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Why the human brain size evolved has been a major evolutionary puzzle since
Darwin but addressing it has been challenging. A key reason is the lack of
research tools to infer the causes of a unique event for which experiments
are not possible. We suggest that analogous problems have been successfully
addressed in other disciplines using what has been recently termed simulation-
based inference. Following that approach, we outline a strategy to address why the
human brain size evolved: hypotheses are expressed in mechanistic models that
yield quantitative predictions for evolutionary and developmental trajectories of
brain and body sizes, the predicted trajectories are compared to data, and models
are chosen by their ability to explain the data. We discuss a recently published
model that makes quantitative predictions for evolutionary and developmental
trajectories of brain and body sizes for six hominin species and compare the model
predictions to data, finding that the model recovers many aspects of hominin
evolution and development. Counter-intuitively, the human brain size evolves in
this model as a spandrel or by-product of selection for something else, namely,
fertility-determinant traits. Our analysis indicates that simulation-based inference
offers a way forward to infer why the human brain size evolved.
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1. Introduction2

Human evolution is characterised by a large brain expansion observed over the last 4 million years. Australopiths had a brain size3

about 2 times larger than expected for their body size, slightly larger than the brain size of chimpanzees. Over time, brain size4

tripled from australopiths to modern humans and became over 5 times larger than expected for the body size of Homo sapiens [1].5

Evidence suggests that this brain expansion involved a concomitant increase in neuron number, as interspecific comparisons6

show that larger brains tend to have more neurons [2]. Increasing the number of neurons in artificial neural networks (typically7

implemented by increasing the number of parameters, or “synapses”) is key to increase their performance given a network8

architecture, and doing so has played a central role in the ongoing revolution of artificial intelligence [3], Fig. 22.7 in [4], [5].9

These and other lines of evidence suggest that hominin brain expansion underpinned large increases in cognitive abilities.10

A longstanding question has thus been why such brain expansion happened. This is a “why” question in that it asks for causes11

of an event, rather than a “how” question that asks for descriptions of an event. This “why” question is particularly challenging12

and has been thought to be unanswerable [6–9]. Indeed, while “why” questions can be answered by studying the effects of13

interventions that are either human-made (as in artificial selection experiments) or natural (as in comparative analyses), both14

types of interventions are often infeasible for human brain expansion: human-made experiments are often infeasible because of15

practical or ethical reasons and natural experiments because the question of why human brain expansion occurred asks about the16

causes of patterns observed in a single lineage [10,11]. For instance, although studies in non-human animals enable experimental17

analyses that can assess causes [12,13], the causes of brain expansion may be lineage-specific so what causes brain size evolution18

in other taxa, including non-human primates, may not necessarily be what caused human brain expansion. Consequently, the19

question asks about an effectively single data point corresponding to humans for which data must typically be observational,20

leaving the problem of why the human brain size evolved with a severe dearth of research tools.21

An active approach to the question is based on correlational analyses. In that approach, hypotheses are formulated, which22

often emphasize ecological [14–17], social [18–21], or cultural [22–26] factors as selecting for larger brains. Then, proxy variables23

are chosen as being relevant to each hypothesis, such as diet type [27,28], environmental variability [29,30], group size [20,31], or24

social learning frequency [32], and these variables are tested with increasingly refined methods and larger datasets for whether25

the proxy variables correlate with brain size or the size of particular brain regions. Finally, if the proxy variable of a hypothesis26

correlates with the brain variable, or if it is more strongly correlated than the other proxy variables, then the correlations are27

interpreted as supporting the hypothesis. However, such conclusion does not necessarily follow from the analysis, including28

because those correlations do not imply selection as they may arise from myriad other reasons, the directions of causality may be29

reversed to the given interpretation, causal connections between the variables may not be evolutionary, and correlations may be30

spurious [33–35]. For instance, if brain size correlates with environmental variability or group size within or among species, this31

might not be because environmental variability or larger groups caused larger brains to evolve, but because brains that evolved32

larger sizes for other reasons also enable subsistence under higher environmental variability or in larger groups. Hence, these33

correlational analyses provide limited evidence for or against the hypothesis considered.34

We outline an alternative way forward to infer why the human brain size evolved using an approach that has been pivotal35

across many fields, recently termed simulation-based inference [36]. In this approach, mechanistic models of the event of interest36

yield quantitative predictions that are contrasted with data and the model best explaining the data is kept. We describe recent37

work that suggests that such a strategy may now be feasible for the question of why the human brain size evolved. We discuss38

results of this work so far, which find that, counter-intuitively, the human brain size could be an evolutionary by-product of39

selection for another trait despite the model matching a wide array of observations. We assess whether or not these findings are40

consistent with available data from fossil and living hominins. In addition, we briefly discuss potential risks of this strategy and41

possible ways to mitigate these risks.42

2. A way forward: simulation-based inference43

Inferring why the human brain size evolved is particularly challenging because it asks about the causes of a unique event for44

which natural and artificial experiments are largely impossible. Despite this difficult combination, analogous challenges have45

been successfully tackled in multiple fields, with in silico experiments. This strategy has been recently called simulation-based46

inference [36] and has played a pivotal role in many scientific domains, including in establishing that humans are causing climate47

change, in many confirmations of general relativity, in the discovery of the Higgs boson, in epidemiology including in COVID48

research, and in economics, human population genetics, protein folding, and ecology [36].49

In general, simulation-based inference involves the following steps: (1) consider observed data generated by the process50

one seeks to understand; (2) formulate mechanistic mathematical or computational models of the process and draw predicted51

data from the models; (3) test the predicted data against the observed data; and (4) keep the model(s) that best explain the52

observed data using statistical inference techniques. The observed data used in this approach need not be experimental and can53

be observational and the analysis is not correlational but mechanistic. Because the models are mechanistic where mechanisms are54

explicitly modelled and can be used to implement in-silico interventions, the models can give causal explanations for the in-silico55

data. The identified in-silico causes give inferred causes for the observed data, where this inference can be improved by methods56

that compare the predictions of multiple mechanistic models and reject those models that are less able to explain the data [36–38].57
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We suggest that simulation-based inference offers a promising way forward to infer why the human brain size evolved. We58

thus propose a strategy involving the four tailored steps: (1) consider the observed data to be the evolutionary trajectories of59

brain and body sizes over hominin evolution and the developmental trajectories of brain and body sizes for various hominin60

species from birth to adulthood. This choice is intended to facilitate model identifiability: two models may yield indistinguishable61

predictions for evolutionary trajectories but distinguishable predictions for developmental trajectories, facilitating model choice.62

