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 1 

Climate change amplifies extinction risk of a subshrub in 1 

anthropogenic landscapes 2 

 3 

Abstract 4 

1. In most ecosystems, the increasingly strong effects of climate change on 5 

biodiversity co-occur with other anthropogenic pressures, most importantly 6 

land-use change. However, many long-term studies of population dynamics 7 

focus on populations monitored in protected areas, and our understanding of 8 

how climate change will affect population persistence under anthropogenic 9 

land use is still limited.  10 

2. To fill this knowledge gap, we assessed the consequences of co-occurring 11 

land-use and climate change on population dynamics of a fire-adapted 12 

Mediterranean carnivorous subshrub, the dewy pine (Drosophyllum 13 

lusitanicum). We used seven years of individual data on 4,753 plants 14 

monitored in three natural heathland sites that experience primarily fire as a 15 

main disturbance, and five anthropogenic sites, where fires have been 16 

replaced by persistent disturbances from browsing or mechanical vegetation 17 

removal as a consequence of land-use change. All sites are projected to 18 

experience increasingly hotter summers and drier falls and winters. We used 19 

generalised additive models to model non-linear responses of survival, 20 

growth, and reproduction to rainfall, temperature, size, density, and time since 21 

fire in anthropogenic and natural dewy-pine populations. We then projected 22 

population dynamics under climate-change scenarios using an individual-23 

based model.  24 
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3. Our findings reveal that vital rates respond differently to climate change in 25 

anthropogenic compared to natural habitats. While extinction risks do not 26 

change under climate change in natural habitats, future higher summer 27 

temperatures decrease survival and lead to population declines and higher 28 

extinction probabilities in anthropogenic habitats.  29 

4. Synthesis: Our results highlight the possible dramatic effects of climate 30 

change on populations largely confined to chronically disturbed, 31 

anthropogenic habitats and provide a foundation for devising relevant 32 

management strategies aiming towards the protection of species in human-33 

disturbed habitats of the Mediterranean habitat. Overall, our findings 34 

emphasise the need for more long-term studies in managed landscapes. 35 

 36 

Keywords  37 

plant population and community dynamics, anthropogenic landscape, climate 38 

change, land-use change, disturbance regime, fire adaptation, Mediterranean 39 

habitat, population persistence 40 

  41 

Introduction 42 

 43 

Land-use change has been identified as the most important driver of 44 

biodiversity declines in most ecosystems (Sala et al., 2000; Díaz et al., 2019; IPBES, 45 

2019). Across the globe, human expansion has caused habitat loss and 46 

fragmentation through the modification of lands for urbanisation or agricultural 47 

purposes (Foley et al., 2005), with dire consequences on local and regional species 48 
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persistence (Selwood et al., 2015) and cascading effects at the community and 49 

ecosystem levels (Garnier et al., 2007; Kampichler et al., 2012; Alberti, 2015). 50 

Meanwhile, the effects of land-use change on species are increasingly compounded 51 

by more severe impacts of climate change on natural systems (Brook et al., 2008; 52 

Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014).  53 

 54 

The complex interplay of land-use and climate change is reshaping ecosystems at 55 

an unprecedented rate, with profound implications for the persistence of many 56 

species. Nonetheless, many studies assess the persistence of populations under 57 

climate change in protected areas (Murali et al., 2022)—which are generally 58 

sheltered from anthropogenic land use and habitat loss (Geldmann et al., 2013; 59 

Watson et al., 2014; but see Clark et al., 2013), and where populations are thus 60 

overall doing better than those outside protected regions (Geldmann et al., 2013; 61 

Gray et al., 2016). This means that, in many studies, the key role of land-use change 62 

in shaping the response of populations to changes in climate is omitted (Titeux et al., 63 

2016). Land-use and climate change can have reciprocal effects on each other, 64 

leading to non-additive effects of these pressures on populations and communities 65 

(Brook et al., 2008; Mantyka-Pringle et al., 2012; Oliver & Morecroft, 2014; Montràs-66 

Janer et al., 2024). Thus, the effects of climate change might differ among land use 67 

types, and the consequences of land-use change could depend on the strength of 68 

climate change (Mantyka-Pringle et al., 2012). Understanding these dynamics 69 

beyond the confines of protected areas is crucial for devising effective conservation 70 

strategies. 71 

 72 
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Land-use, climate change, and their interaction (Brook et al., 2008) can affect 73 

populations via changes in key vital rates through multiple mechanisms such as 74 

inbreeding depression (Leimu et al., 2010; Bijlsma & Loeschcke, 2012), physiological 75 

stress (Selwood et al., 2015), or phenotypic selection (Alberti, 2015). Negative 76 

effects of climate change on survival could be exacerbated by anthropogenic land 77 

use, as habitat fragmentation could hamper individual dispersal, thereby preventing 78 

populations to shift their habitat range to respond to the new conditions arising under 79 

climate change (Lawson et al., 2010; Oliver & Morecroft, 2014). Additionally, 80 

negative correlations between adaptations to land use and to climate change could 81 

cause the selection for the tolerance of one pressure to reduce the capacity to adapt 82 

to the other (Chevin et al., 2010; Oliver & Morecroft, 2014). As population sizes 83 

decrease, these detrimental effects could be amplified through demographic 84 

stochasticity and inbreeding depression (Fagan & Holmes, 2006), as a decrease in 85 

genetic variability and its subsequent fitness reduction would lower the capacity of 86 

individuals to cope with challenging environmental conditions (Leimu et al., 2010; 87 

Bijlsma & Loeschcke, 2012). Nonetheless, in face of the prevalence of negative 88 

effects of both anthropogenic land use and climate change, and given their 89 

interacting effects on demographic parameters (Brook et al., 2008; Titeux et al., 90 

2016) and biodiversity (Montràs-Janer et al., 2024), exhaustively assessing 91 

population persistence under changing climatic conditions requires studying 92 

populations in anthropogenic landscapes. 93 

 94 

Mediterranean biomes are among the most sensitive to interacting pressures derived 95 

from land-use and climate change (Newbold et al., 2020). In these ecosystems, fire 96 

is a recurrent disturbance that has shaped plant traits over evolutionary time (Keeley 97 
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et al., 2012). However, many fire-adapted plant species in the Mediterranean Basin 98 

are now largely found in anthropized habitats where fire regimes have been 99 

substantially altered or suppressed altogether by changes in land use (Pausas & 100 

Keeley, 2014), which can have strong impacts on plant population dynamics (Paniw, 101 

Quintana-Ascencio et al., 2017). Mediterranean plant populations are also 102 

increasingly exposed to shorter and drier winters and hotter summers, jeopardising 103 

the persistence of shrubland communities (Paniw et al., 2021). While the effects of 104 

human activities in fire-disturbed habitats on plant population persistence have 105 

previously been studied (e.g. Paniw, Quintana-Ascencio et al., 2017), we still lack a 106 

full understanding on population dynamics under the interacting pressures of land-107 

use and climate change.  108 

 109 

Here, we use a Mediterranean, fire-adapted subshrub, the dewy pine (Drosophyllum 110 

lusitanicum), as a case study to investigate the effects of changing climatic 111 

conditions on population dynamics in natural and anthropogenic habitats. We used 112 

seven years of individual-based data, collected as part of long-term demographic 113 

monitoring (since 2011) in natural and anthropogenic (i.e., highly human-dominated 114 

permanently disturbed sites) habitats, to parameterize vital-rate responses to 115 

interacting climate (temperature and rainfall) and biotic (plant size and intraspecific 116 

density) drivers and project resulting population dynamics under climate-change 117 

scenarios. We expected higher extinction probabilities in anthropogenic habitats 118 

under current climatic conditions, as previous research has shown human 119 

disturbances to have a negative effect on population dynamics (Paniw, Quintana-120 

Ascencio et al., 2017; Conquet et al., 2023). Additionally, given the negative effects 121 

of compound anthropogenic pressures on natural systems (Zscheischler et al., 122 
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2018), we expected sharper declines in anthropogenic populations than in natural 123 

ones under climate change. 124 

 125 

Methods 126 

 127 

 Study species 128 

 129 

 Life history  130 

 131 

The dewy pine, Drosophyllum lusitanicum (Drosophyllaceae), is a rare 132 

carnivorous subshrub endemic to the western end of the Mediterranean basin and 133 

tightly associated to fire-prone Mediterranean heathlands of southern Spain, 134 

Portugal, and northern Morocco (Correia & Freitas, 2002; Garrido et al., 2003; Paniw 135 

et al., 2015). As many species in fire-prone habitats, dewy pines have adapted their 136 

life history to persist under recurring fire regimes that remove all aboveground 137 

vegetation. Populations rely on a persistent soil seedbank (Fig. 1), whose dynamics 138 

strongly vary with time since fire (TSFt, where t is the number of years after a fire; 139 

Paniw, Quintana-Ascencio et al., 2017; Conquet et al., 2023). When a fire occurs 140 

(TSF0), the combined effect of heat and vegetation and litter removal trigger the 141 

germination of the major part of seeds stored in the seedbank (Fig. 1; Appendix S1: 142 

Table S1; Cross et al., 2017; Paniw, Quintana-Ascencio et al., 2017; Gómez-143 

González et al., 2018). Germination from the seedbank continues in later post-fire 144 

years but greatly decreases from TSF2. New seedlings mostly grow during the first 145 

year after a fire (TSF1) and become reproductive plants from the second year after 146 

the population burned (TSF2; Fig. 1). The majority of seeds produced by these 147 
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individuals do not germinate directly but go to the soil seedbank to replenish the 148 

population at the next fire (Fig. 1). This occurs because dewy pines are increasingly 149 

overgrown by dominant shrub vegetation, which hinders seed germination (Gómez-150 

González et al., 2018) and insect prey capture (Paniw et al., 2018), drastically 151 

decreasing the survival of aboveground plants after TSF4 (Paniw et al., 2015).   152 

 153 

Despite being fire-adapted, active fire suppression and general degradation of 154 

heathland habitats under land-use change (for instance through vegetation removal 155 

for wide firebreaks or pine afforestations) mean that most populations of dewy pines 156 

as well as numerous other heathland species persist in highly and permanently 157 

human-disturbed (hereafter anthropogenic) habitats (Paniw et al., 2015). In such 158 

habitats, periodic mechanical clearing of vegetation or browsing—of surrounding 159 

vegetation but not on dewy pines—and trampling by domestic ungulates act as a 160 

constant disturbance resembling the effect of fire by the removal of aboveground 161 

vegetation, but lasting much longer. This has led to important changes in the 162 

demographic processes of dewy pines (Paniw, Quintana-Ascencio et al., 2017; 163 

Conquet et al., 2023). Seedbanks in chronically disturbed, anthropogenic 164 

populations are likely depleted because the long-term clearance of vegetation means 165 

that relatively more seeds germinate immediately instead of going into the seedbank 166 

(Appendix S1: Table S1; Gómez-González et al., 2018). Vital rates of aboveground 167 

individuals are affected as well; while juvenile survival rapidly decreases after a fire 168 

in natural populations, it remains stable across time under human disturbances. 169 

However, smaller mature individuals in anthropogenic populations have a lower 170 

survival than in natural populations, and reproduction is decreased as well. 171 
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Moreover, negative density feedbacks are stronger in anthropogenic populations 172 

(Conquet et al., 2023).  173 

 174 

Anthropogenic pressures in dewy pine habitats are also increasingly interacting with 175 

climate change. Temperatures have been increasing in the last four decades (on 176 

average by 0.033 ºC per year) and will continue to do so in the future (Appendix S2: 177 

Fig. S1 and S2). Contrastingly, while the recent increase in rainfall variability is 178 

predicted to reverse, rainfall is forecasted to be less abundant in the future (-0.16 179 

mm per year on average). Such variations in environmental patterns have already 180 

shown to lead to population declines in natural shrublands (Paniw et al., 2023). 181 

Dewy pines will therefore likely be increasingly affected by interactions of climate 182 

change and human disturbance. Therefore, understanding their response to climate 183 

effects will help us discern the joint role of different pressures on plants persisting in 184 

anthropogenic habitats. 185 

   186 

Demographic data  187 

 188 

We used individual demographic data collected on 4753 dewy pines from eight 189 

populations of southern Spain, located in two types of habitats: Mediterranean 190 

heathlands experiencing recurrent fire regimes and low levels of anthropogenic 191 

pressures such as cattle browsing and trampling (natural populations); and 192 

mediterranean heathlands that have not burned in the past 40 years but where high 193 

anthropogenic pressures constantly remove aboveground vegetation (anthropogenic 194 

populations) (see Appendix S1 for details).  195 

 196 
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Figure 1 – Dewy-pine life cycle. After a fire, conditional on seed survival 197 

(σseed), seeds in the seedbank germinate to become seedlings of a given size (Φ) 198 

conditional on germination probability (outSB), or remain dormant underground 199 

(staySB). Individuals then grow conditional on survival and size at the next timestep 200 

(σ and φ) and become reproductive from two years after a fire occurred. Reproductive 201 

individuals produce seeds conditional on flowering probability (pfl), the number of 202 

flowers (nflowers), and the number of seeds per flower (nseeds). These seeds, conditional 203 

on their survival (σseed), either germinate directly (goCont) and become seedlings of a 204 

given size (Φ) or contribute to the underground seedbank (goSB). 205 

 206 

Estimation of seedbank parameters 207 

 208 

To quantify the probabilities of seed germination (goCont for seeds germinating 209 

without going to the seedbank and outSB for seeds germinating from the seedbank), 210 

dormancy (staySB) and transition to the seedbank (goSB) (Fig. 1), we used data 211 
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from seed-burial and greenhouse germination experiments (Paniw, Quintana-212 

Ascencio et al., 2017; Gómez-González et al., 2018). In natural populations, most 213 

produced seeds (97.4%; 95% CI [96.3%–98.4%]) go to the underground seedbank 214 

(Appendix S1: Table S1). While 81% [77.4%-85.2%] of the seeds germinate from the 215 

seedbank right after a fire (TSF0), that proportion greatly decreases in later post-fire 216 

habitat stages (6.09% [4.44%–7.75%] in TSF1 and 3.47% [2.31%–4.63%] in later 217 

TSFs). In contrast, in chronically disturbed, anthropogenic populations, a much lower 218 

proportion of the produced seeds goes to the seedbank (82.2% [65.3%–97.5%]). In 219 

these populations, although 59.8% [56.6%–63.0%] of the underground seeds remain 220 

underground, seedbanks are depleted due to the decreased proportion of seeds 221 

produced by aboveground plants entering dormancy.  222 

 223 

Estimation of aboveground vital rates 224 

 225 

We investigated how rainfall, temperature, and density affect the survival, growth, 226 

and reproduction of individuals in natural and anthropogenic dewy-pine populations. 227 

