Phylogeny of *Weinmannia* (Cunoniaceae) reveals the Contribution of the Southern Extratropics to Tropical Andean Biodiversity.

Ricardo A. Segovia^{*1,2}, Eduardo Aguirre-Mazzi^{* 3,4}, Christine E. Edwards⁵, Alexander G. Linan⁶, Alfredo Fuentes^{4,7}, Andrea Chaspuengal⁸, Kyle G. Dexter^{9,10}, Francisco Fajardo¹¹, William Farfan-Rios^{12,13}, Nora H. Oleas⁸, Juan C. Penagos Zuluaga¹⁴, J. Sebastián Tello⁴

Abstract

¹Departamento de Botánica, Universidad de Concepción, Chile; ² Institute of Ecology and Biodiversity (ieb-chile.cl); ³ Department of Biology, Washington University in St. Louis, St. Louis, MO, United States; ⁴ Latin America Department, Missouri Botanical Garden, St. Louis, MO, United States; 5 Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, United States: 6 Africa and Madagascar Program, Missouri Botanical Garden, St. Louis, MO, United States; ⁷ Herbario Nacional de Bolivia, Instituto de Ecología, Carrera de Biología, Universidad Mayor de San Andrés, La Paz, Bolivia.; ⁸ Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) y Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador; 9 School of GeoSciences. University of Edinburgh; ¹⁰ Royal Botanic Garden Edinburgh; ¹¹, 14195 Berlin, Germany; ¹² Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA.; ¹³ Andrew Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC 27106, USA.; ¹⁴ Research Affiliate Yale School of the Environment, Yale University. 195 Prospect Street, New Haven, CT.; * These authors contributed equally to this work

Corresponding author; e-mail:

rsegovia@ieb-chile.cl; christine.edwards@mobot.org

The Andes are a relatively young mountain range with impressive biodiversity, but the biogeographic processes underlying its hyperdiversity are still being unraveled. Novel mid- to high-elevation climates may have served as a biological corridor for the immigration of temperate-adapted lineages to lower latitudes, contributing unknown levels of diversity to this region. We tested the hypothesis that Weinmannia is a lineage of extratropical origin that recently reached and then diversified extensively in tropical Andes. Using a 2bRAD seq approach to generate a time-calibrated phylogeny for the genus, we found that extratropical species were placed as sister to the rest of Weinmannia and that younger clades were distributed towards northern latitudes. Although Weinmannia exhibited low niche conservatism in elevation and latitude, trait reconstructions of mean annual temperature showed that the common ancestor of Weinmannia occupied cool climates, with high conservatism of thermal niche across the phylogeny. Thus, Andean uplift likely created habitats with suitable temperatures, providing a dispersal route for Weinmannia to colonize the tropical Andes from the southern extratropics. These southern lineages likely converged with those originating in other tropical and extratropical centers of diversification, providing multiple origins for the hyperdiversity in the modern montane forests of the tropical Andes.

Keywords: immigration, diversification, hyperdiversity, tropics, Gondwana

1. Introduction

The Andean region of tropical America has one of the 2 world's highest levels of species richness (Balslev, 1993), 3 taxonomic endemism (Myers et al., 2000) and phylogenetic 4 5 diversity (Tietje et al., 2023). This hyperdiversity is particularly intriguing given that the modern geomorphology of this area is no 6 older than the late Miocene (< 11 Ma) (Gregory-Wodzicki, 2000; 7 8 Siravo et al., 2018). Mountain building is generally thought to have fostered high diversity both through speciation of resident lineages 9 (Rahbek et al., 2019) and the immigration of lineages pre-adapted 10 to newly created climatic conditions (Donoghue, 2008). Indeed, the 11 12 Andean orogeny may have increased the rate of lineage diversification (Antonelli and Sanmartin, 2011a) and may also have 13 14 opened a corridor for the immigration of temperate lineages into the lower latitudes of tropical America (Graham, 1973, Segovia and 15 Armesto, 2015). Comprehensive evolutionary evidence is still 16 17 being gathered to identify areas of lineage origin and thus unravel the relative influence of these biogeographic processes in shaping 18 the modern pattern of hyperdiversity in the Andes. 19

Phylogenetic evidence shows faster-than-expected rates of20diversification for a number of potentially resident plant clades in21synchrony with the Andean uplift since the early Miocene (e.g.,22

Luebert and Weigend, 2014; Pérez-Escobar et al., 2022). Moreover,	23
a growing body of phylogenetic evidence shows immigration from	24
both the northern and southern extratropics into the tropical Andes.	25
Many lineages have immigrated from the northern extratropics,	26
including Viburnum (Winkworth and Donoghue, 2005), Lupinus	27
(Hughes and Eastwood, 2006), and Passiflora section Decaloba	28
(Acha et al., 2021). Conversely, there is less evidence of lineages	29
immigrating from the southern extratropics to the tropical Andes,	30
although notable examples include Alstroemeriaceae (Chacón et	31
al., 2012), <i>Podocarpus</i> (Quiroga et al, 2016), <i>Gunnera</i> (Bacon et	32
al., 2018), and Loranthaceae (Liu et al., 2018). However, most of	33
what we know about these biogeographic scenarios for the origin of	34
the plant diversity in the tropical Andes has disproportionately	35
focused on taxa inhabiting open biomes at high-elevations.	36
Evidence regarding the origin and direction of dispersal routes of	37
the clades that occupy montane forests at intermediate elevations	38
remains scarce, representing a significant gap in our understanding	39
of plant diversity and evolution in one the most species-rich regions	40
on the planet.	41

The idea that lineages from the relatively species-poor42extratropics could contribute to the modern hyperdiversity of the43tropical Andes is counterintuitive. Traditionally, the highest levels44

of species richness are thought to be associated with "centers of	45
diversification" (Willis, 1922), or areas where a particular lineage	46
originated (Wiens and Donoghue, 2004), and there is strong	47
evidence that the American tropics have historically acted as a	48
"species pump" for global plant diversity (Antonelli et al., 2015).	49
However, immigration from multiple zones, including the	50
extratropics, into tropical Andean forests has been identified based	51
on taxonomic affinities (Hooghiemstra, 1984), fossil records	52
(Graham, 1995), and community phylogenetics (González-Caro et	53
al., 2023), not just through clade reconstructions. These multi-	54
source immigration processes, along with rapid lineage	55
diversification, may be key to shaping the modern hyperdiversity of	56
the tropical Andes, increasing not only taxonomic diversity but also	57
evolutionary diversity, according to the "environmental crossroads	58
hypothesis" (Neves et al., 2020). For example, the exceptionally	59
high phylogenetic diversity found in the central and northern Andes	60
(Tietje et al., 2023) may be due to the mixing of deeply isolated	61
biotas with different evolutionary histories (e.g., remnants of	62
paleobiotas from the Holarctic, Austral and Neotropical floristic	63
realms).	64

