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Abstract  34 

1. Recreation in protected areas (PAs) is growing worldwide, potentially conflicting with 35 

wildlife and ecosystem protection. Efficiently estimating human activity in PAs is 36 

crucial for balancing a dual mandate of supporting visitor access and biodiversity, but 37 

managers lack clear recommendations about how best to monitor spatial and 38 

temporal trends in human activity.   39 

2. Through two case studies, we reviewed several key tools for measuring human 40 

activity in PAs to assess the impacts on wildlife: camera traps, day passes, trail 41 

counters, and social media. We measured human activity across multiple scales and 42 

compared spatial and temporal activity estimates within and between PAs.  43 

3. We found strong correlations between tools across PAs and a combination of tools 44 

may be better suited to understand finer-scale trends within parks. Individual tools, 45 

and their combination, can be tailored to specific research and management goals.  46 

4. Synthesis and applications: Our case studies provide insights into the effectiveness 47 

of tools for measuring human activity in PAs and informs practitioners and 48 

researchers about how they can be used to address real-world management 49 

decisions. Tools varied in their strengths and their weaknesses and looking forward, 50 

the widespread adoption of multiple, integrated measures of human activity is 51 

needed to develop evidence-based park management strategies, benefitting both 52 

humans and nature.  53 

Keywords: camera trap, human activity, protected area management, recreation, social 54 

media, trail counter, Western Canada 55 

 56 

Introduction 57 

As visitation to protected areas (PAs) grows (Balmford et al., 2015), efficient tools for 58 

managing human access while optimizing social and ecological benefits are increasingly 59 

needed. Visitor data can quantify non-consumptive recreation benefits for people (e.g., 60 

Romagosa et al. 2015), and the potential wildlife impacts (e.g., Reed & Merenlender, 2008). 61 
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At one extreme, managing human activity might exclude people from PAs to prevent 62 

negative ecological impacts (e.g., Manenti et al. 2020). However, such approaches risk 63 

disenfranchising local communities or outdoor recreationists (West & Brockington, 2006). On 64 

the other hand, unmanaged PA visitation can lead to ecological degradation and defaunation 65 

(Larson et al., 2019). Management approaches to mitigate impacts include education, 66 

seasonal timing restrictions, zonation or visitation limits, invasive species management, and 67 

infrastructure maintenance (Lewis et al., 2021; Lucas, 2020). Regardless, human activity 68 

effects on PAs are context-dependent (Granados et al., 2023) so tools to monitor trends 69 

should address the research and management questions of interest. Monitoring approaches 70 

can help identify thresholds of human activity on ecosystem functions and acceptable activity 71 

levels in PAs. This can inform management strategies that optimize the socioeconomic and 72 

human wellness benefits from outdoor recreation, while minimizing undesirable ecological 73 

impacts (Miller et al., 2022). 74 

 75 

A fundamental challenge of PA management is measuring spatial and temporal trends in 76 

human activity including how visitors use PAs (e.g., entry points, routes followed, activity 77 

type) (Cessford & Muhar, 2003). PAs are often established in remote and rugged locations 78 

with relatively poor infrastructure, making direct counts of people difficult and expensive 79 

(D’Antonio et al., 2010). Porous PA boundaries and a lack of available tools to monitor 80 

access also complicate efforts to determine spatial patterns of activity after the point of entry 81 

(Ziesler & Pettebone, 2018). To address issues with on-site visitor counts in PAs (i.e., day 82 

passes or traffic counters), remote sensing tools (i.e., data collected by remote sensors 83 

without the need for on-site human presence) are increasingly used (Fisher et al., 2018). For 84 

example, camera traps produce fine-scale human activity information and can 85 

simultaneously monitor wildlife (Fennell et al., 2022) and vegetation (Sun et al., 2021) but 86 

they lack spatial breadth required to predict PA spatial and temporal trends in human 87 

activity. Conversely, activity tracks from fitness applications can provide spatially explicit 88 

information about human activity (Toivonen et al., 2019), and user-contributed social media 89 
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data from geotagged photos or posts can be used (Fisher et al., 2018) independently or with 90 

data collected on-site to parameterize models that predict visitation (Wood et al., 2020). 91 

