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Abstract 13 

Directed acyclic graphs (DAGs) are powerful tools for visualizing assumptions/hypothesis and causal 14 

inference. Although their use is becoming more widespread across various disciplines, they remain 15 

underutilized in behavioural ecology and evolution. Here, we point out why DAGs can serve as highly 16 

valuable tools in this field, particularly in the context of observational and field studies, which can feature 17 

many variables with complex relationships. Using concrete examples, we show that including DAGs into 18 

empirical studies helps clarify and summarise the key underlying assumptions, which are often implicit. 19 

With that, DAGs can be used to make researchers aware of bad controls and help them to explicitly think 20 

through the relationship between variables and their inclusion in statistical models. In addition, providing 21 

DAGs makes the work of reviewers and meta-analysis researchers easier, more rigorous and reliable. 22 

Overall, DAGs enhance understanding and transparency, ultimately improving study reproducibility and 23 

contributing to greater reliability and replicability across the field. With this paper, we hope to encourage 24 

all behavioural ecologists to include DAGs in their papers.  25 
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Introduction 29 

Directed acyclic graphs (DAGs) are graphical models to visualise the different variables and their assumed 30 

effects on each other within a study system. Indeed, DAGs are graphical representations of your 31 

hypothesis and form the cornerstone of your statistical model, by formalising the causal structure 32 

between variables underlying the hypothesis. DAGs represent variables as nodes, connected by arrows 33 

pointing towards assumed causal effects (‘Directed’), see box 1 for an explanation of some important 34 

terminology and usage. Crucially, DAGs are non-circular (‘Acyclic’), that is, cause and effects do not 35 

feedback, and thus a hypothesis has to be made about which variable is cause and which one is 36 

consequence for the specific circumstances that is being studied. DAGs are well-established tools of causal 37 

inference and their use is increasing across different fields (e.g., in econometrics, [1]; environmental 38 

sciences and ecology, [2,3]; epidemiology and clinical studies, [4–6] but sparsely used in others such as 39 

behavioural ecology. Here, we aim to demonstrate that DAGs not only provide a robust framework for 40 

statistical analyses but also enhance transparency and replicability in research. Moreover, by visualising 41 

and comparing different DAGs across various systems for similar questions, we can scrutinise the 42 

underlying causal structures, offering new insights and potentially driving innovative inquiries in 43 

behavioural ecology. Thus, we argue that there are more benefits to using DAGs in research, other than 44 

their role of formalising statistical models and avoiding common pitfalls (such as the inclusion of colliders 45 

or pipe variables). In order to encourage their incorporation, we also discuss how to get started by 46 

reviewing key terminology and causal structures (illustrated in Box 1), while also guiding researchers to 47 

essential literature. 48 

 49 

Don’t we already know this? 50 

DAGs are already a well-established concept (e.g. [7–9]),  playing a central role in causal inference. They 51 

frequently accompany studies employing path analyses or structural equation models. Yet, DAGs remain 52 

underutilised in biology and especially in behavioural ecology. To demonstrate this point, we reviewed 6 53 

issues of the journal Behavioral Ecology (n = 123 original articles, volume 34, issues 4-6 and volume 35, 54 

issues 1-3), and 6 volumes of the journal Animal Behaviour (n = 122 research articles, volumes 210 - 215), 55 

and found that only one article contained a DAG (see the data availability statement for a link to our data). 56 

This sample includes some articles that might not benefit from the use of a DAG (e.g. theoretical biology 57 

papers), but most of these papers included a statistical analysis of empirical data that might benefit from 58 

the inclusion of a DAG, as we will argue below.  59 

 60 

Current practices 61 

Statistical modelling is generally performed for one of the two main reasons: prediction or causation. For 62 

example, prediction applies when trying to extrapolate population size of a conserved species in the next 63 

years based on current information, or when inferring how fast a virus will spread in a population; whereas 64 

causation applies to performing an experiment to infer if x causes y and if this is a small or large effect, or 65 

by trying to find associations between variables, which ultimately means that x and y are directly or 66 

indirectly causally linked in some way, to understand if their relation is worthy of further study. Most 67 

statistical models are optimised for the first goal (‘the best-fitting model’), despite being commonly used 68 

for addressing the second. Behavioural ecology is a field that mostly focusses on the second goal. This is 69 

evident from the use of phrases such as “x increases performance of y” or “x seems to be driven by y”. 70 