(2) Formulate mechanistic mathematical models that yield quantitative predictions for the development and evolution of hominin63

brain and body sizes. (3) Test the predicted evolutionary and developmental trajectories of hominin brain and body sizes against64

observed trajectories. (4) Use statistical techniques, such as Approximate Bayesian Computation, for model selection. We discuss65

below how recent work has taken the first three steps of this strategy and has made the fourth feasible.66

3. A simulator: the brain model67

For simulation-based inference of why the human brain size evolved, we first need a simulator, that is, a mechanistic model that68

can replicate to some extent the observed evolutionary and developmental trajectories of hominin brain size. One model that does69

this, termed the brain model, has been recently become available [39–41]. In this section, we conceptually describe this model.70

The brain model can be seen as having three major components: development, selection, and evolution (Fig. 1a). Development71

is not typically modelled explicitly in mathematical evolutionary models, except in life history models that assume evolutionary72

equilibrium [42–45]. The brain model explicitly models development to make quantitative predictions of brain size evolution (i.e.,73

in kg) while incorporating empirical data on brain metabolic costs, which are thought to be a key factor limiting the evolution of74

large brains [46,47]. So the brain model was first formulated as a life history model assuming evolutionary equilibrium [39,40].75

Subsequent mathematical theory integrating development and evolution [48] allowed the brain model to predict evolutionary76

trajectories rather than only evolutionary endpoints [41].77

(a) Development78

The development component of the brain model can be seen as involving two parts: a metabolic part and a behavioural part.79

Metabolic part. The metabolic part specifies the functions of an individual’s tissues and is derived by considering energy80

conservation. The brain model considers a population of females that can have different ages and reproduce clonally for simplicity.81

Each female has a body formed by brain tissue, reproductive tissue, and the remainder called somatic tissue. The energy that each82

tissue consumes at every time is assumed to equal the energy spent by the tissue on its growth and maintenance. This assumption83

follows West et al.’s metabolic model of body size development [51] that depends on the metabolic costs of body growth and84

maintenance, which are costs that are easily estimated from empirical data (from those estimates, West et al.’s model correctly85

predicts the development of body size in many species, but has been criticized for assuming that reproduction is proportional to86

body size [52], which the brain model does not assume). This makes the brain model depend on parameter values such as brain87

metabolic costs, which are entered into the model directly from available empirical estimates [53].88

Subsequently, the model makes a key assumption that assigns functions to tissues, such that from energy conservation, some89

of the energy that a tissue consumes at a given time is due to a function the tissue has. Specifically, regarding brain’s function, the90

model assumes that some of the energy that the brain consumes at a given time is due to the acquisition and maintenance of skills91

of some type, that is, due to learning and memory of such skills. Similarly, regarding reproductive tissue’s function, the model92

assumes that some of the energy that the reproductive tissue consumes at a given time is due to the production and maintenance93

of offspring. Somatic tissue is not assumed to have a specific function, but it contributes to body size which gives somatic tissue94

an implicit function as follows.95

The energy consumption of an individual at rest is her resting metabolic rate and this describes her energy budget. Also96

following West et al.’s model [51], the brain model assumes that resting metabolic rate relates to body size by a power law, called97

Kleiber’s law [54], as roughly observed empirically for ontogenetic data (Fig. C of [39]). This gives somatic tissue an implicit98

function by contributing to the energy budget, since all tissues including somatic tissue contribute to resting metabolic rate by99

contributing to body size. The model assumes standard life history trade-offs [55] such that, out of the energy spent in growth,100

that allocated to growing a given tissue at a given time is unavailable to grow other tissues.101

The key output of the metabolic part is four dynamic equations that describe the development of the three tissues and of skill102

level, that is, the tissue growth rates and the learning rate. From the learning rate equation it follows that, if skill level plateaus over103

development, adult skill is proportional to adult brain mass. This proportionality between adult brain size and adult skill level104

is more general than other results of the model as it only requires three assumptions: that some of a tissue’s energy expenditure105

is due to some of the tissue’s function, that some of the brain’s functions are learning and memory, and that a tissue’s energy106

expenditure is due to the tissue’s growth and maintenance.107

Behavioural part. The behavioural part of the model specifies the function of skills. This part is phenomenological in that108

the mechanisms are not explicitly described by dynamic equations but by equations describing the possible outcome of such109

dynamics. The behavioural part assumes that the skills are for energy extraction from the environment. Thus, the skills are110

assumed to affect the individual’s energy budget, specifically, by letting the “intercept” in Kleiber’s law be proportional to a111
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Figure 1. The brain model and evo-devo dynamics theory. a, Components of the brain model. b, Evolution by natural selection under classic evolutionary

theory. Evolution converges to a local fitness peak (dot) [49]. In this view, development diverts the evolutionary trajectory (line) from the direction of steepest

fitness increase by generating genetic correlations but the outcome is a fitness peak regardless; thus, changing development does not change the outcome (dot)

in a single-peak fitness landscape, so development has minor evolutionary effects. c, Evolution by natural selection under evo-devo dynamics theory [48]. The

bottom axes cannot be any two traits but must be the phenotypes under consideration and their underlying genotypic traits. The phenotype and the genotype are

related by development, so there is genetic variation exclusively along the path (brown line) where the relationship between the phenotype and genotype holds.

