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Abstract

For two decades, a One Health approach to managing the emergence of novel zoonotic pathogens

has been increasingly called for by the animal and public health sectors. One health systems

are complex. They require the integration of data from wildlife indicator and reservoir species,

domesticated animals, and humans into a framework of adaptive monitoring and analysis that

provides for early warning of impending pathogen spillover and novel strain emergence accompanied

by mitigating action to constrain zoonotic and enzootic outbreaks. Here we provide a graphic

description laying bare the key elements of a One Health preparedness system and discuss a

monitoring and quantitative analysis framework designed to meet the needs of a well planned One

Health approach to pandemic preparedness. This especially includes automated remote sensing of

pathogen-specific indicator wildlife species and the development of a quantative tool box suitable

for pandemic risk assessment.

Introduction

Widespread circulation of avian influenza in cattle, with some currently limited spillover infections

into humans,1 and the recent declaration of an mpox global emergency,2 once again highlight the

dramatic risk that zoonoses pose for human health. Additionally, the potential for human-to-

animal transmission has been underscored by recent findings of abundant circulation of SARS-

CoV-2 in wildlife.3 Taken together, these case studies reveal the importance of a broad view

1



Figure 1: An integrative “One Health” monitoring framework that consists of the adaptive
monitoring of humans, domestic animals, and wildlife, the latter via one or more indicator
species, and a quantitative tool box (QT Box, see Figure 2) to assess the risk of zoonotic
spillover and the possible emergence of a new global pandemic.

of pathogen dynamics that includes sylvatic, urban, and human transmission cycles. While the

concept of a “One Health” approach4 can be difficult to conceptualize and daunting to contemplate,

we argue here that certain unifying pillars can simplify this task, as in the integrative framework

we present in Fig. 1 to detect and analyse epizootic or endemic pathogen spillovers (see Figure 1)

with Covid-19-like pandemic potential.

Framework and ‘indicator’ species concept

At the crux of One Health programs is the monitoring of three classes of populations: humans,

domesticated animals, and wildlife. The difficulty of monitoring each of these is highly variable

and high quality data is paramount. Certain forms of pathogen surveillance among humans have

dramatically improved since their initial deployment, especially wastewater,5 and infection sur-

veys6 during and after the COVID-19 pandemic. Further, important recent calls have been made

for a Global Immunological Observatory7,8 that would identify changes in immunological signa-

tures at the population level and more rapidly reveal cryptic pathogens spreading among humans.

Comparably less surveillance among farm animals or wildlife is ongoing, however, and this may be

necessary to anticipate and prevent future pandemics. To address this gap, the first pillar of our
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conceptual framework is the identification and detailed monitoring of one or more wildlife ‘indi-

cator’ species for each pathogen of concern. A second pillar is the application of a comprehensive

quantitative tool box (QT Box) for curating data and assessing, visualizing, and managing the

risks of zoonotic spillover and pandemic outbreaks.

Tracking and monitoring of temperature, behavior, and movement patterns,9 in addition to

sampling feces and excretia, should be ongoing in a manner designed to reveal disease-induced

changes. While detecting disease via the behavior and movement of individuals is a relatively

new concept, we see this (see Dougherty et al.9 for further discussion) as central to a One Health

approach (Fig. 1). In particular, areas of spatio-temporal overlap among wildlife, domesticated ani-

mals, or humans are ideal regions of focus for monitoring indicator species. In the case of pathogens

with durable environmental persistence, these regions can form ‘Local Infectious Zones’10 or infec-

tious ‘hot spots’. An additional general benefit of monitoring regions of spatio-temporal overlap

is that their extent can also be observed for changes (e.g., due to urbanization or climate change)

that may increase the likelihood of pathogen spillover. In tandem, monitoring may facilitate the

implementation of mitigating actions such as measures to reduce human-animal or animal-animal

contacts on temporary or permanent basis to reduce the probability of zoonotic spillovers in hot

spots.