We used Generalised Additive Models—fitted with the gam function of the mgcv 228 

package (Wood, 2011; Wood et al., 2016; Wood, 2017)—to estimate (1) survival (σ) 229 

and flowering probability (pfl) (using a binomial distribution), (2) the number of flowers 230 

per individual (nflowers; using a negative binomial distribution), and (3) growth (φ) and 231 

seedling size (Φ), with size = log(number of leaves × length of the longest leaf) (Fig. 232 

1; Paniw, Quintana-Ascencio et al., 2017). We modelled the latter two vital rates 233 

using a scaled t distribution (“scat” in the family parameter of the gam function) 234 

instead of a Gaussian distribution to accommodate the heavy-tailed nature of the 235 

response variables. We tested for the nonlinear responses of all vital rates to lag 236 
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cumulative rainfall and average daily maximum temperature, and aboveground 237 

density of large (i.e., size > 4.5) intraspecific neighbours. In addition, to account for 238 

effects of post-fire habitat stages, we tested for nonlinear effects of time since fire 239 

(TSF) on vital rates of natural populations. We used a cubic spline basis with three 240 

dimensions (k = 3) for all these covariates (except for the size effect on the number 241 

of flowers, where we used k = 4 to model a decline in the number of flowers of large 242 

individuals as has been observed in all populations), and a gamma value of 1.4, as is 243 

commonly used to reduce the risk of overfitting (Wood, 2017). We also included 244 

random year and population effects in all models using a random-effect spline. We 245 

performed all analyses in R 4.2.2 via RStudio (R Core Team, 2022; Posit team, 246 

2023). 247 

 248 

Vital-rate responses to climatic variables (cumulative rainfall and 249 

average maximum daily temperature) 250 

  251 

We extracted daily rainfall and maximum temperature data with a resolution of 0.1 252 

degree for all dewy-pine population locations from the E-OBS dataset from the EU-253 

FP6 project UERRA and the Copernicus Climate Change Service (Cornes et al., 254 

2018; see Appendix S2 for details). We obtained the monthly cumulative rainfall and 255 

average maximum temperature in each population by averaging the values recorded 256 

within a buffer of 0.1×1.5 degrees (i.e. 1.5 times the grid resolution) around the 257 

population coordinates. We assessed the presence of rainfall and temperature lag 258 

effects on dewy-pine vital rates using GAMs including cumulative rainfall and 259 

average maximum daily temperature across several biologically relevant periods. For 260 

survival and growth, we assessed the effect of climate following the annual 261 
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population census (set to the 1st of May), while for reproductive parameters (i.e., 262 

flowering probability, number of flowers, and seedling size), we assessed the effect 263 

of climate in periods prior to the census. More specifically, we considered the effect 264 

of post-census average maximum temperature in summer (May–September) and of 265 

cumulative rainfall in fall (September–November), winter (January–April), or both 266 

(September–April), on survival and growth. We tested for the effect of pre-census 267 

average maximum daily temperature in winter (January–April), and of cumulative 268 

rainfall in fall (September–November) and winter (January–April) on reproductive 269 

rates. We considered that the effects of longer lag periods are effectively absorbed 270 

by changes in plant size.  271 

 272 

Vital-rate responses to large aboveground individual density 273 

 274 

To understand how intraspecific interactions affect dewy-pine vital rates, we included 275 

in our models the density of aboveground individuals, specific to a 1-m2 quadrat in a 276 

given population. This spatial resolution matches the study design—where plants are 277 

censused in four transects of ten 1-m2 quadrats (Paniw, Quintana-Ascencio et al., 278 

2017)—and corresponds to the observed scale at which the plant-plant interactions 279 

affecting the demography of dewy pines occur. We only considered individuals of 280 

size > 4.5, which corresponds to the minimum observed size of reproductive plants. 281 

Smaller plants are largely seedlings which have relatively weak effects on plant vital 282 

rates, as large individuals are unlikely to be affected by small plants and small plants 283 

are primarily affected by large shrubs (Brewer et al., 2021). We did not use a 284 

spatially explicit formulation of density dependence (e.g. using the crowding 285 

approach described in Adler et al., 2010), as such an approach requires knowledge 286 
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of the spatial distribution of individuals and seeds, which we lacked for some sites 287 

and years. 288 

 289 

Vital-rate model selection 290 

 291 

We selected the best vital-rate models using the Akaike Information Criterion (AIC, 292 

using a threshold of ΔAIC > 2 to identify a model as performing better than another; 293 

Burnham et al., 2011; Wood, 2017) and the number of degrees of freedom. Prior to 294 

model selection, we standardised and checked for correlations between all 295 

covariates (see Appendix S1 for more details). We first selected the best lag period 296 

for the effect of rainfall and temperature and then added—in a forward selection 297 

framework—density and size to the model selection and, for natural populations, 298 

time since last fire (Appendix S1: Table S3 for more details). We considered 299 

interactions among the climatic variables, density, size, and TSF as well as site-300 

specific random slopes (e.g., site-specific effects of density or size) in our model 301 

selection, using random-effect splines.  302 

 303 

Population projections under climate change scenarios 304 

 305 

 Individual-Based Model definition 306 

 307 

We used the estimated vital rates to parameterize an Individual-Based Model (IBM) 308 

and project each natural and anthropogenic dewy-pine population under current and 309 

predicted climate conditions. The following is a summary of the IBM specificities; a 310 

more detailed description of the different modules of the projection model following 311 
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the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 2006; 2020) 312 

can be found in Appendix S3. We performed 500 30-year projections of each dewy-313 

pine population under two scenarios: (1) a control scenario corresponding to current 314 

climatic conditions where 30 years—and the corresponding rainfall and temperature 315 

values—were sampled at random among the past observed ones (2016–2021); and 316 

(2) a climate-change scenario where the rainfall and temperature values 317 

corresponded to projected climatic conditions from 2021 to 2050 according to the 318 

RCP8.5 climate-change scenario (Riahi et al., 2011). The climate-change scenario 319 

comprised 11 sets of 500 population projections, each set corresponding to future 320 

rainfall and temperature conditions extracted from 11 global circulation models 321 

(GCM; Appendix S2: Table S2) from the Coupled Model Intercomparison Project 6 322 

(CMIP6; Eyring et al., 2016; Pascoe et al., 2020; Waliser et al., 2020) available from 323 

the Earth System Grid Federation’s (ESFG; Petrie et al., 2021) web application 324 

accessible at https://aims2.llnl.gov/search. These models have been used in several 325 

studies on ecological systems (Tredennick et al., 2016; Paniw et al., 2022) and differ 326 

in their parameterisation, enabling us to project the dewy-pine populations under a 327 

wide range of possible future climatic conditions and thereby reduce bias in our 328 

population projections (Sanderson et al., 2015). 329 

 330 

Because most GCMs comprised projected rainfall and temperature values beyond 331 

the values observed in our populations, we capped these values to the maximum 332 

and minimum observed. This approach, as well as using RCP8.5, which is the most 333 

extreme climate-change scenario, allowed us to investigate the response of dewy-334 

pine populations to substantial increases in the frequency of extreme climatic 335 

conditions, rather than changes in absolute rainfall and temperature values.  336 
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 337 

Each population projection started with a population vector of z-sized individuals 338 

from 2021—the last year used to estimate vital rates—, and the initial population 339 

thus comprised individuals observed in the population in that year. This also applies 340 

to the initial rainfall and temperature values, and the aboveground density of large 341 

individuals. While we assumed no fire occurred in anthropogenic populations, we 342 

simulated a sequence of 30 post-fire habitat stages for each projection of natural 343 

populations. The first post-fire state corresponded to the one observed in 2021, and 344 

the subsequent ones were determined based on a Markov matrix containing the 345 

among-TSF transition probabilities based on a fire frequency of 1/30 representing 346 

the stochastic fire regime occurring in natural dewy-pine populations (see Appendix 347 

S3 for details; see also Conquet et al., 2023).  348 

 349 

We projected each initial population in discrete yearly steps determining which 350 

aboveground individuals reproduced, survived, and grew, and how many seeds 351 

germinated—from the seedbank or directly after reproduction—or entered or 352 

remained in the seedbank. As annual censuses took place during the flowering 353 

period (pre-reproductive census), each projected year started with the reproduction 354 

sub-model. This sub-model sampled reproductive individuals (0 or 1) based on a 355 

binomial distribution parameterised with the estimated mean flowering probability 356 

(pfl). If any individual reproduced, its number of flowers was sampled from a negative 357 

binomial distribution based on the estimated mean number of flowers per plant 358 

(nflowers); and the number of seeds per flower (nseeds) was sampled from a Poisson 359 

distribution with a mean of 9.8—the average number of seeds per flower used in 360 

Paniw et al. (2017). To avoid excessive reproductive values in natural populations, 361 
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we capped the number of flowers per individual to the maximum observed number of 362 

flowers in each population. In natural populations, where fires could occur, the 363 

reproduction sub-model was skipped in the first year after fire, as dewy pine adults 364 

are killed by fire and postfire recruits do not reproduce until two years after 365 

germination. 366 

 367 

The reproduction sub-model was followed by the survival and growth sub-model, 368 

which sampled the surviving individuals from a binomial distribution based on the 369 

mean estimated survival rate, and assigned them a size to which they would grow at 370 

the next time step by sampling from a scaled t distribution (to accommodate for 371 

heavy-tailed size values when fitting the growth model) based on the mean, standard 372 

deviation, and degrees of freedom of the fitted growth model. Sporadically sampled 373 

positive infinite sizes were set to the maximum observed size in the population in the 374 

currently projected year, while negative infinite sizes were set to zero.  375 

 376 

Finally, at the end of each projected year, the seedbank sub-model sampled seeds 377 

from the seedbank that remained dormant or germinated from binomial distributions 378 

based on the respective probabilities (staySB and outSB). The seeds that did not 379 

survive—i.e., neither germinated or stayed dormant—were removed from the 380 

seedbank. The seeds germinating without going through the seedbank were 381 

sampled from a binomial distribution based on the probability of continuous 382 

germination (goCont). Some seedbank processes are hidden processes that cannot 383 

be easily determined in the field without perturbing the populations. To reduce the 384 

resulting bias, we applied a correction factor representing seed survival (σseed) to the 385 

seedbank parameters in anthropogenic populations (see Appendix S1 and Paniw, 386 
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Quintana-Ascencio et al., 2017 for more details), and further corrected outSB and 387 

goCont in Sierra Carbonera Disturbed by reducing them to 40 % of their values. We 388 

also capped the number of recruits to the maximum number of seedlings observed in 389 

all natural populations as well as in two anthropogenic populations: Bujeo and Sierra 390 

Carbonera Disturbed. Ultimately, all recruits were assigned a size by sampling from 391 

a scaled t distribution based on the estimated mean seedling size as well as its 392 

standard deviation and degrees of freedom. 393 

 394 

At the end of a projected year, we updated the size of individuals that grew during 395 

the previous year as well as the aboveground density for each 1-m2 quadrat in the 396 

population. We also calculated and recorded the annual population growth rate 397 

(annual log 𝜆), which we used to calculate the stochastic growth rate log 𝜆S for each 398 

projection (see Appendix S3 for more details; see also Conquet et al., 2023). In each 399 

projection, the population was considered extinct if it went below the quasi-extinction 400 

threshold set at 5 aboveground individuals and 50 seeds in the seedbank.  401 

 402 

Model validation 403 

  404 

We calibrated our vital-rate and individual-based models by projecting each dewy-405 

pine population from the year it was first censused to 2022. We then compared 406 

observed and projected aboveground population sizes and population growth rates, 407 

as well as individual size distributions across time. For natural populations, we used 408 

the observed post-fire habitat stages and did not simulate fire frequencies. This 409 

process enabled us to validate our IBM by assessing its ability to well represent the 410 



 

 18 

dynamics of the dewy-pine populations in years that were not used in the model-411 

fitting part of our analysis (i.e., years before 2016 when available, and 2022).  412 

 413 

Results 414 

 415 

Vital-rate responses to habitat disturbance 416 

 417 

Dewy-pine vital rates varied between natural and anthropogenic habitats (Fig. 418 

2). Survival was on average higher in anthropogenic (mean = 0.42 and 95% 419 

confidence interval = [0.18, 0.70]) than in natural habitats (0.27 [0.17, 0.40]; Fig. 2). 420 

In contrast, we found the opposite pattern for growth, which was higher in natural 421 

(size 5.0 [4.7, 5.2] at the next time step, calculated as log(number of leaves × length 422 

of the longest leaf)) than in anthropogenic sites (4.7 [4.4, 4.9]), as well as flowering 423 

probability (0.039 [0.013, 0.11] in natural and 0.025 [0.013, 0.045] in anthropogenic 424 

populations), and seedling size (3.4 [3.2, 3.5] and 3.0 [2.8, 3.3], respectively; Fig. 2). 425 

However, there was no difference between habitat types in the number of flowers per 426 

individual (6.9 [6.2, 7.7] on average in natural populations and 6.7 [5.8, 7.8] in 427 

anthropogenic populations; Fig. 2). Notably, we found more among-site variation in 428 

anthropogenic than in natural conditions, possibly because the level of 429 

anthropogenic disturbance differed between sites (Appendix S1: Fig. S3).  430 
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 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

Figure 2 – Predicted and observed average vital-rate values in natural 442 

and anthropogenic populations. The boxplots represent the distribution of the 443 

predicted average values of habitat-specific survival, growth, and flowering rates, as 444 

well as the number of flowers and seedling size estimated for each population and 445 

year from GAMs. The whiskers represent the 2.5th and 97.5th percentiles and the 446 

black triangle the mean estimate. We kept covariates at their mean values (scaled 447 

value = 0) except for the number of flowers, where we used the mean size of 448 

reproducing individuals. The coloured dots represent the observed average vital 449 

rates in each population and year.  450 
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Vital-rate responses to climatic variables 451 