Evolution is constrained to occur along the path and stops at path peaks rather than landscape peaks. Thus, changing development alone (the path) can change

the outcome without change in selection (the landscape). d, Fitness landscape in the brain model, which only depends on the pre-ovulatory ovarian follicle count

xra at all ages a. Only one axis for a given age a is shown. The slope of the fitness landscape is smaller for axes of increasing age due to the decreasing force of

selection with age. In b, evolutionary change is ∆z̄= 1
W̄

G∂W̄/∂z̄ [49], where z̄= (x̄, ȳ)⊺, the additive genetic covariance matrix is G= (1, 0.5; 0.5, 1), and

the semicolon denotes a line break. Thus, G is non-singular as is typically assumed so there is genetic variation in all directions of trait space. In c, evolutionary

change is dz̄/dτ =H∂w/∂z, where z= (x, y)⊺ and H= ((dx/dy)2, dx/dy; dx/dy, 1) so it is always singular and then there is genetic variation only along

the developmental constraint (path); here x= 1 + y (left) or x= 1 + y + 3y2/2 (right). c is taken from [50]. d is taken from [41].

quantity called the individual’s energy extraction efficiency (EEE, which ranges from 0 to 1), which depends on the individual’s112

skills and those of social partners.113

Individuals can obtain energy by solving (Fig. 1a, Behavioural part): ecological challenges where the individual’s skills are114

pitted against the environment (e.g., foraging or processing food alone), cooperative challenges where both the individual’s skills115

and those of another individual of the same age are pitted against the environment (e.g., cooperative foraging or food processing),116

between-individual competitive challenges where the individual’s skills are pitted against those of another individual of the same117

age (e.g., social manipulation), or between-group competitive challenges where both the individual’s skills and those of another118

individual of the same age are pitted against those of another pair of individuals of the same age (e.g., group competition). At119

any time, an individual faces a given proportion of these challenges, which is the energy extraction time budget and is assumed120

constant over life.121

The skills are allowed to affect the individual’s energy extraction efficiency via either a power or exponential function. For122

the particular parameter values involved in results below, these functions respectively yield an energy extraction efficiency that123

plateaus quickly or slowly as the individual’s skill increases, that is, they involve strongly or weakly diminishing returns of124

learning (Fig. 1a, Behavioural part). Maternal care is modelled by increasing with age the extent to which an individual’s energy125

extraction efficiency depends on her overcoming such challenges.126

(b) Selection127

Next, the selection component of the model specifies survival and fertility. This component makes strong assumptions to simplify128

the mathematical analysis on a first exploration of the model. Yet, despite these strong assumptions, the model was able to recover129

many observations and so we make them here; these and other assumptions can be relaxed in the future.130

The model assumes that the survival probability at every age is constant. It also assumes that competition for resources (i.e.,131

density dependence) affects fertility but not survival, and this keeps the population at carrying capacity [56]. Moreover, the model132

assumes that reproductive tissue is defined narrowly enough so that it is not involved in offspring maintenance, in which case133
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fertility becomes proportional to the size of reproductive tissue. By defining reproductive tissue this narrowly, the metabolic costs134

of offspring maintenance incurred by the body are then ascribed to the somatic and brain tissues. This simplifying assumption135

yields virtually the same results as without it (Fig. E of [39]), but allowed for further analytical treatment of the original model,136

which used optimal control.137

To operationalise the assumption that reproductive tissue is not involved in offspring maintenance and as in real females tissues138

such as the uterus or mammary glands are involved in offspring maintenance during gestation or lactation, reproductive tissue is139

then defined as referring to pre-ovulatory ovarian follicles, which are follicles at the latest developmental stage before ovulation.140

This latest stage is taken because ovarian follicles are present from birth in real human females despite being non-reproductive,141

but follicles at the latest stages of development are only present in reproductively able females [57] and are clinical indicators of142

fertility [58,59]. Thus, in the model, fertility is proportional to the count of pre-ovulatory ovarian follicles measured in mass units,143

which is consistent with clinical practice [58,59].144

(c) Evolution145

Finally, the evolution component of the model allows it to predict the evolutionary trajectories. Originally, the brain model146

considered only the end of evolutionary trajectories using optimization by assuming that evolution converged to equilibrium147

as is standard in behavioural ecology and life history theory [39,40]. The model then addressed the evolutionary question of148

how much energy should be allocated to the growth of the different tissues. To do this, the model assumes that the fraction149

of energy allocated to the growth of each tissue at each age is under genetic control described by so-called genotypic traits (red150

arrows in Fig. 1a, Metabolic part). An individual’s genotype thus modulates the growth rate of her tissues, whereas an individual’s151

phenotype is her brain size, body size, follicle count, and skill level at each age. At evolutionary equilibrium, these genotypic traits152

are such that lifetime reproductive success is maximised in an evolutionary game theory sense (i.e., they are evolutionarily stable153

strategies). However, this equilibrium approach meant that evolutionary trajectories could not be predicted. This equilibrium154

approach had to be taken because of the long-standing limited mathematical integration of development and evolution [60–62],155

which meant there were no tractable tools to model the dynamics of both for a relatively complex model such as this one.156

This problem was overcome by a mathematical theory, termed evo-devo dynamics [48], that integrates development and157

evolution in a tractable way assuming clonal reproduction and rare, weak, and unbiased mutation, as is standard in adaptive158

dynamics [63,64]. Using evo-devo dynamics rather than optimization, the model then yields predicted evolutionary trajectories159

[41]. Moreover, evo-dynamics provides equations to translate developmentally dynamic equations into genetic covariation,160

enabling a description of long-term evolution including the evolution of genetic covariation and a separation of the action161

of selection and genetic constraints on evolutionary change. Evo-devo dynamics finds that long-term evolution should be162

understood in a different way to classic theory, which is important to understand the results of the brain model. Specifically,163

evo-devo dynamics finds that long-term evolution can be understood as the climbing of a fitness landscape by considering the164

evolution of both phenotypes and their underlying genotypes, rather than only the evolution of phenotypes as in standard165

quantitative genetics (Fig. 1b,c) [50]. Then, long-term evolution is constrained to occur along a path on the fitness landscape166

where the relationship between genotype and phenotype holds, as there is genetic variation only along this path. This entails that167

evolutionary outcomes occur at peaks of this admissible evolutionary path, not on peaks of the fitness landscape as traditionally168

assumed. Hence, development alone (the path) can change evolutionary outcomes without changes in selection (the landscape),169

even in a single-peak fitness landscape.170

Evo-devo dynamics shows that the brain model has a linear fitness landscape that depends only on the pre-ovulatory ovarian171

follicle count because survival is constant and fertility is proportional to such follicle count (Fig. 1d). Thus, brain size is selectively172

neutral in the model (the slope of fitness is flat with respect to brain size). Moreover, evo-devo dynamics shows that the empirically173

estimated brain metabolic costs only affect genetic covariation in the model (the path), not selection (the landscape) so they are174

not direct fitness costs [41].175

The model output depends on 26 parameters and the initial (i.e., ancestral) conditions, which are the ancestral genotypic traits.176

