to parameterise the transitions of dewy-pine 6 

seeds from and to the soil seedbank and to continuous germination (Table S1). More 7 

specifically, following Paniw et al. (2017b), we used data on seeds buried in habitat 8 

conditions characteristic of early (i.e., recently burned) or late post-fire stages (i.e., 9 

long unburned) to estimate seed survival in the soil (i.e., seedbank stasis; staySB) 10 

and the probability of germinating from the seedbank at least two years after burial 11 

(outSB). We used estimates from recently burned habitats for anthropogenic 12 

populations, which experience constant anthropogenic disturbances mimicking the 13 

effects of fire (Paniw et al., 2017b). For natural populations, we used estimates from 14 

burned habitats in early post-fire stages (i.e., TSF2 for staySB and TSF1 for outSB), 15 

and from unburned habitats in later post-fire stages (i.e., from TSF3 for staySB and 16 

from TSF2 to TSF4 for outSB). To more accurately describe the observed seedbank 17 

dynamics in the first TSFs (i.e., TSF0 and TSF1 for staySB and TSF0 for outSB), we 18 

used previously published parameters representing the characteristically high 19 

germination rates from the seedbank (outSB) in a fire year (TSF0), and low 20 

germination rates in late TSFs (TSF5), as well as the very low seedbank stasis 21 

(staySB) following a fire (TSF0 and TSF1) (Paniw et al., 2017b; Conquet et al., 2023).  22 

  23 

To estimate the probability of seeds germinating continuously without contributing to 24 

the seedbank (goCont) and its opposite parameter determining the probability of 25 



 

 2 

seeds contributing to the seedbank (goSB), we used data from a growth-chamber 26 

germination experiment (see details in Gómez-González et al., 2018). Seeds from 15 27 

individual dewy pines growing in natural or anthropogenic habitats were monitored to 28 

obtain the proportion of surviving seeds germinating (goCont) and remaining 29 

dormant (goSB = 1 - goCont). We used estimates from the corresponding habitat to 30 

parameterise seedbank transitions of our natural and anthropogenic populations. In 31 

natural populations, however, continuous germination and contribution to the 32 

seedbank only starts in TSF2 and is extremely low from TSF5. We therefore fixed the 33 

values for goCont and goSB using previously published data (Paniw et al., 2017b; 34 

Conquet et al., 2023) for these TSFs to represent these observed processes (Table 35 

S1). Because natural populations still experience fires, we defined time-since-fire-36 

specific parameter values for these populations. Additionally, to take advantage of 37 

the population-specific data available from the germination experiment for several 38 

anthropogenic sites, we defined population-specific goCont and goSB values for 39 

anthropogenic populations. 40 

  41 

Table S1 – Seedbank parameters obtained from seed-burial and germination 42 

experiments. We used previously published data from a seed-burial experiment in 43 

recently burned and long unburned dewy-pine habitats to estimate the proportion of 44 

seeds remaining in (staySB) or germinating from the seedbank (outSB). Additionally, 45 

we used data from a germination experiment on seeds from natural and 46 

anthropogenic habitats to estimate the proportion of seeds contributing to the 47 

seedbank (goSB) or germinating continuously (goCont). The table contains 48 

parameter means and, wherever available, 95% confidence intervals (with binomial 49 

standard deviations calculated as !!×(1−$)&  where " is the parameter mean and N the 50 
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sample size). Asterisks indicate parameter values adapted from previously published 51 

values (Paniw et al., 2017b; Conquet et al., 2023), and for which the confidence 52 

interval could not be calculated. 53 

Natural populations 

                                                             Seedbank parameters 

Time since fire (TSF) staySB outSB goCont goSB 

TSF0 0.1* 0.81* 0* 0* 

TSF1 0.05* 0.061  
[0.044, 0.077] 

0* 0* 

TSF2 0.60  
[0.57, 0.63] 

0.035  
[0.023, 0.046] 

0.026  
[0.016, 0.037] 

0.97 
[0.96, 0.98] 

TSF3 0.85  
[0.83, 0.86] 

0.035  
[0.023, 0.046] 

0.026 
 [0.016, 0.037] 

0.97  
[0.96, 0.98] 

TSF4 0.85  
[0.83, 0.86] 

0.035  
[0.023, 0.046] 

0.026  
[0.016, 0.037] 

0.97  
[0.96, 0.98] 

TSF5 0.85  
[0.83, 0.86] 

0* 0.01* 0.99* 

Anthropogenic populations 

 Seedbank parameters 

Site staySB outSB goCont goSB 

Sierra del Retín Disturbed 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.11 
[0, 0.28] 

0.89 
[0.72, 1.0] 

Prisioneros 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.29 
[0.0071, 0.57] 

0.71 
[0.99, 0.43] 

Bujeo 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.16 
[0.060, 0.26] 

0.84 
[0.74, 0.94] 

Montera del Torero 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.18 
[0, 0.37] 

0.82 
[0.63, 1.0] 

Sierra Carbonera Disturbed 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.16 
[0.060, 0.26] 

0.84 
[0.74, 0.94] 

https://www.zotero.org/google-docs/?58uQSX
https://www.zotero.org/google-docs/?58uQSX
https://www.zotero.org/google-docs/?1N8c6k
https://www.zotero.org/google-docs/?2nILEW
https://www.zotero.org/google-docs/?6dHt33
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2. Seedbank parameters correction factors 54 

 55 

Accurately estimating seedbank parameters is complex due to the many factors 56 

influencing germination and dormancy. Seed mortality is a hidden process that cannot 57 

be easily determined in the field without perturbing the populations and is therefore 58 

often underestimated. Therefore, to better represent the dewy-pine population 59 

dynamics in anthropogenic sites, we computed a correction factor corresponding to 60 

the seed aboveground survival (σseed). σseed corresponded to the proportion of seeds 61 

surviving aboveground and was obtained from data on flower damage (σseed = 1 – 62 

flower damage) (Paniw et al., 2017). As anthropogenic populations never returned to 63 

TSF0, we only used σseed for TSF4 (0.33). We corrected the seedbank parameter 64 

values in anthropogenic habitats by multiplying all four seedbank parameters (i.e., 65 

goCont, outSB, goSB, and staySB) by σseed. Additionally, previous model calibrations 66 

showed the need to further correct several seedbank parameters to mirror the 67 

observed dynamics of dewy-pine populations. To do so, we multiplied both goCont 68 

and outSB by 0.4 for Sierra Carbonera Disturbed. Moreover, as we estimated plant 69 

density within 1-m2 quadrats, we avoided unrealistically high recruit numbers by 70 

capping the number of recruits to the maximum observed number of seedlings per 71 

quadrat during the study period in all natural populations and in two anthropogenic 72 

populations: Bujeo and Sierra Carbonera Disturbed. In natural populations, this 73 

number was TSF specific; however, data was unavailable for some TSFs in some 74 

populations. When unavailable for TSF0, we set the maximum number of recruits to 75 

1.5 times the maximum observed number of seedlings in the populations; in TSF1, we 76 

set it to the maximum observed number of seedlings in the population; and in TSF2 to 77 

the average maximum observed number of seedlings in the population in TSF>0. The 78 
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correction factors resulted in predicted abundances (out-of-sample predictions) 79 

reflecting well observed abundances, size distributions, and aboveground population 80 

growth rates (Fig. S1; Fig. S2; Fig. 4 in main text). 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

Figure S1 – Observed and projected aboveground population abundance. We 92 

projected each natural and anthropogenic population for 500 times across the range 93 

of observed years available for each population (maximum range from 2011 to 2022) 94 

to perform an out-of-sample validation of our individual-based model parameterization. 95 

For each projection, we obtained the average (line) and 25th and 95th (shaded ribbon) 96 

percentile of the aboveground population size. We compared these projected values 97 

to the observed ones (dots). 98 
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 Figure S2 – Observed and projected distributions of individual size across 99 

time. We projected each population from the first year it was sampled to 2022 and 100 

obtained the site- and year-specific distributions of aboveground individual size, which 101 

we compared to the observed distributions. Size is defined as log(number of leaves × 102 

length of the longest leaf (cm)). 103 

 104 

 105 
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3. Covariate standardisation and correlation 106 

 107 

We standardised all continuous covariates using the approach described by 108 

Gelman (2008): 109 

 110 

covariate'()*+,(-) =
((./)01)2+!"#$%&'((*)34$,-%./%0'!"#$%&'((*))

5⋅7$,-%./%0'!"#$%&'((*)
  (Equation 1) 111 

  112 

where μ and σ are respectively the mean and standard deviation of a given 113 

unscaled covariate in a subset of data from a given habitat H (natural or 114 

anthropogenic). In comparison with the common standardisation by one standard 115 

deviation, this standardisation approach enables the comparison of the effect sizes 116 

of both categorical (i.e. habitat) and continuous covariates (i.e. density-dependent 117 

variables).   118 

 119 

We checked for correlations between covariates using the Pearson correlation 120 

coefficient (using the cor function from the stats R package; R Core Team, 2022). 121 

We considered a pair of variables to be correlated when the absolute value of the 122 

correlation coefficient was above 0.5. We included only one of the two correlated 123 

variables in a model, choosing the first to be retained in the model selection. 124 