 452 

In both anthropogenic and natural habitats, the variation of most vital rates was 453 

associated with changes in at least one of the two climatic variables considered in 454 

our analysis: monthly cumulative rainfall (hereafter rainfall) or monthly average daily 455 

maximum temperature (hereafter temperature) (Fig. 3; Appendix S1: Table S4). Most 456 

vital rates were more strongly associated with the same climatic variable in the same 457 

period of the year in both habitats (e.g. variation in survival was associated with 458 

changes in summer temperatures and fall rainfall in both natural and anthropogenic 459 

populations). Overall, larger variations in vital rates were associated with changes in 460 

temperature than with rainfall (Fig. 3; Appendix S1: Table S4). 461 
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Figure 3 – Relationships between dewy-pine vital rates and climatic 462 

variables and aboveground density of large individuals. Predictions from the 463 

GAM models show variation in (a) survival and (b) flowering probability with changes 464 

in temperature (next summer and previous winter, respectively) and rainfall (next and 465 

previous fall), (c) flowering probability with changes in previous fall rainfall and 466 

density, and growth with (d) changes in next fall rainfall, and (e) aboveground density 467 

of large individuals (size > 4.5). Lines show the mean vital-rate values and shaded 468 

areas the associated 95% confidence interval.  469 

 470 
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In both natural and anthropogenic populations, survival was the only vital rate for 471 

which variation was associated with changes in both rainfall and temperature (i.e., 472 

the fixed effects of both climatic variables were retained in the model selection). With 473 

all other covariates held constant at their average value in the respective habitat 474 

types, survival was negatively associated with an increase in summer temperatures 475 

(i.e., average maximum daily temperature from May to September) (Fig. 3a). For 476 

example, when temperature increased from 25.5 to 26.5 °C, the average survival 477 

rate decreased from 0.47 [0.29, 0.66] to 0.23 [0.14, 0.35] in natural populations, and 478 

from 0.51 [0.24, 0.78] to 0.31 [0.12, 0.60] under anthropogenic conditions. In both 479 

habitats, variation in survival was also associated with changes in the amount of 480 

rainfall in fall (i.e., September–November; Fig. 3a, Appendix S1: Table S4 and Fig. 481 

6e). In natural populations, this association was on average positive (from 0.25 [0.14, 482 

0.39] under 80 mm of rain to 0.28 [0.16, 0.45] under 200 mm). In contrast, in 483 

anthropogenic populations, average survival across sites did not change with rainfall, 484 

but investigating this relationship at the site level revealed important among-485 

population variability, with positive associations in some sites (e.g. from 0.39 [0.16, 486 

0.67] under 80 mm of rain to 0.46 [0.21, 0.74] under 200 mm in Sierra del Retín 487 

Disturbed) and negative associations in others (e.g. from 0.46 [0.21, 0.74] to 0.36 488 

[0.15, 0.65] in Prisioneros; Appendix S1: Fig. S3). Such among-site differences were 489 

almost ubiquitous across vital rates in anthropogenic populations (Appendix S1: Fig. 490 

S4), but not in natural habitats. For example, on average across all natural sites, 491 

individuals grew more with higher amounts of rainfall. More specifically, the longest 492 

leaf of an average-sized individual grew from 4.3 to 4.9 [4.6, 5.1] in a year under 80 493 

mm of rain but to 5.0 [4.8, 5.3] under 200 mm (Fig. 3b). 494 

 495 
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Vital-rate responses to aboveground density of large plants 496 

 497 

 In both anthropogenic and natural habitats, plants grew less when densities of 498 

large individuals increased (Fig. 3c). Under human disturbance, an average-sized 499 

individual grew from 4.1 to 4.7 [4.4, 4.9] in a year with 2 large individuals/m2 but to 500 

4.6 [4.3, 4.8] with 10 ind./m2 (Fig. 3c). In natural conditions, an individual grew from 501 

4.3 to 5.0 [4.7, 5.2] with a density of 2 ind./m2 but only to 4.6 [3.9, 5.2] with 10 ind./m2 502 

(Fig. 3c). Seedling size also decreased with higher numbers of large individuals 503 

aboveground (Appendix S1: Fig. S5a). Interestingly, the direction of the association 504 

between density and flowering probability differed between habitat types, as the 505 

flowering rate was positively associated with density in anthropogenic populations 506 

(from 0.50 [0.28, 0.72] with 2 ind./m2 to 0.65 [0.35, 0.86] with 15 ind./m2), but strongly 507 

negatively in natural ones (from 0.68 [0.41, 0.87] with 2 ind./m2 to 0.10 [0.013, 0.50] 508 

with 7 ind./m2) (Fig. 3d).   509 

 510 

Vital-rate responses to interactions between climate, density, size, 511 

and post-fire habitat conditions 512 

 513 

 In natural—but not in anthropogenic—populations, high amounts of rainfall 514 

mitigated the strength of the negative association between temperature and survival, 515 

which decreased from 0.48 [0.30, 0.67] at 25.5 ºC to 0.23 [0.14, 0.36] at 26.5 ºC 516 

under 150 mm of rainfall but only from 0.43 [0.26, 0.63] at 25.5 ºC to 0.25 [0.13, 517 

0.41] at 26.5 ºC under 200 mm (Fig. 3a). We found a similar pattern for the 518 

association between previous winter temperatures and flowering probability, which 519 
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decreased from 0.72 [0.45, 0.89] at 17.5 ºC to 0.29 [0.076, 0.66] at 18.5 ºC with 150 520 

mm of rain but only from 0.73 [0.43, 0.90] to 0.46 [0.15, 0.80] with 180 mm (Fig. 3e).  521 

 522 

Additionally, in natural populations, survival increased with rainfall at low densities 523 

(Fig. 3f; from 0.26 [0.16, 0.40] to 0.28 [0.16, 0.44] for 100 and 200 mm of rain at 2 524 

ind./m2); but these variables had a u-shaped relationship at high densities, with 525 

lowest survival rates reached for about 145 mm of rain (e.g. 0.076 [0.021, 0.24] at 10 526 

ind./m2). The decline in survival with increasing summer temperatures was also 527 

weaker at low (e.g. from 0.47 [0.29, 0.66] at 25.5 °C to 0.22 [0.14, 0.35] at 26.5 °C 528 

with 2 ind./m2) than at high densities (from 0.45 [0.26, 0.65] to 0.14 [0.077, 0.25] with 529 

6 ind./m2) (Fig. 3f). We also found density-dependent variation in flowering 530 

probability and growth with rainfall and seedling size with temperature (Appendix S1: 531 

Fig. S5). Additionally, the strength and direction of the association between survival 532 

rates and both rainfall and temperature in natural populations were also size 533 

dependent (Appendix S1: Fig. S6g,h).  534 

 535 

Individual Based Model 536 

  537 

Population projections 538 

 539 

 The projections of our individual-based model over the observed period 540 

showed that our parameterization enabled us to correctly represent the population-541 

specific pattern of changes in mean annual change in aboveground population size 542 

and of population abundance (Fig. 4; Appendix S1: Fig. S1). Additionally, observed 543 
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and projected time-varying size distributions were largely overlapping, with a slight 544 

bias towards small individuals in some populations (Appendix S1: Fig. S2). 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

Figure 4 – Observed and projected average change in aboveground 560 

population abundance. We projected each natural and anthropogenic population 561 

for 500 times across the range of observed years available for each population 562 

(maximum range from 2011 to 2022) to perform an out-of-sample validation of our 563 

individual-based model parameterization. For each projection, we calculated the log 564 

of the average change in aboveground population abundance between years (i.e., 565 

log(Nt/Nt-1) with Nt the aboveground population size in year t) and obtained the 566 

average (line) and 25th and 95th percentile of the population-specific distribution 567 

(shaded ribbon). We compared these projected values to the observed ones (dots). 568 
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 569 

Projecting natural and anthropogenic populations under a control scenario (i.e., 570 

assuming similar environmental conditions in the future as currently observed) 571 

showed that the average population growth rates (log 𝜆S) did not vary much between 572 

habitat types (mean = -0.15, 2.5 and 97.5% quantiles = [-0.62, 0.33] in natural and -573 

0.19 [-0.89, 0.63] in anthropogenic populations; Fig. 5). On the other hand, the 574 

probability of quasi-extinction (pq-ext) was on average higher in anthropogenic (0.56 575 

[0.026, 1.0]) than in natural populations (0.17 [0.062, 0.26]). Extinction probabilities 576 

also varied much more among anthropogenic than among natural populations in the 577 

control scenario (Fig. 5). In natural populations, the stochastic fire regime in our 578 

projections increased the population growth rate substantially after fires, avoiding the 579 

quasi-extinction threshold (i.e., 5 aboveground individuals and 50 seeds in the 580 

seedbank) in simulations where fires occurred regardless of the population (Conquet 581 

et al., 2023). Anthropogenic populations, on the other hand, varied substantially in 582 

size, and the high variation in pq-ext reflects the consistently higher variation in 583 

dynamics among populations (Appendix S1: Fig. S7).584 
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  585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

Figure 5 – Demographic consequences of climate change in natural and 596 

anthropogenic populations of dewy pines. We projected each natural and 597 

anthropogenic population 500 times for 30 years under a control (keeping 598 

temperature and rainfall conditions as currently observed) and a climate-change 599 

scenario. To assess the demographic consequences of climate change in 600 

populations experiencing different levels of human disturbance, we computed for 601 

each population: (a) the stochastic population growth rate across 30 years for each 602 

population projection (log 𝜆S; including both the seedbank and aboveground 603 

individuals) and (b) the probability of quasi-extinction (pq-ext). Here we summarise 604 

these metrics per habitat type, and the variability in the values therefore correspond 605 

to among-population and among-projection differences.  606 

 607 

In contrast with the control scenario, population growth rates differed between 608 

habitats under climate change (Fig. 5). While the population growth rate (-0.12 [-609 
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0.28, 0.072]) and extinction probability (0.17 [0.070, 0.26]) of natural populations did 610 

not vary under climate change, our projections show a decrease in log 𝜆S in 611 

anthropogenic sites (-0.47 [-1.3, 0.45]), accompanied by an increase in the extinction 612 

probability (0.99 [0.97, 1.0]). 613 

 614 

Discussion 615 

 616 

Our individual-based models projecting natural and anthropogenic populations 617 

of dewy pines using habitat-specific survival, growth, and reproductive rates revealed 618 

that the current decline of anthropogenic populations will worsen under climate 619 

change, leading to increased extinction risk. While the increasing frequency of 620 

extreme high summer temperatures affected both natural and anthropogenic 621 

populations negatively, occasionally high rainfall and compensatory density 622 

dependence greatly reduced this effect in natural populations. Under chronic, 623 

anthropogenic disturbance, however, the decline in survival was not compensated by 624 

either of these factors. Consequently, with the frequency of extreme climatic 625 

conditions increasing under climate change, populations in anthropogenic habitats—626 

which are currently already decreasing—were negatively affected by future climatic 627 

conditions. Habitat dynamics shaped by fires also dominated the effects of 628 

environmental perturbations in natural habitats, highlighting the importance of fire 629 

regimes in Mediterranean heathlands (Ojeda, Pausas, and Verdú, 2010; Keeley et 630 

al., 2011). Adaptations to anthropogenic disturbances meanwhile can lead to 631 

changes in vital-rate responses to climate and density, with detrimental 632 

consequences on population persistence. The implications of our findings extend 633 

beyond ecological theory, offering tangible guidance for conservation policies. By 634 
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showing the consequences of climate and land-use changes in non-protected 635 

habitats, our study provides a foundation for informing relevant stakeholders and 636 

developing management strategies that protect biodiversity in the Mediterranean 637 

biome, where interacting effects of local and global anthropogenic pressures affect 638 

population viability. 639 

 640 

Land-use change (e.g. grazing) often has stronger effects on populations than 641 

climate change (Sirami et al., 2017). However, few studies assess the consequences 642 

of interactions between these two environmental pressures on population dynamics, 643 

despite evidence of land-use change mediating the effect of climate change on 644 

species abundance and diversity (Mantyka-Pringle, Martin, and Rhodes, 2012; Oliver 645 

and Morecroft, 2014). Such interactions are likely to be strong drivers of population 646 

dynamics in habitats such as Mediterranean heathlands, which are among the 647 

ecosystems most affected by climate and land-use change (Newbold et al., 2020), 648 

the latter leading to changes in disturbance regimes in the habitats. Consequently, 649 

interactions between these two pressures might have strong effects on systems such 650 

as the dewy pine, where we observe differences among disturbance levels in vital-651 

rate responses to climate, density, and their interactions among natural and highly 652 

disturbed habitats. Our projections of natural and anthropogenic dewy-pine 653 

populations under climate change indicate that future changes in climate 654 

environmental conditions will spare populations in natural habitats but will have 655 

adverse effects on populations experiencing anthropogenic disturbances, which is 656 

the majority of dewy pine populations (Garrido et al., 2003), as well as many other 657 

Mediterranean shrublands (Newbold et al., 2020). 658 

 659 
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As previously observed in our study populations, anthropogenic disturbances not 660 

only lead to increased continuous seed germination and decreased seed dormancy 661 

(Appendix S1), but also allowed aboveground individuals to survive longer in the 662 

absence of shrub encroachment (Paniw, Quintana-Ascencio et al., 2017). 663 

Consequently, dewy pines in chronically disturbed, anthropogenic habitats reached 664 

higher sizes than those in natural habitats. This is contrary to many studies 665 

assessing trait-level consequences of land-use change—and more specifically 666 

grazing—on plants. In these studies, plants in grazed sites adapted to this 667 

disturbance by shrinking over time to avoid being consumed by herbivores (Fischer 668 

et al., 2011; Kerns et al., 2011; Völler et al., 2017). However, with their mucilage-669 

covered leaves, dewy pines are not palatable to herbivores (Ojeda et al., 2021), and 670 

therefore do not require such an adaptation. On the contrary, the small amount or 671 

absence of damage dealt to plants by herbivores along with the removal of other 672 

plants and the subsequent release of both intra- and interspecific competition, might 673 

allow dewy pines in anthropogenic populations to grow without surrounding 674 

vegetation hampering their nutrient acquisition (Paniw et al., 2018) and growth 675 

(Grime, 1973; Hjalten et al., 1993; Kambatuku et al., 2011; Fig. 3c).  676 

 677 

While anthropogenic disturbances allow dewy pine plants to survive and grow better 678 

than in natural conditions, this comes at the cost of reproduction, with flowering 679 

probability decreasing in the largest individuals. Although the consequences of land-680 

use change on plant reproduction are clearly species- and site-dependent (Kerns et 681 

al., 2011; Völler et al., 2017), tradeoffs similar to those observed in our populations 682 

are common across taxa (Stearns, 1989). Such negative correlations between vital 683 

rates might be more striking under stressful conditions such as low resource 684 



 