Articles often verbally describe causal models and assumptions in the introduction, leading to the main 71 

question or hypothesis, and to a certain extent these causal models and assumptions are further described 72 

in the methods. Using a formal mathematical equation, Structural Causal Model (SCMs) or tools other 73 

than DAGs to express underlying causal assumptions or structures are not the norm. In many cases, causal 74 

language is vague as researchers keenly identify that correlations are not causations in the absence of 75 

randomized controlled experiments, but the overall goal still remains to learn something about causation. 76 
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This is often reflected in a vaguely causal discussion section, which then acts as a starting point for 77 

researchers following up on similar topics, essentially leading to causal assumptions that are not coherent 78 

and principled. Moreover, in the methods it is often mentioned that additional variables are added to 79 

models as a ‘control’ in the analysis, while these variables are often not mentioned in the hypothesis, and 80 

their inclusion is often not justified statistically (e.g. ‘we controlled for z in the analysis as we expect z to 81 

affect y or we controlled for z because we expect that z is a confounder of x and y). Some articles describe 82 

that only uncorrelated variables are added to models, but again often no justification for this addition is 83 

given (e.g. ‘we were also interested in the effect of z on y, so we also included this in the model’ or ‘we 84 

wanted to increase the precision of the estimate of the effect of x on y, and therefore we have included z 85 

in our model’). Similarly, variables are often later omitted from the statistical models citing collinearity. 86 

Hence, although researchers think about their assumptions and hypotheses when performing their 87 

analyses, this is often vaguely explained and not principled when it comes to their actual analyses.  88 

 89 

Why should we use DAGs?  90 

DAGs have two main benefits in empirical biology research. First, DAGs have been well-established as 91 

justifications of statistical models (regression models, which are most commonly used) and enable us to 92 

take a principled approach to our analyses [8,9]. Even without mastering the mathematics and theory 93 

behind DAGs and causal inference, we can translate our knowledge about the system into a DAG and 94 

benefit from the rather simple rules of DAGs to understand which variables should be included in a 95 

statistical model and how to overcome potential biases. We will give a short overview of the use of DAGs 96 

for statistics in the context of behavioural ecology, and explain what bad controls are and that they are 97 

largely unknown or neglected in this field. Second, DAGs can increase the transparency, readability and 98 

effectiveness of science communication, which could contribute to solving the replication crisis.  99 

 100 

DAGs as justification for statistical models 101 

DAGs have generally been used to justify which (control) variables should be included in or excluded from 102 

statistical models. Yet, so far, there seems to have been little notice of the concept of bad controls in 103 

behavioural ecology [10,11]. In our review of the 245 research articles, we found that predominantly, 104 

variables were included ‘to control for them’ without specifying why this was necessary. The common 105 

justification given for control variables to be included in a model is ‘biological relevance’. While biological 106 

relevance is an important criterion (why include something in a statistical model that is irrelevant for the 107 

response variable), it is not a clear justification for inclusion in a statistical model without considering the 108 

underlying causal assumptions. Especially in long-term study systems where many variables are measured 109 

over a long time, it can become tempting to add control variables without considering how this affects 110 

the estimated effect in question. In some cases, the addition of control variables can do harm rather than 111 

good, by falsely changing the estimate of the relation in question, while in other cases, controlling for a 112 

variable is necessary to obtain a correct estimate of an effect.  113 

 114 

Two ways in which adding control variables to a statistical model can wrongly influence estimates are 115 

commonly called colliders and pipes (see box 1, Fig 1; [9,11]). Collider variables are caused by both the 116 

predictor variable and the response variable (or caused by descendants of the predictor and response 117 

variables). There is no causal path through a collider between the arrows pointing into it, i.e. predictor 118 

and response variable both cause the collider variable and are not associated to each other through the 119 

collider, as it is downstream to both of them. However, by including such a collider variable in a statistical 120 

model, a path between the predictor and response variable is opened through the collider variable, thus 121 

creating an association between the predictor and the response variable. The direction in which the 122 

estimate is changed, depends on the direction of the collider effect (i.e. the correlation will become more 123 

positive when the collider effect is positive, and more negative when the collider effect is negative). 124 



4 

 

Hence, the inclusion of colliders sometimes causes significant results for associations that were absent in 125 

reality, or vice versa. For example, when a study tries to estimate the effect of age on foraging efficiency 126 

and the expected causal structure is like that in Fig. 1A. Here, both age and foraging efficiency 127 

independently affect body mass. It is important to not include body mass, because it is a collider. When 128 

body mass is added to the statistical regression model, a causal path between age and foraging efficiency 129 

is opened through body mass, therefore inflating (or deflating) the estimate of the effect of age on 130 

foraging efficiency. In sum, collider bias can decrease the accuracy of an estimated effect and can result 131 

in wrong conclusions about the strength and direction of this estimated effect. 132 

 133 

Pipe variables are caused by the predictor variable and cause the response variable.  They are also called 134 

mediators. For pipes, it is important to realise whether it is important for the research question to 135 

estimate the total effect of the predictor variable on the response variable, or the direct effect of the 136 

predictor variable on the response variable (see Box 1). When the total effect of the predictor variable 137 

should be estimated (for example, in drug trials where the goal is to determine the effectiveness of a 138 

medicine), a pipe variable should not be included, as this would lead to false conclusions (e.g. about the 139 

effectiveness of a medicine). However, when a mechanism is studied and the influence of mediator 140 

variables (affected by the predictor variable) on the response variable is of interest, then pipe variables 141 

can be included. Yet, in such a case, it might be of interest to use path analyses or structural equation 142 