Here we investigate the biogeography of Weinmannia L.65(sensu Pillon et al., 2021), formerly Weinmannia sect. Weinmannia66

L. (Bradford, 1998), an important genus of trees and shrubs at	67
Andean forests, given their high abundance and diversity. Typically	68
considered an extratropical southern hemisphere taxon (Raven and	69
Axelrod, 1974), Weinmannia comprises two species occurring in	70
the Mascarenes and over 80 species in the Americas (Bradford,	71
1998, 2002, Pillon et al., 2021). Most Weinmannia species occur at	72
mid- to high- elevations in the tropical Andes, where they exhibit	73
weak species boundaries and overlapping morphologies due to	74
either recent divergence or hybridization (Bradford, 1998, 2002). In	75
addition, several species occur in the Guiana shield and mountain	76
peaks of Central America and the Caribbean Islands. One species is	77
endemic to the subtropical forests of eastern Brazil (i.e., Mata	78
Atlantica), and another occurs in the temperate forests of southern	79
South America (Chile and Argentina). Previous phylogenies placed	80
the only southern extratropical species (Weinmannia trichosperma	81
Cav.) as an early diverging lineage of <i>Weinmannia</i> (Bradford,	82
1998, 2002), sparking the hypothesis that Weinmannia immigrated	83
recently into the tropical Andes from the southern extratropics	84
(Bradford et al., 2004; Pennington and Dick, 2004). However, these	85
analyses sampled only a small proportion of the species in the	86
genus and employed only a small number of plastid and/or nuclear	87
regions (Bradford, 2002; Pillon et al., 2021), preventing hypothesis	88

testing about the origin and dispersal of <i>Weinmannia</i> across the	89
Andes.	90

To examine the hypothesis of a southern extratropical origin 91 92 for *Weinmannia* and its recent immigration into the tropical Andes, we reconstructed a new NGS phylogeny with dense taxon 93 sampling. First, we tested the prediction that if the genus 94 Weinmannia originated in the southern extratropics, then W. 95 trichosperma from the temperate forests of southern South America 96 97 and other southern lineages should be resolved as the sister lineages to all other American Weinmannia species and should have 98 originated in a node closer to the root, reflecting their ancestral 99 status within the genus. Second, we tested the prediction that if the 100 101 modern distribution of *Weinmannia* in the Americas is a consequence of dispersal from the southern extratropics into the 102 tropical Andes, then the ages of nodes in the phylogeny should 103 show a negative relationship with the reconstructed latitude of the 104 nodes. In other words, the phylogeny should show a pattern in 105 which younger clades occupy successively more northern latitudes. 106 Additionally, we explored whether the evolution of the thermal 107 niche of Weinmannia reflects phylogenetic conservatism of 108 lineages originating from extratropical climates. 109

2. Materials & Methods

2.1. Sampling and genomic DNA extraction. We collected 896	112
samples of Weinmannia from across South America, including the	113
southern Andes (Chile), the central Andes (Bolivia and Peru), and	114
the northern Andes (Ecuador and Colombia). We also included four	115
samples from the Mascarene Islands. For each sample, we	116
preserved leaf tissue in silica and collected an herbarium voucher	117
specimen. In addition, we included five specimens from three	118
species of <i>Pterophylla</i> (<i>sensu</i> Pillon et al., 2021) as outgroups.	119

To extract DNA, silica-dried tissues were ground and	120
cleaned using up to three sorbitol washes following Inglis et al.	121
(2018) to remove mucilage and other secondary compounds.	122
Genomic DNA was extracted using a modified CTAB extraction	123
protocol for plants (based on Doyle and Doyle 1987), with	124
additional ethanol washes of precipitated DNA. Following	125
extraction, DNA was purified using KAPA pure Beads (KAPA	126
Biosystems) following manufacturer protocols. DNA	127
concentrations were quantified using a Qubit [™] fluorometer	128
(ThermoFisher).	129
22 Sequencing DAD and librarian ware propared using a 24	120

2.2. Sequencing. RAD-seq libraries were prepared using a 2b-	130
RAD approach (Wang et al., 2012) following previously published	131

protocols (Linan et al., 2021b; Mashburn et al., 2023). We digested	132
500 ng of purified genomic DNA of each sample using the BcgI	133
restriction enzyme (New England Biolabs), producing 36 bp DNA	134
fragments from across the genome. To ensure adequate sequence	135
coverage per locus, 5'-NNG-3' selective adapters were used	136
decreasing the number of sequenced loci (Wang et al., 2012). 96	137
samples were pooled per plate using dual indexing, whereby the	138
first index was applied across columns, allowing pooling of the 8	139
rows. Each of these pools was amplified for 14 cycles of PCR	140
while incorporating the second index (one of eight unique 6 bp	141
Illumina TruSeq barcodes) using high-fidelity Phusion PCR mix	142
(New England Biolabs). The amplicons were visualized using 2%	143
Agarose gel electrophoresis and purified using the MinElute gel	144
purification kit (Qiagen). The purified ligation pools were	145
quantified using a Qubit fluorometer, pooled in equimolar	146
proportions (Qiagen), and sequenced on an Illumina HiSeq 4000,	147
generating 50 bp single end reads at the NUSeq Core facility of	148
Northwestern University.	149
2.3. RAD locus assembly. Sequences were demultiplexed and	150
trimmed to remove row and column indexes using the	151
trim2bRAD_2barcodes.pl script	152
(https://github.com/z0on/2bRAD_denovo). Trimmed reads were	153

assembled <i>de novo</i> in the ipyrad v. 0.9.90 pipeline (Eaton and	154
Overcast, 2020). To determine the optimum clustering threshold,	155
we iterated clustering threshold within samples (CTWS) and	156
among samples (CTAS) using every combination of values of 0.86,	157
0.89, 0.92, and 0.94. The resulting matrices were compared for	158
cluster depth, heterozygosity, the amount of putatively paralogous	159
loci, and the number of SNPs to identify parameters that could lead	160
to assembly errors (Paris et al., 2017). We selected a value of 0.92	161
for both CTWS and CTAS. All loci showing gaps or that had more	162
than five SNPs were removed.	163