 125 

4. Vital-rate model selection  126 

 127 

We assessed the nonlinear response of dewy-pine survival, growth, flowering 128 

probability, number of flowers, and seedling size to rainfall, maximum daily 129 

temperature, time since fire (TSF), aboveground density of large individuals (size > 130 
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4.5), and individual size using Generalised Additive Models (GAMs) fitted to 131 

demographic data from individual dewy pines growing in natural or anthropogenic 132 

habitats. We first assessed whether rainfall and temperature influenced vital rates 133 

and in which period. We did this by comparing a null model (i.e., with only year and 134 

population random effects, using a random effect basis (bs = “re”) in the mgcv 135 

package; (Wood, 2017)) with models including cumulative rainfall or average 136 

maximum daily temperature across different periods. As each census was done 137 

during the flowering period, we assessed rainfall and temperature effect prior to the 138 

annual population census for flowering probability, number of flowers, and seedling 139 

size; or in the period between two annual censuses for survival and growth (see 140 

Table S2 and Table S3). We considered further lagged climatic effects to be 141 

captured by changes in plant size and density. 142 

 143 

Table S2 – Periods of average maximum daily temperature and cumulative 144 

rainfall considered to assess the effect of temperature and rainfall on dewy-145 

pine vital rates. We investigated the nonlinear response of dewy-pine vital rates to 146 

average maximum daily temperature (μmaxT) and cumulative rainfall (∑rain) in various 147 

periods of the years prior (for flowering probability, number of flowers, and seedling 148 

size; in regular text) or post the annual population census (for survival and growth; in 149 

italic).  150 

 151 

 152 

 153 
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Period full name Short name Start End Justification 

Previous winter 

average maximum 

daily temperature 

μmaxT_prevWinter January April 

Dewy pines rely almost 
exclusively on insect prey for 

nutrients (Paniw et al., 
2017a). Long periods of 

above-average temperatures 
in winter and spring 

(approximated by this 
variable) can result in 

physiological stress for plants 
and desiccation of leaf 

mucilage preventing plants 
from catching and digest prey 
insects (Paniw et al., 2018).  

Previous fall 

cumulative rainfall 
∑rain_prevFall September November 

Rainfall in fall and winter is a 
key determinant of plant 

growth and survival in the 
Mediterranean shrublands 
(Paniw et al. 2023). For the 

dewy pine, in particular, 
plentiful rain translates to 
more air humidity, which 

allows the plants to maintain 
leaf mucilage to catch and 

digest prey insects (Adamec, 
2009).  In addition, abundant 
rainfall may result in higher 

invertebrate activity and thus 
more potential food for plants 

(Paniw et al., 2017b). Too 
much rain however may result 
in prey insects being washed 
off leaves; and this may occur 

in particular if plants are 
exposed (i.e., not protected 

by surrounding shrubs; 
Brewer et al., 2021).   

Previous winter 

cumulative rainfall 
∑rain_prevWinter January April 

Same justification as for fall 
cumulative rainfall. In 

addition, heavy rainfall in 
spring may damage or wash 

away seedlings.  
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 154 

We selected the best model among the possible rainfall and temperature periods 155 

using the Akaike Information Criterion (AIC), through the model.sel and AICtab 156 

functions of the MuMIn (Bartoń, 2022) and bbmle R packages (Bolker, 2022); we 157 

used a threshold of ΔAIC < 2 to identify models with no strong difference, and 158 

selected the model with the lowest number of degrees of freedom if more than one 159 

model were within that threshold. If both models with effects of rainfall and 160 

temperature performed better than the null model, we calculated Pearson’s 161 

correlation coefficient using the cor.test function of the stats R package (R Core 162 

Next summer 

average maximum 

daily temperature 

μmaxT_nextSummer May September 

Extremely high summer 
temperatures may damage 

and desiccate plants, 
preventing them to capture 

prey with leaf mucilage 
(Paniw et al., 2018), 

particularly in anthropogenetic 
habitats where plants are 

often more exposed (Brewer 
et al., 2021) and where prey 

availability may be lower 
(Paniw et al., 2018) 

Next fall cumulative 

rainfall 
∑rain_nextFall September November 

Same justification as for 
previous fall rainfall, but 
considering the period 

between census at time t and 
t+1 (which is relevant for plant 

survival and growth)  

Next winter 

cumulative rainfall 
∑rain_nextWinter January April 

Same justification as for 
previous winter rainfall, but 

considering the period 
between census at time t and 
t+1 (which is relevant for plant 

survival and growth) 

Next fall and winter 

cumulative rainfall 

 

∑rain_nextFallWinter 
September April 

Same justification as for 
previous fall/winter rainfall, 
but considering the period 

between census at time t and 
t+1 (which is relevant for plant 

survival and growth) 
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Team, 2022) to check whether the two variables were correlated. If they were (i.e., 163 

correlation coefficient > |0.5|), we used the AIC and the number of degrees of 164 

freedom to select the best model between the one with rainfall and the one with 165 

temperature. Conversely, if the two variables were not correlated (i.e., correlation 166 

coefficient ≤ |0.5|) We compared the models including one of rainfall and 167 

temperature to a model with both climatic variables, including their interaction (Table 168 

S3). Finally, we performed a forward selection—using the AIC and the degrees of 169 

freedom—, progressively adding aboveground density, size (except for seedling 170 

size), and time since fire (TSF; for natural populations only) in the model. While 171 

Table S3 only shows splines, we included the linear effects of all covariates in the 172 

model selection. We then included interactions between covariates in the model 173 

selection if at least one of them was retained in the single effect selection. 174 

Additionally, we included terms for site-specific random slopes (e.g., random size 175 

effect depending on the site).  176 
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Table S3 – Example of the model selection process. We selected the best model 177 

to predict a given vital rate (vr) using the Akaike Information Criterion (AIC). We first 178 

assessed whether rainfall and temperature affected the vital rate by comparing a null 179 

model (with only year and population random effects (M1) to models including rainfall 180 

or temperature values in various periods of the year (Step 1 for temperature and 2 181 

for rainfall). If both models with temperature and rainfall performed better than the 182 

null model, we compared them with a model containing both climatic variables (Step 183 

3), and also included their interaction (Step 4). We then progressively added size, 184 

time since fire (TSF), and aboveground density of large individuals (density) to see if 185 

their introgression improved the model (Steps 5–7). Finally, we included interactions 186 

between covariates when at least one of the two members of the interaction had 187 

been previously retained in the model selection (Steps 8–9). For each step, the Best 188 

model according to the AIC column shows the best model (M) according to the AIC. 189 

This model is then used as a comparison to the newer models in the next step. 190 

Newly added covariates at each time step are shown in green.  191 

Model 
selection 

step 
Models compared 

Best 
model 

according 
to the AIC 

1 

M1 = vr ~ s(time, bs = "re") + 
        s(site, bs = "re") 

M2 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M2 

2 

M3 = vr ~ s(time, bs = "re") + 
        s(site, bs = "re") 

M4 = vr ~ s(∑rain_prevWinter, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 = vr ~ s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 
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3 

M2 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 = vr ~ s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M6 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M6 

4 

M6 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M7 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M7 

5 

M7 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M8 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                s(size, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M9 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                 s(density, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M10 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

M9 
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                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

6 

M9 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                s(density, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M11 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 
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7 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                 s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M13 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  s(size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 

8 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M14 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M15 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M15 
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M16 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M17 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M18 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M19 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M20 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
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                  ti(density, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M21 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
              s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  ti(density, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M22 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  ti(TSF, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

9 

M15 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M23 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M24 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

M15 
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                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M25 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M26 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                 ti(∑rain_prevFall, TSF, k = 3, bs = "cr") + 
         s(time, bs = "re") + 
         s(site, bs = "re") 

M27 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M28 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 
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                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(density, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M29 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = 
"cr") + 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(density, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M30 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                  s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(TSF, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

  192 
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5. Vital-rate estimation results  193 

 194 

Table S4 – Most parsimonious generalised additive models for dewy-195 

pine vital rates. For natural (n = 3) and anthropogenic (n = 5) populations, we 196 

estimated survival (σ), growth of aboveground plants (φ), flowering probability (pfl), 197 

number of flowers (nflowers), and seedling size (Φ) as a function of monthly average 198 

daily maximum temperature in a given period (μmaxT_period), monthly cumulative 199 

rainfall in a given period (∑rain_period), aboveground density of large individuals 200 

(density), individual size, and—for natural populations—time since fire (TSF). We 201 

selected the best model to predict a given vital rate using the Akaike Information 202 

Criterion (AIC). The function s(x edf) is the spline smoothing function (i.e. simple 203 

effect) of x, and ti(x, y edf) is the tensor product smoothing function of x and y. We 204 

used a cubic regression spline (bs = “cr” in the mgcv package; Wood, 2011; Wood et 205 

al., 2016; Wood, 2017) for all smoothing parameters, with a dimension k = 3 (except 206 

for the size effect on the number of flowers, where we used k = 4 to force a decline in 207 

the number of flowers of large individuals and avoid an ever-increasing number of 208 

flowers). Additionally, all models include a year and site random effect. edf is the 209 

corresponding effective degrees of freedom (Wood, 2017), which represents the 210 

amount of nonlinearity in the model component (edf = 1 corresponds to a linear fit), 211 

and n in the sample size. For the intercept and linear predictors (i.e., outside of s and 212 

ti smoothing functions), we report the estimated β-coefficients and the standard 213 

error. 214 

 215 



 

