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Abstract 13 

Directed acyclic graphs (DAGs) are graphical models to visualise hypotheses. DAGs are generally used in 14 

the field of causal inference and their use is spreading across different fields. However, in biology and 15 

especially in behavioural ecology and evolution, DAGs are still underutilised. Here, we point out why DAGs 16 

are such useful tools for these fields. Using concrete examples, we demonstrate that including DAGs in 17 

empirical studies is helpful for summarising all the important underlying assumptions about the ecology 18 

of the study species. With that, DAGs increase the readability and transparency of papers, which could 19 

help solve the replication crisis. Moreover, it makes the work of reviewers and meta-analysis researchers 20 

easier. Lastly, DAGs can be used to make researchers aware of bad controls and help them to explicitly 21 

think through the relationship between variables and their inclusion in statistical models. With this paper, 22 

we hope to encourage all biologists to include DAGs in their empirical papers.  23 

 24 
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Introduction 27 

Directed acyclic graphs (DAGs) are graphical models to visualise the different variables and their assumed 28 

effects on each other within a study system. In a sense, DAGs are graphical representations of your 29 

hypothesis and form the cornerstone of your statistical model, by formalising the causal structure 30 

between variables underlying the hypothesis. DAGs are represented by variables as nodes, connected by 31 

arrows pointing towards assumed causal effects (‘Directed’). Crucially, they are non-circular (‘Acyclic’), 32 

that is, cause and effects do not feed back, and thus a hypothesis has to be made about which variable is 33 

cause and which one is consequence for the specific circumstances that are studied. DAGs are well-34 

established in the field of causal inference and their use is increasing across different fields (e.g., in 35 

computing, environmental sciences and clinical psychology). Here, we aim to demonstrate that DAGs not 36 

only provide a robust framework for statistical analyses but also enhance transparency and replicability 37 

in research. Moreover, by visualising and comparing different DAGs across various systems for similar 38 

questions, we can scrutinise the underlying causal structures, offering new insights and potentially driving 39 

innovative inquiries in behavioural ecology and evolution. We argue that there are more benefits to using 40 

DAGs in research, other than their role of formalising statistical models and avoiding common pitfalls 41 

(such as the inclusion of colliders or pipe variables). 42 

 43 

Don’t we already know this? 44 

First, we want to acknowledge that DAGs are already a well-established concept (e.g. Pearl 2009; Pearl 45 

and Mackenzie 2018; McElreath 2020). They have been important in explanations of causal inference, and 46 

many papers using path-analyses or structural equation models are accompanied by a DAG. Yet, DAGs are 47 

still underutilised in biology and especially in behavioural ecology and evolution. To demonstrate this 48 

point, we analysed 6 issues of the journal Behavioral Ecology (n = 123 original articles, volume 34, issues 49 

4-6 and volume 35, issues 1-3), and 6 volumes of the journal Animal Behaviour (n = 119 research articles, 50 

volumes 210 - 215), and found that no article contained a DAG. This sample includes some articles that 51 

might not benefit from the use of a DAG (e.g. theoretical biology papers), but most of these papers 52 

included a statistical analysis of empirical data that might benefit from the inclusion of a DAG, as we will 53 

argue below. 54 

 55 

Why should we use DAGs?  56 

We argue that using DAGs in empirical biology research has two main benefits. First, DAGs can increase 57 

the transparency, readability and effectiveness of science communication, which could contribute to 58 

solving the replication crisis. Second, DAGs can help in understanding which variables should be included 59 

in statistical models. In this paper we will mostly discuss the first point. The second point is well-60 

established (e.g. Pearl and Mackenzie 2018; McElreath 2020), but we will give a short overview of the use 61 

of DAGs for statistics in the context of behavioural ecology, and we will explain what bad controls are and 62 

that they are largely unknown or neglected in this field. Moreover, we will recommend key literature on 63 

the use of DAGs in statistics for enthusiastic readers who would like to learn more about DAGs and causal 64 