2.4. Identification of putative hybrids. To identify putative	164
hybrid individuals that may confound phylogenetic analysis, we	165
assessed admixture using STRUCTURE v. 2.3.4 (Pritchard et al.,	166
2000) as implemented in ipyrad v. 0.9.90. Due to the large number	167
of samples and putative species, we divided samples into two	168
geographically structured datasets (central Andes region and	169
northern Andes region), given that interspecific gene flow is most	170
likely to occur among geographically proximal species. For each of	171
these datasets we conducted an independent assembly, removing all	172
individuals with more than 80% missing sites, retaining loci present	173
in at least 50% of samples, and retaining one SNP per locus.	174
STRUCTURE analyses were run testing values of $K=2-20$ with a	175

burn-in of 300,000 generations, a run length of 700,000	176
generations, and 15 replicates of each K value. The optimal K value	177
was selected using the Evanno method (Earl and von Holdt, 2012).	178
We defined putative hybrids as individuals with <85% assignment	179
to a single genetic cluster, adopting a more conservative criterion	180
compared to the 80% cut-off used by Owusu et al. (2015) and	181
Linan et al. (2021b).	182

2.5. Individual-level tree inference. For phylogenetic inference, 183
we chose 3–5 individuals with no signature of hybridization from 184
each species, resulting in 234 accessions from 48 *Weinmannia* taxa 185
(including 6 that are not assigned to any described species), plus 3 186 *Pterophylla* species as outgroups (total=51 species). This dataset is 187
a representative sample of the 75–90 estimated *Weinmannia* 188
species occurring in the Americas (Pillon et al., 2021). 189

190 Maximum likelihood (ML) phylogenetic analysis was conducted using a concatenated dataset of the 36 bp loci, including 191 192 invariant characters. First, we performed preliminary analysis to explore the effect of missing data on the resulting topologies, 193 194 varying the percentage of samples at which a locus must be present from 4%–48% in increments of 4. We found optimal branching 195 resolution and bootstrap support when all loci were present in at 196 least 36% (84/234) of samples, which was used in the final 197

analysis. The ML phylogeny was inferred in RAxML v. 8.2.12	198
(Stamatakis, 2014) using a rapid hill climbing algorithm and the	199
GTRCAT approximation. Clade support was calculated using the	200
transfer bootstrap approach with 200 iterations (Lemoine et al.	201
2018).	202

203 2.6. Species-level Weinmannia phylogeny. To reconstruct a species-level phylogeny, we selected one representative individual 204 from each species (*i.e.*, a reciprocally monophyletic group of 205 individuals that had morphological distinctiveness) in the 206 individual-level phylogeny (Supplementary Fig. 1). We chose the 207 non-admixed individual (as indicated by STRUCTURE) with the 208 least missing data. For phylogeny reconstruction, we employed 209 both a ML analysis of the concatenated loci and SVDQuartets, 210 which is a multi-species coalescent-based approach (Chifman and 211 Kubatko, 2014). The species-level ML analysis used the same 212 settings as described for the individual-level phylogeny. After 213 214 preliminary analysis to explore the effect of missing data, we prepared a concatenated alignment of all loci present in at least 215 32% (16/51) of all individuals, which was used to infer a 216 phylogeny in RAxML. The multi-species coalescent-based 217 phylogenetic inference was performed using a randomly selected 218 SNP from each of the 2,879 loci used in the RAxML analysis. We 219

inferred all 249,900 possible quartets for 51 taxa and conducted	220
500 bootstrap iterations. The quartet trees were joined into a super	221
tree. Branch lengths for this topology were estimated in RAxML	222
using the same alignment as in the ML phylogeny, with the -g	223
option to constrain the topology. Finally, we calculated bootstrap	224
support (BS) for nodes using a transfer bootstrap approach	225
(Lemoine et al., 2018). For visualization, the resulting trees were	226
rooted on the branch containing all <i>Pterophylla</i> specimens.	227

2.7. Time-calibrated phylogeny. We inferred node ages for both 228 our ML and SVDQ trees using treePL (Smith and O'Meara, 2012), 229 which relies on branch length information to estimate divergence 230 times under phylogenetically penalized likelihood, following 231 Maurin (2008). Optimal parameters for treePL were determined 232 233 using the prime option, with the smoothing parameter estimated via cross-validation. Divergence time confidence intervals were 234 calculated through a bootstrap analysis in RAxML, constraining 235 236 topology with the ML tree (-g) and optimizing branch lengths (-k) over 200 bootstrap iterations. These bootstrap trees were time-237 238 calibrated using the same treePL parameters as the ML tree. A consensus tree was generated in TreeAnnotator v.2.5.2 (Drummond 239 and Rambaut, 2007) using the estimated and bootstrap trees, with 240 0% burn-in and median heights. 241

Three calibration points were defined for divergence time	242
estimation. The first was a <i>Weinmannia</i> pollen fossil collected from	243
the northern Andes of Colombia dated to ~3 million years ago (Ma)	244
(Van Der Hammen et al., 1973). This age was defined as the	245
minimum age for the most recent common ancestor of the clade	246
that encompassed all specimens collected in the Northern Andes.	247
The second point was derived from a fossil pollen record of	248
Weinmannia potosina from Potosí, Bolivia from 13.8 Ma (Berry,	249
1917; Graham et al., 2001), which was established as the minimum	250
age for the most recent common ancestor (MRCA) of the clade	251
containing all Central and Northern Andean Weinmannia species.	252
The upper limit for this point was set at 33 Ma, aligning with the	253
proposed beginning of the Oligocene and previous estimates for the	254
stem node of <i>Weinmannia</i> at 32.3 Ma (Pillon et al., 2021).	255
Additionally, we used the 95% credibility interval with a minimum	256
age of 29.99 Ma and a maximum age of 34.4 Ma, with a uniform	257
distribution from Pillon et al. 2021, to estimate the divergence time	258
between <i>Weinmannia</i> and its sister genus <i>Pterophylla</i> .	259

2.8. Testing of our biogeographic hypotheses. To test our260hypothesis that Weinmannia migrated from south to north, we261performed an ancestral reconstruction of latitude using our time-262calibrated species-level phylogeny. We determined the minimum263

and mean latitude for each species in the phylogeny based on geo-	264
referenced occurrence data from herbarium specimens. Ancestral	265
character estimation was conducted using the 'anc.ML' function in	266
the phytools v. 2.1 R package (Revell, 2012). We compared the fit	267
of the Brownian motion and Ornstein-Uhlenbeck models with the	268
Akaike Information Criterion (AIC) (data not shown), selecting the	269
Brownian motion for all subsequent analyses due to its better fit to	270
the data. Ancestral reconstruction of both minimum and mean	271
latitude was performed on a pruned phylogeny without outgroups.	272
For hypothesis testing, we performed the analysis both with and	273
without the two Mascarene species to assess the effect of these taxa	274
(with the pruned dataset including a total of 46 South American	275
species). We report only the minimum latitude results here, as the	276
mean latitude estimates were equivalent but less reliable due to	277
insufficient records for some species. Node ages were extracted	278
from the time-calibrated phylogeny using the	279
'node.depth.edgelength' function in the ape v. 5.0 R package	280
(Paradis and Schliep, 2019). Using data from the ancestral	281
reconstruction, we modeled the age of hypothetical ancestors	282
(nodes) as a function of their estimated latitudes using two distinct	283
statistical approaches: a Bayesian approach and a frequentist	284

approach based on a Null-Hypothesis Significance Test and non-	285
parametric bootstrapping.	286