 21 

Vital 
rate 

Family 
(link 

function) 
Most parsimonious model n 

Natural populations 

σ Binomial 
(logit) 

-1.1(0.28) + 0.27(0.47)μmaxT_nextSummer + 0.11(0.48)∑rain_nextFall + ti(∑rain_nextFall, 
μmaxT_nextSummer edf=0.88) + s(size edf=1.7) + s(TSF edf=0.00018) + s(μmaxT_nextSummer, 
site edf=1.5, bs = “re”) + ti(size, TSF edf=2.1) + ti(∑rain_nextFall, density edf=2.7) - 

1.4(0.46)∑rain_nextFall*TSF + ti(μmaxT_nextSummer, size edf=0.74) - 

0.26(0.096)μmaxT_nextSummer*density + ti(μmaxT_nextSummer, TSF edf=0.93) + 
ti(∑rain_nextFall, size edf=1.7) + s(time edf=3.8, bs = "re") + s(site edf=0.00010, bs = 
"re") 

1493 

γ Scaled t 
(identity) 

5.1(0.12) + s(∑rain_nextFall edf=0.000063) + 1.5(0.14)size + s(TSF edf=1.7) - 

0.074(0.018)density + s(size, site edf=1.6, bs = “re”) + ti(∑rain_nextFall, TSF edf=0.81) 
+ ti(∑rain_nextFall, density edf=2.1) + ti(size, density edf=0.83) + s(time edf=0.000019, 
bs = "re") + s(site edf=1.8, bs = "re") 

482 

pfl Binomial 
(logit) 

-4.0(0.57)+ 0.93(0.95)∑rain_prevFall + ti(∑rain_prevFall, μmaxT_prevWinter edf=1.5) + 
5.5(0.44)size + s(TSF edf=0.0000079) + ti(TSF, μmaxT_prevWinter edf=0.91) + ti(TSF, 
density edf=0.58) + ti(∑rain_prevFall, TSF edf=0.61) + ti(∑rain_prevFall, density edf=1.3) + 
ti(size, density edf=1.2) + s(time edf=3.8, bs = "re") + s(site edf=0.000041, bs = "re") 

 
1487 

nflower

s 

Negative 
binomial 

(log) 

2.0(0.052) + s(μmaxT_prevWinter edf=0.00041) + s(size edf=2.8) - 0.40(1.4)TSF + s(time 
edf=0.0013, bs = "re") + s(site edf=0.000056, bs = "re") 185 

Φ Scaled t 
(identity) 

3.4(0.073) + s(μmaxT_prevWinter edf=0.66) + s(density edf=0.49) + 0.16(0.079)TSF + 
s(density, site edf=0.000064, bs = “re”) + s(TSF, site edf=0.69, bs = “re”) + 
ti(μmaxT_prevWinter, density edf=1.3) + ti(μmaxT_prevWinter, TSF edf=0.76) + ti(density, 
TSF edf=0.69)  + s(time edf=4.8, bs = "re") + s(site edf=0.000071, bs = "re") 

745 

Anthropogenic populations 

σ Binomial 
(logit) 

-0.55(0.60) + s(∑rain_nextFall edf=0.015) - 1.8(0.41)μmaxT_nextSummer + ti(∑rain_nextFall, 

μmaxT_nextSummer edf=0.00017) + s(size edf=1.9) + s(size, site edf=3.6, bs = “re”) + 
s(∑rain_nextFall, site edf=3.2, bs = “re”) + ti(∑rain_nextFall, size edf=0.92) + 
0.11(0.037)size*density + s(time edf=4.5, bs = "re") + s(site edf=3.9, bs = "re") 

6008 

γ Scaled t 
(identity) 

5.0(0.13) + s(μmaxT_nextSummer edf=0.37) + s(size edf=1.6) - 0.028(0.0053)density + 
s(size, site edf=3.9, bs = “re”) + s(μmaxT_nextSummer, site edf=3.9, bs = “re”) + 
s(time edf=3.9, bs = "re") + s(site edf=3.8, bs = "re") 

3202 

pfl Binomial 
(logit) 

-4.7(0.36)+ s(∑rain_prevWinter edf=0.50) + s(size edf=2.0) + s(density, edf=1.6) + s(size, 

site edf=3.6, bs = “re”) +  s(∑rain_prevWinter, site edf=2.4, bs = “re”) + s(density, site 
edf=2.7, bs = “re”)  + s(time edf=5.0, bs = "re") + s(site edf=3.0, bs = "re") 

 
6254 

nflower

s 

Negative 
binomial 

(log) 

1.9(0.072) + s(∑rain_prevFall edf=0.0012) + s(size edf=2.8) + s(∑rain_prevFall, site edf=4.0, 
bs = “re”) + s(size, site edf=3.7, bs = “re”) + s(time edf=3.0, bs = "re") + s(site 
edf=0.015, bs = "re") 

899 

Φ Scaled t 
(identity) 

3.0(0.14) + s(μmaxT_prevWinter edf=0.50) - 0.057(0.012)density + s(μmaxT_prevWinter, site 

edf=2.9, bs = “re”) + s(density, site edf=1.9, bs = “re”) + ti(μmaxT_prevWinter, density 

edf=0.64)  + s(time edf=5.5, bs = "re") + s(site edf=3.9, bs = "re") 
2608 

  216 
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 Among-site variation in average vital rates and climate effects 217 

 218 

Dewy-pine vital rates varied between natural and anthropogenic habitat as 219 

well as between sites. Among-site variation was larger in anthropogenic than in 220 

natural conditions, possibly because of the among-population differences in the level 221 

of anthropogenic disturbance. This variation was especially large for survival rates, 222 

which ranged from 0.11 [0.058, 0.20] in Bujeo to 0.80 [0.72, 0.86] in Montera del 223 

Torero, while it remained stable at 0.27 [0.17, 0.40] on average in natural 224 

populations (Fig. S3).  225 
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Figure S3 – Among-site variation in average vital-rate values in natural 226 

and anthropogenic populations. The boxplots represent the distribution of the 227 

average values of predicted site-specific survival, growth, and flowering rates, as 228 

well as the number of flowers and seedling size estimated for each year. The 229 

whiskers represent the 2.5th and 97.5th percentiles and the black triangle the mean 230 

estimate. We kept covariates at their mean values (scaled value = 0) except for the 231 
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number of flowers, where we used the mean size of reproducing individuals when 232 

doing predictions. The coloured dots represent the observed average vital rates in 233 

each population and year.  234 

 235 

In anthropogenic habitats, we found among-site disparities in the direction of 236 

association between climatic variables and survival, growth, number of flowers per 237 

individual, and seedling size (Fig. S4). For instance, the number of flowers was 238 

positively associated with increasing rainfall in Montera del Torero population (e.g. 239 

from 5.5 [5.0, 6.1] under 100 mm of rain to 7.0 [6.3, 7.8] under 200 mm), but 240 

negatively in Sierra del Retín Disturbed (e.g. from 8.7 [7.5, 9.9] to 7.3 [6.4, 8.4]). In 241 

contrast, there was no such among-site variation in natural habitats. For example, 242 

seedlings were bigger with higher winter temperatures (January–April); seedling size 243 

increased from 3.0 [2.8, 3.3] under 16 °C to 3.4 [3.3, 3.6] under 18 °C (Fig. S5).  244 
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Figure S4 – Among-site variation in the association between climatic 245 

variables and vital rates in anthropogenic populations. We predicted the values 246 

of (a) survival probability, (b) size in the next year, (c) number of flowers per 247 

individual, and (d) seedling size for a range of rainfall and temperature values in 248 

each anthropogenic population of dewy pines. The lines represent the average vital-249 

rate value and the shaded ribbon the 95% confidence interval. We kept all other 250 

covariates at their mean values (scaled value = 0) except for the number of flowers, 251 

where we used the mean size of reproducing individuals.  252 
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 253 

Figure S5 – Density-dependent variation in vital-rate responses to 254 

climate. We predicted the values of (a) seedling size, (b) flowering probability, and 255 

(c) size in the next year for a range of rainfall and temperature values and three 256 

levels of aboveground densities in natural and anthropogenic habitats. The lines 257 

represent the average vital-rate value and the shaded ribbon the 95% confidence 258 

interval. We kept all other covariates at their mean values (scaled value = 0) except 259 

for the number of flowers, where we used the mean size of reproducing individuals.  260 

 261 

Vital-rate responses to large aboveground individual density and climate-262 

density interactions 263 

 264 
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Seedling size decreased with higher numbers of large individuals aboveground (from 265 

3.0 [2.8, 3.3] at 2 ind./m2 to 2.8 [2.5, 3.1] at 10 ind./m2 in anthropogenic populations 266 

and from 3.4 [3.2, 3.5] to 3.1 [3.0, 3.3] in natural ones; Fig. S5a; Table S5). Density 267 

also mediated the association between seedling size and winter temperature in 268 

natural populations, with a stronger positive correlation between the two variables 269 

with 6 ind./m2 (3.2 [3.1, 3.4] at 17.5 ºC and 3.7 [3.4, 3.9] at 18.5 ºC) than with 2 270 

ind./m2 (3.4 [3.2, 3.5] and 3.5 [3.3, 3.7]) (Fig. S5a; Table S5). Additionally, with high 271 

densities in natural populations, flowering probability was low except for high 272 

amounts of rainfall (e.g. with 6 ind./m2, 0.19 [0.035, 0.60] for 150 mm of rainfall and 273 