Of the 26 parameters, 13 have values estimated from empirical data, for human females where possible, and they pertain to tissue177

metabolic costs, tissue sizes at birth, Kleiber’s law parameters, mortality rate, and final reproductive age (the model does not yet178

consider post-reproductive life) [39]. Of the remaining parameters, 8 have values that have been manually chosen and pertain179

to skill metabolic costs, fraction of brain metabolic rate allocated to skills, skill level at birth, maternal care, the number of age180

bins per year, and the evolutionary speed (determined by the proportionality factor between fertility and follicle count) [39,41].181

Of the remaining parameters, 3 have been fitted by minimizing the distance between predicted and observed adult brain and182

body sizes; these 3 parameters specify the energy extraction time budget [40]. The 2 remaining parameters specify the shape of183

returns of learning and they have been partly manually chosen and partly fitted by minimizing the distance just mentioned [40].184

Ancestral conditions have been partly manually chosen and partly taken from the evolutionary outcome of a presumed ancestral185

evolutionary process, as follows [41].186

The predicted developmental trajectories are found to depend on the ancestral conditions [41]. This means that there are hard187

phylogenetic constraints (ultimately because the additive genetic covariance matrix is always singular [48,50,65]). Phylogenetic188

constraints are typically absent in evolutionary models effectively ignoring development as a local fitness landscape is reached189

regardless of the initial conditions (because the additive genetic covariance matrix is assumed non-singular) [49,66]. Given the190

model’s dependence on the ancestral conditions, to start the model from a realistic point, the model was run under parameter191

values that yield the evolution of Australopithecus-like brain and body sizes (such parameter values were identified by [40] and192
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are described in the bottom gray box of Fig. 2a, which yields the bottom trajectory in Fig. 2a; the computer code used to generate193

all figures uses that of [41] and is available online as Supplementary Information). Organisms with the resulting genotype (at194

yellow circle in the bottom trajectory in Fig. 2a) are then exposed to different conditions (top gray box of Fig. 2a and gray boxes195

of Fig. 2b-f), which yields an immediate plastic response in the phenotype (the start of the top trajectory of Fig. 2a, and of the196

trajectories in Fig. 2b-f). Depending on such conditions, subsequent evolution then converges to adult brain and body sizes of H.197

sapiens, H. neanderthalensis, H. heidelbergensis, H. erectus, H. ergaster, and H. habilis (the top trajectory of Fig. 2a, and the trajectories198

in Fig. 2b-f).199

Each evolutionary time step (τ ) lasts the time it takes for rare mutants to fix. To illustrate how our predictions may translate200

to real time, we use the yardstick that mutant fixation takes 11.5 kyrs (calculated by assuming that mutant fixation takes 500201

generations and one generation for females is 23 years [67]). This is only for illustration, as a better approach is to calculate time to202

fixation from the selection coefficient [68], but we leave that for future work as the parameter (η1) controlling evolutionary speed203

in the model has not been calibrated with data.204
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Figure 2. Predicted evolutionary trajectories. Each small circle shows the predicted adult brain and body sizes at a given evolutionary time. Gray boxes

describe the used parameter combinations, which represent energy extraction time budgets and returns of learning. Green squares show the observed adult brain

and body sizes in 13 hominin species (data from refs. [53,69–79] using only female data when possible). a, The bottom trajectory uses parameter values such that

starting from a manually chosen initial condition the model converges to brain and body sizes that are of Australopithecus scale. The top trajectory starts with the

evolved genotype of the bottom trajectory but uses different parameter values, which yields an immediate plastic change in brain and body sizes and the evolution

of adult brain and body sizes of H. sapiens. b-f, Repeating the same procedure of changing parameter values starting from the Australopithecus-like genotype

(yellow dot in bottom trajectory in a) yields the evolution of adult brain and body sizes of H. neanderthalensis, H. heidelbergensis, H. erectus, H. ergaster, and H.

habilis. Panel a is taken with modification from [41].

4. Testing predictions against observation205

With a simulator in place, the next step for simulation-based inference is to test the model predictions by comparing them to206

observation. This should be done systematically across many model variations, to maximise the possibility that the model is207

a suitable description of the real process by maximising either the likelihood or posterior distribution of the model given the208

data [36,37]. This systematic comparison with the brain model seems to be now feasible, as the model’s runtime was reduced209

from a prohibitive 3-4 days per run using optimal control software GPOPS in MATLAB [40,80] to a tractable 3-4 minutes using210

evo-devo dynamics in Julia [41,81]. This enhanced computational speed is possibly partly because of the computational speed211

of Julia and partly because evo-devo dynamics avoids the need of iterated best-response dynamics used to solve the differential212

game involved in the optimization approach. This systematic comparison would give an inference of why the human brain size213
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evolved with uncertainty quantification. As a first illustration of what this comparison of prediction against data would entail, we214

here qualitatively test the output of a single model instance against observation, without the systematic and quantitative model215

comparison involved in simulation-based inference.216

The brain model yields a wide range of quantitative predictions, many of which correspond to observed patterns of217

development and evolution of human brain and body sizes, including several patterns that have been described as puzzling218

or unique to humans [39–41]. The model has been shown to accurately recover the evolution of adult brain and body sizes for all219

major species of the genus Homo and less accurately for Australopithecus afarensis at the final points of the predicted evolutionary220

trajectories [40,41] (Fig. 2). The model has also been shown to simultaneously recover the evolution of a long human childhood, a221

pre-adolescence growth spurt, an adolescence period, and an adulthood period, each with mostly correct timing [40,41]. We here222