2.9. Bayesian regression analysis. We developed a hierarchical 287 Bayesian linear regression to assess correlation structures from 288 289 nesting patterns between phylogenetic nodes, considering evolutionary relationships in latitude observations. The Bayesian 290 regression tested the hypothesis that older ancestors are linked to 291 292 more southern latitudes (*i.e.*, more negative values) leading to a negative slope (*i.e.*, $\beta < 0$ to reject the null hypothesis of $\beta \approx 0$, 293 implying no clear relationship). The model was fitted using four 294 independent MCMC chains, each running 3,000,000 iterations. For 295 296 efficiency, chains were thinned every 10 iterations, yielding 300,000 samples per chain, with the first 50,000 discarded as burn-297 298 in. The max_tree depth was set to 10 to address divergent transitions during sampling. We assessed model adequacy with a 299 posterior predictive check, comparing predicted node ages to 300 observed data (Fig. 3B, Supplementary Fig. 5B). MCMC 301 performance was evaluated using Gelman-Rubin statistics (Rhat), 302 effective sample size, and autocorrelation analysis (Supplementary 303 Materials 2 and 3). We extracted the posterior probability 304 distribution of the slope parameter (β), along with 95% and 99% 305 credibility intervals, and determined the maximum *a posteriori* 306

estimate. The model code, implemented in Stan v. 2.18.2	307
(Carpenter et al., 2017) and executed in R using the rstan package	308
v. 2.26.23 (Stan Development Team 2023), is provided in	309
Supplementary Materials and detailed explanation of model	310
equations and parameters is provided in Supplementary Materials	311
1.	312

2.10. Non-parametric bootstrap Null Hypothesis Significance 313

314 **Test (NHST).** As an alternative approach, we used the glm function 315 from the R package stats v. 3.6.2 (R Core Team 2023) to model node age as a function of reconstructed ancestral latitude under a linear regression 316 317 framework. To find the model with the highest adequacy and fit, we 318 tested combinations of two probability distributions (Gaussian and Gamma) and three link functions (identity, log and inverse) and 319 selected the model with the lowest AIC value, highest linearity of 320 predicted vs observed values (using qqplots) and better 321 homoscedasticity. For both the ML tree and SVDQ tree-based 322 analyses we selected gamma-distributed error and the identity 323 function (Supplementary Figures 6). We performed a bootstrap 324 analysis within the NHST framework with 10,000 iterations. In 325 326 each iteration, we randomized reconstructed node latitudes and conducted regressions to obtain the slope parameter (β). This 327 generated a null distribution for the slope. Because the observed 328

slope was negative, we calculated the p-value as the proportion of	329
the null distribution less than or equal to the observed slope.	330
2.11. Exploratory analysis of thermal niche conservatism. To	331
test the hypothesis that Weinmannia had an extratropical origin and	332
migrated from south-to-north as uplift created a corridor of suitable	333
habitats, we assessed thermal niche conservatism across the	334
phylogeny. We performed ancestral reconstructions of mean annual	335
temperature (BIO1) and elevation using our time-calibrated ML	336
species-level phylogeny. BIO1 values were extracted from	337
WorldClim 2 (Fick and Hijmans, 2017) at 0.5 arc-second	338
resolution, and elevations were estimated from geo-referenced	339
herbarium specimen data. To evaluate trait conservatism, we used a	340
color gradient to map observed and reconstructed values onto the	341
species-tree edges with the 'contMap' function in phytools v.2.1,	342
under a Brownian motion model. Using reconstructed values of	343
BIO1, Elevation, and Latitude, we calculated the darwin (d) rate of	344
trait evolution per unit of time (Haldane 1949) for each node in the	345
ML species-phylogeny, determining the relative change from the	346
root node (putative extratropical ancestor) to each node. This	347
allowed us to evaluate whether ancestral values at basal nodes were	348
retained throughout the tree. We called this statistic d_{root} . To	349
statistically assess differences in mean <i>droot</i> between the	350

reconstructed traits, we employed a likelihood based framework	351
based on generalized linear model (GLM) without an intercept to	352
estimate the mean d_{root} for each trait. This model was compared	353
through a likelihood ratio test assuming no difference between	354
traits. Mean estimates not significantly different from zero	355
indicated conservatism of ancestral traits throughout phylogeny.	356
Pairwise t-tests were conducted to compare d_{root} means between	357
traits. Finally, for each trait we performed a simple linear	358
regression to evaluate if d_{root} varied across phylogenetic scales	359
using wald-tests on slope parameters; slope values ≈ 0 suggest no	360
shifts in d_{root} across phylogenetic scales whereas positive values	361
would suggest higher changes in deeper nodes. A detailed	362
explanation of these methods can be found in the Supplementary	363
Methods.	364

3. Results

3.1. Specimen-level phylogeny. After identification and removal	367
of putative hybrids, we obtained a dataset of 234 accessions for the	368
specimen-level phylogeny (Fig. 1A, Supplementary Fig. 1,	369
Supplementary Table 2). The concatenated alignment was 27,072	370
bp in length (752 loci) and contained 31.91% missing data. In the	371

ML phylogeny, all accessions of a given species formed	372
monophyletic groups except for <i>Weinmannia reticulata</i> Ruiz &	373
Pav. Two different subclades, named <i>W. reticulata1</i> and <i>W.</i>	374
<i>reticulata2</i> , were treated as separate species for the purpose of the	375
present analysis (Supplementary Fig. 1). Our analysis also included	376
accessions of undetermined species (sp1–6) that showed	377
morphological and phylogenetic cohesion. Overall, the specimen-	378
level phylogeny showed strong geographic structure within South	379
American Weinmannia, with clades each containing specimens	380
collected in the same region. Species from the Northern Andes	381
(Ecuador and Colombia) formed a clade nested within the	382
Weinmannia crown group that included the species sampled from	383
the Central Andes (Bolivia and Peru), Southern Andes (Chile) and	384
Reunion Island (Fig. 1A, Supplementary Figs. 1,2).	385