 31 

availability (Villellas & García, 2018). This might be the case in anthropogenic 685 

populations of dewy pines particularly. Plants rely almost exclusively on capturing 686 

prey invertebrates for nutrient uptake (Paniw, Gil-Cabeza et al., 2017; Skates et al., 687 

2019). In natural populations, invertebrates, especially insect pollinators, are 688 

abundant after fires, when many post-fire ephemeral species flower, and dewy pine 689 

plants are more conspicuous to insects, thus facilitating prey capture and nutrient 690 

uptake (Paniw et al., 2018). In anthropogenic habitats, intense browsing or 691 

mechanical vegetation removal are likely to decrease invertebrate abundances with 692 

respect to natural sites (Mayer, 2004; Carpio et al., 2014). When shrub cover is 693 

chronically low or sparse, dewy pine plants are more conspicuous to prey insects but 694 

they may also be more exposed to wind and solar radiation, thus resulting in 695 

relatively more stressful environmental conditions (Paniw et al., 2018). In turn, while 696 

populations in these chronically disturbed, anthropogenic habitats appear to persist, 697 

a low reproductive output may generate an extinction debt, where the population 698 

structure is skewed towards old individuals that cannot be replaced in the long term 699 

(Matías et al., 2019).    700 

 701 

Adverse disturbance effects on vital rates can be exacerbated under unfavourable 702 

climatic conditions (e.g. Hindle et al., 2023; see also; Nolan et al., 2021 and 703 

references therein). Plants commonly suffer from extreme temperatures and drought, 704 

which affect individuals through processes such as heat stress, photosynthesis 705 

inhibition, or reduced soil moisture and water resources (e.g. Larcher, 2000; 706 

McDowell et al., 2008; Nolan et al., 2021). While dewy pines are somewhat adapted 707 

to dry and hot summer conditions (Darwin 1875; Adlassnig et al., 2006; Adamec, 708 

2009), survival greatly decreased with increasing summer temperatures. In addition 709 
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to the aforementioned processes reducing the survival of plants experiencing high 710 

temperatures, such extreme conditions could lead to a great reduction in prey 711 

availability. These carnivorous subshrubs indeed rely on droplets of mucilage on 712 

their leaves to capture insects, from which they obtain nutrients (Paniw, Gil-Cabeza 713 

et al., 2017). However, increasing temperatures and the subsequent decrease in 714 

humidity could prevent plants from forming these droplets, and thereby from 715 

accessing these resources.  716 

 717 

Rainfall also played an important role in shaping dewy-pine demography. In addition 718 

to limiting water resources (McDowell et al., 2008), extremely low amounts of rain do 719 

not provide enough moisture for dewy pines to produce mucilage on their leaf-traps 720 

(Darwin 1875; Adlassnig et al., 2006; Adamec, 2009). As a result, plants might not 721 

get enough nutrients to allocate to the different demographic processes. However, in 722 

natural populations, high amounts of rainfall seemed to slightly buffer negative 723 

temperature effects, likely by compensating the low humidity and water resources 724 

under high temperatures. This process did not seem to occur in anthropogenic 725 

populations, where the increased exposure to extreme temperatures due to sparse 726 

vegetation cover might be too intense to counterbalance.       727 

  728 

In addition to interactions between climatic variables, density-dependent effects of 729 

climate are common across taxa and can play a key role in shaping population 730 

dynamics, for example by enhancing or mitigating adverse environmental effects 731 

(Gamelon et al., 2017; Paniw et al., 2019). In plant populations, vital-rate density 732 

dependence can be attributed to two main biological processes: competition (e.g. for 733 

light or pollinators; Craine & Dybzinski, 2013) and facilitation (i.e., the positive effect 734 
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of neighbours on a focal individual, e.g., through shading or protection from 735 

herbivory; Callaway & Pugnaire, 2007; Graff et al., 2007; Le Bagousse-Pinguet et al., 736 

2012). According to the stress-gradient hypothesis, variations in environmental 737 

conditions can lead to shifts between these two processes in a given population 738 

(Bertness & Callaway, 1994; Maestre et al., 2005), for example under increased 739 

levels of disturbance (Graff et al., 2007; Villarreal-Barajas & Martorell, 2009; Le 740 

Bagousse-Pinguet et al., 2012) or extreme climatic conditions (Callaway & Pugnaire, 741 

2007; Grant et al., 2014; Olsen et al., 2016). This was the case in dewy pines, where 742 

intraspecific density had opposite effects on some vital rates between natural—743 

where competition prevailed—and anthropogenic populations—where facilitation 744 

was at play.  745 

 746 

As commonly observed in plant communities (Villalobos et al., 2016; Adler et al., 747 

2018), increasing intraspecific densities in natural conditions led to declining 748 

survival—with the exception of early post-fire conditions, where facilitation generally 749 

predominates in fire-adapted plant communities (Vilà & Sardans, 1999; Paniw et al., 750 

2018). For dewy pines, in addition to the more common resources for which plants 751 

compete (e.g. light or pollinators), such negative effects of conspecifics on survival 752 

could arise from competition for prey (Craine & Dybzinski, 2013). Contrastingly, 753 

individuals in anthropogenic populations benefited from higher intraspecific densities. 754 

In addition to the competition release stemming from the removal of surrounding 755 

vegetation (Catling et al., 2024), increasing levels of disturbance such as browsing 756 

might lead to a shift from competition to facilitation, as neighbours might act as a 757 

barrier against browsers (Le Bagousse-Pinguet et al., 2012). 758 

 759 
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In addition to the consequences on vital rates, future increases in temperatures and 760 

decreases in rainfall under climate change are expected to lead to higher frequency 761 

and intensity of wildfires (Turco et al., 2019; Nolan et al., 2021). In populations where 762 

land-use change led to seedbank depletions through increase in continuous 763 

germination and dormancy loss, returning fire regimes will likely have strong 764 

negative consequences on population persistence, as reduced soil seedbanks will 765 

not be enough to replenish populations following the removal of aboveground 766 

individuals by fire. Decrease in the ability of fire-adapted plants to germinate or 767 

resprout after more frequent and intense fire could have dramatic consequences for 768 

the persistence of plant communities in fire-prone habitats (Enright et al., 2015; 769 

Nolan et al., 2021).  770 

 771 

Overall, our findings highlight the existence of demographic responses to climate 772 

and land-use change and call for conservation policies taking into account the 773 

detrimental effects of climate change on populations persisting under human 774 

alterations to their habitats, more specifically in fire-adapted systems. Moreover, 775 

species-specific effects of interactions between climate and land-use change 776 

highlight the need for studies assessing these effects at the community level—777 

accounting for the effects of both climate and intra- and inter-specific density—to 778 

understand how interactions between these pressures might affect fire-prone and 779 

more generally anthropogenic landscapes.   780 
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Appendix S1 – Methodological details and additional results 1 

 2 

1. Seedbank parameters 3 

 4 

 We used previously published data obtained from seed-burial and 5 

greenhouse-germination experiments to parameterise the transitions of dewy-pine 6 

seeds from and to the soil seedbank and to continuous germination (Table S1). More 7 

specifically, following Paniw et al. (2017), we used data on seeds buried in habitat 8 

conditions characteristic of early (i.e., recently burned) or late post-fire stages (i.e., 9 

long unburned) to estimate seed survival in the soil (i.e., seedbank stasis; staySB) 10 

and the probability of germinating from the seedbank at least two years after burial 11 

(outSB). We used estimates from recently burned habitats for anthropogenic 12 

populations, which experience constant anthropogenic disturbances mimicking the 13 

effects of fire (Paniw et al., 2017). For natural populations, we used estimates from 14 

burned habitats in early post-fire stages (i.e., TSF2 for staySB and TSF1 for outSB), 15 

and from unburned habitats in later post-fire stages (i.e., from TSF3 for staySB and 16 

from TSF2 to TSF4 for outSB). To more accurately describe the observed seedbank 17 

dynamics in the first TSFs (i.e., TSF0 and TSF1 for staySB and TSF0 for outSB), we 18 

used previously published parameters representing the characteristically high 19 

germination rates from the seedbank (outSB) in a fire year (TSF0), and low 20 

germination rates in late TSFs (TSF5), as well as the very low seedbank stasis 21 

(staySB) following a fire (TSF0 and TSF1) (Paniw et al., 2017; Conquet et al., 2023).  22 

  23 

To estimate the probability of seeds germinating continuously without contributing to 24 

the seedbank (goCont) and its opposite parameter determining the probability of 25 
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seeds contributing to the seedbank (goSB), we used data from a growth-chamber 26 

germination experiment (see details in Gómez-González et al., 2018). Seeds from 15 27 

individual dewy pines growing in natural or anthropogenic habitats were monitored to 28 

obtain the proportion of surviving seeds germinating (goCont) and remaining 29 

dormant (goSB = 1 - goCont). We used estimates from the corresponding habitat to 30 

parameterise seedbank transitions of our natural and anthropogenic populations. In 31 

natural populations, however, continuous germination and contribution to the 32 

seedbank only starts in TSF2 and is extremely low from TSF5. We therefore fixed the 33 

values for goCont and goSB using previously published data (Paniw et al., 2017; 34 

Conquet et al., 2023) for these TSFs to represent these observed processes (Table 35 

S1). Because natural populations still experience fires, we defined time-since-fire-36 

specific parameter values for these populations. Additionally, to take advantage of 37 

the population-specific data available from the germination experiment for several 38 

anthropogenic sites, we defined population-specific goCont and goSB values for 39 

anthropogenic populations. 40 

  41 

Table S1 – Seedbank parameters obtained from seed-burial and germination 42 

experiments. We used previously published data from a seed-burial experiment in 43 

recently burned and long unburned dewy-pine habitats to estimate the proportion of 44 

seeds remaining in (staySB) or germinating from the seedbank (outSB). Additionally, 45 

we used data from a germination experiment on seeds from natural and 46 

anthropogenic habitats to estimate the proportion of seeds contributing to the 47 

seedbank (goSB) or germinating continuously (goCont). The table contains 48 

parameter means and, wherever available, 95% confidence intervals (with binomial 49 

standard deviations calculated as !!×(1−𝜇)𝑁  where 𝜇 is the parameter mean and N the 50 

https://www.uerra.eu/
https://www.ecad.eu/
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sample size). Asterisks indicate parameter values adapted from previously published 51 

values (Paniw et al., 2017; Conquet et al., 2023), and for which the confidence 52 

interval could not be calculated. 53 

Natural populations 

                                                             Seedbank parameters 

Time since fire (TSF) staySB outSB goCont goSB 

TSF0 0.1* 0.81* 0* 0* 

TSF1 0.05* 0.061  
[0.044, 0.077] 

0* 0* 

TSF2 0.60  
[0.57, 0.63] 

0.035  
[0.023, 0.046] 

0.026  
[0.016, 0.037] 

0.97 
[0.96, 0.98] 

TSF3 0.85  
[0.83, 0.86] 

0.035  
[0.023, 0.046] 

0.026 
 [0.016, 0.037] 

0.97  
[0.96, 0.98] 

TSF4 0.85  
[0.83, 0.86] 

0.035  
[0.023, 0.046] 

0.026  
[0.016, 0.037] 

0.97  
[0.96, 0.98] 

TSF5 0.85  
[0.83, 0.86] 

0* 0.01* 0.99* 

Anthropogenic populations 

 Seedbank parameters 

Site staySB outSB goCont goSB 

Sierra del Retín Disturbed 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.11 
[0, 0.28] 

0.89 
[0.72, 1.0] 

Prisioneros 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.29 
[0.0071, 0.57] 

0.71 
[0.99, 0.43] 

Bujeo 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.16 
[0.060, 0.26] 

0.84 
[0.74, 0.94] 

Montera del Torero 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.18 
[0, 0.37] 

0.82 
[0.63, 1.0] 

Sierra Carbonera Disturbed 0.60 
[0.57, 0.63] 

0.061 
[0.044, 0.077] 

0.16 
[0.060, 0.26] 

0.84 
[0.74, 0.94] 
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2. Seedbank parameters correction factors 54 

 55 

Accurately estimating seedbank parameters is complex due to the many factors 56 

influencing germination and dormancy. Seed mortality is a hidden process that cannot 57 

be easily determined in the field without perturbing the populations and is therefore 58 

often underestimated. Therefore, to better represent the dewy-pine population 59 

dynamics in anthropogenic sites, we computed a correction factor corresponding to 60 

the seed aboveground survival (σseed). σseed corresponded to the proportion of seeds 61 

surviving aboveground and was obtained from data on flower damage (σseed = 1 – 62 

flower damage) (Paniw et al., 2017). As anthropogenic populations never returned to 63 

TSF0, we only used σseed for TSF4 (0.33). We corrected the seedbank parameter 64 

values in anthropogenic habitats by multiplying all four seedbank parameters (i.e., 65 

goCont, outSB, goSB, and staySB) by σseed. Additionally, previous model calibrations 66 

showed the need to further correct several seedbank parameters to mirror the 67 

observed dynamics of dewy-pine populations. To do so, we multiplied both goCont 68 

and outSB by 0.4 for Sierra Carbonera Disturbed. Moreover, as we estimated plant 69 

density within 1-m2 quadrats, we avoided unrealistically high recruit numbers by 70 

capping the number of recruits to the maximum observed number of seedlings per 71 

quadrat during the study period in all natural populations and in two anthropogenic 72 

populations: Bujeo and Sierra Carbonera Disturbed. In natural populations, this 73 

number was TSF specific; however, data was unavailable for some TSFs in some 74 

populations. When unavailable for TSF0, we set the maximum number of recruits to 75 

1.5 times the maximum observed number of seedlings in the populations; in TSF1, we 76 

set it to the maximum observed number of seedlings in the population; and in TSF2 to 77 

the average maximum observed number of seedlings in the population in TSF>0. The 78 
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correction factors resulted in predicted abundances (out-of-sample predictions) 79 

reflecting well observed abundances, size distributions, and aboveground population 80 

growth rates (Fig. S1; Fig. S2; Fig. 4 in main text). 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

Figure S1 – Observed and projected aboveground population abundance. We 92 

projected each natural and anthropogenic population for 500 times across the range 93 

of observed years available for each population (maximum range from 2011 to 2022) 94 

to perform an out-of-sample validation of our individual-based model parameterization. 95 