inference. 65 

 66 

DAGs to increase transparency in scientific research 67 

Hypotheses in biology are often broad and generalised, while we commonly test these hypotheses with 68 

much more specific and specialised (to one or a couple of species) statistical models. In this step from 69 

general to specific, a lot of assumptions are made, usually based on the ecology of the study system. While 70 

researchers aspire to mention all these assumptions, it is easy to overlook some, because ecological 71 

knowledge on a study system can seem trivial for researchers of that study system. Yet, these underlying 72 

assumptions often influence the outcome of a study, or even the expectations of a study. Using a DAG in 73 

every empirical study can clarify most of these underlying assumptions. This can decrease confusion of 74 
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the readers and reviewers who often think about an overarching general hypothesis using the 75 

assumptions of the study system they work with / are familiar with.  76 

 77 

For example, the evolution of cooperation and cooperative breeding is a well-studied topic in behavioural 78 

ecology, where the underlying ecological assumptions can have drastic effects on the evolutionary 79 

predictions (Fig. 1). In territorial species where territory size is more or less fixed, one would expect that 80 

acquiring helpers (subordinate individuals that help in raising offspring of dominant territory owners) 81 

depends on the territory quality. In other words, territory quality ‘causes’ the number of helpers (e.g. 82 

Seychelles warbler Acrocephalus sechellensis, Komdeur 1994; Acorn Woodpecker Melanerpes 83 

formicivorus Koenig 1981). When territory quality is low, helpers might consume the few resources that 84 

are available, therefore leaving less resources for offspring. When territory quality is high, there might be 85 

enough resources to sustain a certain number of helpers, but also for these helpers to increase feeding 86 

rates of offspring. In such species, one would expect an optimal number of helpers per territory, 87 

depending on the quality of this territory, as there is a trade-off between the decreased resource 88 

availability due to helpers feeding themselves and the increased survival probability of offspring due to 89 

the assistance of these helpers. Alternatively, when helpers actively and substantially increase the size of 90 

the territory they reside on, and therefore substantially increase the resource availability (or in another 91 

way increase the resource availability), helpers ‘cause’ the territory quality (e.g. cichlids Neolamprologus 92 

obscurus, Tanaka et al. 2018; cichlids Neolamprologus pulcher, Bruintjes et al. 2010). In this case, helpers 93 

decrease the negative effect of them consuming resources, as they also assure extra availability of 94 

resources. Therefore, an increase of the number of helpers often has a positive effect on survival offspring, 95 

independent of the territory quality before a helper was present. These underlying ecological patterns are 96 

often clearly mentioned when studying the effect of helper presence on offspring survival/number of 97 

offspring, but are sometimes overlooked when studying more complex questions about cooperative 98 

breeding. Yet, they might still have a large impact on the expected evolutionary patterns. For example, 99 

over the last years the question whether cooperative breeding might buffer against harsh or 100 

 

 
Figure 1: Two directed acyclic graphs (DAGs) about the effect of territory quality and number of 
helpers on the number of surviving offspring. Depending on the causal relationship between territory 
quality and number of helpers, the effect of number of helpers on number of surviving offspring 
changes. 
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unpredictable environments has received a lot of attention (e.g. Cockburn and Russell 2011; Jetz and 101 

Rubenstein 2011; Cockburn 2020). This hypothesis could be consistent with study systems where the 102 

number of helpers influences territory quality, because in such a case, even in harsh environments helpers 103 

might be able to improve territory quality enough for offspring to survive, while without helpers this 104 

would not have been possible. Similarly, this hypothesis could be consistent with study systems where 105 

predation is the limiting factor of offspring survival instead of food availability, as in such a case helpers 106 

might protect offspring from being preyed upon and increase their survival probability in that way, while 107 

there are enough resources for both helpers and offspring to consume. Yet, this buffering hypothesis 108 

seems to be illogical for species where the territory quality determines the number of helpers. In such a 109 

case, the competition for resources between helpers and offspring intensifies when conditions turn harsh, 110 