Remotely sensed tools could be cost- and time-efficient options for monitoring human 92 

activity, but whether they reflect true levels of human activity and complement each other is 93 

less understood (Fisher et al., 2018).  94 

 95 

PAs have diverse management objectives (e.g., ecological, conservation value, and 96 

recreation values), and accessibility and management budgets, so the applicability of tools 97 

and their effectiveness in measuring human activity at multiple scales also varies. A 98 

comparative analysis of these tools can answer crucial questions about where the most 99 

popular trails are, peak activity times, spatiotemporal trends, and potential impacts on wildlife 100 

movement. Answers could affect the allocation of funding for park infrastructure and wildlife 101 

management (Northrup et al., 2016). Ecological processes shaping wildlife habitat selection 102 

can vary with scale thus wildlife responses to human activity could also be scale-dependent 103 

(McGarigal et al., 2016). To enhance tool adoption, testing and comparing methods for 104 

monitoring park visitation at various scales is crucial, offering clear recommendations for 105 

real-world management decisions to advance our understanding of human-wildlife 106 

coexistence. 107 

 108 

To address the need to define how remote sensing tools can be linked to specific PA 109 

management objectives, we convened a working group of 18 conservation practitioners 110 

working in western Canada (Appendix 1). We reviewed key tools, then compared trends in 111 

human activity across multiple scales measured by camera traps, trail counters, and social 112 

media. The case studies showcase the links between data collected from each of these 113 

methods. Our work informs practitioners and researchers about the tools available to 114 

measure PA human activity, and how to use them to address real-world management 115 

decisions.  116 

 117 
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How can human activity be measured? 118 

Table 1 lists tools for monitoring human activity (camera traps, trail counters, day passes, 119 

and social media), selected because they are actively used by the co-authors. Deciding 120 

which to use depends in part, on research and management objectives (Table 1, Appendix 121 

2). Tools vary in accuracy, influencing whether human activity is directly or indirectly 122 

measured (e.g., photos vs. self-reporting), and the spatial or temporal scale of data 123 

collection. The scale(s) at which data are collected is influenced by park manager or 124 

personnel capacity and research or management goals (Appendix 2). Cost-effectiveness 125 

considers the need for fieldwork or how labour-intensive that fieldwork is. For example, PA-126 

wide camera trap surveys are more labour-intensive than smaller-scale (e.g., trail segments) 127 

surveys. Automated trail counters offer easy deployment at multiple sampling points, but 128 

may have accuracy or performance issues (Marion et al., 2021).  129 

 130 

Increasingly, camera traps deployed to monitor wildlife are also used to estimate human 131 

activity. Images of people provide information about the type of activity visitors engage in 132 

(e.g., hiking, ATVs, horseback riding, cycling) as well as spatiotemporal information about 133 

those activities (Ladle et al., 2018; Naidoo & Burton, 2020), unlike trail counters, which 134 

cannot distinguish between animal and human detections, and activity type (e.g., motorized 135 

vs. non-motorized) (Marion et al., 2021). However, we acknowledge that tools like camera 136 

trapping come with privacy concerns related to human data collection (Sandbrook et al., 137 

2018). 138 

 139 

Human activity data scraped from social media are downloaded from an external source 140 

(e.g. Instagram, Twitter, Facebook, AllTrails, Strava), requiring less labour than fieldwork, 141 

and covering broad geographic regions beyond PAs (Obar & Wildman, 2015). However, it is 142 

unclear how well they reflect true activity levels. Extracting data from these platforms 143 

requires advanced knowledge of computing and coding (e.g., web scraping, APIs) and 144 

access requirements frequently change. 145 
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 146 

In contrast to remote sensing tools, tools counting visitors on-site, like day passes, are easy 147 

to collect and require little technical expertise. However, permits and passes may not 148 

necessarily reflect attendance as online pass sales may not correlate to physical visitation. 149 