For each projection, we obtained the average (line) and 25th and 95th (shaded ribbon) 96 

percentile of the aboveground population size. We compared these projected values 97 

to the observed ones (dots). 98 
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Figure S2 – Observed and projected distributions of individual size across 99 

time. We projected each population from the first year it was sampled to 2022 and 100 

obtained the site- and year-specific distributions of aboveground individual size, which 101 

we compared to the observed distributions. 102 

 103 
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3. Covariate standardisation and correlation 104 

 105 

We standardised all continuous covariates using the approach described by 106 

Gelman (2008): 107 

 108 

covariate'()*+,(-) =
((./)01)2+!"#$%&'((*)34$,-%./%0'!"#$%&'((*))

5⋅7$,-%./%0'!"#$%&'((*)
  (Equation 1) 109 

  110 

where μ and σ are respectively the mean and standard deviation of a given 111 

unscaled covariate in a subset of data from a given habitat H (natural or 112 

anthropogenic). In comparison with the common standardisation by one standard 113 

deviation, this standardisation approach enables the comparison of the effect sizes 114 

of both categorical (i.e. habitat) and continuous covariates (i.e. density-dependent 115 

variables).   116 

 117 

We checked for correlations between covariates using the Pearson correlation 118 

coefficient (using the cor function from the stats R package; R Core Team, 2022). 119 

We considered a pair of variables to be correlated when the absolute value of the 120 

correlation coefficient was above 0.5. We included only one of the two correlated 121 

variables in a model, choosing the first to be retained in the model selection. 122 

 123 

4. Vital-rate model selection  124 

 125 

We assessed the nonlinear response of dewy-pine survival, growth, flowering 126 

probability, number of flowers, and seedling size to rainfall, maximum daily 127 

temperature, time since fire (TSF), aboveground density of large individuals (size > 128 
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4.5), and individual size using Generalised Additive Models (GAMs) fitted to 129 

demographic data from individual dewy pines growing in natural or anthropogenic 130 

habitats. We first assessed whether rainfall and temperature influenced vital rates 131 

and in which period. We did this by comparing a null model (i.e., with only year and 132 

population random effects, using a random effect basis (bs = “re”) in the mgcv 133 

package; (Wood, 2017)) with models including cumulative rainfall or average 134 

maximum daily temperature across different periods. As each census was done 135 

during the flowering period, we assessed rainfall and temperature effect prior to the 136 

annual population census for flowering probability, number of flowers, and seedling 137 

size; or in the period between two annual censuses for survival and growth (see 138 

Table S2 and Table S3). We considered further lagged climatic effects to be 139 

captured by changes in plant size and density.  140 
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Table S2 – Periods of average maximum daily temperature and 141 

cumulative rainfall considered to assess the effect of temperature and rainfall 142 

on dewy-pine vital rates. We investigated the nonlinear response of dewy-pine vital 143 

rates to average maximum daily temperature (μmaxT) and cumulative rainfall (∑rain) in 144 

various periods of the years prior (for flowering probability, number of flowers, and 145 

seedling size; in regular text) or post the annual population census (for survival and 146 

growth; in italic).  147 

Period full name Period short name Period start Period end 

Previous winter 

average maximum 

daily temperature 

μmaxT_prevWinter January April 

Previous fall 

cumulative rainfall 
∑rain_prevFall September November 

Previous winter 

cumulative rainfall 
∑rain_prevWinter January April 

Next summer 

average maximum 

daily temperature 

μmaxT_nextSummer May September 

Next fall cumulative 

rainfall 
∑rain_nextFall September November 

Next winter 

cumulative rainfall 
∑rain_nextWinter January April 

Next fall and winter 

cumulative rainfall 
 ∑rain_nextFallWinter September April 
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We selected the best model among the possible rainfall and temperature periods 148 

using the Akaike Information Criterion (AIC), through the model.sel and AICtab 149 

functions of the MuMIn (Bartoń, 2022) and bbmle R packages (Bolker, 2022); we 150 

used a threshold of ΔAIC < 2 to identify models with no strong difference, and 151 

selected the model with the lowest number of degrees of freedom if more than one 152 

model were within that threshold. If both models with effects of rainfall and 153 

temperature performed better than the null model, we calculated Pearson’s 154 

correlation coefficient using the cor.test function of the stats R package (R Core 155 

Team, 2022) to check whether the two variables were correlated. If they were (i.e., 156 

correlation coefficient > |0.5|), we used the AIC and the number of degrees of 157 

freedom to select the best model between the one with rainfall and the one with 158 

temperature. Conversely, if the two variables were not correlated (i.e., correlation 159 

coefficient ≤ |0.5|) We compared the models including one of rainfall and 160 

temperature to a model with both climatic variables, including their interaction (Table 161 

S3). Finally, we performed a forward selection—using the AIC and the degrees of 162 

freedom—, progressively adding aboveground density, size (except for seedling 163 

size), and time since fire (TSF; for natural populations only) in the model. While 164 

Table S3 only shows splines, we included the linear effects of all covariates in the 165 

model selection. We then included interactions between covariates in the model 166 

selection if at least one of them was retained in the single effect selection. 167 

Additionally, we included terms for site-specific random slopes (e.g., random size 168 

effect depending on the site).  169 
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Table S3 – Example of the model selection process. We selected the best model 170 

to predict a given vital rate (vr) using the Akaike Information Criterion (AIC). We first 171 

assessed whether rainfall and temperature affected the vital rate by comparing a null 172 

model (with only year and population random effects (M1) to models including rainfall 173 

or temperature values in various periods of the year (Step 1 for temperature and 2 174 

for rainfall). If both models with temperature and rainfall performed better than the 175 

null model, we compared them with a model containing both climatic variables (Step 176 

3), and also included their interaction (Step 4). We then progressively added size, 177 

time since fire (TSF), and aboveground density of large individuals (density) to see if 178 

their introgression improved the model (Steps 5–7). Finally, we included interactions 179 

between covariates when at least one of the two members of the interaction had 180 

been previously retained in the model selection (Steps 8–9). For each step, the Best 181 

model according to the AIC column shows the best model (M) according to the AIC. 182 

This model is then used as a comparison to the newer models in the next step. 183 

Newly added covariates at each time step are shown in green.  184 

Model 
selection 

step 
Models compared 

Best 
model 

according 
to the AIC 

1 

M1 = vr ~ s(time, bs = "re") + 
        s(site, bs = "re") 

M2 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M2 

2 

M3 = vr ~ s(time, bs = "re") + 
        s(site, bs = "re") 

M4 = vr ~ s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 = vr ~ s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 
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3 

M2 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M5 = vr ~ s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M6 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M6 

4 

M6 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M7 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M7 

5 

M7 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M8 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                s(size, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M9 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                 s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                 s(density, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M10 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

M9 
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                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

6 

M9 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                s(∑rain_prevFall, k = 3, bs = "cr") + 

                 ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                s(density, k = 3, bs = "cr") + 
        s(time, bs = "re") + 
        s(site, bs = "re") 

M11 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 
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7 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                 s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M13 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  s(size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M12 

8 

M12 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M14 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M15 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M15 
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M16 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M17 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M18 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M19 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M20 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
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                  ti(density, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M21 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
              s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  ti(density, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M22 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 
                  ti(TSF, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

9 

M15 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M23 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M24 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

M15 
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                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M25 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, density, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M26 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                 ti(∑rain_prevFall, TSF, k = 3, bs = "cr") + 
         s(time, bs = "re") + 
         s(site, bs = "re") 

M27 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 

                  ti(∑rain_prevFall, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M28 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 
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                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(density, TSF, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M29 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                   s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = 
"cr") + 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(density, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

M30 = vr ~ s(μmaxT_prevWinter, k = 3, bs = "cr") + 

                  s(∑rain_prevFall, k = 3, bs = "cr") + 

                   ti(μmaxT_prevWinter, ∑rain_prevFall, k = 3, bs = "cr") 
+ 
                  s(density, k = 3, bs = "cr") + 
                  s(TSF, k = 3, bs = "cr") + 

                  ti(μmaxT_prevWinter, TSF, k = 3, bs = "cr") + 
                  ti(TSF, size, k = 3, bs = "cr") + 
          s(time, bs = "re") + 
          s(site, bs = "re") 

  185 
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5. Vital-rate estimation results  186 

 187 

Table S4 – Most parsimonious generalised additive models for dewy-188 

pine vital rates. For natural and anthropogenic populations, we estimated survival 189 

(σ), growth of aboveground plants (φ), flowering probability (pfl), number of flowers 190 

(nflowers), and seedling size (Φ) as a function of monthly average daily maximum 191 

temperature in a given period (μmaxT_period), monthly cumulative rainfall in a given 192 

period (∑rain_period), aboveground density of large individuals (density), individual 193 

size, and—for natural populations—time since fire (TSF). We selected the best 194 

model to predict a given vital rate using the Akaike Information Criterion (AIC). The 195 

function s(x edf) is the spline smoothing function (i.e. simple effect) of x, and ti(x, y edf) 196 

is the tensor product smoothing function of x and y. We used a cubic regression 197 

spline (bs = “cr” in the mgcv package; Wood, 2011; Wood et al., 2016; Wood, 2017) 198 

for all smoothing parameters, with a dimension k = 3 (except for the size effect on 199 

the number of flowers, where we used k = 4 to force a decline in the number of 200 

flowers of large individuals and avoid an ever-increasing number of flowers). 201 

Additionally, all models include a year and site random effect. edf is the 202 

corresponding effective degrees of freedom (Wood, 2017), which represents the 203 

amount of nonlinearity in the model component (edf = 1 corresponds to a linear fit), 204 

and n in the sample size. For the intercept and linear predictors (i.e., outside of s and 205 

ti smoothing functions), we report the estimated β-coefficients and the standard 206 

error. 207 

 208 
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Vital 
rate 

Family 
(link 

function) 
Most parsimonious model n 

Natural populations 

σ Binomial 
(logit) 

-1.1(0.28) + 0.27(0.47)μmaxT_nextSummer + 0.11(0.48)∑rain_nextFall + ti(∑rain_nextFall, 
μmaxT_nextSummer edf=0.88) + s(size edf=1.7) + s(TSF edf=0.00018) + s(μmaxT_nextSummer, 
site edf=1.5, bs = “re”) + ti(size, TSF edf=2.1) + ti(∑rain_nextFall, density edf=2.7) - 

1.4(0.46)∑rain_nextFall*TSF + ti(μmaxT_nextSummer, size edf=0.74) - 

0.26(0.096)μmaxT_nextSummer*density + ti(μmaxT_nextSummer, TSF edf=0.93) + 
ti(∑rain_nextFall, size edf=1.7) + s(time edf=3.8, bs = "re") + s(site edf=0.00010, bs = 
"re") 

1493 

γ Scaled t 
(identity) 

5.1(0.12) + s(∑rain_nextFall edf=0.000063) + 1.5(0.14)size + s(TSF edf=1.7) - 

0.074(0.018)density + s(size, site edf=1.6, bs = “re”) + ti(∑rain_nextFall, TSF edf=0.81) 
+ ti(∑rain_nextFall, density edf=2.1) + ti(size, density edf=0.83) + s(time edf=0.000019, 
bs = "re") + s(site edf=1.8, bs = "re") 

482 

pfl Binomial 
(logit) 

-4.0(0.57)+ 0.93(0.95)∑rain_prevFall + ti(∑rain_prevFall, μmaxT_prevWinter edf=1.5) + 
5.5(0.44)size + s(TSF edf=0.0000079) + ti(TSF, μmaxT_prevWinter edf=0.91) + ti(TSF, 
density edf=0.58) + ti(∑rain_prevFall, TSF edf=0.61) + ti(∑rain_prevFall, density edf=1.3) + 
ti(size, density edf=1.2) + s(time edf=3.8, bs = "re") + s(site edf=0.000041, bs = "re") 

 
1487 

nflower

s 

Negative 
binomial 

(log) 

2.0(0.052) + s(μmaxT_prevWinter edf=0.00041) + s(size edf=2.8) - 0.40(1.4)TSF + s(time 
edf=0.0013, bs = "re") + s(site edf=0.000056, bs = "re") 185 

Φ Scaled t 
(identity) 

3.4(0.073) + s(μmaxT_prevWinter edf=0.66) + s(density edf=0.49) + 0.16(0.079)TSF + 
s(density, site edf=0.000064, bs = “re”) + s(TSF, site edf=0.69, bs = “re”) + 
ti(μmaxT_prevWinter, density edf=1.3) + ti(μmaxT_prevWinter, TSF edf=0.76) + ti(density, 
TSF edf=0.69)  + s(time edf=4.8, bs = "re") + s(site edf=0.000071, bs = "re") 

745 

Anthropogenic populations 

σ Binomial 
(logit) 

-0.55(0.60) + s(∑rain_nextFall edf=0.015) - 1.8(0.41)μmaxT_nextSummer + ti(∑rain_nextFall, 

μmaxT_nextSummer edf=0.00017) + s(size edf=1.9) + s(size, site edf=3.6, bs = “re”) + 
s(∑rain_nextFall, site edf=3.2, bs = “re”) + ti(∑rain_nextFall, size edf=0.92) + 
0.11(0.037)size*density + s(time edf=4.5, bs = "re") + s(site edf=3.9, bs = "re") 

6008 

γ Scaled t 
(identity) 

5.0(0.13) + s(μmaxT_nextSummer edf=0.37) + s(size edf=1.6) - 0.028(0.0053)density + 
s(size, site edf=3.9, bs = “re”) + s(μmaxT_nextSummer, site edf=3.9, bs = “re”) + 
s(time edf=3.9, bs = "re") + s(site edf=3.8, bs = "re") 

3202 

pfl Binomial 
(logit) 

-4.7(0.36)+ s(∑rain_prevWinter edf=0.50) + s(size edf=2.0) + s(density, edf=1.6) + s(size, 

site edf=3.6, bs = “re”) +  s(∑rain_prevWinter, site edf=2.4, bs = “re”) + s(density, site 
edf=2.7, bs = “re”)  + s(time edf=5.0, bs = "re") + s(site edf=3.0, bs = "re") 

 
6254 

nflower

s 

Negative 
binomial 

(log) 

1.9(0.072) + s(∑rain_prevFall edf=0.0012) + s(size edf=2.8) + s(∑rain_prevFall, site edf=4.0, 
bs = “re”) + s(size, site edf=3.7, bs = “re”) + s(time edf=3.0, bs = "re") + s(site 
edf=0.015, bs = "re") 

899 

Φ Scaled t 
(identity) 