Figure 1. Geographic structure of phylogenetic (ML tree) relationships in <i>Weinmannia</i> . A.	388
Specimen-level phylogeny with tips projected onto geographic locations. B. Species-level	389
phylogeny for <i>Weinmannia</i> . Bootstrap support values are shown as node labels, tip labels and	390
branches are colored by country where species were collected.	391

3.2. Species-level phylogeny

The character matrix for the species-tree reconstruction contained 396 103,676 bp (2,879 loci), with 48.63% missing data, for 51 taxa. 397 The concatenated ML species tree (ML; Fig. 1B;) and the multi-398 species coalescent model-based species tree (hereafter SVDQ tree; 399 400 Supplementary Fig. 3) both showed strong bootstrap support [Bootstrap Support (BS) = 1 in both cases] for genus *Weinmannia*, 401 402 confirming its monophyly. The time-calibrated phylogeny based on the ML topology showed that the MRCA of Weinmannia diverged 403 from the outgroup in the late Eocene around 34.4 Ma and started to 404 diversify ~20.7 Ma (Fig. 2), with similar results observed in the 405 406 SVDQ tree analysis (~21.38 Ma; Supplementary Fig. 4). Congruent with our specimen-level phylogeny, the species-level phylogenies 407 408 also showed a general trend where geographically proximal taxa were found in the same clade (Fig. 1B; Supplementary Figs. 1,2). 409

In the ML species tree, *Weinmannia trichosperma*, the 410 southernmost species located in the temperate, extratropical forests 411 of southern South America, was placed in a clade that was strongly 412 supported as the sister group to the remaining species of 413 *Weinmannia* (BS = 1; Fig. 1B), along with *Weinmannia boliviensis* 414 R.E.Fr., the southernmost species in the central Andes inhabiting 415 the subtropical Tucuman-Bolivian forests. The ML phylogeny also 416

shows that <i>W. trichosperma</i> and <i>W. boliviensis</i> diverged from each	417
other 17.9 Ma, which is older than the onset of diversification in	418
the tropical Andean clade, which is dated at 13.8 Ma (Fig. 2). In	419
contrast, our SVDQ tree shows a topology with <i>W. boliviensis</i> , a	420
clade consisting of the two Mascarene species, and then <i>W</i> .	421
trichosperma as successive sister groups to the remaining	422
Weinmannia species (supplementary Figs. 2 and 3). Despite the	423
topological differences between these two trees, both strongly	424
support the placement of the southernmost lineages W .	425
trichosperma and W. boliviensis, alongside W. mauritiana and W.	426
tinctoria, as sister lineages to the remainder of Weinmannia in the	427
phylogeny.	428

Figure 2. Maximum likelihood phylogeny with estimated divergence times of Weinmannia430species. Median divergence age estimates across bootstrap trees with 95% confidence intervals in
blue bars.431

- 433
- 434
- 435

3.3. The tropical Andean clade shows geographic structure in	436

the Central and Northern Andes.After the divergence of437

Weinmannia in southern South America and the Mascarenes, the 438

remaining 44 species, which are found exclusively in the tropical	439
Andes, formed a large, strongly supported clade (BS=1 in Fig. 1B	440
for ML; and BS= 0.98 in Supplementary Fig. 2 for SVDQ), which	441
started to diversify ~13.8 Mya (Fig. 2 and Supplementary Fig. 4).	442
Even accounting for the topological differences between the SVDQ	443
and ML trees (Supplementary Fig. 3), the Tropical Andean clade	444
exhibited clear geographic structure. The ML reconstruction shows	445
two clades at its base, the first containing four species from Bolivia	446
and Peru (BS= 0.79; Fig. 1B), and its sister clade (BS=0.76; Fig.	447
1B), which bifurcated into two major clades. The first of these	448
clades was strongly supported (BS=0.91; Fig. 1B) and included 13	449
species from the central Andes, with exceptions such as	450
Weinmannia multijuga Killip & A. C. Sm. from Peru and	451
Colombia, Weinmannia pinnata L. from Peru and Ecuador, and	452
Weinmannia microphylla Ruiz & Pav. from Ecuador. The second of	453
these clades was also well supported (BS = 0.84 ; Fig. 1B) and	454
included most species from the northern Andes (Ecuador and	455
Colombia), except for Weinmannia trianea Wedd., Weinmannia	456
epicae A. Fuentes, and what we call Weinmannia reticulata2 from	457
Bolivia (Fig. 1B).	458

Our SVDQuartets species tree showed a similar pattern for459the Tropical Andes clade, in that it was divided into two major460

clades. The first contained 16 species, all found in the central	461
Andes of Bolivia and Peru, except for <i>W. multijuga</i> , which is found	462
from Colombia to Peru (BS= 0.83, Supplementary Fig. 2). The	463
second clade was well supported (BS=0.84) and contained the	464
remaining 28 species, all from the northern Andes except <i>W</i> .	465
<i>reticulata2</i> and <i>W. balbisiana</i> Kunth from Bolivia (Supplementary	466
Fig. 2).	467

3.4. Younger clades are distributed towards northern latitudes.	469
Ancestral state reconstructions for latitudes in internal nodes of the	470
phylogeny for American species show that nodes with older	471
divergence times are more likely to be associated with more	472
southern reconstructed latitudes. Likewise, nodes with younger	473
divergence times are more likely to be associated with more	474
northern reconstructed latitudes (Fig. 3A and Supplementary Fig.	475
5A).	476

Our Bayesian model predicting node age as a function of477reconstructed latitude on the ML phylogeny yielded a maximum a478*posteriori* (MAP) slope for latitude (β) of -0.486. The 99% credible479interval estimated for this parameter ranged from -0.795 to -0.201,480which does not include zero, providing robust evidence to reject the481

null hypothesis (β =0; Fig. 3C) of no relationship between node age	482
and latitude. Using our SVDQ topology with ML-optimized branch	483
lengths we observed identical results where nodes with shorter	484
distance from the root tended to be associated with more southern	485
latitudes (MAP for slope = -0.337; Supplementary Fig. 5C), with	486
the null hypothesis rejected with a 99% credible interval ranging	487
from -0.555 to -0.0975 (Supplementary Fig. 5C). Accordingly, the	488
results of the NHST with nonparametric bootstrap on the slope	489
coefficient also showed that node age tended to be negatively	490
related to ancestral latitude when using both our ML tree topology	491
(slope = -0.481±0.101; <i>p</i> -value = 0.00000, Supplementary Fig. 6A)	492
and SVDQ topology (slope= -0.315 \pm 0.074; <i>p</i> -value =0.00002,	493
Supplementary Fig 6B). Likewise, we obtained equivalent results	494
for both ML and SVDQ topologies and statistical methods when	495
we included the two Mascarene species in the analysis	496
(Supplementary Figs. 6C,6D and Supplementary Figs. 7,8).	497