0.37 [0.096, 0.76] for 200 mm; but with 2 ind./m2, 0.71 [0.43, 0.88] and 0.71 [0.38, 274 

0.90]) (Fig. S5b; Table S5), and the pattern was similar for growth (e.g. with 6 275 

ind./m2, 4.5 [4.1, 4.8] for 150 mm of rainfall and 4.6 [4.3, 4.9] for 200 mm; but with 2 276 

ind./m2, 5.0 [4.7, 5.2] and 5.0 [4.8, 5.3]) (Fig. S5c; Table S5). 277 

 278 

Vital-rate responses to time since fire and size 279 

 280 

As expected from previous work and observations, individuals in natural populations 281 

had a short lifespan, as indicated by the decrease in survival with time since fire 282 

(TSF) (0.42 [0.28, 0.57] and 0.29 [0.18, 0.42] respectively 3 and 7 years after a fire) 283 

and size (0.26 [0.16, 0.40] with a size of 5.0 and 0.22 [0.12, 0.37] with 6.2) (Fig. 284 

S6a,b; Table S5). This early decline in survival was accompanied by investment into 285 

reproduction from early post-fire stages, with flowering probability decreasing from 286 

0.16 [0.038, 0.48] to 0.051 [0.016, 0.15] respectively 3 and 7 years after a fire and 287 

the number of flowers per individual from 10 [8.2, 13] to 7.6 [6.8, 8.4] (Fig. 5c,d; 288 

Table S5). Dewy pines growing in natural conditions also appeared to reproduce 289 
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throughout most of their lifetime, as both flowering probabilities and number of 290 

flowers continuously increased with size (individuals had a probability of flowering of 291 

0.17 [0.061, 0.38] and 2.9 [2.4, 3.5] flowers with a size of 5.0, which respectively 292 

increased to 0.74 [0.47, 0.90] and 7.8 [6.9, 8.7] with 6.2) (Fig. S6e,f; Table S5). In 293 

contrast, the largest individuals had the highest survival in anthropogenic habitats 294 

(0.61 [0.32, 0.84] and 0.75 [0.46, 0.91] with sizes of 5.0 and 6.2; Fig. S6b; Table S5), 295 

but did not invest as much in reproduction with both flowering probability and number 296 

of flowers declining after reaching a peak for a size of 7.3 (probability of flowering of 297 

0.69 [0.34, 0.91]) and 8.2 (19 [13, 28] flowers) (Fig. S6e,f; Table S5). 298 

 299 

 Vital-rate responses to size-climate interactions 300 

 301 

In natural populations, small individuals survived best at intermediate rainfall (e.g. 302 

0.29 [0.18, 0.43] with 150 mm of rain for an individual of size 3.4) than for high or low 303 

amounts of rainfall (0.18 [0.098, 0.30] with 80 mm and 0.26 [0.14, 0.43] with 210 304 

mm), while large individuals survived best at low or high rainfall (e.g., for an 305 

individual of size 6.6, 0.26 [0.13, 0.45] with 80 mm, 0.20 [0.10, 0.37] with 150 mm, 306 

and 0.26 [0.13, 0.45] with 210 mm; Fig. S6g; Table S5). Additionally, survival rates 307 

decreased faster with summer temperature for large than for small individuals (from 308 

0.60 [0.32, 0.83] at 25 °C to 0.26 [0.13, 0.44] at 26 ºC with a size of 6.6, and from 309 

0.57 [0.32, 0.79] to 0.34 [0.22, 0.49] with a size of 3.4; Fig. S6h; Table S5). We also 310 

found size dependence in the association between survival and rainfall in 311 

anthropogenic populations, where large individuals survived best at intermediate 312 

amounts of rain in fall (e.g., for an individual with a size of 6.6, 0.67 [0.37, 0.88] at 80 313 



 

 29 

mm of rain, 0.78 [0.49, 0.93] at 150 mm, and 0.73 [0.44, 0.91] at 210 mm), while 314 

small individuals were not affected by changes in rainfall (Fig. S6g; Table S5).  315 

Figure S6 – Vital-rate responses to time since fire, size, and size-climate 316 

interactions. We predicted the values of survival and flowering probability as well as 317 

the number of flowers per individual for a range of number of years since the last fire 318 
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(time since fire) in natural habitats (a, c, d) and for a range of individual sizes in both 319 

natural and anthropogenic habitats (b, e, f). Finally, we predicted the values of 320 

survival probability for a range of individual sizes as well as (h) rainfall and (g) 321 

temperature values. The lines represent the average vital-rate value and the shaded 322 

ribbon the 95% confidence interval. In each case, we kept all other covariates at their 323 

mean values (scaled value = 0) except for the number of flowers, where we used the 324 

mean size of reproducing individuals. 325 

Figure S7 – Site-specific population growth rate. For each population, we 326 

calculated the stochastic growth rate log *S as the average of all annual log * in each 327 

of 500 projections.   328 



 

 31 

References – Appendix S1 329 

 330 

Bartoń, K. (2022). MuMIn: Multi-Model Inference. R. https://CRAN.R-331 

project.org/package=MuMIn 332 

Bolker, B. (2022). Bbmle: Tools for General Maximum Likelihood Estimation. R. 333 

https://CRAN.R-project.org/package=bbmle 334 

Conquet, E., Ozgul, A., Blumstein, D. T., Armitage, K. B., Oli, M. K., Martin, J. G. A., 335 

Clutton-Brock, T. H., & Paniw, M. (2023). Demographic Consequences of 336 

Changes in Environmental Periodicity. Ecology, 104(3), e3894. 337 

https://doi.org/10.1002/ecy.3894 338 

Gelman, A. (2008). Scaling Regression Inputs by Dividing by Two Standard 339 

Deviations. Statistics in Medicine, 27(15), 2865–73. 340 

https://doi.org/10.1002/sim.3107 341 

Gómez-González, S., Paniw, M., Antunes, K., & Ojeda, F. (2018). Heat Shock and 342 

Plant Leachates Regulate Seed Germination of the Endangered Carnivorous 343 

Plant Drosophyllum Lusitanicum. Web Ecology, 18(1), 7–13. 344 

https://doi.org/10.5194/we-18-7-2018 345 

Paniw, M., Gil-Cabeza, E., & Ojeda, F. (2017a). Plant Carnivory beyond Bogs: 346 

Reliance on Prey Feeding in Drosophyllum Lusitanicum (Drosophyllaceae) in 347 

Dry Mediterranean Heathland Habitats. Annals of Botany, 119(6), 1035–41. 348 

https://doi.org/10.1093/aob/mcw247 349 

Paniw, M., Quintana-Ascencio, P. F., Ojeda, F., & Salguero-Gómez, R. (2017b). 350 

Interacting Livestock and Fire May Both Threaten and Increase Viability of a 351 

Fire-Adapted Mediterranean Carnivorous Plant. Journal of Applied Ecology, 352 

54(6), 1884–94. https://doi.org/10.1111/1365-2664.12872 353 



 

 32 

R Core Team. (2022). R: A Language and Environment for Statistical Computing. 354 

Vienna, Austria: R Foundation for Statistical Computing. https://www.R-355 

project.org/ 356 

Wood, S. N. (2011). Fast Stable Restricted Maximum Likelihood and Marginal 357 

Likelihood Estimation of Semiparametric Generalized Linear Models. Journal 358 

of the Royal Statistical Society Series B: Statistical Methodology, 73(1), 3–36. 359 

https://doi.org/10.1111/j.1467-9868.2010.00749.x 360 

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second 361 

Edition. CRC Press. 362 

Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing Parameter and Model 363 

Selection for General Smooth Models. Journal of the American Statistical 364 

Association, 111(516), 1548–63. 365 

https://doi.org/10.1080/01621459.2016.1180986 366 



 1 

Appendix S2 – Current and future rainfall and temperature data in dewy-pine 1 

populations 2 

 3 

1. Current rainfall and temperature data 4 

 5 

We modelled the response of dewy-pine vital rates to rainfall and maximum 6 

daily temperature using observed daily climatic data at dewy-pine population 7 

locations (Table 1) from the E-OBS dataset from the EU-FP6 project UERRA and the 8 

Copernicus Climate Change Service (Cornes et al., 2018; accessible at 9 

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php). We used the 10 

ncdf4 R package to process the raw netCDF weather data (Pierce, 2021), and 11 

transformed the daily rainfall and maximum daily temperature into monthly 12 

cumulative rainfall and average maximum daily temperature. For each population, 13 

we then obtained monthly cumulative rainfall and average maximum temperature 14 

data from the year prior the first census (i.e., 2010 for Sierra del Retín Disturbed and 15 

Vertedero, 2011 for Sierra Carbonera Young, 2014 for Sierra del Retín Young, and 16 

2015 for all other populations). To do so, we averaged the recorded climate values 17 

within a buffer of 0.1×1.5 degrees around the GPS location of each population. 18 