3.0(0.14) + s(μmaxT_prevWinter edf=0.50) - 0.057(0.012)density + s(μmaxT_prevWinter, site 

edf=2.9, bs = “re”) + s(density, site edf=1.9, bs = “re”) + ti(μmaxT_prevWinter, density 

edf=0.64)  + s(time edf=5.5, bs = "re") + s(site edf=3.9, bs = "re") 
2608 

  209 
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 Among-site variation in average vital rates and climate effects 210 

 211 

Dewy-pine vital rates varied between natural and anthropogenic habitat as 212 

well as between sites. Among-site variation was larger in anthropogenic than in 213 

natural conditions, possibly because of the among-population differences in the level 214 

of anthropogenic disturbance. This variation was especially large for survival rates, 215 

which ranged from 0.11 [0.058, 0.20] in Bujeo to 0.80 [0.72, 0.86] in Montera del 216 

Torero, while it remained stable at 0.27 [0.17, 0.40] on average in natural 217 

populations (Fig. S3).  218 
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 219 

Figure S3 – Among-site variation in average vital-rate values in natural 220 

and anthropogenic populations. The boxplots represent the distribution of the 221 

average values of site-specific survival, growth, and flowering rates, as well as the 222 

number of flowers and seedling size estimated for each year. The whiskers 223 

represent the 2.5th and 97.5th percentiles and the black triangle the mean estimate. 224 
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We kept covariates at their mean values (scaled value = 0) except for the number of 225 

flowers, where we used the mean size of reproducing individuals. The coloured dots 226 

represent the observed average vital rates in each population and year.  227 

 228 

In anthropogenic habitats, we found among-site disparities in the direction of 229 

association between climatic variables and survival, growth, number of flowers per 230 

individual, and seedling size (Fig. S4). For instance, the number of flowers was 231 

positively associated with increasing rainfall in Montera del Torero population (e.g. 232 

from 5.5 [5.0, 6.1] under 100 mm of rain to 7.0 [6.3, 7.8] under 200 mm), but 233 

negatively in Sierra del Retín Disturbed (e.g. from 8.7 [7.5, 9.9] to 7.3 [6.4, 8.4]). In 234 

contrast, there was no such among-site variation in natural habitats. For example, 235 

seedlings were bigger with higher winter temperatures (January–April); seedling size 236 

increased from 3.0 [2.8, 3.3] under 16 °C to 3.4 [3.3, 3.6] under 18 °C (Fig. S5).  237 
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 238 

Figure S4 – Among-site variation in the association between climatic 239 

variables and vital rates in anthropogenic populations. We predicted the values 240 

of (a) survival probability, (b) size in the next year, (c) number of flowers per 241 

individual, and (d) seedling size for a range of rainfall and temperature values in 242 

each anthropogenic population of dewy pines. The lines represent the average vital-243 

rate value and the shaded ribbon the 95% confidence interval. We kept all other 244 
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covariates at their mean values (scaled value = 0) except for the number of flowers, 245 

where we used the mean size of reproducing individuals.  246 

 247 

Figure S5 – Density-dependent variation in vital-rate responses to 248 

climate. We predicted the values of (a) seedling size, (b) flowering probability, and 249 

(c) size in the next year for a range of rainfall and temperature values and three 250 

levels of aboveground densities in natural and anthropogenic habitats. The lines 251 

represent the average vital-rate value and the shaded ribbon the 95% confidence 252 

interval. We kept all other covariates at their mean values (scaled value = 0) except 253 

for the number of flowers, where we used the mean size of reproducing individuals.  254 

 255 
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Vital-rate responses to large aboveground individual density and climate-256 

density interactions 257 

 258 

Seedling size decreased with higher numbers of large individuals aboveground (from 259 

3.0 [2.8, 3.3] at 2 ind./m2 to 2.8 [2.5, 3.1] at 10 ind./m2 in anthropogenic populations 260 

and from 3.4 [3.2, 3.5] to 3.1 [3.0, 3.3] in natural ones; Fig. S5a; Table S5). Density 261 

also mediated the association between seedling size and winter temperature in 262 

natural populations, with a stronger positive correlation between the two variables 263 

with 6 ind./m2 (3.2 [3.1, 3.4] at 17.5 ºC and 3.7 [3.4, 3.9] at 18.5 ºC) than with 2 264 

ind./m2 (3.4 [3.2, 3.5] and 3.5 [3.3, 3.7]) (Fig. S5a; Table S5). Additionally, with high 265 

densities in natural populations, flowering probability was low except for high 266 

amounts of rainfall (e.g. with 6 ind./m2, 0.19 [0.035, 0.60] for 150 mm of rainfall and 267 

0.37 [0.096, 0.76] for 200 mm; but with 2 ind./m2, 0.71 [0.43, 0.88] and 0.71 [0.38, 268 

0.90]) (Fig. S5b; Table S5), and the pattern was similar for growth (e.g. with 6 269 

ind./m2, 4.5 [4.1, 4.8] for 150 mm of rainfall and 4.6 [4.3, 4.9] for 200 mm; but with 2 270 

ind./m2, 5.0 [4.7, 5.2] and 5.0 [4.8, 5.3]) (Fig. S5c; Table S5). 271 

 272 

Vital-rate responses to time since fire and size 273 

 274 

As expected from previous work and observations, individuals in natural populations 275 

had a short lifespan, as indicated by the decrease in survival with time since fire 276 

(TSF) (0.42 [0.28, 0.57] and 0.29 [0.18, 0.42] respectively 3 and 7 years after a fire) 277 

and size (0.26 [0.16, 0.40] with a size of 5.0 and 0.22 [0.12, 0.37] with 6.2) (Fig. 278 

S6a,b; Table S5). This early decline in survival was accompanied by investment into 279 

reproduction from early post-fire stages, with flowering probability decreasing from 280 



 

 27 

0.16 [0.038, 0.48] to 0.051 [0.016, 0.15] respectively 3 and 7 years after a fire and 281 

the number of flowers per individual from 10 [8.2, 13] to 7.6 [6.8, 8.4] (Fig. 5c,d; 282 

Table S5). Dewy pines growing in natural conditions also appeared to reproduce 283 

throughout most of their lifetime, as both flowering probabilities and number of 284 

flowers continuously increased with size (individuals had a probability of flowering of 285 

0.17 [0.061, 0.38] and 2.9 [2.4, 3.5] flowers with a size of 5.0, which respectively 286 

increased to 0.74 [0.47, 0.90] and 7.8 [6.9, 8.7] with 6.2) (Fig. S6e,f; Table S5). In 287 

contrast, the largest individuals had the highest survival in anthropogenic habitats 288 

(0.61 [0.32, 0.84] and 0.75 [0.46, 0.91] with sizes of 5.0 and 6.2; Fig. S6b; Table S5), 289 

but did not invest as much in reproduction with both flowering probability and number 290 

of flowers declining after reaching a peak for a size of 7.3 (probability of flowering of 291 

0.69 [0.34, 0.91]) and 8.2 (19 [13, 28] flowers) (Fig. S6e,f; Table S5). 292 

 293 

 Vital-rate responses to size-climate interactions 294 

 295 

In natural populations, small individuals survived best at intermediate rainfall (e.g. 296 

0.29 [0.18, 0.43] with 150 mm of rain for an individual of size 3.4) than for high or low 297 

amounts of rainfall (0.18 [0.098, 0.30] with 80 mm and 0.26 [0.14, 0.43] with 210 298 

mm), while large individuals survived best at low or high rainfall (e.g., for an 299 

individual of size 6.6, 0.26 [0.13, 0.45] with 80 mm, 0.20 [0.10, 0.37] with 150 mm, 300 

and 0.26 [0.13, 0.45] with 210 mm; Fig. S6g; Table S5). Additionally, survival rates 301 

decreased faster with summer temperature for large than for small individuals (from 302 

0.60 [0.32, 0.83] at 25 °C to 0.26 [0.13, 0.44] at 26 ºC with a size of 6.6, and from 303 

0.57 [0.32, 0.79] to 0.34 [0.22, 0.49] with a size of 3.4; Fig. S6h; Table S5). We also 304 

found size dependence in the association between survival and rainfall in 305 
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anthropogenic populations, where large individuals survived best at intermediate 306 

amounts of rain in fall (e.g., for an individual with a size of 6.6, 0.67 [0.37, 0.88] at 80 307 

mm of rain, 0.78 [0.49, 0.93] at 150 mm, and 0.73 [0.44, 0.91] at 210 mm), while 308 

small individuals were not affected by changes in rainfall (Fig. S6g; Table S5).  309 
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Figure S6 – Vital-rate responses to time since fire, size, and size-climate 310 

interactions. We predicted the values of survival and flowering probability as well as 311 

the number of flowers per individual for a range of number of years since the last fire 312 

(time since fire) in natural habitats (a, c, d) and for a range of individual sizes in both 313 

natural and anthropogenic habitats (b, e, f). Finally, we predicted the values of 314 

survival probability for a range of individual sizes as well as (h) rainfall and (g) 315 

temperature values. The lines represent the average vital-rate value and the shaded 316 

ribbon the 95% confidence interval. In each case, we kept all other covariates at their 317 

mean values (scaled value = 0) except for the number of flowers, where we used the 318 

mean size of reproducing individuals. 319 

Figure S7 – Site-specific population growth rate. For each population, we 320 

calculated the stochastic growth rate log 𝜆S as the average of all annual log 𝜆 in each 321 

of 500 projections.   322 
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 1 

Appendix S2 – Current and future rainfall and temperature data in dewy-pine 1 

populations 2 

 3 

1. Current rainfall and temperature data 4 

 5 

We modelled the response of dewy-pine vital rates to rainfall and maximum 6 

daily temperature using observed daily climatic data at dewy-pine population 7 

locations (Table 1) from the E-OBS dataset from the EU-FP6 project UERRA and the 8 

Copernicus Climate Change Service (Cornes et al., 2018; accessible at 9 

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php). We used the 10 

ncdf4 R package to process the raw netCDF weather data (Pierce, 2021), and 11 

transformed the daily rainfall and maximum daily temperature into monthly 12 

cumulative rainfall and average maximum daily temperature. For each population, 13 

we then obtained monthly cumulative rainfall and average maximum temperature 14 

data from the year prior the first census (i.e., 2010 for Sierra del Retín Disturbed and 15 

Vertedero, 2011 for Sierra Carbonera Young, 2014 for Sierra del Retín Young, and 16 

2015 for all other populations). To do so, we averaged the recorded climate values 17 

within a buffer of 0.1×1.5 degrees around the GPS location of each population.  18 



 2 

Table S1 – GPS locations of dewy-pine populations. Longitude and latitude of 19 

population locations are given in decimal degrees.  20 

Population Habitat type Latitude Longitude First 
sampled 

Last fire 

Sierra 
Carbonera 

Young 

Natural 36.209722  
or 36°13’ N 

-5.36 
or 5°22’ W 

2012 2011 

Sierra del Retín 
Young 

Natural 36.17694444 
or 36°11’ N 

-5.833055556 
or 5°50’ W 

2015 2013 

Vertedero Natural 36.121667 
or 36°7’ N 

-5.49 
or 5°29’ W 

2011 2009 

Sierra del Retín 
Disturbed 

Anthropogenic 36.198056 
or 36°12’ N 

-5.823611 
or 5°49’ W 

2011 1996 

Prisioneros Anthropogenic 36.105 
or 36°6’ N 

-5.486388889 
or 5°29’ W 

2016 1950 

Bujeo Anthropogenic 36.072461 
or 36°4’ N 

-5.52654 
or 5°32’ W 

2016 1950 

Montera del 
Torero 

Anthropogenic 36.226389 
or 36°14’ N 

-5.585278 
or 5°35’ W 

2016 1950 

Sierra 
Carbonera 
Disturbed 

Anthropogenic 36.10638889 
or 36°12’ N 

-5.360555556 
or 5°22’ W 

2016 1950 

 21 

2. Projected rainfall and temperature data 22 

 23 

To project dewy-pine populations under climate change, we used projected 24 

rainfall and temperature values at dewy-pine population locations from 11 global 25 

circulation models (GCM; see Table 2) from the Coupled Model Intercomparison 26 

Project 6 (CMIP6; Eyring et al., 2016; Pascoe et al., 2020; Waliser et al., 2020) 27 

available from the Earth System Grid Federation (ESFG; Petrie et al., 2021; 28 

available at https://aims2.llnl.gov/search). For each model, we selected the best 29 

variant using the GCMeval tool (Parding et al., 2020; accessible at 30 



 3 

https://gcmeval.met.no/). For each GCM, we downloaded data for the worst scenario 31 

of atmospheric greenhouse gas Representative Concentration Pathway (RCP), 32 

corresponding to a level of radiative forcing reaching 8.5 Watts per square metre 33 

(Wm-2) by 2100 (RCP 8.5). We processed the raw data from each climate projection 34 

model using the ncdf4 R package (Pierce, 2021) to obtain monthly cumulative rainfall 35 

and average maximum temperature in each population by averaging the values 36 

recorded within a buffer of 0.1×1.5 degrees around the population coordinates (i.e., 37 

1.5 times the grid resolution). 38 

 39 

Most GCMs comprised projected rainfall and temperature values beyond the values 40 

observed in our populations. To avoid predicting vital rates using values of climate 41 

variables outside the observed range, we capped these values to the maximum and 42 

minimum observed. For example, while the observed maximum cumulative rainfall in 43 

fall was 245 mm, six of the considered GCM predicted greater values in some years, 44 

ranging from 250 to 463 mm; we transformed these values to the maximum 45 

observed (245 mm). This allowed us to investigate the response of dewy-pine 46 

populations to increases in the frequency of extreme climatic conditions, rather than 47 

changes in absolute rainfall and temperature values.  48 



 4 

Table S2 – List of global circulation models used to project dewy-pine 49 

populations under climate change. 50 

Source ID 
Experimen

t  Variant  Version Institution 
Modelling 

centre Citation 

CanESM5 ssp585 r1i1p1f1 20190429 

Canadian Centre for 
Climate Modelling 
and Analysis, 
Environment and 
Climate Change 
Canada, Victoria, BC 
V8P 5C2, Canada 

CCCma 
 

(Swart et al., 2019) 
 