Day pass counts may be less informative about spatial human activity trends, and be less 150 

useful if not accompanied by specific user reporting criteria.  151 

 152 

Table 1: Comparisons of tools used to measure human activity in protected areas. Colours: 153 

green = relatively better; orange = relatively worse; white = neutral; * = characteristics which 154 

can vary depending on context. For full justification and additional detail, see Appendix 2. 155 

 
Human 
activity 
monitoring 
tools 

Data characteristics 

Spatial 
resolution 

Temporal 
resolution 

Type of 
human 
activity 

Wildlife 
activity 

Data from 
in & 

outside 
PAs 

Privacy 
issues 

On-site 
presence 

of 
researche

rs 

Data 
processing 

burden 

Camera traps High* High Yes Yes Yes Yes Low High* 

Trail counters High High No* No* Yes No Low Low 

Day Passes Low High No* No No No Low Low 

Social media 
data 

Low to 
high 

Low to 
high 

Yes* No Yes Yes None High* 

 156 

Methods 157 

What can existing tools tell us about trends in human activity?  158 

We illustrate the advantages and limitations of tools for estimating large and fine-scale 159 

trends in PA human activity through two case studies. First, we measured temporal activity 160 

patterns within Joffre Lakes Provincial Park, British Columbia (BC) to assess the similarity of 161 

information provided by camera traps, trail counters, and day passes. Next, we evaluated 162 

within- and between-park spatial visitation trends across four provincial parks in 163 

southwestern BC (Garibaldi, Joffre, Golden Ears, and Cathedral; see Table A2, Figure 1), 164 
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comparing human activity estimates from social media with camera traps. In both cases, 165 

camera traps were specifically deployed to monitor human activity. 166 

 167 

Case study 1: Characterising temporal patterns in human activity within PAs  168 

One objective for PA researchers and managers is characterizing temporal patterns in 169 

human activity, involving measurements of broad temporal patterns, (e.g., annual) or finer-170 

scale patterns (e.g., daily, monthly or seasonal) in visitation. We compared camera traps, 171 

trail counters, and day passes to measure fine-scale temporal patterns in human activity in 172 

Joffre Lakes Provincial Park (Figure 1). Visitation to this park has increased dramatically in 173 

the last decade (222% increase from 2010 to 2019) (Canadian Parks and Wilderness 174 

Society, 2021). Joffre Lakes is renowned for its “Instagram worthy” glacier blue alpine lakes 175 

and provides habitat for many species, including wolverine (Gulo gulo), grizzly bear (Ursus 176 

arctos), cougar (Puma concolor), and black-tailed deer (Odocoileus hemionus) (Figure 3). 177 

Data collection spanned May to September 2021, coinciding with the park’s re-opening in 178 

June after a COVID-19 shutdown. Further details are provided in Appendix 3.  179 

 180 

 181 
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Figure 1. Provincial parks in British Columbia used in our case studies (Joffre Lakes, 182 

Garibaldi, Cathedral, and Golden Ears). Locations of camera trap sampling points used to 183 

measure human activity are also shown.  184 

 185 

 186 

Figure 2. Locations of camera trap and trail counters sampling points in Joffre Lakes 187 

Provincial Park used for analysis in Case Study 1. 188 

 189 



 

9 

 190 

Figure 3. Camera trap images of wildlife detected at Joffre Lakes Provincial Park: A) 191 

Wolverine (Gulo gulo), B) Black-tailed deer (Odocoileus hemionus), C) Grizzly Bear (Ursus 192 

arctos), and D) Cougar (Puma concolor). 193 

 194 

Camera traps, trail counters, day passes provided similar human activity estimates at 195 

monthly (Figure 4A) and daily (Figure 4B) scales, with correlation coefficients > 0.92. 196 

However, trail counters had higher error rates with false triggers compared to the other 197 

methods. Trail counters and camera traps showed marked day-to-day variation in human 198 

activity. For day passes, daily human activity estimates showed that maximum quotas of 199 