 19 

 20 

 21 

 22 

 23 

 24 
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Table S1 – Description of dewy-pine populations. Longitude and latitude of 25 

population locations are given in decimal degrees.  26 

Population Habitat type Description* Latitude Longitude First 
sampled 

Last 
fire* 

% bare 
ground# 

Sierra 
Carbonera 

Young 

Natural Little browsed 
heathland patch 

(4 fires 1975-
2008) 

36.209722  
 

-5.36 
 

2012 2011 8.67 
(±9.01) 

Sierra del 
Retín Young 

Natural Little browsed 
heathland patch 

(1 fire 1975-2008) 

36.1769444 
 

-5.8330555 
 

2015 2013 5.01 
(±6.38) 

Vertedero Natural Little browsed 
heathland patch 

(1 fire 1975-
2008); surrounded 
by browsed areas 
but was fenced in 
after 2009 fire to 
prevent browsing 

36.121667 -5.49 2011 2009 NA 

Sierra del 
Retín 

Disturbed 

Anthropogenic Moderately 
browsed 

heathland patch 
(1 fire 1975-

2008); located in 
military zone in a 
regularly cleared 

area (every 3 
years) along a 
road to avoid 

wildfire ignitions 

36.198056 -5.823611 2011 1996 NA 

Prisioneros Anthropogenic Located on 
abandoned 

quarry; frequent 
browsing by goats  

36.105 -5.4863888 
 

2016 1950 56.80 
(±22.09) 

Bujeo Anthropogenic On a regularly 
cleared area 

(every 3 years) 
along a dirt road 
to avoid wildfire 

ignitions; frequent 
browsing by goats 

36.072461 -5.52654 2016 1950 73.87 
(±25.47) 

Montera del 
Torero 

Anthropogenic On an old 
firebreak made by 

vegetation 
removal with 
bulldozers 

(mechanical 
uprooting); 
moderate 
browsing 

36.226389 -5.585278 2016 1950 62.93 
(±21.96) 



 3 

*Source: Paniw et al., 2017. See also REDIAM - Áreas recorridas por el fuego en 27 

Andalucía (1975-actualidad); Browsing was determined based on observations of 28 

dung/droppings of ungulates at the study sites during each visit (frequent browsing: 29 

droppings found in > 60% of plots on average; moderate browsing: droppings found 30 

in 30-60% of plots on average; little browsing: droppings found in < 30% of plots on 31 

average) 32 

#Source: Gómez-González et al., 2018. % bare soil cover in a site was calculated as 33 

the number of 25 grids (10´10 cm each, arranged in a 50-cm square) that were bare 34 

soil. In each site in 2017, 30 of such 50-cm squares were located adjacent to 35 

randomly sampled dewy pine plants.   36 

 37 

2. Projected rainfall and temperature data 38 

 39 

To project dewy-pine populations under climate change, we used projected 40 

rainfall and temperature values at dewy-pine population locations from 11 global 41 

circulation models (GCM; see Table 2) from the Coupled Model Intercomparison 42 

Project 6 (CMIP6; Eyring et al., 2016; Pascoe et al., 2020; Waliser et al., 2020) 43 

available from the Earth System Grid Federation (ESFG; Petrie et al., 2021; 44 

available at https://aims2.llnl.gov/search). For each model, we selected the best 45 

variant using the GCMeval tool (Parding et al., 2020; accessible at 46 

https://gcmeval.met.no/). For each GCM, we downloaded data for the intermediate 47 

and worst scenario of atmospheric greenhouse gas Representative Concentration 48 

Sierra 
Carbonera 
Disturbed 

Anthropogenic In a small 
uprooted, open 

patch close to old 
(abandoned) 

military premises; 
moderate 
browsing 

36.106388 
 

-5.3605555 
 

2016 1950 22.67 
(±22.99) 
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Pathway (RCP), corresponding to a level of radiative forcing reaching 4.5 (RCP 4.5) 49 

or 8.5 (RCP 8.5) Watts per square metre (Wm-2) by 2100, respectively. We 50 

processed the raw data from each climate projection model using the ncdf4 R 51 

package (Pierce, 2021) to obtain monthly cumulative rainfall and average maximum 52 

temperature in each population by averaging the values recorded within a buffer of 53 

0.1×1.5 degrees around the population coordinates (i.e., 1.5 times the grid 54 

resolution). 55 

 56 

Most GCMs comprised projected rainfall and temperature values beyond the values 57 

observed in our populations. To avoid predicting vital rates using values of climate 58 

variables outside the observed range, we capped these values to the maximum and 59 

minimum observed. For example, while the observed maximum cumulative rainfall in 60 

fall was 245 mm, six of the considered GCM predicted greater values in some years, 61 

ranging from 250 to 463 mm; we transformed these values to the maximum 62 

observed (245 mm). This allowed us to investigate the response of dewy-pine 63 

populations to increases in the frequency of extreme climatic conditions, rather than 64 

changes in absolute rainfall and temperature values.  65 
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Table S2 – List of global circulation models used to project dewy-pine 66 

populations under climate change. 67 

Source ID 
Experimen

t  Variant  Version Institution 
Modelling 

centre Citation 

CanESM5 ssp585 r1i1p1f1 20190429 

Canadian Centre for 
Climate Modelling 
and Analysis, 
Environment and 
Climate Change 
Canada, Victoria, BC 
V8P 5C2, Canada 

CCCma 
 

(Swart et al., 2019) 
 

EC_Earth3 
 ssp585 r4i1p1f1 20200425 

AEMET, Spain; BSC, 
Spain; CNR-ISAC, 
Italy; DMI, Denmark; 
ENEA, Italy; FMI, 
Finland; Geomar, 
Germany; ICHEC, 
Ireland; ICTP, Italy; 
IDL, Portugal; IMAU, 
The Netherlands; 
IPMA, Portugal; KIT, 
Karlsruhe, Germany; 
KNMI, The 
Netherlands; Lund 
University, Sweden; 
Met Eireann, Ireland; 
NLeSC, The 
Netherlands; NTNU, 
Norway; Oxford 
University, UK; 
surfSARA, The 
Netherlands; SMHI, 
Sweden; Stockholm 
University, Sweden; 
Unite ASTR, 
Belgium; University 
College Dublin, 
Ireland; University of 
Bergen, Norway; 
University of 
Copenhagen, 
Denmark; University 
of Helsinki, Finland; 
University of 
Santiago de 
Compostela, Spain; 
Uppsala University, 
Sweden; Utrecht 
University, The 
Netherlands; Vrije 
Universiteit 
Amsterdam, the 
Netherlands; 

EC-Earth- 
Consortium 

(EC-Earth 
Consortium (EC-

Earth), 2019) 
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Wageningen 
University, The 
Netherlands. Mailing 
address: EC-Earth 
consortium, Rossby 
Center, Swedish 
Meteorological and 
Hydrological 
Institute/SMHI, SE-
601 76 Norrkoping, 
Sweden 

FGOALS_G3 ssp585 r1i1p1f1 20190818 
Chinese Academy of 
Sciences, Beijing 
100029, China 

CAS (Li, 2019) 

GFDL_ESM4 ssp585 r1i1p1f1 20180701 

National Oceanic and 
Atmospheric 
Administration, 
Geophysical Fluid 
Dynamics 
Laboratory, 
Princeton, NJ 08540, 
USA 

NOAA-
GFDL (John et al., 2018) 

GISS_E2_1_G ssp585 r1i1p1f2 20200115 
Goddard Institute for 
Space Studies, New 
York, NY 10025, USA 

NASA-GISS 

(NASA Goddard 
Institute for Space 

Studies 
(NASA/GISS), 

2020) 

INM_CM4_8 ssp585 r1i1p1f1 20190603 

Institute for 
Numerical 
Mathematics, 
Russian Academy of 
Science, Moscow 
119991, Russia 

INM (Volodin et al., 
2019) 

IPSL_CM6A_LR ssp585 r1i1p1f1 20190903 
Institut Pierre Simon 
Laplace, Paris 75252, 
France 

IPSL (Boucher et al., 
2019) 

MIROC6 ssp585 r1i1p1f1 20191016 

JAMSTEC (Japan 
Agency for Marine-
Earth Science and 
Technology, 
Kanagawa 236-0001, 
Japan), AORI 
(Atmosphere and 
Ocean Research 
Institute, The 
University of Tokyo, 
Chiba 277-8564, 
Japan), NIES 
(National Institute for 
Environmental 
Studies, Ibaraki 305-
8506, Japan), and R-

MIROC (Shiogama et al., 
2019) 
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CCS (RIKEN Center 
for Computational 
Science, Hyogo 650-
0047, Japan) 

MPI_ESM1_2_LR ssp585 r10i1p1f1 20190710 

Max Planck Institute 
for Meteorology, 
Hamburg 20146, 
Germany 

MPI-M (Wieners et al., 
2019) 

MRI_ESM2_0 ssp585 r1i1p1f1 20191108 

Meteorological 
Research Institute, 
Tsukuba, Ibaraki 305-
0052, Japan 

MRI (Yukimoto et al., 
2019) 

NorESM2_MM ssp585 r1i1p1f1 20191108 

NorESM Climate 
modeling Consortium 
consisting of 
CICERO (Center for 
International Climate 
and Environmental 
Research, Oslo 
0349), MET-Norway 
(Norwegian 
Meteorological 
Institute, Oslo 0313), 
NERSC (Nansen 
Environmental and 
Remote Sensing 
Center, Bergen 
5006), NILU 
(Norwegian Institute 
for Air Research, 
Kjeller 2027), UiB 
(University of Bergen, 
Bergen 5007), UiO 
(University of Oslo, 
Oslo 0313) and UNI 
(Uni Research, 
Bergen 5008), 
Norway. Mailing 
address: NCC, c/o 
MET-Norway, Henrik 
Mohns plass 1, Oslo 
0313, Norway 