EC_Earth3 
 ssp585 r4i1p1f1 20200425 

AEMET, Spain; BSC, 
Spain; CNR-ISAC, 
Italy; DMI, Denmark; 
ENEA, Italy; FMI, 
Finland; Geomar, 
Germany; ICHEC, 
Ireland; ICTP, Italy; 
IDL, Portugal; IMAU, 
The Netherlands; 
IPMA, Portugal; KIT, 
Karlsruhe, Germany; 
KNMI, The 
Netherlands; Lund 
University, Sweden; 
Met Eireann, Ireland; 
NLeSC, The 
Netherlands; NTNU, 
Norway; Oxford 
University, UK; 
surfSARA, The 
Netherlands; SMHI, 
Sweden; Stockholm 
University, Sweden; 
Unite ASTR, 
Belgium; University 
College Dublin, 
Ireland; University of 
Bergen, Norway; 
University of 
Copenhagen, 
Denmark; University 
of Helsinki, Finland; 
University of 
Santiago de 
Compostela, Spain; 
Uppsala University, 
Sweden; Utrecht 
University, The 
Netherlands; Vrije 
Universiteit 
Amsterdam, the 
Netherlands; 

EC-Earth- 
Consortium 

(EC-Earth 
Consortium (EC-

Earth), 2019) 
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Wageningen 
University, The 
Netherlands. Mailing 
address: EC-Earth 
consortium, Rossby 
Center, Swedish 
Meteorological and 
Hydrological 
Institute/SMHI, SE-
601 76 Norrkoping, 
Sweden 

FGOALS_G3 ssp585 r1i1p1f1 20190818 
Chinese Academy of 
Sciences, Beijing 
100029, China 

CAS (Li, 2019) 

GFDL_ESM4 ssp585 r1i1p1f1 20180701 

National Oceanic and 
Atmospheric 
Administration, 
Geophysical Fluid 
Dynamics 
Laboratory, 
Princeton, NJ 08540, 
USA 

NOAA-
GFDL (John et al., 2018) 

GISS_E2_1_G ssp585 r1i1p1f2 20200115 
Goddard Institute for 
Space Studies, New 
York, NY 10025, USA 

NASA-GISS 

(NASA Goddard 
Institute for Space 

Studies 
(NASA/GISS), 

2020) 

INM_CM4_8 ssp585 r1i1p1f1 20190603 

Institute for 
Numerical 
Mathematics, 
Russian Academy of 
Science, Moscow 
119991, Russia 

INM (Volodin et al., 
2019) 

IPSL_CM6A_LR ssp585 r1i1p1f1 20190903 
Institut Pierre Simon 
Laplace, Paris 75252, 
France 

IPSL (Boucher et al., 
2019) 

MIROC6 ssp585 r1i1p1f1 20191016 

JAMSTEC (Japan 
Agency for Marine-
Earth Science and 
Technology, 
Kanagawa 236-0001, 
Japan), AORI 
(Atmosphere and 
Ocean Research 
Institute, The 
University of Tokyo, 
Chiba 277-8564, 
Japan), NIES 
(National Institute for 
Environmental 
Studies, Ibaraki 305-
8506, Japan), and R-

MIROC (Shiogama et al., 
2019) 
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CCS (RIKEN Center 
for Computational 
Science, Hyogo 650-
0047, Japan) 

MPI_ESM1_2_LR ssp585 r10i1p1f1 20190710 

Max Planck Institute 
for Meteorology, 
Hamburg 20146, 
Germany 

MPI-M (Wieners et al., 
2019) 

MRI_ESM2_0 ssp585 r1i1p1f1 20191108 

Meteorological 
Research Institute, 
Tsukuba, Ibaraki 305-
0052, Japan 

MRI (Yukimoto et al., 
2019) 

NorESM2_MM ssp585 r1i1p1f1 20191108 

NorESM Climate 
modeling Consortium 
consisting of 
CICERO (Center for 
International Climate 
and Environmental 
Research, Oslo 
0349), MET-Norway 
(Norwegian 
Meteorological 
Institute, Oslo 0313), 
NERSC (Nansen 
Environmental and 
Remote Sensing 
Center, Bergen 
5006), NILU 
(Norwegian Institute 
for Air Research, 
Kjeller 2027), UiB 
(University of Bergen, 
Bergen 5007), UiO 
(University of Oslo, 
Oslo 0313) and UNI 
(Uni Research, 
Bergen 5008), 
Norway. Mailing 
address: NCC, c/o 
MET-Norway, Henrik 
Mohns plass 1, Oslo 
0313, Norway 

NCC (Bentsen et al. 
2019) 

 51 

3. Current and future climatic trends 52 

 53 

Temperatures have increased in the past decades, with an average trend 54 

(mean and 95% confidence interval) of 0.033 ºC [0.021; 0.044] per year between 55 



 7 

1980 and 2022. This trend will continue and intensify in the future, as climate-change 56 

models predict an increase of 0.055 ºC [0.053; 0.057] per year on average between 57 

2015 and 2100 under the RCP 8.5 global change scenario (Moss et al., 2010; van 58 

Vuuren et al., 2011; Riahi et al., 2011). Average monthly cumulative rainfall and its 59 

variability show opposite trends between the current and projected conditions. Both 60 

the yearly mean and variability increased on average between 1980 and 2022 (0.18 61 

[-0.23, 0.59] and 0.083 mm [-0.47, 0.63] per year, respectively) but are predicted to 62 

decrease until 2100 according to future projections under the RCP 8.5 scenario (-63 

0.16 [-0.19, -0.13] and -0.11 mm [-0.14, -0.077]). Notably, while the RCP 4.5 global 64 

change scenario predicts a more moderate increase in temperature, both scenarios 65 

show the same trend for the 30 years of our projections (Fig. S1; Fig. S2a). 66 

Figure S1 – Current and projected monthly temperature and rainfall data. 67 

We obtained current data on daily maximum temperature and daily rainfall amounts 68 

from the E-OBS dataset from the EU-FP6 project UERRA and the Copernicus 69 

Climate Change Service. We extracted the projected rainfall and temperature values 70 
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under the RCP 4.5 and 8.5 global change scenarios from 11 global change models 71 

from the Coupled Model Intercomparison Project 6 (CMIP6; available from the Earth 72 

System Grid Federation). 73 

Figure S2 – Current and projected trends in temperature and rainfall. We 74 

investigated yearly changes in (a) average daily maximum temperature, (b) standard 75 

deviation in monthly cumulative rainfall, and (c) average monthly cumulative rainfall, 76 

for the current (1980–2022) and projected conditions (2015–2100) under the RCP 77 



 9 

4.5 and 8.5 global change scenarios. Dots represent the observed values and lines 78 

and shaded ribbons represent the mean and 95% confidence interval of linear 79 

models fitted to each data subset.  80 
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 1 

Appendix S3 – Individual-based model description  1 

 2 

The model description follows the ODD (Overview, Design concepts, Details) 3 

protocol for describing individual- and agent-based models (Grimm et al., 2006), as 4 

updated by (Grimm et al., 2020). 5 

 6 

1. Purpose and patterns 7 

 8 

The purpose of the model is to predict population growth rates and extinction 9 

probabilities of dewy-pine (Drosophyllum lusitanicum) populations in natural and 10 

anthropogenic habitats in response to projected changes in rainfall and temperature 11 

values. We evaluate our model by its ability to reproduce the observed dynamics in 12 

the mean changes in aboveground abundance in each population, or at least follow 13 

a similar trend. 14 

 15 

2. Entities, state variables, and scales 16 

 17 

Entities and state variables 18 

 19 

The environment is a single entity representing the population. Its role is to 20 

describe the environment (e.g. climate variables) and keep track of simulated time. 21 

Environment state variables correspond to dynamic global variables and are 22 

presented in Table 1.  23 



 

 2 

Table 1 – Environment state variables 24 

Variable name Variable 
type and 

units 

Rang
e 

Meaning 

time_sim Integer; 
dynamic  

≥1 Number of years that passed since the start of 
the projection 

year_obs Integer; 
dynamic 

(e.g. 2020) 

≥2016 Current year in the projection 

year Integer; 
dynamic 

(e.g. 2020) 

≥2016 Year randomly sampled from the available 
observed years 

TSF Integer; 
dynamic 

≥0 Number of years since the last fire 

TSFcat Categorical; 
dynamic 

(0–4) 

{0, 1, 
2, 3, 
4} 

Post-fire habitat stage, with any number of years 
after a fire ≥ 4 corresponding to 4 

corr_seed_surv Probability; 
dynamic 

[0, 1] Correction factor representing the survival 
probability of seeds above the ground 

summerT Real 
number; °C; 

dynamic 

≥0 Average minimum daily temperature in summer 
(May–September) following the annual survey in 

May 

prevwinterT Real 
number; °C; 

dynamic 

≥0 Average minimum daily temperature in winter 
(January–April) prior to the annual survey in May 

fallR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in fall (September–November) 
following the annual survey in May 

prevfallR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in fall (September–November) 
prior to the annual survey in May 

prevwinterR Integer; 
mm; 

dynamic 

≥0 Cumulative rainfall in winter (January–April) prior 
to the annual survey in May 

extinction Binary; 
dynamic 

{0, 1} Current state of the population: extinct (1) or not 
(0) 

  25 

Plants are entities representing the aboveground—as opposed to seeds—individual 26 

dewy pines in the population. They correspond to individuals from the seedling stage 27 



 

 3 

in the species life cycle. The state variables unique to each plant are presented in 28 

Table 2.  29 

 30 

Table 2 – Plant state variables 31 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the plant 

quadratID Character 
string; 
static 

NA Unique identifier of the quadrat corresponding to 
the location of the plant 

 size Real 
number; 
dynamic 

≥0 Plant size in the current time step, corresponding 
to log(number of leaves x length of the longest 

leaf in cm) 

survival Binary; 
dynamic 

{0, 1} State of the plant at the next time step: alive (1) 
or dead (0) 

sizeNext Real 
number; 
dynamic 

≥0 Plant size in the next time step, corresponding to 
log(number of leaves x length of the longest leaf 

in cm) 

flowering Binary; 
dynamic 

{0, 1} Reproductive state of the plant in the current time 
step: flowering (1) or not (0) 

nbFlowers Integer; 
dynamic 

≥0 Number of flowers on the plant 

nb_seeds Integer; 
dynamic 

≥0 Number of seeds per flower produced by the 
plant 

 32 

Seeds are entities representing individuals before they germinate and become 33 

seedlings. Because they are concerned by different processes, we divided seeds 34 

between two types of entities: Seedbank seeds are entities representing the seeds 35 

in the soil seedbank and produced seeds are entities representing the individuals 36 

that have been produced by aboveground reproducing dewy pines in the current 37 

time step. Their state variables are presented in Table 3 and Table 4. 38 



 

 4 

Table 3 – Seedbank seed state variables 39 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the seed 

quadratID Character 
string; 
static 

NA ID of the quadrat corresponding to the location of 
the seed 

size Real 
number; 
dynamic 

≥0 Size of the seedling growing from the germinating 
seed in the next time step, corresponding to 

log(number of leaves x length of the longest leaf 
in cm) 

outSB Binary; 
dynamic 

{0, 1} Seed germination (1) or not (0) 

staySB Binary; 
dynamic 

{0, 1} Seed dormancy (1) or not (0) 

 40 

Table 4 – Produced seed state variables 41 

Variable 
name 

Variable 
type and 

units 

Range Meaning 

ID Character 
string; 
static 

NA Unique identifier of the seed 

quadratID Character 
string; 
static 

NA ID of the quadrat corresponding to the location of 
the seed 

size Real 
number; 
dynamic 

≥0 Size of the seedling growing from the germinating 
seed in the next time step, corresponding to 

log(number of leaves x length of the longest leaf 
in cm) 

goCont Binary; 
dynamic 

{0, 1} Seed germination (1) or not (0) 

goSB Binary; 
dynamic 

{0, 1} Seed entering the seedbank (1) or not (0) 

 42 
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Quadrats are two-dimensional squares representing the monitoring units in which 43 

plants are censored in a population. Quadrats are only associated with one dynamic 44 

state variable, abLarge, an integer (≥0) corresponding to the number of plants with a 45 

size > 4.5 present in a quadrat.   46 

 47 

Scales 48 

 49 

The model is spatially explicit and represents a population in a two-dimensional 50 

space extending over 40 m2 divided in 1-m2 quadrats. These quadrats are discrete 51 

units in which individual plants and seeds are distributed, and correspond to the units 52 

in which dewy pines are monitored every year—more specifically in four separated 53 

transects of ten quadrats each.  54 

 55 

The model represents time via discrete time steps, each corresponding to one year, 56 

to replicate the annual surveys that take place in May in the various populations.  57 

 58 

3. Process overview and scheduling 59 

 60 

 Process overview 61 

 62 

The model covers the life cycle of dewy pines. At each time step, the 63 

environment updates the environmental variables and simulation time; the plants 64 

reproduce, survive, and grow; the seedbank seeds germinate or stay dormant; and 65 

the produced seeds germinate or go to the seedbank. The quadrats get new 66 

aboveground density values.  67 



 

 6 

Schedule summary 68 

 69 

Throughout the model, the update of each state variable through a given process for 70 

plants and produced or seedbank seeds is done simultaneously for all entities, as 71 

each process in a given entity is assumed to be independent from the processes in 72 

another entity. 73 

 74 

At each timestep, the model resets the ensemble of seeds produced to zero. The 75 

population of plants is also reset if a fire occurred, as all aboveground individuals 76 

are burned. The environment then updates the environmental variables (rainfall and 77 

temperature) as well as the simulation year and the number of years after the last 78 

fire. The latter two are used to update the correction factor representing seed 79 

survival (corr_seed_surv). 80 

 81 

Aboveground plants then reproduce (see Reproduction submodel); that is, they 82 

flower and produce a certain number of flowers, which in turn produce seeds. The 83 

number of flowers is capped to the user-selected value if needed. The fate of the 84 

seeds produced is updated; they can either germinate, contribute to the seedbank, 85 

or die (i.e., none of the two former processes). Produced seeds that do not die are 86 

then assigned an ID, and those that germinate a size, and the maximum ID number 87 

is updated.  88 

 89 

After reproducing, plants survive and grow (Survival and growth submodel). The 90 

size is capped or adjusted if needed. Seedbank processes take place next 91 

(Seedbank submodel), with seedbank seeds germinating, staying dormant, or dying 92 
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(i.e., none of the two former processes). Seeds that germinate are attributed a size. 93 

Produced seeds that were assigned to go dormant are added to the seedbank, and 94 

those that germinate are added to the aboveground population after capping their 95 

number in each quadrat.  96 

 97 

After each timestep, the population growth rate and mean change in aboveground 98 

population abundance are calculated and the yearly individual data is merged to the 99 

full data. The environment updates the simulation time and the extinction status to 1 100 

if the quasi-extinction threshold is reached, and the size of each surviving plant is 101 

updated to its size at the next time step. Finally, the aboveground density in each 102 

quadrat is updated. 103 

 104 

Schedule details 105 

 106 

The schedule follows the processes of the dewy-pine life cycle during a year from 107 

the annual census occurring in May. This census occurs during the flowering period 108 

and the model replicates this by starting with the Reproduction submodel. The 109 