report and assess against empirical data additional results along the complete evolutionary trajectories rather than only at their223

end for conditions that yield the evolution of brain and body sizes of H. sapiens, H. neanderthalensis H. heidelbergensis, H. erectus, H.224

ergaster, and H. habilis.225

We focus this assessment on three types of predictions and organize the assessment from the most certain based on the fossil226

evidence to the least certain given available data. These three types of predictions are: (a) evolutionary trajectories of adult brain227

and body sizes for six hominin species; (b) developmental trajectories over individuals’ life span for these species; and (c) two228

key elements identified by the model as causing hominin brain expansion: time budgets for energy extraction and the effect that229

learning has on energy extraction efficiency.230

(a) Evolutionary change in adult brain and body sizes231

We begin our qualitative testing of the model by comparing adult brain sizes predicted by the brain model [41] with adult brain232

sizes (proxied by endocranial volumes) observed in the hominin fossil record.233

The predicted H. sapiens trajectory corresponds relatively well with the values observed in the fossil record (Fig. 2a). This234

H. sapiens trajectory involves an increase from H. habilis-like values to brain and body sizes that are typical of H. sapiens over235

approximately 250 evolutionary steps, which would correspond to the approximately 2.8 Myrs from the origin of the genus236

Homo [82] with our yardstick that each evolutionary time step is 11.5 kyrs. The H. sapiens predicted trajectory recovers to a certain237

extent the strong increase in brain size attributed to late Pleistocene H. sapiens and the subsequent recent decrease in brain size238

experienced by Holocene modern humans [83] (Fig. 3a). The brain model obtains a brain size decrease (of about 20 g, Fig. 3a),239

but this is of a smaller magnitude than that inferred from empirical data [84] as the model does not reach the very large brain240

sizes typical of late Pleistocene modern humans. The recovered brain size decrease happens earlier than inferred from empirical241

data (less than 10 ka in empirical data [84] vs approximately 180 ka in the brain model with a brain size peak at evolutionary step242

234 considering step 250 as the present). The late Pleistocene values we have just referred to correspond to mixed-sex samples243

whereas the brain model refers to females, which may account for some of the discrepancy given the differences in average brain244

size between males and females [83].245
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Figure 3. Predicted evolutionary trajectories over time. Plots show the predicted adult brain size, adult skill level, and adult body size over evolutionary time

corresponding to the trajectories in Fig. 2. Panel a is taken with modification from [41].
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The three predicted evolutionary trajectories corresponding to the latest and largest-brained hominin species (H. heidelbergensis,246

H. neanderthalensis, and H. sapiens) are relatively in line with what we would expect based on their evolutionary relationships247

(Fig. 2a-c). The early part of the three predicted trajectories is similar, starting from roughly similar phenotypic values that would248

correspond with a H. habilis-like ancestor (with predicted brain and body sizes respectively of 625 g and 28.8 kg, 639 g and 33.5 kg,249

and 639 g and 33.5 kg). In the three trajectories, brain and body size increase until they reach those corresponding to each species.250

For the predicted trajectories of H. heidelbergensis and H. neanderthalensis, and using our yardstick of 11.5 kyrs per evolutionary251

time step, the model reaches final values exceedingly fast, with the final values for brain and body size attained within the first252

100 evolutionary time steps, which would correspond to approximately 1.1 Myrs from the beginning of the trajectory at H. habilis253

values (Fig. 3b,c). This abrupt increase in brain size is not supported by data from the fossil record, as H. heidelbergensis typical254

brain size is not attained until approximately 600 kya [85]. Empirical data indicate that H. neanderthalensis shows a fast increase255

in brain size from a H. heidelbergensis-like average brain size of 1241 cc in the early Neanderthals from Sima de los Huesos [86],256

dated to approximately 400 ka [87], to values of 1600-1700 cc in late Neanderthals dated to less than 100 ka, such as those from Le257

Moustier [88], La Ferrassie [89], Amud [90] or Shanidar [91]. However, as with H. heldelbergensis, H. neanderthalensis typical brain258

size values are attained earlier in the brain model than indicated by these empirical data.259

The predicted H. erectus trajectory starts at brain sizes of approximately 700 g, which is slightly below the range of variation260

observed in most Asian H. erectus, but rapidly stabilises at values of approximately 1000 g (Fig. 3d), which are common for this261

sample [92,93]. Empirical data indicate a slower increase in brain size during the evolution of Asian H. erectus [94,95] rather than262

the rapid change predicted by the brain model.263

The predicted evolutionary trajectory for H. ergaster is unrealistic, oscillating from very high to very low values and eventually264

stabilising at combinations of brain-body sizes that are consistent with the values observed in this species. This trajectory starts265

off at relatively high brain and body sizes, caused by a large plastic change induced by the change in parameter values of the266

model. Both the abrupt change in parameters and the large plastic response of brain and body sizes to change in those parameters267

are likely unrealistic, the former because parameters may change more gradually in nature than the abrupt parameter change268

implemented, and the latter because developmental robustness probably limits strong plastic responses in brain and body sizes.269

Brain sizes for the predicted H. ergaster trajectory move between 750 g and more than 1000 g, which is on the high side of the level270

of variation observed in H. ergaster specimens.271

Likewise, although the brain model accurately recovers the average adult brain size of H. habilis, it does so through an272

even more unlikely evolutionary trajectory with brain size oscillating between 400 g to almost 1000 g, possibly also due to the273

unrealistically strong plastic response obtained at the starting evolutionary time. A broad range of brain sizes has been suggested274

for H. habilis, particularly if this species is interpreted sensu lato and including H. rudolfensis [96], but the observed range of variation275

in brain size is from approximately 500 cc in KNM-ER 1813 [93,97] to approximately 800 cc in OH 7 [98].276

(b) Species-specific developmental trajectories277

We now seek to qualitatively test the predicted developmental trajectories for different hominin species. This test is more uncertain278

as empirical data on developmental trajectories is substantially more limited than for adult brain sizes. We focus on analysing279

predictions regarding the age at which adult brain size is attained across species.280