499 Figure 3. Analyses of migration from southern latitudes to the northern Andes using ML 500 topology, excluding Mascarene species. A. Ancestral character reconstruction for latitude of hypothetical ancestors (nodes). The colors depict a continuous gradient of latitude, transitioning 501 from southern temperate regions in blue to northern tropical regions in yellow, with intermediate 502 latitudes in the central Andes represented in red. B. Bayesian linear regression of node age as a 503 504 function of predicted ancestral latitude. Observed values are represented in red dots. The blue dots represent the maximum a posteriori estimates and the sky blue bars represent 95% High 505 Density Intervals (HDI) of model-generated node ages. C. A posteriori probability distribution 506 for the estimated slope coefficient for latitude as a predictor of node age. 507

3.5. Despite variation in elevation and latitude, the	509
extratropical temperature niche remained stable. Results of	510
ancestral character reconstruction showed that the mean annual	511

temperature (BIO 1) changed very little across phylogeny in	512
relation to the MRCA of Weinmannia species, with values	513
generally remaining similar to those found in the MRCA of the	514
trichosperma-boliviensis clade, especially for older nodes	515
(Supplementary Fig. 9A and D). Accordingly, the wald-test showed	516
that the mean d_{root} estimate for mean annual temperature was not	517
statistically different from zero (d _{root} =-0.00235, P=0.172, Fig. 4,	518
Supplementary Table 1). In contrast, reconstructed ancestral	519
elevation and latitude showed greater changes over evolutionary	520
time (Supplementary Fig. 9B-C), with both showing positive d_{root}	521
values that were statistically different from zero (mean d_{root} values	522
of 0.0193, P<0.0001 and 0.0251, P<0.0001, respectively). These	523
results indicated that species shifted away from the MRCA of the	524
extant extratropical lineage (containing trichosperma-boliviensis)	525
towards higher elevations and higher (northern) latitudes over	526
evolutionary time. Likelihood ratio test against the null model	527
assuming no differences (deviance=0.0192, df1=137, df=135, P $<$	528
0.000001) and Paired t-test comparisons for d_{root} means (Fig. 4)	529
showed statistically significant differences in d_{root} between all three	530
reconstructed variables. Smaller rates of change values for BIO1	531
relative to elevation and Latitude suggest conservatism of the	532
thermal niche. Further, regression analysis of the d_{root} metric as a	533

function of node depth also supports the notion of thermal niche	534
stability across phylogenetic scales (slope = 0.00001 , P = 0.95), as	535
opposed to elevation (slope = 0.00043 , P < 0.05) and latitude (slope	536
= 0.00048, P < 0.05), which displayed positive slopes significantly	537
different that zero, reflecting more evolutionary changes at deeper	538
nodes (Supplementary Fig. 9D-F).	539

Figure 4. Comparison of evolutionary rates (d_{root}) from each node to the MRCA of Weinmannia.543Boxplots show d_{root} values for ancestral reconstructions of mean annual temperature (BIO1),544elevation, and latitude. White boxes indicate variables with d_{root} values not significantly different545from 0 (p>0.05) and gray boxes indicate significant differences (p<0.05) based on a wald-test.</td>546Blue dots represent the mean d_{root} for each variable. Pairwise t-test comparisons are shown with547lines above the boxes, with significance levels: ns>0.05, .<0.05, *<0.01, **<0.001, ***<0.001.</td>548

549

4. Discussion

550

Our analyses of <i>Weinmannia</i> reveal that extratropical	551
species were placed at the base of the phylogeny, although the	552
origin and early diversification of the clade remain equivocal. We	553
also find a robust negative relationship between the age of clades	554
and their latitudinal distribution across the phylogeny, suggesting a	555
south-to-north dispersal route. We also found that the clade exhibits	556
strong thermal niche conservatism despite showing large changes	557
in elevation and latitude. These results are consistent with the	558
hypothesis that <i>Weinmannia</i> may have originated from a lineage	559
that was pre-adapted to the climatic conditions of the southern	560
extratropics, and that the arrival and diversification of <i>Weinmannia</i>	561
in the American tropics occurred when suitable climates were	562
created as a result of the Andean uplift.	563

564

565

4.1. An extratropical origin for *Weinmannia*

Our ML phylogeny places Weinmannia trichosperma from	566
the temperate forests of southern South America in a clade that is	567
sister to all other species of <i>Weinmannia</i> (ML, BS = 1, Fig. 1). This	568
is consistent with previous morphological and genetic	569
reconstructions of the phylogenetic relationships of species in the	570
genus (Bradford, 1998, 2002), but is slightly different from results	571
with our SVDQ approach (Supplementary Fig. 2). Also	572
consistently placed among the oldest diverging lineages is the	573
subtropical species <i>Weinmannia boliviensis</i> (Fig. 1a and S2). <i>W</i> .	574
boliviensis is distributed in the Tucuman-Bolivian forests (Harling	575
and Fuentes, 2014), which are subtropical montane forests on the	576
eastern slope of the Andes, extending from 23°S to 29°S (Cabrera,	577
1976). According to our ML phylogeny, <i>W. boliviensis</i> and <i>W</i> .	578
trichosperma diverged during the Miocene, older than the ancestral	579
node for the tropical species (~17.9 Ma. Fig. 2). Furthermore, this	580
date precedes the final uplift of the central and southern Andes to	581
their present elevations (above 3000 m), which began during the	582
late Miocene (~11 Ma) (Gregory-Wodzicki, 2000; Siravo et al.,	583
2018), and the subsequent expansion of arid areas to the west and	584
east of the mountain range (the southern arid diagonal of South	585
America; Rambo, 1952). Therefore, the evolutionary divergence of	586
the base of Weinmannia would have occurred in forests composed	587

of Gondwanan lineages that persisted in South America during the	588
Paleogene and Neogene (Romero, 1986), which were deeply	589
isolated from the tropical lowland flora by environmental rather	590
than geographic factors (Jaramillo and Cárdenas, 2013) and	591
accumulated their own evolutionary uniqueness (Segovia et al.,	592
2020).	593