models (SEMs). Both types of models include a hypothesised causal network, and essentially incorporate 143 

multiple sub-models into one model. In other words, all arrows within a hypothesised causal network can 144 

be studied within a single model, and therefore more can be learned about how mechanistically an 145 

explanatory variable (directly and indirectly) can cause a response variable [12,13]. SEMs can additionally 146 

be extended so that latent variables (i.e. variables that cannot directly be measured) could be included in 147 

a model [9,14,15]. For example, when a study tries to understand the effect of feeding frequency on the 148 

probability that offspring fledge, and the causal structure is as in Fig. 1b, it depends on the biological 149 

question whether chick mass should be included in the statistical model, because chick mass is a pipe 150 

variable. When the goal is to estimate the total effect of feeding frequency on fledging probability, then 151 

chick mass should not be included. Yet, when the goal is to estimate only direct effects, then chick mass 152 

should be included. In this second case, a model will show no direct effect of feeding frequency, and a 153 

strong effect of chick mass on fledging probability. As another example, Fig. 1c shows a study that 154 

manipulated the cortisol levels in animals to estimate its effect on body mass (and we assume the causal 155 

structure as in Fig. 1c). The manipulation also changes all the intermediate variables, and hence, to 156 

estimate the total effect of the manipulation, including activity in a statistical model is wrong (it is a pipe), 157 

as it takes out the indirect effect of cortisol on body mass. However, when the experiment specifically 158 

wants to know how much of the change in the body mass is caused by a direct effect of cortisol, activity 159 

should be included in the statistical model. However, in such a case, it might be better to perform a  path 160 

analysis, also including the direct effect of cortisol on activity, to ensure there is an effect of cortisol on 161 

activity. 162 

 163 

Confounders, on the other hand, should always be included in the statistical model, and not including 164 

confounders may lead to spurious associations. Confounders causally affect both the response and the 165 

predictor variable. This means that there is a causal path between these variables through the 166 

confounding variable, unless the confounder is added to the statistical model. For example, Fig. 1d shows 167 

a DAG for a study testing the effect of vegetation density on boldness tendencies across populations in 168 

the field using measurements such as flight initiation distance. Temperature affects the vegetation 169 

densities, with higher temperature leading to denser vegetation, but also the boldness of the fish via their 170 

metabolic rates and therefore is a confounder. To estimate the effect of vegetation density on the 171 

boldness of fish, temperature should be included in the statistical model. 172 
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 173 

While the question of whether to include a variable in a statistical model is much simpler in experiments, 174 

it is nevertheless an important question for observational studies. Currently, many observational studies 175 

still hold the old belief that when two variables are not significantly correlated, they can both be included 176 

in a statistical model, in essence assuming that every variable in their DAG is completely independent and 177 

only affects the response variable. Yet, when being forced to articulate these assumptions, researchers 178 

might realise that effects are not independent. DAGs can thus be useful to aid the thought process and 179 

help in making hidden assumptions and relationships explicit. Moreover, assuming that many ecological 180 

variables are completely independent from each other seems illogical in field systems. We know that 181 

many factors in ecological systems affect each other (e.g. climatic effects might interact, a social 182 

environment can create non-independent data points across individuals), and in fact, we have dedicated 183 

whole research areas to it (e.g. systems ecology, community ecology). Additionally, the fact that two 184 

variables are only weakly (and potentially non-significantly) associated does not solve the issues that 185 

colliders and pipes cause. A weak collider variable could still inflate the estimated effect of the predictor 186 

variable on the response variable. Moreover, not including a confounder (which should correlate with the 187 

predictor and response variable) also decreases the accuracy of the effect in question. Hence, we would 188 

like to convince biologists that hypothesising certain associations (with a DAG) is better than (implicitly) 189 

assuming that every variable is completely independent, unless it is explicitly hypothesised (preferably 190 

again with a DAG) that variables are independent from each other. This saves research from unnecessary 191 

inflations or deflations of estimates caused by colliders, pipes, and confounders and thus makes our 192 

research better. Moreover, the addition of independent variables to models does not affect the accuracy 193 

of the estimation of the relationship in question, but only improves the precision of this estimate [11]. 194 

Whether that is necessary is up to the researcher, and might for example depend on how the data is 195 

analysed (e.g. Bayesian statistical results often already give information about precision). 196 

 197 

DAGs to increase transparency in scientific research 198 

Hypotheses in behavioural ecology are often broad and generalised, while we commonly test these 199 

hypotheses with much more specific and specialised (to one or a couple of species) statistical models. In 200 

this step from general to specific questions or hypotheses, numerous assumptions are made, usually 201 

based on the ecology of the study system. While researchers aspire to mention all these assumptions, it 202 

is easy to overlook some. This could stem from the fact that the ecological knowledge about a study 203 

system can seem trivial for researchers studying that system or from the fact that the complexity of a 204 

system can lead to certain assumptions being made implicitly or simply be overlooked. Yet, these 205 

underlying assumptions influence the expectations and also the outcome of a study. DAGs offer a simple 206 

graphical tool to clarify most of these underlying assumptions. This can decrease confusion among the 207 

readers and reviewers—and even the authors themselves—who often think about an overarching general 208 

hypothesis using the assumptions of the study system they work with / are familiar with.  209 