as there are now less resources per individual available. Hence, territories with less helpers might in fact 111 

produce more surviving offspring and thus becoming less social might in fact buffer against harsh 112 

environments. When the expected outcomes depend on the ecology of the species, a DAG of the different 113 

study systems can clarify why cooperative breeding might buffer against harsh environments in certain 114 

cooperative breeding species, but not in others. 115 

 116 

Another hypothetical example to illustrate that DAGs can be helpful to increase transparency is the effect 117 

of predator density on foraging behaviour and survival of prey (Fig. 2). While it is evident that the direct 118 

effect of predation on survival is negative, this result might not be found or the result might be inflated 119 

when experimentally increasing/decreasing predator density, because experiments manipulate the total 120 

effect of predation on survival, instead of the direct effect. Predation could for example have indirect 121 

effects on survival because it might also influence the foraging efficiency of individuals, because prey 122 

might forage less when predators are around, furthering the negative effect of predation on survival. 123 

Moreover, predation could have a negative effect on the population density of prey, which might in fact 124 

increase the foraging efficiency of individual prey, as there is less competition between the remaining 125 

individuals, and thus potentially increase their survival. A DAG can show which factors are expected to 126 

affect foraging efficiency and survival and could also explain why it is not so evident to form an expectation 127 

about the effect of predation on survival. In such cases, a DAG can clarify what the expected mechanisms 128 

are underlying the effect of predation on survival, and can explain why different patterns can be found in 129 

different species, or in different populations within the same species. Furthermore, a DAG can show how 130 

different mechanisms could lead to the same result. Comparing a population with predators that hunt 131 

during the foraging period of prey with one who forages at a different time (e.g. nocturnal predators), 132 

shows that the negative effect of predation on foraging efficiency can be different between different study 133 

systems. In the case of nocturnal predators, there is only a positive effect of predation on foraging 134 

efficiency (through density regulation). However, the effect of predation on survival for nocturnal 135 

predators can still be anything from strongly positive to strongly negative, depending on the strengths of 136 

the indirect prey density effect and the direct predation effect. As another example, there could be a 137 

difference in the population size of two populations of the same species. In large populations, the effect 138 

of predation on the prey density (and especially competition for food between prey) is likely much smaller 139 

than in small populations. Therefore, there might be almost no positive effect of predation on foraging 140 

efficiency in large populations, but potentially a strong positive effect of predation on foraging efficiency 141 

in smaller populations. Hence in large populations it might be expected that predation only has a negative 142 

effect on survival, while in small populations the effect of predation on survival might be anything from 143 

positive to negative. DAGs highlight these small differences between study systems in a compact way, and 144 

make it clear to the reader what exactly is expected in a study, even when it is not clear whether the total 145 

effect will be positive or negative. 146 
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 147 

Using DAGs thus makes it easier to follow exactly what the researcher is studying and how they expect 148 

the study system to work. This increases the readability and transparency of research for readers, and 149 

helps in improving the replicability of the (statistical) methods that were used. Next to that, DAGs can also 150 

help reviewers by adding clarity to their critiques. With a DAG it is easier to separate whether authors 151 

have made a mistake in, or have a different opinion about, their statistical analysis or whether the 152 

reviewer and authors disagree conceptually on a question or its underlying assumptions, while in principle 153 

they agree on the statistical method. DAGs can also improve meta-analyses, as studies studying the same 154 

question but predicting the opposite given their underlying assumptions can be separated in a 155 

quantitative way. Lastly, DAGs can help new researchers (e.g. students, or people changing fields) to 156 

understand the key differences between study systems that are important for the questions they wish to 157 

study, without having to spend considerable amounts of time researching the ecology of all these species.  158 

 159 

DAGs as justification for statistical models 160 

DAGs have generally been used to justify which (control) variables should be included in or excluded from 161 

statistical models. Yet, in biology so far there seems to have been little notice of the concept of bad 162 