A key benefit of movement monitoring is that sampling can be automated, continuous, and

fed immediately into AI systems using state-of-the-art machine learning algorithms for real-time

analysis.11 Then One Health program managers and scientists need only be alerted when changes

in movement and behavior are detected. In turn, active monitoring can be deployed (e.g., with

serology and sequencing), and further investigations used to reveal the causative agent, and the

degree to which such a pathogen has the potential to ignite either a localized epidemic or a new

global pandemic. Finally, risk assessment of the potential for local versus a global outbreak could

be implied using an appropriate QT Box with the results used to inform the policies needed for the

rapid deployment of mitigation strategies in at-risk domesticated animal populations and human

communities.

While deploying monitoring systems in humans and domesticated animals is relatively straight-

forward, identifying an indicator species in wildlife is more difficult. A pathogen with pandemic

potential, however, may already be established (or emergent) in either the sylvatic, urban, or

human transmission cycles. In these cases, some of its details would already be known, and diffi-

culties associated with deploying surveillance should be partially alleviated. For example, current

global circulation of H5N1 avian influenza was first in birds and is now circulating abundantly in

domesticated cattle, with a few spillover infections in humans to date.1 Further, SARS-CoV-2 is

now circulating widely in humans and animals;3 and in the latter, pathogens variants with the

potential to give rise to future pandemics may well emerge.
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In systems where novel pathogens have the potential to emerge, it is possible that close relatives

of these pathogens have been identified and are currently circulating in humans, domestic animals,

or wildlife. These pathogens may then be monitored in a One Health program to see rates of new

variant emergence and evaluate these new (now circulating) variants in highly regulated (biosafety

level 3) labs that study their transmission and pathogenicity in appropriate animal model systems.

For example, multiple coronaviruses and influenza viruses are known to circulate in humans12 and

animals.13 Finally, it is possible that a pathogen with pandemic potential has no known relatives

in current circulation. To anticipate these, large-scale indicator species monitoring is required,

particularly across the sylvatic transmission cycle, to detect their emergence before they spill over.

If changes in organism temperature, behavior, or movement are detected, further investigation and

genome identification should occur.

Risk assessments

For general One Health approaches to succeed, there must be continual pandemic, epizootic, and

epidemic risk assessment using the latest quantitative methods (Fig. 2), with an additional assess-

ment of spillover to evaluate the risk of zoonoses (Fig. 1). In our framework, we propose that each

of these specific assessments follows from data collected from either the indicator species (pandemic

potential), domesticated animals (epizootic potential) and human populations (epidemic poten-

tial). For epizootic and epidemic potential, data should be routinely monitored, and appropriate

mitigation measures consequently taken. Most importantly, if the risk of a potential zoonotic

pandemic is evaluated to be high using an appropriate QT Box, monitoring and sampling of the

indicator species should be increased. If these measurements remain abnormal, domesticated ani-

mals and humans need to be monitored closely, including via sequencing and serology. With those

data, QT Box risk assessments for epizootic and epidemic potentials should be performed and

appropriate therapeutics and vaccines developed and deployed according to cost-benefit analyses.

In our framework, we view animal vaccination primarily as a treatment strategy when epizootic

risks are high. However, such strategies could themselves affect risk assessments, creating an

important feedback loop between intervention and epidemiology. The magnitude of these effects

could be quantitatively captured with our proposed conceptual monitoring framework. While

animal vaccination is currently underutilized, there have been recent calls to develop and deploy

mass animal vaccination globally.14 With mass vaccination, our proposed monitoring and QT

Box analysis would also enable detailed cohort studies for the effects of such vaccines in wild and

domesticated animal populations. For example, epidemiological characteristics, such as vaccine

efficiency for both transmission-blocking and severity-reduction capacities, could be determined

through QT Box analysis. Further, the effects of animal vaccination on pathogen evolution could
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be monitored, and the vaccinal reductions in cross-species transmission (and risk of spillover)

determined. Finally, these cohort studies would also clarify basic immunology (e.g., strength and

duration of immune response) and host-pathogen interactions in these organisms (in humans, see

Saad-Roy et al.15 for a perspective on potential cohort studies for immuno-epidemiology and

evolution).