 210 

For example, the evolution of cooperation and cooperative breeding is a well-studied topic in behavioural 211 

ecology [16], where the underlying ecological assumptions can have drastic effects on the evolutionary 212 

predictions (Fig. 2). In territorial species where territory size is more or less fixed, one would expect that 213 

acquiring helpers (subordinate individuals that help in raising offspring of dominant territory owners) 214 

depends on the territory quality. In other words, territory quality ‘causes’ the number of helpers (e.g. 215 

Seychelles warbler Acrocephalus sechellensis, [17]; Acorn Woodpecker Melanerpes formicivorus, [18]; see 216 

Fig. 2a). When territory quality is low, helpers might consume the few resources that are available, 217 

therefore leading to less resources for the offspring. When territory quality is high, there might be enough 218 

resources to sustain a certain number of helpers, but also for these helpers to increase feeding rates of 219 

offspring. In such species, we expect an optimal number of helpers per territory that depends on the 220 
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quality of this territory, as there is a trade-off between the decreased resource availability due to helpers 221 

feeding themselves and the increased survival probability of offspring due to the assistance of these 222 

helpers. Alternatively, when helpers actively and substantially increase the size of the territory they reside 223 

on, and therefore increase the resource availability, helpers ‘cause’ the territory quality (e.g. cichlids 224 

Neolamprologus obscurus, [19]; cichlids Neolamprologus pulcher, [20]; see Fig. 2b). In this case, helpers 225 

decrease the negative effect of them consuming resources, as they also assure extra availability of 226 

resources. Therefore, an increase in the number of helpers often has a positive effect on offspring survival, 227 

independent of the territory quality before a helper was present. These underlying ecological patterns are 228 

often clearly mentioned when studying the effect of helper presence on offspring survival/number of 229 

offspring, but are sometimes overlooked when studying more complex questions about cooperative 230 

breeding. Yet, they might still have a large impact on the expected evolutionary patterns. For example, 231 

over the last years, the question whether cooperative breeding might buffer against harsh or 232 

unpredictable environments has received a lot of attention (e.g. [21–23]). This hypothesis could be 233 

consistent with study systems where the number of helpers influences territory quality, because in such 234 

a case, even in harsh environments, helpers might be able to improve territory quality enough for 235 

offspring to survive, while without helpers, this would not have been possible. Similarly, this hypothesis 236 

could be consistent with study systems where predation is the limiting factor of offspring survival instead 237 

of food availability, as in such a case, helpers might protect offspring from being preyed upon and increase 238 

their survival probability in that way, while there are enough resources for both helpers and offspring to 239 

consume. Yet, this buffering hypothesis seems illogical for species where the territory quality determines 240 

the number of helpers. In such a case, the competition for resources between helpers and offspring 241 

intensifies when conditions turn harsh, as there are now less resources available per individual. Hence, 242 

territories with fewer helpers might in fact produce more surviving offspring and thus become less social, 243 

might buffer against harsh environments. When the expected outcomes depend on the ecology of the 244 

species, a DAG of the different study systems can clarify why cooperative breeding might buffer against 245 

harsh environments in certain cooperative breeding species, but not in others, as the arrow between 246 

territory quality and number of helpers points in the opposite direction in the two cases. 247 

 248 

Another hypothetical example to illustrate that DAGs can be helpful to increase transparency is the effect 249 

of predator density on foraging behaviour and survival of prey (Fig. 3). While it is evident that the direct 250 

effect of an increase in predator density on the survival of individual prey is negative, this result might not 251 

be found or found to a different extent than expected when experimentally changing the predator density, 252 

because experiments manipulate the total effect of predator density on survival, instead of the direct 253 

effect. Predation could, for example, have indirect effects on survival because it might also influence the 254 

foraging efficiency of individuals, because prey might forage less when predators are around, furthering 255 

the negative effect of predation on survival. Moreover, predation could have a negative effect on the 256 

population density of prey, which might in fact increase the foraging efficiency of individual prey, as there 257 

is less competition between the remaining individuals, and thus potentially increase their survival. A DAG 258 

can show which factors are expected to affect foraging efficiency and survival and could also explain why 259 

it is not so evident to form an expectation about the total effect of predation on survival. In such cases, a 260 

DAG can clarify what the assumptions are underlying the effect of predation on survival, and can explain 261 

why different patterns can be found in different species, or in different populations within the same 262 

species. Furthermore, a DAG can show how different mechanisms could lead to the same result. 263 

Comparing a population with predators that hunt during the foraging period of prey with one who forages 264 

at a different time (e.g. nocturnal predators, see Fig. 3a and b), shows that the negative effect of predation 265 

on foraging efficiency can be different between different study systems. In the case of nocturnal 266 

predators, there is only a positive effect of predation on foraging efficiency (through density regulation). 267 