1056 passes per day were reached August to September. All three tools revealed a similar 200 

‘weekend effect’, where human activity is greater during weekends and holidays, potentially 201 

causing negative effects on wildlife (Green et al., 2023). Human activity increased by roughly 202 

10% on weekends relative to weekdays (Figure 4C). Finally, diel human activity patterns 203 

were highly correlated between cameras and trail counters (correlation coefficient = 0.98; 204 
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Figure 4D). It was not possible to obtain similar information from day passes, as the time 205 

passes are redeemed was not recorded.  206 

TAKE HOME MESSAGE: For broad temporal patterns, the choice between camera traps, 207 

trail counters, or day-passes does not influence conclusions about human activity. Decisions 208 

should consider context-specific costs and logistical considerations for implementing 209 

different methods. For example, camera trap deployment requires more fieldwork than trail 210 

counters, making it less feasible for monitoring large-scale human activity trends, particularly 211 

in rugged landscapes. However, camera traps provide more informative fine-scale temporal 212 

data, crucial for management decisions, such as monitoring nighttime recreationist activity 213 

(Blundell et al., 2020). Camera traps also have the advantage of distinguishing activity types 214 

and simultaneously monitoring wildlife, facilitating assessments of human-wildlife 215 

interactions.  216 

 217 

 218 

 219 
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Figure 4. Comparison of camera traps, trail counters, and day passes to monitor monthly 220 

(A), daily intervals (B), weekday vs. weekend (C), and at different times of day (D) in Joffre 221 

Lakes Provincial Park at monthly. Column A column heights = monthly average number 222 

detections/triggers/passes issued per day. Column B heights = camera 223 

detections/triggers/passes issued per day. The horizontal dashed line represents the 224 

maximum day pass quota (n = 1056). Column C panels show the mean estimated number of 225 

detections/triggers/passes issued for a weekday or weekend day in August, with 95% 226 

confidence interval of the estimate as whiskers. Column D shows the relative number of 227 

detections/triggers per hour of the day across the whole time period. For columns A, B, and 228 

D, the estimates are compared using correlation plots with the sign and magnitude of the 229 

correlation coefficients represented by colour (blue = negative, red = positive) and circle size 230 

(larger = stronger correlation). In Column C, methods are compared through contrasting the 231 

percentage change in human activity estimated through each method.  232 

 233 

Case study 2: Characterising spatial patterns in human activity across multiple PAs 234 

Quantifying the relative intensity of PA human activity provides insights into how large-scale 235 

differences in accessibility or ecological conditions affect recreation area popularity and 236 

crucially, thresholds in recreation impacts. Human activity can be measured through 237 

deployment of monitoring devices (e.g., camera traps) within PAs, or through data scraped 238 

from social media platforms (e.g. AllTrails and Strava) (Toivonen et al., 2019). We compared 239 

human activity estimates from camera traps, AllTrails, and Strava in Joffre Lakes, Cathedral, 240 

Garibaldi, Golden Ears Provincial Parks (Figure 5) to generate spatially explicit human 241 

activity indices. These parks are popular for recreation and contain important wildlife habitat 242 

but they differ in visitation due to proximity to urban centres, access points, camping 243 

facilities, topography, etc.  244 

 245 

For the average intensity of human activity, camera traps and AllTrails ranked PAs in the 246 

same order: Garibaldi (greatest), Joffre Lakes, Golden Ears, and Cathedral (least). In 247 
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contrast, Strava suggests there is substantially more activity in Golden Ears relative to the 248 

other two methods, while underreporting activity at Joffre Lakes (Figure 5A). The popularity 249 

of social media platforms among recreationists varies regionally and for Strava, there are 250 

socioeconomic and demographic biases resulting in underreporting of hikers and other 251 

specific groups (Garber et al., 2019; Venter et al., 2023). The three metrics showed high 252 

agreement in human activity spatial patterns in some PAs (correlation coefficients >0.8 for 253 

Garibaldi and Joffre Lakes; Figure 5B & 5C), whereas other PAs showed significant 254 

disagreement between different tools (correlation coefficients between -0.01 and 0.91 for 255 