The topology with a basal subtropical and extratropical 594 lineage is consistent with three possible biogeographic scenarios 595 for the origin and early evolution of Weinmannia in South America. 596 The first is that an extratropical Weinmannia originated or initially 597 colonized southern South America and diversified northward as the 598 599 climate in tropical America became more suitable following the 600 Andean uplift. The second is that *Weinmannia* originated in lower 601 latitudes of America and experienced an early divergence, with one lineage dispersing to the south and giving rise to W. trichosperma 602 and W. boliviensis, and one staying and diversifying together with 603 604 the central Andes uplift, later diversifying northward into the tropical Andes once suitable habitat became available following the 605 606 uplift of the northern Andes. The third is that the common ancestor of Weinmannia first colonized South America, expanded its 607 distribution into both the high and low latitudes, and then 608 experienced a vicariance event that led to the formation of the 609

southern Andes and tropical Andes clades, followed by extensive	610
diversification in the Tropical Andes clade as habitats became	611
suitable following the uplift of the Andes. Regardless of exactly	612
how the origin and early diversification of Weinmannia occurred,	613
many different lines of evidence support the hypothesis that	614
Weinmannia represents an extratropical lineage that diversified	615
northward only once suitably environments became available due	616
to the uplift of the Andes.	617

The hypothesis of an extratropical origin of Weinmannia is 618 consistent with paleontological evidence indicating that the lineage 619 had a widespread distribution in the southern extratropics during 620 the Paleogene. For example, an early Oligocene (~30 Ma) 621 macrofossil record, Weinmanniaphyllum bernardii R.J. Carp. & 622 623 A.M. Buchan from extratropical Tasmania (Carpenter and Buchanan 1993), where the genus is now extinct, is 624 morphologically similar to W. trichosperma (Bradford, 1998). The 625 626 extinction of Weinmannia outside of its modern range in the Americas and the Mascarenes may be related to a sharp reduction 627 in forest cover due to the formation of the Antarctic Ice Sheet in the 628 early Oligocene, which was associated with a massive extinction of 629 the Austral paleoflora across the southern hemisphere (Francis, 630 631 1996; Truswell and Macphail, 2009). Later, Weinmannia species

inhabiting the American extratropics would have experienced a	632
new process of extinction as a result of the intensification of aridity	633
triggered by the Andean orogeny, leaving remnants in specific	634
locations along the Pacific coast of southern South America, on the	635
Brazilian plateau, and on the slopes of the tropical Andean	636
mountain range. This massive extinction process may also explain	637
why the clade containing <i>W. trichosperma</i> and <i>W. boliviensis</i> is	638
currently relatively poor in species richness (Fig. 1, 2), despite	639
showing evidence of having a wider geographic distribution in the	640
past (Antonelli and Sanmartín, 2011b).	641

4.2. South-to-North dispersal and thermal niche conservatism643through the Andean Corridor644

The robust negative relationship between node age and 645 latitude in our phylogeny reveals a late arrival of the lineage in the 646 tropics and a south-to-north dispersal route along the Andes (Fig. 3 647 and Supplementary Figs. 5 and 6). This scenario is consistent with 648 fossil evidence showing that the oldest pollen records of 649 Weinmannia in the northern Andes are from the late Pliocene and 650 Pleistocene (1.5–3.2 Ma) (Van der Hammen et al., 1973). The 651 crown age of the Northern Andes clade recovered in the present 652

study is estimated at 11.9 Ma (Fig. 2), predating the earliest fossil	653
evidence for <i>Weinmannia</i> in the region by several million years.	654
This inconsistency may be due to the low preservation potential of	655
the pollen or sampling intensity in the fossil record, which can	656
cause the date of first fossil appearance to be significantly younger	657
than the true arrival date of a taxon in a region (Smith and Peterson,	658
2002).	659

The phylogenies generated in this study have provided 660 strong evidence for the direction of the dispersal of Weinmannia, 661 even though tree topologies differed somewhat between RAxML 662 and SVDQ. These differences in phylogenetic tree topologies when 663 using SVDquartet and RAxML (Supplementary Fig. 3) may be due 664 to their different underlying principles and methodologies. 665 SVDquartets uses a quartet-based approach that relies on gene 666 coalescence patterns without imposing specific evolutionary 667 668 models, allowing it to account for complex evolutionary signals 669 such as incomplete lineage sorting or hybridization. In contrast, RAxML is a maximum likelihood-based method that operates 670 under defined evolutionary models to estimate relationships and 671 branch lengths, potentially yielding a simpler tree structure. Despite 672 the differences in methods, the overarching patterns remain robust 673 674 across phylogenetic reconstruction approaches, with both

SVDquartets and RAxML revealing similar geographic structures.	675
Both methods consistently identified a clade containing nearly all	676
species from the northern Andes nested within a broader clade	677
containing all species from the tropical Andes (Fig. 1 and	678
Supplementary Fig. 2). Although the trees show slight differences	679
in statistical support, the robust trend of northern lineages	680
appearing more recently suggests that lineage dispersal likely	681
followed a northward progression through the Andes (Fig. 3 and	682
Supplementary Figs. 5 and 6).	683

Given the south-to- north dispersal route, the high thermal 684 niche conservatism found in Weinmannia (Fig. 4 and 685 Supplementary Fig. 9) suggests that the lineage first evolved under 686 the environmental conditions of the southern extratropics and 687 maintained these adaptations during south-to-north dispersal. Our 688 results show that the MRCA of Weinmannia likely occupied a 689 690 niche with relatively cool mean annual temperatures 691 (Supplementary Fig. 9). This extratropical niche has remained stable throughout the evolutionary history of the clade, with 692 693 ancestral Mean annual temperature (BIO1) showing little change across the phylogeny (Fig 4 and Supplementary Fig. 9A and D). In 694 contrast, larger changes observed in elevation and latitude reflect 695 696 the dynamic nature of Weinmannia's elevational shifts, as lineages

moved to higher elevations and latitudes over evolutionary time	697
(Fig 4 and Supplementary Fig. 9B-C and E-F). Plant lineages often	698
exhibit a high degree of phylogenetic niche conservatism (Crisp et	699
al., 2009), and this tendency to maintain a stable thermal niche	700
likely allowed Weinmannia and other extratropical lineages to	701
rapidly colonize the similar environments created at mid- and high	702
elevations following the uplift of the Andes at tropical latitudes	703
(Donoghue, 2008; Segovia and Armesto, 2015). This is consistent	704
with the notion that pre-adapted clades like <i>Weinmannia</i> followed	705
their temperature preferences during dispersal, while	706
simultaneously adjusting to the varied elevations encountered in	707
tropical mountain ecosystems. These results support the idea that	708
ecological sorting of pre-adapted clades had a significant influence	709
in shaping Andean tree communities (Ramírez et al., 2019;	710
Griffiths et al., 2020; Linan et al., 2021a).	711