However, the effect of predation on survival for nocturnal predators can still be anything from strongly 268 
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positive to strongly negative, depending on the strengths of the indirect prey density effect and the direct 269 

predation effect. As another example, there could be a difference in the population size of two 270 

populations of the same species (see Fig. 3a and c). In large populations, the effect of predation on the 271 

prey density (and especially competition for food between prey) is likely much smaller than in small 272 

populations. Therefore, there might be almost no positive effect of predation on foraging efficiency in 273 

large populations, but potentially a strong positive effect of predation on foraging efficiency in smaller 274 

populations. Hence, in large populations, it might be expected that predation only has a negative effect 275 

on survival, while in small populations, the effect of predation on survival might be anything from positive 276 

to negative. DAGs highlight these small differences between study systems in a succinct way, and make it 277 

clear to the reader what exactly is expected in a study, even when it is not clear whether the total effect 278 

will be positive or negative. 279 

 280 

Using DAGs thus makes it easier to follow exactly what the researcher is studying and how they expect 281 

the study system to work. This increases the readability and transparency of research for readers, and 282 

helps in improving the replicability of the (statistical) methods that were used. Next to that, DAGs can also 283 

help reviewers by adding clarity to their critiques. With a DAG, it is easier to separate whether authors 284 

have made a mistake in, or have a different opinion about, their statistical analysis or whether the 285 

reviewer and authors disagree conceptually on a question or its underlying assumptions, while in principle 286 

they agree on the statistical method. In our review of the 245 research articles, a model contained on 287 

average 6 variables (range = 2-23, median = 6). Given that there is a maximum of 15 causal arrows in a 288 

model with 6 variables, a misunderstanding about the exact hypothesis, including underlying 289 

assumptions, can easily happen. Incorporating a DAG can solve a lot of these issues. Moreover, in a recent 290 

report, 174 research teams were asked to analyse the same two datasets. The results in terms of effect 291 

sizes were strikingly variable, even presenting in opposite directions across research teams [24]. One of 292 

the main reasons was attributed to the substantial variation in the variables that were included as fixed 293 

and random effects in their statistical models. We believe that if researchers constructed a DAG prior to 294 

analysing their data, they would have a more principled approach to selecting variables for their analyses. 295 

This would shift the discussions towards why researchers had different underlying assumptions and their 296 

rationale for them. Instead of a crisis or caution about interpreting results in the field due to apparently 297 

valid statistical analyses leading to varied interpretations, the focus would be on the conceptual 298 

differences driving those choices. We argue that DAGs could thus improve the transparency about causal 299 

assumptions and the readability of an article, and with that potentially help solve the replication crisis, 300 

which is also facing this field [25,26]. When a DAG is included, it may become easier to replicate 301 

methodologies, including replicating the statistical decisions, which sometimes are not well described. In 302 

addition, it may become easier to conceptually replicate a study, where the same hypothesis or theory is 303 

tested in a different way (different contexts, different systems) to obtain generalizable results. DAGs aid 304 

this by identifying studies that incorporate the same underlying assumptions. Subsequently, DAGs can be 305 

used to distinguish studies with different underlying assumptions to start with and hence are not part of 306 

a conceptual replication (i.e. these studies where in fact not replicates, but researched a slightly different 307 

question, like in Fig. 2a and b). Moreover, DAGs can be a great addition to preregistrations, where they 308 

allow authors and peer reviewers to visualise the relationships clearer, leading to best methods for data 309 

analysis or take decisions on additional variables to measure. Ultimately, this helps reducing ‘research 310 

waste’ by enforcing better planning and reporting [27].     311 

 312 

DAGs can also improve meta-analyses, as studies studying the same question but predicting the opposite 313 

given their underlying assumptions can be separated in a quantitative way, instead of combining studies 314 

to conclude apparent null effects. In recent times, meta-analysts in behavioural ecology suffer from the 315 

inability to delineate effects from complex statistical models, where it is not clear what variables are 316 
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controlled for and why. This is especially true when the variables of interest are proxies (such as proxies 317 

of fitness, reproduction, parental care) or secondary variables that are not the response variable in the 318 

main statistical model, thus leading to exclusion of studies. In this case, DAGs also provide a more targeted 319 

inclusion criterion, in addition to improving the transparency of studies for effective meta-analyses.   320 

Lastly, DAGs can help new researchers (e.g. students, or people changing fields) to understand the key 321 

differences between study systems that are important for the questions they wish to study, without 322 

having to spend considerable amounts of time researching the ecology of all these species.  323 

 324 

Where to start?  325 

So far, we have provided examples, outlined basic structures and discussed how DAGs can make scientific 326 

discourse efficient and transparent. However, constructing a DAG is entirely based upon the expert 327 

subject knowledge of the researchers. After identifying the research question(s) and defining the 328 

estimand, it is important to include those relevant variables – the predictor and the response variables. 329 