Golden Ears and Cathedral; Figure 5D & 5E). The locations where the three metrics were in 256 

strong agreement were PAs with single access points and simple, linear trail structures 257 

(Garibaldi and Joffre). Locations with high disagreement had multiple access points and 258 

more complex interconnected trail structures, likely driving higher variability in estimated 259 

human activity.   260 

TAKE HOME MESSAGE: Correlations between tools depended on trail system complexity. 261 

Camera traps provided finer-scale information relative to social media data and showed 262 

more spatial variation for within-park human activity. Social media data may under or over-263 

report human activity, depending on socioeconomic factors and activity type. For example, 264 

AllTrails collects more hiker traffic, whereas Strava was more accurate for running and 265 

biking. Furthermore, while social media excels at providing information about the spatial 266 

distribution of human activity, these data may not reliably address temporal trends if the 267 

proportion of trail users that contribute to social media data varies through time. 268 

 269 
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 270 

Figure 5. Overall average human activity intensity (A) and spatial patterns across PAs with 271 

four methods (columns B-E). AllTrails =the number of reviews of different trails, Strava = 272 

number of athlete ‘efforts’ per year for each trail segment. Column A bar heights = average 273 

use intensity across all trails in the analysis. Columns B-E show the spatial patterns in 274 

estimated human activity standardised and scaled to between 0 (low -blue) and 1 (high - 275 

red). Across all columns, the spatial estimates are compared using correlation plots with the 276 

sign and magnitude of the correlation coefficients represented by both colour (blue = 277 

negative, red = positive) and circle size (larger = stronger correlation).  278 

 279 

Discussion 280 

How can we link measurements of human activity to management actions? 281 

Our case studies illustrate that fine-scale temporal (Figure 4) and spatial (Figure 5) trends in 282 

human activity within and between PAs can be estimated with existing tools, with accuracy 283 

and utility varying by method and context. Tool selection should align with practitioner needs, 284 

emphasising the need to link tools to PA management objectives. This involves mitigating 285 
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the negative effects on wildlife, for example, through seasonal timing restrictions, zonation, 286 

or visitation limits in specific areas, while identifying habitat restoration needs. Understanding 287 

spatiotemporal patterns of human activity and recreation impacts on wildlife are critical for 288 

informing effective legislation, policy, and authorization processes (e.g., permitting with 289 

reporting requirements, species at risk or critical habitat policies), and allocation of staffing 290 

and financial resources.  291 

 292 

Our working group identified three broad management categories: characterising human 293 

activity patterns, investing in land use planning, and understanding trade-offs between 294 

visitation and ecosystem health (Appendix 2). For each, potential management actions are 295 

included. For example, researchers quantifying human activity patterns may use tools in 296 

Table 1 to measure trail visitation over short (e.g., seasonal) or long (e.g., annual) periods. 297 

Based on trends from those data, practitioners can implement trail use restrictions if, for 298 

example, human activity is high on specific trails near sensitive wildlife habitat (Thorsen et 299 

al., 2022). Areas with low human activity may require greater understanding of potential 300 

ecological impacts and increased resource allocation including additional staff time and 301 

financial resources for outreach and human-wildlife conflict mitigation (e.g., garbage left on 302 

trails), and enforcement action. New infrastructure and ongoing maintenance may be 303 

needed to address unanticipated damage from increased human presence (e.g., trail rutting, 304 

erosion). 305 

 306 

Future directions and opportunities  307 

Our case studies provide insights into the effectiveness of tools for measuring PA human 308 

activity and highlight where more work is needed. For example, identifying thresholds can 309 

inform management strategies to predict negative wildlife impacts. This may involve 310 

identifying thresholds causing demographic impacts on wildlife (e.g., population decline due 311 

to reduced survival or reproduction), thresholds above which wildlife can no longer co-exist 312 

with people or recreation levels above which wildlife can adapt through behavioural flexibility 313 
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(e.g., shift habitat use or timing of activity) (Lewis et al., 2021) and where sensitive species 314 

can no longer persist (displacement, filtering) (Dertien et al., 2021). Thresholds can guide 315 

practitioners to enable quality recreational user experiences while mitigating negative 316 

ecological impacts. Analysing historical human activity trends may also inform predictions 317 

about future activity, given weather or temporal trends (e.g., seasonal, weekend) or real-time 318 

monitoring about how a location is trending online (e.g., clicks, likes) (Clark et al., 2019). 319 