A quantitative tool box for data integration, visualization,

and risk assessment

Figure 2: A quantitative toolbox (QT Box) designed to aid in pandemic, epizootic, spillover,
and epidemic risk assessment in One Health settings (see Figure 1). This tool box has three
major components: 1.) a data base for individuals belonging to a focal group (green data
array on left) that includes the typology of each individual (age, sex, current location and
state of health, group membership, etc.), a pathogen exposure history and forecast (top left
orange and red trace) and a movement pathway (history and forecast; top right green trace);
2.) a set of layered landscape arrays (LLA—–some array elements may be multivalued) for
vegetation, resources, typography, resistance to movement, pathogen contagion risk maps
including the distribution and disease state of various reservoir populations; and, 3.) a
set of interpolating, updating and projection algorithms (Alg) that have the flexibility for
selected runtime modifications.

A modern quantitative tool box (QT Box) should constitute a fully integrated data empirical

data visualizer augmented with an individual movement and disease progression simulator able to

evaluate the impacts of different disease mitigating and pathogen control strategies. The platform

should be centered around one or more focal populations for which both pathogen exposure his-

tory and host movement data are stored for one to several thousand individuals moving within

a multilayered set of dynamic landscape maps. These maps should include geographic informa-

tion for QT-Box-user orientation, resource and topography data needed to understand movement

drivers and project future movement behavior,16 and the distribution of pathogen hotspots arising

5



from infected individuals in reservoirs populations17 or environmental sources (so-called locally

infectious zones18).

A modern QT Box should also include a number of algorithms for performing various data

management, map generation, and individual movement and disease progression algorithms. Be-

yond filtering and interpolating empirical data for visualization and analyses, projected movement

data should be used to compute the exposure of individuals to regions where pathogens are preva-

lent.9,19 Additionally, the exposure history of individuals can be used to compute the likelihood

of new pathogen strains emerging as a pandemic unfolds.20,21

Future outlooks

For a One Health program to be successful, many regional, national, and global challenges must

be overcome. Locally, laboratory capacity must be sufficient to process a constant flow of samples.

In tandem, availability of intensive computing power may be needed to perform the necessary data

analyses implementing a full-feature QT Box. While appropriate laboratory and computational

facilities already exist in some regions, the COVID-19 pandemic revealed that there remains high

inequity across the world with regard to such resources. Further, since a One Health monitoring

framework would ideally span large physical areas, regional coordination of efforts is required.

Finally, regional policies should be synergized, and data shared immediately. These challenges are

only magnified at the global level, but resolving them is key for rapid identification and proper

mitigation.

Importantly, climate change is poised to dramatically alter the landscape of infectious disease

transmission and spillover within the next decades. For example, recent phylogeographic modelling

suggests that such changes in climate will significantly accelerate animal-to-human zoonoses.22

Since the details of where and when these events will occur remains unknown, it is imperative to

deploy One Health monitoring mechanisms widely and rapidly. As the regions of contact between

wildlife and domestic animals, or between wildlife and humans, grow, surveillance mechanisms

should be enhanced to increase data collection at these critical junctions. In turn, these data

could also provide valuable insights on the effects of climate change on pathogen spillover and

evolution.

While the specifics of our framework hinge on a variety of factors, ranging from pathogen-

specific details to regional and national policies, the key elements of our framework make complex-

ities that are often associated with One Health more coherent and comprehensible. While many

One Health programs currently exist, none seamlessly integrate across domestic animals, wildlife,
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and humans. Our proposed framework accomplishes this, as well as identifies the kinds of data

that require collection at each scale. If our framework was deployed in conjunction with a potential

Global Immunological Observatory (see Metcalf et al.7 and Mina et al.8) and ongoing wastewater

surveillance, our societies would have a very robust multi-pronged approach to pathogen detection.

This could both anticipate and prevent the next pandemic.
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