Estimates for the age at which adult brain size is attained differ even in present day species. Classic studies indicate that 90-281

100% of adult brain size is attained at 5-7 years in humans [99,100], but more recent and extensive MRI-based analyses, which282

include some longitudinal datasets, indicate that total brain volume peaks at approximately 12 years in humans [101]. Adult brain283

size is estimated to be attained at between 2 and 5 years in chimpanzees [102,103] and at 3-4 years in mountain gorillas [104].284

Given the association between adult brain size and time needed to reach it [105,106], it is expected that earlier and smaller-brained285

hominin species will reach adult brain size at a younger age than later and larger brained hominin species. This expectation is286

recovered by the brain model, with Neanderthals and modern humans being predicted to attain adult brain sizes beyond 12 years287

(Fig. 4a,e), H. heidelbergensis around 11 years (Fig. 4i), H. erectus at 7-8 years (Fig. 4m; see also [107–109]), H. ergaster at 3-4 years288

(Fig. 4q), and H. habilis at 2-3 years (Fig. 4u).289

Starting from H. heidelbergensis, the brain model predicts growth trajectories that are stepped with different brain growth spurts,290

the strongest one being that corresponding to the first year of postnatal life, although later than observed in smoothed cross-291

sectional curves [99,113,114]. A later and weaker pre-adolescent brain growth spurt is predicted by the brain model before the292

attainment of adult brain size at 10-12 years, whereas the intermediate childhood period shows a slower rate of growth. These293

brain growth spurts are not observed in descriptions of aggregated human data, although such descriptions assume smooth294

trajectories [101], so analyses relaxing this assumption are needed to test the extent to which individual growth curves are smooth295

or stepped with different spurts. The brain model predicts a gradual evolution to this stepped trajectory (coloured dots in Fig. 4a;296

Supplementary Video 1 of [41]), with H. heidelbergensis showing an incipient version of the stepped trajectory, and Neanderthals297

and modern humans showing more clearly the separation between a fast postnatal brain growth, slow childhood brain growth,298

and fast but short pre-adolescent brain growth spurt.299

(c) Species-specific time budgets and returns of learning300

The brain model predicts that changes in only two sets of conditions can yield the evolution of brain and body sizes of six major301

hominin species: the energy extraction time budgets and returns of learning (gray boxes in Fig. 2).302
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Figure 4. Predicted developmental trajectories. Panels show the predicted developmental trajectories underlying the predicted evolutionary trajectories shown

in Fig. 2. Shown are the developmental trajectories for brain size, pre-ovulatory ovarian follicle count, body size, and skill level. The mean observed values in a

cross-sectional modern human female sample are shown in black squares (data from Table S2 of ref. [53] who fitted data from ref. [71]). The mean observed

values in cross-sectional Pan troglodytes female samples are shown in gray triangles (body size data from Fig. 2 of ref. [110]; brain size data from Fig. 6 of

ref. [99]). The mean observed values in A. afarensis female samples are shown in pink stars (data from Table. 1 of ref. [76]). For now, the model has used human

neonatal brain and body sizes across all trajectories, as shown, but future work may incorporate available estimates for other hominin species [111,112]. Panels

a-d are taken with modification from [41].

First, we assess whether the energy extraction time budgets predicted by the brain model correspond to what is known303

or hypothesized regarding how hominins used their time. The brain model predicts that H. sapiens brain and body sizes304

evolved under a combination of ecological (60%), cooperative (30%) and between-group competitive challenges (10%), and that305

Neanderthal brain and body sizes evolved under a combination of ecological (80%) and cooperative challenges (20%), where306

these values were found by fitting predicted and observed adult brain and body sizes [40]. These values predict that H. sapiens307

engaged in cooperative problem-solving twice as much (30%+10%=40% of their time) as Neanderthals (20%). Sensitivity analyses308

show that the larger Neanderthal brain sizes evolve in the model because of engaging in more individual problem-solving (80%,309

rather than 60% for H. sapiens brain sizes) [40]. Although we know of no empirical data to compare directly these predictions310

to, these predictions seem consistent with evidence indicating that modern humans engaged more in building complex social311

networks [115,116].312
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The brain model predicts that the life of earlier hominin species was dominated by cooperative interactions to obtain food,313

and in later hominin species life became dominated by individual energy acquisition [40]. This seems to contrast observation,314

for instance, as cooperative feeding is variable in chimpanzees, with cooperative male hunting being more prevalent in Taï than315

in Gombe [117], and female cooperative foraging involving smaller groups than in males [118]. Yet, it has been suggested that316

cooperative breeding was required for the genus Homo to evolve a large brain size [119]. This suggestion may be consistent with317

the brain model in that substantive maternal or allomaternal care is needed for human-size brain evolution in the model (Fig. G318

of [39]) and that the model predicts cooperative foraging in early hominins (Fig. 2). However, peer-cooperation is predicted by319

the model to cause the evolution of smaller brains because individuals can rely on others’ skills rather than only on their own320

skills [40], in accordance with previous suggestions [120] (but see [121]).321

The model predicts that ecological challenges were more prevalent in the two Eurasian hominin species, Asian H. erectus and H.322

neanderthalensis, involving 80% of their energy extraction time budgets. It seems feasible that Eurasian environments, with strong323

seasonality, involved more prevalent ecological challenges, which the model predicts to cause brain expansion, in accordance to324

previous suggestions [15,122,123].325

Second, we assess the other key factor causing human brain expansion as identified by the model, namely, the returns of326

learning, or the deceleration of energy extraction efficiency as skill level increases. All the model conditions reported above327

involve diminishing returns of learning: when an individual has low skill level, energy extraction efficiency increases substantially328

when she increases her skill level, but when an individual has high skill level, energy extraction efficiency does not increase so329

strongly when she increases her skill level. Under some of the reported conditions, learning returns are either strongly or weakly330

diminishing: with the latter, the rate at which an individual’s energy extraction efficiency increases when she increases her skill331

can be sustained as she learns, rather than decaying as with the former. In principle, weakly diminishing returns of learning could332

arise from culture if individuals can keep learning from accumulated knowledge in the population by enabling further increases333

in energy extraction efficiency in skilled individuals [40,41]. The brain model predicts a shift from strongly to weakly diminishing334

returns of learning, that is, to what could be cumulative culture, after the evolution of H. erectus, and before the evolution of H.335

heidelbergensis, meaning that H. heidelbergensis, H. neanderthalensis and H. sapiens are the only species considered that would be336

predicted to have, seemingly, cumulative culture. This agrees with observation. Analyses of stone tool complexity suggest that337

cumulative culture arose in Middle Pleistocene hominins [124], which would make cumulative culture part of the behavioural338

repertoire of H. heidelbergensis, H. neanderthalensis, and H. sapiens. Similarly, other complex behaviours that would be indicative of339

cumulative culture, such as fire control and woodworking, are also thought to have evolved or consolidated during the Middle340