Next, it is important to include all the common causes of our predictor and response variables. When 330 

introducing a new variable, its common causes must also be included. It is important to keep in mind that 331 

DAGs are not meant to be realistic depictions of your study system; rather, they aim to succinctly 332 

represent the research question and outline the underlying hypotheses. Consequently, mediators or 333 

mechanisms should only be included if they directly pertain to the research inquiries. For the keen reader 334 

or enthusiastic adopter of DAGs, we recommend referring to key literature on DAGs and causal inference.  335 

On tips how to build a DAG and use causal inference, we would like to refer to Laubach et al. [28], and Arif 336 

and MacNeil [29] for explanations with biological examples, to McElreath [9] - including the accompanying 337 

youtube videos - for explanations on causal inference especially well-suited to beginners, and to Judea 338 

Pearl’s work [e.g. 7,8,11,15,30] for a more in depth understanding.  339 

 340 

Drawing DAGs can be done by hand, but there is also an R package (see DAGitty; [31]) and website 341 

(https://www.dagitty.net/dags.html; [31]) available to help with this. This package also aids in identifying 342 

the conditional independencies and adjustment sets, to help with which variables to condition for, if your 343 

DAG is complex.  344 

 345 

We would like to advise readers to draw DAGs before conducting their research (as it is a formalised 346 

version of their hypothesis), and they could be included in preregistrations if researchers like to do so. 347 

Moreover, while we think DAGs are valuable additions to manuscripts, we understand that their inclusion 348 

in a manuscript might be limited by length or figure restrictions, and we encourage researchers to include 349 

a DAG in their supplementary materials in such cases.  350 

 351 

Limitations of DAGs 352 

DAGs are useful and simple representations of causal assumptions, and we hope to have convinced the 353 

readers of their strengths by now. But they can come with a few drawbacks when put into practical use. 354 

First, systems in behavioural ecology are rarely simple, hence DAGs can become complex quite easily (but 355 

see [32] for an example of a more complex DAG). Decisions about the causal relationships in the DAG have 356 

to be made (e.g. should there be an arrow between two variables, and if so, in which direction), and it can 357 

be difficult to pick the ‘right’ answer. Indeed, there is no one true DAG, unless all causal relationships are 358 

well-known. However, in essence, this is an issue of knowledge about the system, and not one of drawing 359 

DAGs per se. In such cases, DAGs might help uncover which assumptions are still unknown and should be 360 

tested. Moreover, if a causal pathway is unknown, we argue that it is still better to have a hypothesis 361 

about it (which consequently can be tested) than to implicitly have an underlying assumption about a 362 

relationship (or lack thereof) between variables. 363 

 364 

https://www.dagitty.net/dags.html
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Second, DAGs still do not convey all information about the statistical analyses. For instance, DAGs cannot 365 

help make a decision or convey information about the following: Should variables be added as fixed or 366 

random effects? Is the expected relationship linear, quadratic or another shape, and is the relationship 367 

positive or negative? To summarise all this information, Structural Causal Models can be used, which are 368 

mathematical representations of a statistical model. Yet, some biologists in behavioural ecology tend to 369 

be a bit averse to math, and hence we argue that using a visual representation (a DAG) is a good start to 370 

transparently communicate causal assumptions in statistical models. Moreover, some of this information 371 

could potentially be added to DAGs, such as using colour coding or different shapes (e.g. green lines for 372 

hypothesised positive relationships, red lines for hypothesised negative relationships; random effects 373 

written in italics or contained in a square box instead of in a circle). 374 

 375 

Third, causal inference and, therefore, to some extent DAGs, are unable to deal with interaction effects, 376 

where the effect of a variable is not on an outcome variable, but on the relationship between two 377 

variables. Some have suggested representing this by making an arrow point to another arrow (e.g. 378 

[33,34]), but the theory around the meaning of interactions in terms of causality is not well-developed.  379 

 380 

Last, DAGs are acyclical, which means that causal inference so far is unable to include cyclical interactions 381 

or reciprocity. Yet again, we would argue that being unable to disentangle feedback loops between cause 382 

and effect is an inherent problem in many types of science and is not an issue of DAGs in itself. In some 383 

cases, time series analyses could help to disentangle these reciprocal interactions, if it is possible to find 384 

a time frame where x solely affects y, and another time frame where y solely affects x (e.g. timing of 385 

migration might cause timing of breeding, and timing of breeding might cause the timing of migration in 386 

the next year). In such a case, two DAGs could be produced for each time frame and these hypotheses 387 

could accordingly be tested in the correct time frames. However, when it is not possible to disentangle 388 

reciprocal interactions, DAGs cannot help in solving this issue. In such cases, researchers will have to 389 

decide which direction is more important for their question, and be cautious with interpreting their 390 

results. 391 

 392 

Conclusion 393 

With this paper we would like to convince the reader that using DAGs in behavioural ecology and beyond 394 

is beneficial. DAGs increase readability of papers because they show underlying assumptions that are not 395 

always mentioned. Exposing these underlying assumptions increases the transparency of research. DAGs 396 