NCC (Bentsen et al. 
2019) 

 68 

3. Current and future climatic trends 69 

 70 

Temperatures have increased in the past decades, with an average trend 71 

(mean and 95% confidence interval) of 0.033 ºC [0.021; 0.044] per year between 72 
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1980 and 2022. This trend will continue and intensify in the future, as climate-change 73 

models predict an increase of 0.055 ºC [0.053; 0.057] per year on average between 74 

2015 and 2100 under the RCP 8.5 global change scenario (Moss et al., 2010; van 75 

Vuuren et al., 2011; Riahi et al., 2011). Average monthly cumulative rainfall and its 76 

variability show opposite trends between the current and projected conditions. Both 77 

the yearly mean and variability increased on average between 1980 and 2022 (0.18 78 

[-0.23, 0.59] and 0.083 mm [-0.47, 0.63] per year, respectively) but are predicted to 79 

decrease until 2100 according to future projections under the RCP 8.5 scenario (-80 

0.16 [-0.19, -0.13] and -0.11 mm [-0.14, -0.077]). Notably, while the RCP 4.5 global 81 

change scenario predicts a more moderate increase in temperature, both scenarios 82 

show the same trend for the 30 years of our projections (Fig. S1; Fig. S2a). 83 

Figure S1 – Current and projected monthly temperature and rainfall data. 84 

We obtained current data on daily maximum temperature and daily rainfall amounts 85 

from the E-OBS dataset from the EU-FP6 project UERRA and the Copernicus 86 

Climate Change Service. We extracted the projected rainfall and temperature values 87 
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under the RCP 4.5 and 8.5 global change scenarios from 11 global change models 88 

from the Coupled Model Intercomparison Project 6 (CMIP6; available from the Earth 89 

System Grid Federation). 90 

Figure S2 – Current and projected trends in temperature and rainfall. We 91 

investigated yearly changes in (a) average daily maximum temperature, (b) standard 92 

deviation in monthly cumulative rainfall, and (c) average monthly cumulative rainfall, 93 

for the current (1980–2022) and projected conditions (2015–2100) under the RCP 94 
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4.5 and 8.5 global change scenarios. Dots represent the observed values and lines 95 

and shaded ribbons represent the mean and 95% confidence interval of linear 96 

models fitted to each data subset. 97 

 98 

 99 

Figure S3 – Demographic consequences of climate change in natural 100 

and anthropogenic populations of dewy pines under scenario RCP4.5. We 101 

projected each natural and anthropogenic population 500 times for 30 years under a 102 

control (keeping temperature and rainfall conditions as currently observed) and two 103 

climate-change scenarios (RCP4.5 and RCP8.5). Here, we show results for scenario 104 

RCP4.5 (see Figure 5 in the main text for RCP8.5). We computed, for each 105 

population, the probability of quasi-extinction (pq-ext). Here we summarise these 106 

metrics per habitat type, and the variability in the values therefore correspond to 107 

among-population and among-projection differences.  108 

 109 
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Appendix S3 – Individual-based model description  1 

 2 

The model description follows the ODD (Overview, Design concepts, Details) 3 

protocol for describing individual- and agent-based models (Grimm et al., 2006), as 4 

updated by (Grimm et al., 2020). 5 

 6 

1. Purpose and patterns 7 

 8 

The purpose of the model is to predict population growth rates and extinction 9 

probabilities of dewy-pine (Drosophyllum lusitanicum) populations in natural and 10 

anthropogenic habitats in response to projected changes in rainfall and temperature 11 

values. We evaluate our model by its ability to reproduce the observed dynamics in 12 

the mean changes in aboveground abundance in each population, or at least follow 13 

a similar trend. 14 

 15 

2. Entities, state variables, and scales 16 

 17 

Entities and state variables 18 

 19 

The environment is a single entity representing the population. Its role is to 20 

describe the environment (e.g. climate variables) and keep track of simulated time. 21 

Environment state variables correspond to dynamic global variables and are 22 

presented in Table 1.  23 
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Table 1 – Environment state variables 24 

Variable name Variable 
type and 

units 

Rang
e 

Meaning 

time_sim Integer; 
dynamic  

≥1 Number of years that passed since the start of 
the projection 

year_obs Integer; 
dynamic 

(e.g. 2020) 

≥2016 Current year in the projection 

year Integer; 
dynamic 

(e.g. 2020) 

≥2016 Year randomly sampled from the available 
observed years 

TSF Integer; 
dynamic 

≥0 Number of years since the last fire 

TSFcat Categorical; 
dynamic 

(0–4) 

{0, 1, 
2, 3, 
4} 

Post-fire habitat stage, with any number of years 
after a fire ≥ 4 corresponding to 4 

corr_seed_surv Probability; 
dynamic 

[0, 1] Correction factor representing the survival 
probability of seeds above the ground 

summerT Real 
number; °C; 

dynamic 

≥0 Average minimum daily temperature in summer 
(May–September) following the annual survey in 

May 

prevwinterT Real 
number; °C; 

dynamic 

≥0 Average minimum daily temperature in winter 
(January–April) prior to the annual survey in May 

fallR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in fall (September–November) 
following the annual survey in May 

prevfallR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in fall (September–November) 
prior to the annual survey in May 

prevwinterR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in winter (January–April) prior 
to the annual survey in May 

extinction Binary; 
dynamic 

{0, 1} Current state of the population: extinct (1) or not 
(0) 

  25 

Plants are entities representing the aboveground—as opposed to seeds—individual 26 

dewy pines in the population. They correspond to individuals from the seedling stage 27 
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in the species life cycle. The state variables unique to each plant are presented in 28 

Table 2.  29 

 30 

Table 2 – Plant state variables 31 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the plant 

quadratID Character 
string; 
static 

NA Unique identifier of the quadrat corresponding to 
the location of the plant 

 size Real 
number; 
dynamic 

≥0 Plant size in the current time step, corresponding 
to log(number of leaves x length of the longest 

leaf in cm) 

survival Binary; 
dynamic 

{0, 1} State of the plant at the next time step: alive (1) 
or dead (0) 

sizeNext Real 
number; 
dynamic 

≥0 Plant size in the next time step, corresponding to 
log(number of leaves x length of the longest leaf 

in cm) 

flowering Binary; 
dynamic 

{0, 1} Reproductive state of the plant in the current time 
step: flowering (1) or not (0) 

nbFlowers Integer; 
dynamic 

≥0 Number of flowers on the plant 

nb_seeds Integer; 
dynamic 

≥0 Number of seeds per flower produced by the 
plant 

 32 

Seeds are entities representing individuals before they germinate and become 33 

seedlings. Because they are concerned by different processes, we divided seeds 34 

between two types of entities: Seedbank seeds are entities representing the seeds 35 

in the soil seedbank and produced seeds are entities representing the individuals 36 

that have been produced by aboveground reproducing dewy pines in the current 37 

time step. Their state variables are presented in Table 3 and Table 4. 38 
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Table 3 – Seedbank seed state variables 39 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the seed 

quadratID Character 
string; 
static 

NA ID of the quadrat corresponding to the location of 
the seed 

size Real 
number; 
dynamic 

≥0 Size of the seedling growing from the germinating 
seed in the next time step, corresponding to 

log(number of leaves x length of the longest leaf 
in cm) 

outSB Binary; 
dynamic 

{0, 1} Seed germination (1) or not (0) 

staySB Binary; 
dynamic 

{0, 1} Seed dormancy (1) or not (0) 

 40 

Table 4 – Produced seed state variables 41 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the seed 

quadratID Character 
string; 
static 

NA ID of the quadrat corresponding to the location of 
the seed 

size Real 
number; 
dynamic 

≥0 Size of the seedling growing from the germinating 
seed in the next time step, corresponding to 

log(number of leaves x length of the longest leaf 
in cm) 

goCont Binary; 
dynamic 

{0, 1} Seed germination (1) or not (0) 

goSB Binary; 
dynamic 

{0, 1} Seed entering the seedbank (1) or not (0) 

 42 
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Quadrats are two-dimensional squares representing the monitoring units in which 43 

plants are censored in a population. Quadrats are only associated with one dynamic 44 

state variable, abLarge, an integer (≥0) corresponding to the number of plants with a 45 

size > 4.5 present in a quadrat.   46 

 47 

Scales 48 

 49 

The model is spatially explicit and represents a population in a two-dimensional 50 

space extending over 40 m2 divided in 1-m2 quadrats. These quadrats are discrete 51 

units in which individual plants and seeds are distributed, and correspond to the units 52 

in which dewy pines are monitored every year—more specifically in four separated 53 

transects of ten quadrats each.  54 

 55 

The model represents time via discrete time steps, each corresponding to one year, 56 

to replicate the annual surveys that take place in May in the various populations.  57 