Pleistocene [125,126]. Yet, the treatment of culture remains implicit in the model, and a more explicit consideration of culture is341

needed before the model can make more decisive predictions on this regard.342

5. Why does the human brain size evolve in the model?343

Given that the brain model recovers many, but not all, patterns of human brain evolution and development, we can use it to344

address our question of why the human brain size evolved, at least in this imperfect in silico replica. Sensitivity analyses, which345

are in silico interventions, show that, in the model, two key factors causing brain expansion from australopith to H. sapiens sizes346

are: experiencing a challenging ecology and cumulative culture, specifically, facing a larger proportion of ecological challenges in347

the energy extraction time budget and transitioning from strongly to weakly diminishing returns of learning; in contrast, neither348

cooperation nor competition cause the predicted human brain expansion in this model [40]. One would be inclined to interpret349

this as ecology and culture increasing selection for brain size, but this is not necessarily correct.350

(a) Direct and total selection in the model351

Evo-devo dynamics [48] provides tools to analyse why human brain sizes evolve in the brain model, including to establish what352

is under selection. This involves an important distinction between direct and total selection. Direct selection is what selection353

directly acts on; for instance, direct selection for milk production or fruit yield in artificial selection by animal or plant breeders,354

described by Lande’s selection gradient [49]. In turn, total selection includes direct and indirect selection, described by total355

selection gradients [48,127–130]. For instance, if a behaviour at a given age increases body size at a later age and body size at that356

age is under direct selection, then there is indirect and so total selection for the behaviour, even if there is no direct selection for it.357

In real organisms, what is under direct selection is typically unknown except in artificial selection. Yet, in simulated organisms as358

we have here, direct selection can be known.359

Evo-devo dynamics shows that there is no direct selection for brain size or skill level in the model but only for pre-ovulatory360

ovarian follicle count (Fig. 1d) [41]. Moreover, evo-dynamics shows that brain size, body size, pre-ovulatory ovarian follicle count,361

and skill level at any age evolve in the model only if they are genetically correlated with pre-ovulatory ovarian follicle count362

at reproductively mature ages. Furthermore, evo-devo dynamics shows that the effects of ecology and culture in the model are363

not to increase direct selection for brain size or any other trait as traditionally assumed, but to change the genetic covariation364

including between brain size and pre-ovulatory ovarian follicles. That is, ecology and culture cause brain expansion in the model365

by affecting the admissible evolutionary path on the fitness landscape, which affects path peaks on the fitness landscape, without366

affecting the fitness landscape [41].367

Therefore, in contrast with standard thinking, all the evolutionary patterns described above including the evolution of brain368

and body sizes from H. habilis to H. sapiens scale, a long childhood, a pre-adolescent growth spurt, and an adolescence period are369
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all by-products of direct selection for having more pre-ovulatory ovarian follicles. The different conditions (energy extraction time370

budgets and returns of learning) that yield the evolution of brain and body sizes of six major hominin species in Fig. 2 exclusively371

affect genetic covariation, not direct selection. In particular, the human brain size evolves in the model because ecology and culture372

make brain size genetically correlated with pre-ovulatory ovarian follicles [41].373

This positive genetic correlation means that mutations in the genotype that increase brain size also tend to increase follicle374

count, or mutations that decrease one also tend to decrease the other (pleiotropy). Such genetic correlation depends on375

development as it determines the effects of genotype on brain size and follicle count, and is not necessarily present in the model; for376

instance, it is absent if the ancestral genotypic traits are changed, so that ancestral individuals develop a small body size, which377

causes brain size collapse over evolution, necessarily because brain size and pre-ovulatory ovarian follicles become negatively378

genetically correlated (Fig. S1h of [41]).379

The genetic correlation that causes brain expansion arises under certain conditions that affect development, including facing380

a challenging ecology and cumulative culture and having an ancestor with large body size, which affect the individual’s energy381

budget and so her development, in turn affecting the genetic covariation between brain size and follicle count from the ancestral382

state onwards. If one implements an in silico intervention where individuals both face more ecological challenges and switch from383

strongly to weakly diminishing returns of learning, an intervention that is mathematically proven in the model not to change384

direct selection but the genetic covariation between brain size and pre-ovulatory ovarian follicles, then brain and body sizes in the385

model evolve from australopith scale to H. sapiens scale [41] (Fig. 2a). Thus, in the model, the human brain size evolves because a386

challenging ecology and cumulative culture affect development making pre-ovulatory ovarian follicles and brain size genetically387

correlated.388

(b) The human brain size is a spandrel in the model389

These findings mean that the human brain size in the model matches Gould and Lewontin’s notion of a spandrel [131] defined as390

a “by-product” (their word) of direct selection for something else. This definition does not entail that spandrels are maladaptive391

or non-functional; in the architectural illustration of Gould and Lewontin, spandrels are neither maladaptive nor non-functional392

as they contribute to sustain the cathedral’s upper structure. In the model, mature ovarian follicle count is the “arch”, which in393

our evolutionary context refers to what is under direct selection (Fig. 1e); instead, hominin brain expansion, the brain and body394

sizes of six hominin species, a long childhood, a pre-adolescent growth spurt, and an adolescence period, are all here by-products395

of direct selection for pre-ovulatory ovarian follicles.396

Evo-devo dynamics also provides tools to assess whether human sized brains in the model are maladaptive by computing their397

total effect on fitness. Doing so shows that brain sizes over the course of the recovered human brain expansion are ancestrally398

adaptive but become slightly maladaptive: total selection for them is typically positive during early evolutionary times (with H.399

habilis brain and body sizes), and becomes typically slightly negative during late evolutionary times (with H. sapiens brain and400

body sizes; Extended Data Fig. 3a of [41]). This might help explain the evolved slight reduction in brain size observed in recent401