 
Figure 2: Three directed acyclic graphs about the effects of predator density, prey density and 
foraging efficiency of prey on the survival probability of prey individuals. a). Shows a causal structure 
where predator density both directly and indirectly affects foraging efficiency, and directly and 
indirectly affects survival probability of prey. b) shows the same causal structure but without a direct 
effect of predation on foraging efficiency (e.g. a nocturnal predator) and c) shows the same causal 
structure as a), but without a direct effect of predator density on prey density (e.g. a very large prey 
population). Depending on these small changes in the causal structure, different effects of predator 
density on foraging efficiency and survival probability can be expected. Additionally, depending on the 
causal structure, it is possible to have an exact expectation on the effects of predator density on 
foraging efficiency. Yet, in other cases, it depends on the strength and direction of each direct effect 
what the total effect of predation on foraging efficiency of prey and prey survival is, and therefore it 
is not possible to have an exact prediction about the strength and direction of the total effect until an 
analysis has been run. 
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controls (Montgomery et al. 2018; Cinelli et al. 2022), and the main justification given for control variables 163 

to be included in a model is ‘biological relevance’. While biological relevance of course is an important 164 

criterion (why include something in a statistical model that is irrelevant for the response variable), it 165 

should not be the only one. Especially in long-term study systems where many variables are measured 166 

over a long time, it can become tempting to add control variables without thinking about how this really 167 

affects the estimated effect in question. 168 

 169 

Here, we will discuss two ways in which adding control variables can do harm rather than good, which are 170 

commonly called colliders and pipes (see Fig. 3; McElreath 2020; Cinelli et al. 2022). Collider variables are 171 

caused by both the predictor variable and the response variable. By adding such variables in a model as a 172 

control, a stronger correlation between the predictor and response variable is found (through this collider 173 

variable) than what is actually true (or a weaker correlation when the indirect effect has the opposite 174 

direction than the direct effect). This thus falsely inflates (or deflates) the estimated effect, sometimes 175 

leading to significant results for correlations that in reality are absent, or vice versa. Pipe variables are 176 

caused by the predictor variable and cause the response variable. For pipes it is important to realise 177 

whether it is important for the research question to estimate the total effect of the predictor variable on 178 

the response variable, or the direct effect of the predictor variable on the response variable. When the 179 

 
Figure 3: Three directed acyclic graphs showing a collider variable and two pipe variables. a). When 
a study tries to estimate the effect of age on foraging efficiency and the expected causal structure is 
like that in a)., it is important to not include body mass, because it is a collider. When body mass is 
added to the statistical model, a correlation between age and foraging efficiency is opened through 
body mass, therefore inflating (or deflating) the estimate of the correlation between age and foraging 
efficiency. A collider thus decreases the accuracy of the estimated effect and can result in wrong 
conclusions about the strength and direction of an estimated effect. b). When a study tries to 
understand the effect of feeding frequency on the probability that offspring fledge, and the causal 
structure is as in b)., it depends on the biological question whether chick mass should be included in 
the statistical model, because chick mass is a pipe variable. When the goal is to estimate the total 
effect of feeding frequency on fledging probability, then chick mass should not be included. Yet, when 
the goal is to estimate only direct effects, then chick mass should be included. In this second case a 
model will show no direct effect of feeding frequency, and a strong effect of chick mass on fledging 
probability. c). shows a study that manipulated the cortisol levels in animals and wants to know the 
effect of this on body mass (and the causal structure is as what is depicted). Often experiments try to 
estimate total effects of their manipulation. Yet, the manipulation also changes all the intermediate 
variables. Hence, including activity in a statistical model is wrong (it is a pipe), as it takes out the indirect 
effect of cortisol on body mass. However, when the experiment specifically wants to know which part 
of body mass is caused by a direct effect of cortisol, and which part by an indirect effect of cortisol 
through activity, activity should be included in the statistical model. However, in such a case it might 
be better to perform a path-analysis, also including the direct effect of cortisol on activity to assure 
there is an effect of cortisol on activity.  
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total effect of the predictor variable should be estimated (for example, in many medicine studies), a pipe 180 