 58 

3. Process overview and scheduling 59 

 60 

 Process overview 61 

 62 

The model covers the life cycle of dewy pines. At each time step, the 63 

environment updates the environmental variables and simulation time; the plants 64 

reproduce, survive, and grow; the seedbank seeds germinate or stay dormant; and 65 

the produced seeds germinate or go to the seedbank. The quadrats get new 66 

aboveground density values.  67 
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Schedule summary 68 

 69 

Throughout the model, the update of each state variable is done simultaneously for 70 

all entities, as each process in a given entity (i.e., environment, seeds, and plants) is 71 

assumed to be independent from the processes in another entity. 72 

 73 

At each timestep, the model resets the ensemble of seeds produced to zero. The 74 

population of plants is also reset if a fire occurred, as all aboveground individuals 75 

are burned. The environment then updates the environmental variables (rainfall and 76 

temperature) as well as the simulation year and the number of years after the last 77 

fire. The latter two are used to update the correction factor representing seed 78 

survival (corr_seed_surv). 79 

 80 

Aboveground plants then reproduce (see Reproduction submodel); that is, they 81 

flower and produce a certain number of flowers, which in turn produce seeds. The 82 

number of flowers is capped to the user-selected value if needed. The fate of the 83 

seeds produced is updated; they can either germinate, contribute to the seedbank, 84 

or die (i.e., none of the two former processes). Produced seeds that do not die are 85 

then assigned an ID, and those that germinate a size, and the maximum ID number 86 

is updated.  87 

 88 

After reproducing, plants survive and grow (Survival and growth submodel). The 89 

size is capped or adjusted if needed. Seedbank processes take place next 90 

(Seedbank submodel), with seedbank seeds germinating, staying dormant, or dying 91 

(i.e., none of the two former processes). Seeds that germinate are attributed a size. 92 
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Produced seeds that were assigned to go dormant are added to the seedbank, and 93 

those that germinate are added to the aboveground population after capping their 94 

number in each quadrat.  95 

 96 

After each timestep, the population growth rate and mean change in aboveground 97 

population abundance are calculated and the yearly individual data is merged to the 98 

full data. The environment updates the simulation time and the extinction status to 1 99 

if the quasi-extinction threshold is reached, and the size of each surviving plant is 100 

updated to its size at the next time step. Finally, the aboveground density in each 101 

quadrat is updated. 102 

 103 

Schedule details 104 

 105 

The schedule follows the processes of the dewy-pine life cycle during a year from 106 

the annual census occurring in May. This census occurs during the flowering period 107 

and the model replicates this by starting with the Reproduction submodel. The 108 

Survival and growth and Seedbank submodels could come in any order after 109 

reproduction took place, as they are independent from each other. 110 

 111 

In natural populations, the schedule depends on the fire regime. Reproduction does 112 

not happen until the second year after a fire occurs, and only survival and growth, as 113 

well as germination or dormancy in the seedbank, are represented in the year of a 114 

fire and the following year.  115 
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4. Design concepts 116 

 117 

1. Basic principles 118 

 119 

 This model relies on previous knowledge on the life cycle of dewy pines 120 

(Paniw et al., 2017; Conquet et al., 2023) to perform a population viability analysis 121 

(PVA), a modelling approach commonly used in population ecology. By projecting 122 

population dynamics into the future, a PVA aims at assessing the probability of 123 

persistence of populations and allows for the introduction of stochasticity in 124 

environmental conditions (e.g. fire return, or sampling from a distribution of 125 

temperature and rainfall values). While this model is designed for plant populations 126 

and does not include any representation of social organisation or individual’s 127 

decision processes, it allows to take into account demographic stochasticity (by 128 

sampling demographic processes from distributions), which is often unaccounted for 129 

in PVAs due to the use of simplified population models such as matrix population 130 

models (MPM) or integral projection models (IPM). 131 

 132 

2. Emergence 133 

 134 

Changes in aboveground population size emerge from individual fate, which in turn 135 

emerges from the relationship between demographic processes (e.g. survival or 136 

reproduction) and individual traits (plant size), density, and environmental variables. 137 

Individual traits and density vary with changes in demographic processes affecting 138 

individual fate. How the various demographic processes interact to shape individual 139 

life histories is imposed by previous empirical observations on the species’ life cycle. 140 
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Seedbank processes emerge from the simulated sequence of post-fire habitat 141 

stages (in natural populations) or from site-specific parameters that do not vary 142 

through time parameters (in anthropogenic populations). 143 

 144 

3. Adaptation 145 

 146 

Individuals do not make any decisions based on objectives in this model.  147 

 148 

4. Objectives 149 

 150 

Individuals do not use any fitness measure to make decisions. 151 

 152 

5. Learning 153 

 154 

Learning is not implemented in this model. 155 

 156 

6. Prediction 157 

 158 

Prediction is not implemented in this model. 159 

 160 

7. Sensing 161 

 162 

Sensing is not implemented in this model.  163 
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8. Interaction 164 

 165 

Interactions between individuals in this model are mediated by competition for 166 

resources (e.g. light or prey) and facilitation (e.g. provision of shade). These 167 

interactions are represented by the effect of density at the beginning of year t on 168 

demographic processes, and in turn individual fate, from time t to t+1. Here, density 169 

corresponds more specifically to the number of aboveground individuals of size > 4.5 170 

in a given 1-m2 quadrat, as we expect from observations that individuals further than 171 

the quadrat are too far to affect focal plants, and that smaller individuals only have a 172 

small effect on other individuals. 173 

  174 

9. Stochasticity 175 

 176 

Stochasticity occurs at several levels of the model. First, if the user chooses to 177 

project the population under current climatic conditions, the sequence of years of the 178 

desired length will be created by randomly sampling from the list of observed years. 179 

If the user chooses to project the population under future climate-change conditions, 180 

this random sampling of observed years is used to obtain the sequence of years to 181 

be used as random effects in the submodels, that is, the years representing the 182 

variation in demographic processes that is not explained by environmental 183 

conditions, individual traits, or density.  184 

 185 

Additionally, all demographic processes governing the fate of both aboveground 186 

plants and produced and seedbank seeds are stochastic. For each plant, the 187 

survival, size (at the next time step or after germinating), flowering status, and 188 
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number of flowers are sampled from binomial, scaled Student t, and Poisson 189 

distributions with parameters obtained from predictions of generalised additive 190 

models and depending on the environmental conditions, individual traits, and 191 

density. For each seed, whether it germinates, stays dormant, or contributes to the 192 

seedbank is sampled from a binomial distribution with parameters depending on the 193 

site in which the simulation is performed or the time since last fire. The number of 194 

seeds per flower for each plant is sampled from a Poisson distribution with a fixed 195 

mean previously used in population projections for this system (Paniw et al., 2017; 196 

Conquet et al., 2023).  197 

 198 

Moreover, the location of each seed in the seedbank at the start of the simulation is 199 

attributed randomly, with each quadrat having the same probability 200 

!
"#"$%	'()*+,	#-	.($/,$"0 to be designated as a seed’s location. In subsequent years, all 201 

produced seeds are assigned to the quadrat of the parent plant. This approach 202 

allows us to reproduce the lack of active dispersal mechanisms in dewy pines, 203 

leading most seeds to fall and establish next to the mother plant.   204 

 205 

Finally, when the number of plants to add to the population is higher than the 206 

capping threshold set by the user, the new individuals to be removed from the 207 

recruits are sampled at random. 208 

 209 

10. Collectives 210 

 211 

There are no collectives in this model. 212 

 213 
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11. Observation 214 

 215 

The two main outputs of this model are (1), for each simulation the yearly population 216 

growth rates (log ! = 1!
1!"#

, where Nt is the total population size—above ground and in 217 

the seedbank—in year t and Nt-1 in year t-1) that can be used to calculate the 218 

stochastic growth rate over the whole simulation (log !S = ∑ 345	6!$!%&
7  where T is the 219 

number of simulated years), and (2) whether the population went extinct within the 220 

number of simulated years, which can be used to obtain the probability of quasi-221 

extinction (proportion of simulations where the population went under the quasi-222 

extinction threshold, i.e., 10 > aboveground individuals and 50 > seeds in the 223 

seedbank) across a number of simulations defined by the user.  224 

In addition, the output of the model contains the full individual data across the whole 225 

simulation, the mean change in aboveground population abundance (i.e. the 226 

population growth rate without taking the seedbank into account), as well as 227 

population size and population density (i.e. number of individuals of size > 4.5 per 1-228 

m2 quadrat). 229 

 230 

5. Initialization 231 

 232 

For both habitats (natural and anthropogenic) and all scenarios (control and 233 

climate change) the initial number of aboveground plants, as well as their size and 234 

location (quadrat) corresponds to that observed in the population and first year 235 

chosen by the user for the simulation, as does the density in each quadrat. The 236 

number of seeds present in the seedbank when starting the simulation is defined by 237 

the user (by default 10,000 for natural populations and 3,000 for anthropogenic 238 
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populations), and the seeds are initially assigned randomly to their quadrat. The 239 

number of produced seeds and the extinction status are initialised at 0. The 240 

sequence of yearly population growth rates, mean change in aboveground 241 

population abundance, and population density are initialised with NAs.  242 

 243 

In both scenarios, the required number of years (set by the user) is sampled among 244 

the years observed in the full individual data (e.g. 30 samples of years 2016–2021). 245 