H. sapiens although establishing this requires further analyses. Despite being spandrels in the model, human-sized brains are402

functional by enabling learning and memory of energy extraction skills (section 3).403

In contrast with long-standing thinking, the human brain size in the model is not an adaptation under a trait-level definition404

of adaptation. Multiple interpretations of adaptation exist [132] but a trait-level definition of adaptation is “a characteristic that405

enhances the survival or reproduction of organisms that bear it, relative to alternative character states.” [133][p. 56]. This definition406

admits various interpretations: for instance, as referring to direct selection or total selection. Further elaborations of this definition407

indicate that it refers to direct selection: “Not all traits are adaptations. There are [...] other possible explanations [...]. [T]he feature408

may have evolved not because it conferred an adaptive advantage, but because it was correlated with another feature that did.”409

[133] [p. 67-68]. Interpreting this definition as referring to direct selection, then the human brain size is not an adaptation in410

the model, since brain size does not directly affect survival or reproduction in the model. Instead, interpreting this definition as411

referring to total selection, then the human brain size in the model still does not strictly meet the definition as slightly smaller412

brains would indirectly increase fitness (red dots in Extended Data Fig. 3a of [41]), but such reduced brains do not evolve. The413

reason is that genes do not directly control brain size in the model, so evolution stops with persistent total selection for brain size414

decrease since evolutionary equilibria occur when total genotypic selection vanishes, not when total phenotypic selection vanishes415

(Eqs. 4, 6, and unnumbered Eq. before section S3.3, all of [41]).416

However, the evolved individuals with human-sized brains are adapted under an organism-level definition of adaptation.417

Evo-devo dynamics suggests an organism-level notion of adaptation defined as the process of fitness increase for individuals418

with average phenotypic and genotypic traits, where for this model’s assumptions, individuals are adapted if they have genotypic419

traits that totally enhance their fitness relative to other genotypic traits, given the constraints and ancestral genotypic traits. In that420

sense, the individuals with human-sized brains that evolve in the model are nearly adapted as total genotypic selection becomes421

nearly zero (red dots in Extended Data Fig. 3e-g of [41]) and will become fully adapted given enough time even if total selection422

for brain size decrease persists.423

(c) Counter-intuitive insights from integrating development and evolution424

It can also be said that brain expansion in the model is counter-intuitively caused by developmental constraints defined as the rules425

of phenotype construction imposed by the dynamic equations describing development. Developmental constraints so defined are426



12

royalsocietypublishing.org/journal/rstb
P

hil.
Trans.

R
.S

oc.
B

0000000
...........................................................................

dynamic constraints as defined in optimal control theory, give the admissible evolutionary path on the fitness landscape, and can427

yield “biases on the production of variant phenotypes or limitations on phenotypic variability caused by the structure, character,428

composition, or dynamics of the developmental system” [134]. The developmental constraints that occur in the model when429

individuals experience a challenging ecology and seemingly cumulative culture make brain and follicles genetically correlated,430

triggering the evolution from Australopithecus to H. sapiens brain and body sizes. Without such developmental constraints, brain431

expansion is not directly favoured in the model and human brain sizes do not evolve, at least for the conditions evaluated so432

far; instead, with such constraints, brain expansion is still not directly favoured but evolves due to the genetic correlations433

generated. Thus, unexpectedly to us but as anticipated by Gould and Lewontin, and in agreement with proponents of an extended434

evolutionary synthesis [135–138], “constraints themselves become more interesting and more important in delimiting pathways435

of change than the selective force that may mediate change when it occurs” [131].436

These conclusions are non-standard but they emerge from our integrated consideration of developmental and evolutionary437

dynamics, which had remained prohibitive. The absence of direct selection for brain size or skill level in the model contrasts with438

the longstanding view that human brain expansion was caused by direct selection for increased cognitive ability or behavioural439

complexity that increases survival, as this is not the case in the model but such selection may be introduced in the model in440

the future. Finlay and colleagues have previously suggested that the human brain size could be a spandrel, although for different441

reasons based on correlational analyses, a suggestion that was generally dismissed by their commentators essentially based on the442

intuition that an extremely adaptive, complex, outlying, and costly trait is unlikely to be a spandrel [139], an intuition that the brain443

model shows to be incorrect. Empirical evidence for a genetic association between brain-related traits and fertility-determinant444

traits exists in females [140] and males [141].445

6. Conclusion446

We have outlined a strategy to advance our understanding of why the human brain size evolved. The strategy involves447

formulating mechanistic models that predict evolutionary and developmental trajectories, and model comparison to determine448

which model best explains the data. The strategy rests on the assumption that, even if all models are wrong, some may be less449

wrong and they may be identified by comparing their predictions to observations. Difficulties may arise when deciding which450

models best explain the data, particularly if different models make the same predictions (lack of model identifiability; e.g., [142]451

[p. 183-207], [128] [p. 253-255], [52]). These difficulties could be mitigated by “mak[ing] theories elaborate” as recommended by452

Fisher [33,143], where models make wide-ranging predictions as the brain model does, which may diminish the possibility that453

the least wrong models are equally wrong. We have begun the illustration of this strategy for the question of why the human454

brain size evolved by qualitatively testing a model’s predicted evolutionary and developmental trajectories with available data,455

but quantitative testing is possible and there are rapidly advancing tools for this task [36]. Being a single model so far, the brain456

model has only offered a relatively uncertain answer for why the human brain size evolved, namely, as a by-product of selection457

for fertility-determinant traits, even though it is consistent with recent empirical research [140,141]. The approach proposed458

here allows for advancing toward more certain answers, by contrasting more models or model variations against data. Recent459

mathematical tools discussed here seem to make this strategy feasible.460
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