can stand the test of time: even if statistical tools undergo changes or advances such that reading a model 397 

description to work out causal assumptions becomes more challenging, DAGs can offer a simple reporting 398 

standard and a common language for causal assumptions that justify statistical models. Thus, DAGs could 399 

contribute to solving the replication crisis and make the work of reviewers and researchers doing meta-400 

analyses easier and more rigorous. Additionally, DAGs are extremely useful for considering which 401 

variables should be included in statistical models. Moreover, we think that a hypothesised causal structure 402 

is valuable (which often will be thought through when a DAGs is produced), because in our opinion, they 403 

are always better than implicitly hypothesising without adequate thought that every variable in a model 404 

is completely independent. DAGs, just as hypotheses, might be wrong, but by showing a DAG, these 405 

mistakes are easier to find, and at least statistical mistakes caused by expected colliders, pipes or 406 

confounders can be prevented.  407 
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 504 

Figure 1: Four directed acyclic graphs showing collider, pipe and confounder variables. a) A DAG for a 505 

study trying to estimate the effect of age on foraging efficiency, where body mass is a collider for this 506 

relationship. b) A DAG for a study trying to estimate the effect of feeding frequency on fledging 507 

probability, where chick mass is a pipe variable. c) A DAG for an experiment trying to study the effect of 508 

cortisol on body mass, where activity is a pipe variable. d) A DAG for a field study estimating the impact 509 

of the density of vegetation (refuge) on the boldness of a fish, where the mean temperature influences 510 

the vegetation density as well as the boldness of fish (via metabolic rates), acting as a confounder.   511 
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 512 
Figure 2: Two directed acyclic graphs (DAGs) about the effect of territory quality and number of helpers 513 

on the number of surviving offspring. a) Represents a case where territory quality causes the number of 514 

helpers, and b) represents a case where the number of helpers causes territory quality. Depending on the 515 

causal relationship between territory quality and number of helpers, the effect of number of helpers on 516 

number of surviving offspring changes. 517 

  518 
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 519 

 520 
Figure 3: Three directed acyclic graphs about the effects of predator density, prey density and foraging 521 

efficiency of prey on the survival probability of prey individuals.  a) shows a causal structure where 522 

predator density both directly and indirectly affects foraging efficiency, and directly and indirectly affects 523 

the survival probability of prey. b) shows the same causal structure but without a direct effect of predation 524 

on foraging efficiency (e.g. a nocturnal predator), and c) shows the same causal structure as a), but 525 

without a direct effect of predator density on prey density (e.g. a very large prey population). a1 to c2 526 

represent the total effects that predator density could have on foraging efficiency and prey survival 527 

probability. In some cases, it is not possible to have a clear prediction and anything from a positive to 528 

negative relationship could be expected (e.g. a1 and a2), while in other cases, it is possible to have a 529 

prediction (e.g. b1). Whether it is possible to have a prediction about a total effect depends on the 530 

strength and direction of each of the direct and indirect effects that together cause the total effect. 531 

Predicting the direction of a total effect can be challenging, especially if (in)direct effects are expected to 532 

have opposite effects.  533 

  534 
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Box 1: The main ingredients of DAGs 535 

 536 

DAGs are essentially composed of nodes, represented by circles, which are the variables and directed or 537 

single headed arrows depicting a causal relationship. 538 

 539 

Terminology: 540 

Here, we provide some terminology that is crucial for beginning to use DAGs and understanding the 541 

literature on causal inference using DAGs. 542 

1. Estimand: The target quantity that is to be estimated in an analysis. This is related directly to our 543 

research question and is what we aim to calculate in our statistical analysis. In our simple 544 

examples below, the estimand is the direct effect of X on Y.  545 

2. Direct effect: An effect that the change of a particular variable of interest (X) has on the 546 

outcome variable (Y). This means that we are only interested in the arrow that leads directly 547 

from X to Y and not the other arrows that emerge from X via another mediator to Y. This is 548 

achieved by blocking the other pathways that are not direct (see 5).  549 

3. Total effect: The effect of our variable of interest (X) on our response variable (Y) via all the 550 

direct and indirect paths, but excluding the effects due to common causes or confounders (see 551 

Fundamental causal structures).  552 

4. Conditioning: Also referred to as ‘controlling’, ‘adjusting’, ‘stratifying’ or ‘partialling out’ an 553 

effect, conditioning refers to the isolation of effects of the variable(s) of interest (X) on the 554 

outcome variable (Y) for a given value of the conditioned variable. This is often carried out by 555 

including the variable to condition as a covariate in the statistical model.  556 

5. Blocking: Blocking a pathway means blocking a causal effect and therefore association among 557 

variables via that path. In the case of a confounder, we want to block the causal effect of the 558 

confounder by conditioning on it, while in the case of a collider (see Fundamental causal 559 

structures), the causal pathway is blocked when it is not conditioned on. Furthermore, in 560 

experimental designs, blocking can be achieved by randomization. For example, the effect of 561 