variable should not be included, as this would lead to false conclusions (e.g. about the effectiveness of a 181 

medicine). However, when a mechanism is studied and the influence of mediator variables (affected by 182 

the predictor variable) on the response variable is of interest, then pipe variables can be included. Yet, in 183 

such a case, it might be of interest to use path analyses or structural equation models (SEMs). Path 184 

analyses are a subset of SEMs. Both types of models include a hypothesised causal network, and 185 

essentially incorporate multiple sub-models into one model. In other words, all arrows within a 186 

hypothesised causal network can be studied within a single model, and therefore more can be learned 187 

about how mechanistically an explanatory variable (directly and indirectly) can cause a response variable 188 

(Wright 1934; Streiner 2005). SEMs can additionally be extended so that latent variables (i.e. variables 189 

that cannot directly be measured) could be included in a model (e.g. Busana 2021). 190 

 191 

While the question whether to include a variable in a statistical model is much simpler in experiments, it 192 

nevertheless is an important question for observational studies. Currently many observational studies still 193 

hold the old belief that when two variables are not significantly correlated, they can both be included in 194 

a statistical model, in essence assuming that every variable in their DAG is completely independent and 195 

only affects the response variable. Yet, when being forced to articulate these assumptions, researchers 196 

might realise that effects are not independent. DAGs can thus be useful to aid the thought process and 197 

help in making hidden assumptions and relationships explicit. Moreover, assuming that many ecological 198 

variables are completely independent from each other seems illogical in field systems. We know that 199 

many factors in ecological systems affect each other (e.g. climatic effects might interact, a social 200 

environment can cause all individuals to not behave independently), and in fact we have dedicated whole 201 

research areas to it (e.g. systems ecology, community ecology). Additionally, the fact that two variables 202 

are only weakly (and potentially non-significantly) associated does not solve the issues that colliders and 203 

pipes cause. A weak collider variable could still inflate the estimated effect of the predictor variable on 204 

the response variable. Hence, we would like to convince biologists that hypothesising certain correlations 205 

(with a DAG) is better than (implicitly) assuming that every variable is completely independent, unless 206 

explicitly (preferably again with a DAG) is hypothesised that variables are independent from each other. 207 

This saves research from unnecessary inflations or deflations of estimates caused by colliders and pipes, 208 

and thus makes our research better.  209 

 210 

On tips how to build a DAG and use causal inference, we would like to refer to Laubach et al. (2021) and 211 

Arif and MacNeil (2022) for explanations with biology examples, to McElreath (2020) - including the 212 

accompanying youtube videos - for explanations on causal inference especially well-suited to beginners, 213 

and to Judea Pearl’s work (e.g. Pearl 1995; Pearl 2009; Pearl 2010; Pearl and Mackenzie 2018; Cinelli et 214 

al. 2022) for a more in depth understanding.  215 

 216 

Conclusion 217 

With this paper we would like to convince the reader that using DAGs in behavioural ecology and biology 218 

in general can be beneficial. DAGs increase readability of papers because they show underlying 219 

assumptions that are not always mentioned. Exposing these underlying assumptions increases the 220 

transparency of research. Because of that, DAGs could contribute to solving the replication crisis and could 221 

at least make the work of reviewers and researchers doing meta-analyses easier. Additionally, DAGs are 222 

extremely useful for considering which variables should be included in statistical models. Moreover, we 223 

think that a hypothesised causal structure is valuable (which often will be thought through when a DAGs 224 

is produced), because in our opinion they are always better than hypothesising without any thought that 225 

every variable in a model is completely independent. DAGs, just as hypotheses, might be wrong, but by 226 

showing a DAG these mistakes are easier found, and at least statistical mistakes caused by expected 227 
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colliders or pipes can be prevented. Lastly, producing a DAG is a simple and quick exercise, so why would 228 

we not add DAGs to our papers? 229 
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