Survival and growth and Seedbank submodels could come in any order after 110 

reproduction took place, as they are independent from each other. 111 

 112 

In natural populations, the schedule depends on the fire regime. Reproduction does 113 

not happen until the second year after a fire occurs, and only survival and growth, as 114 

well as germination or dormancy in the seedbank, are represented in the year of a 115 

fire and the following year.  116 
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4. Design concepts 117 

 118 

1. Basic principles 119 

 120 

 This model relies on previous knowledge on the life cycle of dewy pines 121 

(Paniw et al., 2017; Conquet et al., 2023) to perform a population viability analysis 122 

(PVA), a modelling approach commonly used in population ecology. By projecting 123 

population dynamics into the future, a PVA aims at assessing the probability of 124 

persistence of populations and allows for the introduction of stochasticity in 125 

environmental conditions (e.g. fire return, or sampling from a distribution of 126 

temperature and rainfall values). While this model is designed for plant populations 127 

and does not include any representation of social organisation or individual’s 128 

decision processes, it allows to take into account demographic stochasticity (by 129 

sampling demographic processes from distributions), which is often unaccounted for 130 

in PVAs due to the use of simplified population models such as matrix population 131 

models (MPM) or integral projection models (IPM). 132 

 133 

2. Emergence 134 

 135 

Changes in aboveground population size emerge from individual fate, which in turn 136 

emerges from the relationship between demographic processes (e.g. survival or 137 

reproduction) and individual traits (plant size), density, and environmental variables. 138 

Individual traits and density vary with changes in demographic processes affecting 139 

individual fate. How the various demographic processes interact to shape individual 140 

life histories is imposed by previous empirical observations on the species’ life cycle. 141 
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Seedbank processes emerge from the simulated sequence of post-fire habitat 142 

stages (in natural populations) or from site-specific parameters that do not vary 143 

through time parameters (in anthropogenic populations). 144 

 145 

3. Adaptation 146 

 147 

Individuals do not make any decisions based on objectives in this model.  148 

 149 

4. Objectives 150 

 151 

Individuals do not use any fitness measure to make decisions. 152 

 153 

5. Learning 154 

 155 

Learning is not implemented in this model. 156 

 157 

6. Prediction 158 

 159 

Prediction is not implemented in this model. 160 

 161 

7. Sensing 162 

 163 

Sensing is not implemented in this model.  164 
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8. Interaction 165 

 166 

Interactions between individuals in this model are mediated by competition for 167 

resources (e.g. light or prey) and facilitation (e.g. provision of shade). These 168 

interactions are represented by the effect of density at the beginning of year t on 169 

demographic processes, and in turn individual fate, from time t to t+1. Here, density 170 

corresponds more specifically to the number of aboveground individuals of size > 4.5 171 

in a given 1-m2 quadrat, as we expect from observations that individuals further than 172 

the quadrat are too far to affect focal plants, and that smaller individuals only have a 173 

small effect on other individuals. 174 

  175 

9. Stochasticity 176 

 177 

Stochasticity occurs at several levels of the model. First, if the user chooses to 178 

project the population under current climatic conditions, the sequence of years of the 179 

desired length will be created by randomly sampling from the list of observed years. 180 

If the user chooses to project the population under future climate-change conditions, 181 

this random sampling of observed years is used to obtain the sequence of years to 182 

be used as random effects in the submodels, that is, the years representing the 183 

variation in demographic processes that is not explained by environmental 184 

conditions, individual traits, or density.  185 

 186 

Additionally, all demographic processes governing the fate of both aboveground 187 

plants and produced and seedbank seeds are stochastic. For each plant, the 188 

survival, size (at the next time step or after germinating), flowering status, and 189 
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number of flowers are sampled from binomial, scaled Student t, and Poisson 190 

distributions with parameters obtained from predictions of generalised additive 191 

models and depending on the environmental conditions, individual traits, and 192 

density. For each seed, whether it germinates, stays dormant, or contributes to the 193 

seedbank is sampled from a binomial distribution with parameters depending on the 194 

site in which the simulation is performed or the time since last fire. The number of 195 

seeds per flower for each plant is sampled from a Poisson distribution with a fixed 196 

mean previously used in population projections for this system (Paniw et al., 2017; 197 

Conquet et al., 2023).  198 

 199 

Moreover, the location of each seed in the seedbank at the start of the simulation is 200 

attributed randomly, with each quadrat having the same probability 201 

!
"#"$%	'()*+,	#-	.($/,$"0

 to be designated as a seed’s location. In subsequent years, all 202 

produced seeds are assigned to the quadrat of the parent plant. This approach 203 

allows us to reproduce the lack of active dispersal mechanisms in dewy pines, 204 

leading most seeds to fall and establish next to the mother plant.   205 

 206 

Finally, when the number of plants to add to the population is higher than the 207 

capping threshold set by the user, the new individuals to be removed from the 208 

recruits are sampled at random. 209 

 210 

10. Collectives 211 

 212 

There are no collectives in this model. 213 

 214 
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11. Observation 215 

 216 

The two main outputs of this model are (1), for each simulation the yearly population 217 

growth rates (log 𝜆 = 1!
1!"#

, where Nt is the total population size—above ground and in 218 

the seedbank—in year t and Nt-1 in year t-1) that can be used to calculate the 219 

stochastic growth rate over the whole simulation (log 𝜆S = ∑ 345	6!$
!%&

7
 where T is the 220 

number of simulated years), and (2) whether the population went extinct within the 221 

number of simulated years, which can be used to obtain the probability of quasi-222 

extinction (proportion of simulations where the population went under the quasi-223 

extinction threshold, i.e., 10 > aboveground individuals and 50 > seeds in the 224 

seedbank) across a number of simulations defined by the user.  225 

In addition, the output of the model contains the full individual data across the whole 226 

simulation, the mean change in aboveground population abundance (i.e. the 227 

population growth rate without taking the seedbank into account), as well as 228 

population size and population density (i.e. number of individuals of size > 4.5 per 1-229 

m2 quadrat). 230 

 231 

5. Initialization 232 

 233 

For both habitats (natural and anthropogenic) and all scenarios (control and 234 

climate change) the initial number of aboveground plants, as well as their size and 235 

location (quadrat) corresponds to that observed in the population and first year 236 

chosen by the user for the simulation, as does the density in each quadrat. The 237 

number of seeds present in the seedbank when starting the simulation is defined by 238 

the user (by default 10,000 for natural populations and 3,000 for anthropogenic 239 
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populations), and the seeds are initially assigned randomly to their quadrat. The 240 

number of produced seeds and the extinction status are initialised at 0. The 241 

sequence of yearly population growth rates, mean change in aboveground 242 

population abundance, and population density are initialised with NAs.  243 

 244 

In both scenarios, the required number of years (set by the user) is sampled among 245 

the years observed in the full individual data (e.g. 30 samples of years 2016–2021). 246 

This sequence of years is used to represent random year variation (i.e., random 247 

effects in vital-rate models). However, the sequence of yearly temperature and 248 

rainfall values depends on the scenario. Under the control scenario, these values 249 

correspond to the observed climate in each year of the sampled sequence. When 250 

the population is projected under climate change, the temperature and rainfall values 251 

reflect the projected climate values obtained from the global circulation models 252 

(GCM) from the first year defined by the user and following a chronological order 253 

until the end of the simulation. 254 

 255 

Finally, projecting natural populations requires to initialise a sequence of post-fire 256 

habitat stages (0–4). In the first year, this corresponds to the stage observed in the 257 

first year of the simulation (defined by the user). The following stages are determined 258 

by a Markov chain (Fig. S1; see also Paniw et al., 2017; Conquet et al., 2023), where 259 

the transition from the last to the first stage (fire year) depends on the probability of 260 

fire return (p), which is set by the user (1/30 by default). The sequence of number of 261 

years since the last fire (TSF) is initialised using the observed number in the first 262 
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year of the simulation, with the subsequent TSFs being inferred from the sequence 263 

of post-fire habitat stages. 264 

 265 

 266 

 267 

 268 

 269 

 270 

 Figure S1 - Markov chain determining the succession of post-fire 271 

habitats for the dewy pine population. The first four states (from the fire year to 272 

the third year after a fire) constitute the deterministic part of the Markov chain and 273 

thus always follow each other in a sequence of 1 to 4 (probability of transition = 1). 274 

The fifth state (from the fourth year after a fire) is stochastic, and the transition from 275 

this state depends on the fire frequency p (i.e., the population will remain in state 5 276 

until a fire occurs).  277 

 278 

6. Input data 279 

 280 

 The model uses as input data individual-based data on dewy pines 281 

(aboveground plants) in the population chosen by the user. These data have been 282 

collected during annual population surveys occurring in May since at least 2016 283 

(earlier for some populations, see Appendix S2). These surveys enabled us to obtain 284 

data on individuals’ survival, size (log[length of the longest leaf x number of leaves]), 285 

reproductive status, and number of flowers (Paniw et al.,, 2017). Additionally, the 286 

model uses input data containing values from 2016 to 2050 of (1) average daily 287 
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minimum temperature (in ºC) in summer and fall following a census and fall and 288 

winter prior to a census, and (2) cumulative rainfall (in mm) in fall and winter 289 

following a prior to a census. Details on data sources and preparation can be found 290 

in Appendix S2. 291 

 292 

7. Submodels 293 

 294 

Reproduction 295 

 296 

Flowering: Individuals can reproduce from two years after a fire occurred in natural 297 

populations (Paniw et al., 2017). The reproductive status of individuals (0 or 1) is 298 

drawn from a binomial distribution which probability is predicted from a generalised 299 

additive model (GAM) describing the observed relationship between flowering 300 

probability and winter mean daily maximum temperature, fall cumulative rainfall, 301 

individual size, aboveground density of individuals with size > 4.5, and time since last 302 

fire in natural populations (see Appendix S1: Table S5 for the full equation linking the 303 

various covariates to flowering probability). 304 

 305 

Number of flowers per individual: Reproductive individuals (i.e., flowering = 1) can 306 

produce flowers, their number being drawn from a negative binomial distribution 307 

which probability is predicted from a generalised additive model (GAM) describing 308 

the observed relationship between the number of flowers and winter mean daily 309 

maximum temperature, individual size, and time since last fire in natural populations 310 

(see Appendix S1: Table S5 for the full equation linking the various covariates to the 311 

number of flowers per individual).  312 
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 313 

Number of seeds per flower: The number of seeds for each flower is drawn from a 314 

Poisson distribution with a mean fixed at 9.8, which corresponds to the value used in 315 

previous population projections of the dewy-pine system (Paniw et al., 2017; 316 

Conquet et al., 2023). 317 

  318 

 Survival and growth 319 

 320 

Survival: Individual survival (0 or 1) is sampled from a binomial distribution which 321 

probability is predicted from a generalised additive model (GAM) describing the 322 

observed relationship between survival and summer mean daily maximum 323 

temperature, fall cumulative rainfall, individual size, aboveground density of 324 

individuals with size > 4.5, and time since last fire in natural populations (see 325 

Appendix S1: Table S5 for the full equation linking the various covariates to survival).  326 

  327 

Growth: The size of surviving individuals in the following year is sampled from a 328 

truncated scaled Student t distribution with location (i.e. mean), scale (i.e. standard 329 

deviation) and degrees of freedom obtained from a generalised additive model 330 

describing the observed relationship between individuals’ size in the next year and 331 

fall cumulative rainfall, individual size, aboveground density of individuals with size > 332 

4.5, and time since last fire in natural populations (see Appendix S1: Table S5 for the 333 

full equation linking the various covariates to growth). The minimum or maximum 334 

observed sizes were assigned to individuals with infinite size values.  335 
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 Seedbank 336 

 337 

Continuous germination and contribution to the seedbank: For each produced seed, 338 

whether it germinated directly without going to the seedbank (0 or 1) was sampled 339 

from a binomial distribution with a mean determined by the probability to germinate 340 

when produced (goCont) which depended on time since last fire (in natural 341 

populations) or site (in anthropogenic populations) (see Appendix S1: Table S1 for 342 

details on the mean values). Among the seeds that will not germinate, seeds that will 343 

contribute to the seedbank in the next year (0 or 1) were then sampled from a 344 

binomial distribution with a mean determined by 1-goCont. The rest of the seeds 345 

were considered dead and removed from the population. In anthropogenic 346 

populations, the probabilities of continuous germination and contribution to the 347 

seedbank were corrected for seed survival (i.e., multiplied by 0.33) and, in one 348 

population (Sierra Carbonera Disturbed), further multiplied by 0.4 to replicate more 349 

accurately the observed population dynamics. 350 

 351 

Germination from the seedbank: For each seedbank seed, whether it germinated 352 

from the seedbank (0 or 1) was sampled from a binomial distribution with a mean 353 

depending on time since last fire (in natural populations) or site (in anthropogenic 354 

populations) (see Appendix S1: Table S1 for details on the mean values). In 355 

anthropogenic populations, the probability of germination from the seedbank was 356 

corrected for seed survival (i.e., multiplied by 0.33) and, in one population (Sierra 357 

Carbonera Disturbed), further multiplied by 0.4 to replicate more accurately the 358 

observed population dynamics. 359 

 360 
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Dormancy: For each seedbank seed, whether it remained dormant in the seedbank 361 

(0 or 1) was sampled from a binomial distribution with a mean depending on time 362 

since last fire (in natural populations) or site (in anthropogenic populations) (see 363 

Appendix S1: Table S1 for details on the mean values). In anthropogenic 364 

populations, the probability of dormancy was corrected for seed survival (i.e., 365 

multiplied by 0.33) to replicate more accurately the observed population dynamics. 366 

 367 

Seedling size: The size of a germinating seed is sampled from a truncated scaled 368 

Student t distribution with location (i.e. mean), scale (i.e. standard deviation) and 369 

degrees of freedom obtained from a generalised additive model describing the 370 

observed relationship between seedling size and winter mean daily maximum 371 

temperature, aboveground density of individuals with size > 4.5, and time since last 372 

fire in natural populations (see Appendix S1: Table S5 for the full equation linking the 373 

various covariates to seedling size). The minimum or maximum observed sizes were 374 

assigned to individuals with infinite size values.   375 
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