Given the strengths and weaknesses of each tool, integrating data from multiple tools within 320 

a cohesive framework may provide reliable and generalisable predictions (e.g., Wood et al. 321 

2020).  322 

 323 

We focused on PAs because of their dual mandate to support recreation and biodiversity, 324 

but information about human activity outside PA boundaries is lacking. Furthermore, large-325 

bodied mammals require home ranges larger than the size of most PAs, so characterising 326 

human activity across larger, mixed-use landscapes is a priority. This can assist in 327 

developing practical management actions relevant to people and wildlife, including how and 328 

where new trails are sited, restrictions on activities, infrastructure needs (bear-proof food 329 

caches, garbage receptacles, etc.,), and signage design (i.e., wayfinding, educational, 330 

regulatory).  331 

 332 

This work focused on legal recreation activities within PAs. However, PAs are susceptible to 333 

illegal uses including poaching of flora and fauna and encroachment (Rija et al., 2020). Such 334 

activities likely occur away from trails and access points used by legal visitors, exhibiting 335 

spatial and temporal patterns differing from legal activities. In such cases, trail counters, day 336 

passes, and social media are not reliable for capturing such human activity. Camera traps 337 

deployed off-trail, monitoring wildlife patterns relative to areas with higher human activity, 338 

may more effectively detect illegal activity. Remote sensing data may also effectively 339 

quantify impacts of human activity on landscape condition like erosion, fire, and habitat loss 340 

(Watson et al., 2014). Although illegal activities are a small minority of human activity in PAs 341 
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predominantly characterized by authorized recreation, they can disproportionately impact 342 

biodiversity (Hilborn et al., 2006). 343 

 344 

Sustainable recreation requires careful planning and there is a clear need for land use and 345 

recreation planning in North America, particularly with respect to management objectives. 346 

Efforts to monitor human activity trends should identify specific objectives prior to tool 347 

selection (Appendix 4). Developing and implementing management plans requires more 348 

funding, which has historically been under-resourced. To alleviate costs, increased 349 

engagement with community scientists could assist with monitoring efforts (Cheung et al., 350 

2022). Several emerging networks promote a coordinated sampling approach across large 351 

scales, including camera traps (e.g. WildTrax, WildCAM, Wildlife Insights) (Buxton et al., 352 

2018; Granados et al., 2023; Hedley et al., 2022). There is a growing need to better 353 

understand how tools can accurately monitor human activity in PAs to determine the 354 

ecological impacts to parks and open spaces. While this requires increased funding and 355 

labour for field surveys, our work provides valuable insights into the conditions under which 356 

tools quantify trends in human activity in PAs.  357 

Conclusion 358 

As visitation to PAs globally increases, identifying tools to accurately estimate human activity 359 

becomes critical for understanding impacts on wildlife and natural areas. Multi-scale visitor 360 

data are lacking in much of North America, yet understanding trends within and between 361 

parks is needed for evidence-based management plans. We addressed this knowledge gap 362 

by presenting case studies highlighting various tools for measuring human activity, making 363 

them relevant for park managers and decision-makers. Baseline information about human 364 

activity can reveal for example, crowding patterns and help managers and researchers 365 

predict future trends. In turn, this information can guide investments in new park 366 

infrastructure, maintenance and ongoing monitoring needs, and staffing resources. 367 

Additionally, this information can support decisions related to regulation and management 368 

changes. We argue that data collection on human activity in and around PAs is urgently 369 
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needed. Our case studies emphasize the need for careful tool selection, guided by issues 370 

relevant to specific PAs. 371 
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