This sequence of years is used to represent random year variation (i.e., random 246 

effects in vital-rate models). However, the sequence of yearly temperature and 247 

rainfall values depends on the scenario. Under the control scenario, these values 248 

correspond to the observed climate in each year of the sampled sequence. When 249 

the population is projected under climate change, the temperature and rainfall values 250 

reflect the projected climate values obtained from the global circulation models 251 

(GCM) from the first year defined by the user and following a chronological order 252 

until the end of the simulation. 253 

 254 

Finally, projecting natural populations requires to initialise a sequence of post-fire 255 

habitat stages (0–4). In the first year, this corresponds to the stage observed in the 256 

first year of the simulation (defined by the user). The following stages are determined 257 

by a Markov chain (Fig. S1; see also Paniw et al., 2017; Conquet et al., 2023), where 258 

the transition from the last to the first stage (fire year) depends on the probability of 259 

fire return (p), which is set by the user (1/30 by default). The sequence of number of 260 

years since the last fire (TSF) is initialised using the observed number in the first 261 
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year of the simulation, with the subsequent TSFs being inferred from the sequence 262 

of post-fire habitat stages. 263 

 264 

 265 

 266 

 267 

 268 

 269 

 Figure S1 - Markov chain determining the succession of post-fire 270 

habitats for the dewy pine population. The first four states (from the fire year to 271 

the third year after a fire) constitute the deterministic part of the Markov chain and 272 

thus always follow each other in a sequence of 1 to 4 (probability of transition = 1). 273 

The fifth state (from the fourth year after a fire) is stochastic, and the transition from 274 

this state depends on the fire frequency p (i.e., the population will remain in state 5 275 

until a fire occurs).  276 

 277 

6. Input data 278 

 279 

 The model uses as input data individual-based data on dewy pines 280 

(aboveground plants) in the population chosen by the user. These data have been 281 

collected during annual population surveys occurring in May since at least 2016 282 

(earlier for some populations, see Appendix S2). These surveys enabled us to obtain 283 

data on individuals’ survival, size (log[length of the longest leaf x number of leaves]), 284 

reproductive status, and number of flowers (Paniw et al.,, 2017). Additionally, the 285 

model uses input data containing values from 2016 to 2050 of (1) average daily 286 
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minimum temperature (in ºC) in summer and fall following a census and fall and 287 

winter prior to a census, and (2) cumulative rainfall (in mm) in fall and winter 288 

following a prior to a census. Details on data sources and preparation can be found 289 

in Appendix S2. 290 

 291 

7. Submodels 292 

 293 

Reproduction 294 

 295 

Flowering: Individuals can reproduce from two years after a fire occurred in natural 296 

populations (Paniw et al., 2017). The reproductive status of individuals (0 or 1) is 297 

drawn from a binomial distribution which probability is predicted from a generalised 298 

additive model (GAM) describing the observed relationship between flowering 299 

probability and winter mean daily maximum temperature, fall cumulative rainfall, 300 

individual size, aboveground density of individuals with size > 4.5, and time since last 301 

fire in natural populations (see Appendix S1: Table S5 for the full equation linking the 302 

various covariates to flowering probability). 303 

 304 

Number of flowers per individual: Reproductive individuals (i.e., flowering = 1) can 305 

produce flowers, their number being drawn from a negative binomial distribution 306 

which probability is predicted from a generalised additive model (GAM) describing 307 

the observed relationship between the number of flowers and winter mean daily 308 

maximum temperature, individual size, and time since last fire in natural populations 309 

(see Appendix S1: Table S5 for the full equation linking the various covariates to the 310 

number of flowers per individual).  311 

https://doi.org/10.1007/s11284-014-1187-5
https://doi.org/10.1038/ncomms12306
https://www.zotero.org/google-docs/?GVJw0b
https://doi.org/10.1038/242344a0
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.18564/jasss.4259
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 312 

Number of seeds per flower: The number of seeds for each flower is drawn from a 313 

Poisson distribution with a mean fixed at 9.8, which corresponds to the value used in 314 

previous population projections of the dewy-pine system (Paniw et al., 2017; 315 

Conquet et al., 2023). 316 

  317 

 Survival and growth 318 

 319 

Survival: Individual survival (0 or 1) is sampled from a binomial distribution which 320 

probability is predicted from a generalised additive model (GAM) describing the 321 

observed relationship between survival and summer mean daily maximum 322 

temperature, fall cumulative rainfall, individual size, aboveground density of 323 

individuals with size > 4.5, and time since last fire in natural populations (see 324 

Appendix S1: Table S5 for the full equation linking the various covariates to survival).  325 

  326 

Growth: The size of surviving individuals in the following year is sampled from a 327 

truncated scaled Student t distribution with location (i.e. mean), scale (i.e. standard 328 

deviation) and degrees of freedom obtained from a generalised additive model 329 

describing the observed relationship between individuals’ size in the next year and 330 

fall cumulative rainfall, individual size, aboveground density of individuals with size > 331 

4.5, and time since last fire in natural populations (see Appendix S1: Table S5 for the 332 

full equation linking the various covariates to growth). The minimum or maximum 333 

observed sizes were assigned to individuals with infinite size values.  334 
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 Seedbank 335 

 336 

Continuous germination and contribution to the seedbank: For each produced seed, 337 

whether it germinated directly without going to the seedbank (0 or 1) was sampled 338 

from a binomial distribution with a mean determined by the probability to germinate 339 

when produced (goCont) which depended on time since last fire (in natural 340 

populations) or site (in anthropogenic populations) (see Appendix S1: Table S1 for 341 

details on the mean values). Among the seeds that will not germinate, seeds that will 342 

contribute to the seedbank in the next year (0 or 1) were then sampled from a 343 

binomial distribution with a mean determined by 1-goCont. The rest of the seeds 344 

were considered dead and removed from the population. In anthropogenic 345 

populations, the probabilities of continuous germination and contribution to the 346 

seedbank were corrected for seed survival (i.e., multiplied by 0.33) and, in one 347 

population (Sierra Carbonera Disturbed), further multiplied by 0.4 to replicate more 348 

accurately the observed population dynamics. 349 

 350 

Germination from the seedbank: For each seedbank seed, whether it germinated 351 

from the seedbank (0 or 1) was sampled from a binomial distribution with a mean 352 

depending on time since last fire (in natural populations) or site (in anthropogenic 353 

populations) (see Appendix S1: Table S1 for details on the mean values). In 354 

anthropogenic populations, the probability of germination from the seedbank was 355 

corrected for seed survival (i.e., multiplied by 0.33) and, in one population (Sierra 356 

Carbonera Disturbed), further multiplied by 0.4 to replicate more accurately the 357 

observed population dynamics. 358 

 359 
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Dormancy: For each seedbank seed, whether it remained dormant in the seedbank 360 

(0 or 1) was sampled from a binomial distribution with a mean depending on time 361 

since last fire (in natural populations) or site (in anthropogenic populations) (see 362 

Appendix S1: Table S1 for details on the mean values). In anthropogenic 363 

populations, the probability of dormancy was corrected for seed survival (i.e., 364 

multiplied by 0.33) to replicate more accurately the observed population dynamics. 365 

 366 

Seedling size: The size of a germinating seed is sampled from a truncated scaled 367 

Student t distribution with location (i.e. mean), scale (i.e. standard deviation) and 368 

degrees of freedom obtained from a generalised additive model describing the 369 

observed relationship between seedling size and winter mean daily maximum 370 

temperature, aboveground density of individuals with size > 4.5, and time since last 371 

fire in natural populations (see Appendix S1: Table S5 for the full equation linking the 372 

various covariates to seedling size). The minimum or maximum observed sizes were 373 

assigned to individuals with infinite size values.   374 
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Appendix S4 – Results from sensitivity analyses  1 

 2 

Figure S1 – Sensitivity of stochastic population growth rate across 30 3 

years (log !S) to climate-change effects in different vital rates. We projected 4 

each natural and anthropogenic population 100 times for 30 years by changing 5 

temperature and rainfall values as projected under the RCP 8.5 climate-change 6 

scenario in specific vital rates while keeping climatic drivers at their past observed 7 

values for the remaining vital rates. We then calculated % changes in log !S 8 

compared to a control scenario where climatic drivers are at their past observed 9 

values for all vital rates (500 log !S for each population). We calculated 500 10 

sensitivity values for each population by randomly sampling 100 log !S_control from 11 

the 500 available and comparing them to the 100 available log !S_perturbed. Here 12 

we summarise these changes per vital rate, with the triangles representing averages 13 

across populations and sensitivity simulations. 14 



 2 

 15 

Figure S2 – Sensitivity of stochastic population growth rate across 30 16 

years (log !S) to climate-change effects in different vital rates across 17 

populations. We projected each natural and anthropogenic population 100 times for 18 

30 years by changing temperature and rainfall values as projected under the RCP 19 

8.5 climate-change scenario in specific vital rates while keeping climatic drivers at 20 

their past observed values for the remaining vital rates. We then calculated % 21 



 3 

changes in log !S compared to a control scenario where climatic drivers are at their 22 

past observed values for all vital rates (500 log !S for each population). We 23 

calculated 500 sensitivity values for each population by randomly sampling 100 log 24 

!S_control from the 500 available and comparing them to the 100 available log 25 

!S_perturbed. Here we summarise these changes per vital rate and population, with 26 

the triangles representing averages across 500 sensitivity values. 27 
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