‘time of day’ on an experimental outcome can be blocked by randomizing trials over the day or 562 

performing trials only at fixed time points in a day.  563 

 564 

Fundamental causal structures: 565 

Here we will briefly touch upon the fundamental structures used in DAGs. In these examples, we are 566 

interested in the direct effect of X on Y (the estimand). We can represent this by Y~X. When we want to 567 

test this in our Generalised linear (mixed) models in R, we would write this as glm(y~x), which is the 568 

simplest model. For each of these cases, we will show the relationship between X & Y as a DAG. We here 569 

give examples of model statements in R, for GLM, as we would specify in the lme4 package (Bates et al. 570 

2014). Note that we are showing the basic model structure as we use in R, without random effects or  571 

assumptions on the distribution of variables. 572 

 573 
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1. Total independence: X and Y are independent of each other 574 

and have separate underlying causal variables. Therefore, 575 

variation in X is independent of variation in Y.   576 

2. Dependence: X causes Y, or a change in the value of X causes a 577 

change in the value of Y. This takes the usual statistical model 578 

form, glm(y~x). Note that this need not necessarily be a linear 579 

relationship 580 

3. Pipe / Chain: Pipes are variables that are caused by x and are 581 

causing y. Pipes do not necessarily have to be one variable but 582 

can also be a chain of variables. In 3, M mediates the effect of X 583 

on Y. Conditioning on M leads to blocking of the causal pathway, 584 

making X and Y independent. That is, if we do glm(y~m+x), we 585 

will not find a relationship between x and y anymore. In this 586 

case, there are no direct effects of X on Y, but there is a total 587 

effect of X on Y mediated via M. 588 

4. Descendant: When X causes M, M is also termed descendant 589 

of X and X is the ancestor of M. Similarly, in the diagram, N is also 590 

a descendant of X and Y is a descendant of M. Descendants are 591 

important because conditioning on descendants of a variable can 592 

have the same effect as conditioning on the variable, depending 593 

on the strength of their relationships. If we condition on N by 594 

glm(y~x+n), we may only partially uncover or not uncover the 595 

effect of X on Y.  This property may be particularly crucial to 596 

consider when descendants are present and measured, but the 597 

ancestor is not measured, in the case of collider or confounder 598 

causal structures (described below).  599 

5. Fork / Confounder: Forks or confounders are variables that 600 

cause both X and Y. In 5, M is the confounder, which is the 601 

common causal ancestor that affects both X and Y, leading to a 602 

correlation. Conditioning on M leads to independence of X and Y. 603 

glm(y~x+m) is the correct form for this causal structure. In some 604 

cases, when a confounder variable is unobservable but a 605 

descendant of the confounder was measured, conditioning on 606 

the descendant is important to at least partially control for the 607 

effects of the confounder on X and Y, to avoid a confounding 608 

relationship between X and Y.  609 

6. Collider: Colliders are variables that are caused by both X and Y. In 6, M is not the mediator but the 610 

common causal descendant of both X and Y. The causal path between X and Y are closed as long as M is 611 

not conditioned on. When a collider is added to a statistical model, a relationship between X and Y will 612 

be found (the causal path that leads through the collider variable). Hence, in this case, the correct model 613 

takes the form of glm(y~x). In cases where a collider has a descendant, it is also important not to 614 

condition on this descendant. Conditioning on a descendant of a collider will have the same effect of 615 

conditioning on the collider, depending on the strength of their relationships.  616 
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Example: 617 

Now, let us take the example DAG in Figure 2a. The question 618 

we are interested in is the direct effect of predator density 619 

on prey survival probability, which is our estimand. Our X is 620 

Predator density and Y is the survival probability. If we want 621 

to look at the direct effects of predator density on survival 622 

probability, without the effect it may have on foraging 623 

efficiency, we need to condition on ‘Foraging efficiency’, as 624 

this is a pipe variable. This will block all causal paths going to 625 

and emerging from ‘Foraging efficiency’. It is important to 626 

note that labelling a variable as a confounder or a collider is always relative to the estimand and the 627 

structure of causal pathways between the predictor and the response variable. In this case, our model 628 

would look like  629 

 630 

glm(Survival probability ~ Predator density + Foraging efficiency) 631 

 632 

Predators reduce prey densities, leading to more efficient foraging and therefore increasing survival 633 

probability due to larger size, better health etc. Therefore, if we are interested in the whole ecological 634 

picture, we are interested in the total effect of ‘Predator density’ on ‘Survival probability’ (our new 635 

estimand). To achieve this, we should not condition on any variables, allowing all causal pathways 636 

between ‘Predator density’ and ‘Survival probability’. This includes three pathways: 637 

‘Predator density’ → ‘Prey density’ → ‘Foraging efficiency’ → ‘Survival probability’ 638 

‘Predator density’ → ‘Foraging efficiency’ → ‘Survival probability’ 639 

‘Predator density’ → ‘Survival probability’ 640 

 641 

Our model in this case would look like 642 

 643 

glm(Survival probability ~ Predator density) 644 