Our analyses that showed thermal niche stability across the712phylogeny despite changes in elevation and latitude also support713the idea that an environmental corridor facilitated environmentally714driven immigration of plant lineages into the tropical Andes. One715particular environmental factor that may play an important role in716defining this corridor is the presence of freezing temperatures. It717has been suggested that freezing temperatures drive taxonomic718

turnover and differentiate lower and higher elevation montane	719
forests in the northern Andes (Pérez-Escobar et al., 2022). An	720
analysis of phylogenetic similarities of tree assemblages along the	721
Americas also supported the idea of biological corridor that is	722
differentiated by whether freezing temperatures occur regularly	723
(Segovia et al., 2020). Therefore, the current taxonomic and	724
phylogenetic turnover, and thus the historical corridor shaped by	725
freezing temperatures in the tropical Andes, may exemplify the	726
global pattern of conservative evolution of frost tolerance in plants	727
(Wiens and Donoghue, 2004, Zanne et al., 2014).	728

4.3. The intriguing history of the Mascarenes' *Weinmannia* 730

Both our ML and SVDQ phylogenies show that a small	731
clade containing two species from the western Indian Ocean,	732
Weinmannia tinctoria Sm. and Weinmannia mauritania D.Don, is	733
nested within South American Weinmannia (Fig. 1 and	734
Supplementary Fig. 2), which confirms previous phylogenetic	735
reconstructions (Bradford, 2002). This result is surprising because	736
it implies a long-distance dispersal event, but with the stem age	737
(~18.513 Ma, Fig. 2 and ~ 19.749 Ma, Supplementary Fig. 4) of the	738
Mascarene clade older than the volcanic origin of the archipelago	739

(less than 8 Ma, McDougall and Chamalaun, 1969). Furthermore,	740
this result is unusual because botanical affinities and phylogenetic	741
evidence suggest that Madagascar may have acted as a source of	742
diversity for the Mascarenes (Linan et al., 2019), but no species of	743
Weinmannia are currently found in Madagascar or Africa (Pillon et	744
al., 2021). Thus, any model for the dispersal of <i>Weinmannia</i> from	745
South America can only be proposed if Madagascar or Africa are	746
involved as a cryptic stepping-stone to reach the Mascarenes. In	747
any case, further studies are needed to properly address this	748
intriguing disjunction and to clarify possible vicariant or long-	749
distance dispersal events in the origin of the genus Weinmannia.	750

5. Conclusion

Weinmannia reflects a pattern in which a lineage of	753
potentially extratropical origin shows lower species richness in the	754
extratropics than in the recently colonized tropics. This pattern,	755
likely due to massive extratropical extinctions and recent	756
diversification as suitable habitat became available in the tropics	757
due to the uplift of the Andes, has also been proposed for the entire	758
family Cunoniaceae (Pillon et al., 2021), which has traditionally	759
been considered a lineage derived from the "Gondwanan" center of	760

plant diversification (Raven and Axelrod, 1974). Furthermore, the	761
fossil record indicates that the Cunoniaceae family was present in	762
Antarctica (i.e., western Gondwana) during the Late Cretaceous	763
(~70 Ma), along with a highly diverse vegetation similar in	764
taxonomic composition to the temperate forests of southern South	765
America today (Poole et al., 2003). This suggests that the	766
biogeographic history of Weinmannia and Cunoniaceae may have	767
been shared with other lineages from the so-called Austral Floristic	768
Realm (Segovia and Armesto, 2015), which likely served as an	769
important source of biodiversity contributing to the hyperdiversity	770
of plants in the Andes.	771

Acknowledgements

The study was supported by FONDECYT 11200967 and the	774
National Science Foundation (DEB 1836353). R.A.S is supported	775
by Institute of Ecology and Biodiversity (IEB) ANID grant	776
FB210006, F.F.G. was supported by the Shirley A. Graham	777
Fellowships in Systematic Botany and Biogeography of the	778
Missouri Botanical Garden. C.E.E. and the Conservation Genetics	779
Program at the Missouri Botanical Garden is supported by	780
donations from Stephen and Camilla Brauer, Philip and Sima	781

Needleman, and the Bellwether Foundation. Collections in Ecuador	782
were partially funded by Universidad Tecnológica Indoamérica,	783
NHO. We thank the Ministerio del Ambiente, Agua y Transición	784
Ecológica in Ecuador for collecting permits (contrato marco MAE-	785
DNB-CM-2019-011).	786
	787
References	788
Acha S., Linan A., MacDougal J., Edwards C. 2021. The	789
evolutionary history of vines in a neotropical biodiversity	790
hotspot: Phylogenomics and biogeography of a large passion	791
flower clade (Passiflora section Decaloba). <i>Mol.</i>	792
Phylogenetics Evol. 164:107260.	793
Antonelli A., Sanmartín I. 2011a. Why are there so many plant	794
species in the Neotropics? <i>Taxon</i> 60:403–414.	795
Antonelli A., Sanmartín I. 2011b. Mass extinction, gradual cooling,	796
or rapid radiation Reconstructing the spatiotemporal	797
evolution of the ancient angiosperm genus <i>Hedyosmum</i>	798
(Chloranthaceae) using empirical and simulated approaches.	799
Syst. Biol. 60:596–615.	800

Antonelli A., Zizka A., Silvestro D., Scharn R., Cascales-Miñana B.,	801
Bacon C. D. 2015. An engine for global plant diversity:	802
highest evolutionary turnover and emigration in the	803
American tropics. <i>Frontiers in Genetics</i> 6:130.	804
Bacon C.D., Velásquez-Puentes F.J., Hinojosa L.F., Schwartz T.,	805
Oxelman B., Pfeil B., Arroyo M.T.K., Wanntorp L.,	806
Antonelli A. 2018. Evolutionary persistence in <i>Gunnera</i> and	807
the contribution of southern plant groups to the tropical	808
Andes biodiversity hotspot. <i>PeerJ</i> 6: e4388.	809
Balslev H. 1993. Introduction. In: Balslev H., editor, Neotropical	810
Montane Forests – Biodiversity and Conservation. Aarhus,	811
Denmark: AUU Reports 31, Aarhus University Press.	812
Berry E.W. 1917. The Age of the Bolivian Andes. <i>Proc. Natl. Acad.</i>	813
Sci. U.S.A. 3:283–285.	814
Bradford J.C. 1998. A cladistic analysis of species groups in	815
Weinmannia (Cunoniaceae) based on morphology and	816
inflorescence architecture. Ann. Missouri Bot. Gard. 85:565-	817
593.	818
Bradford J.C. 2002. Molecular phylogenetics and morphological	819
evolution in Cunonieae (Cunoniaceae). Ann. Missouri Bot.	820
Gard. 89:491-503.	821

Bradford J. C., Fortune-Hopkins H. C. Barnes R. W. 2004	822
<i>Cunoniaceae</i> . In The families and genera of vascular plants	823
(ed. K. Kubitzki), pp. 91–111. Heidelberg, Germany:	824
Springer.	825
Cabrera A.L. 1976. Regiones fitogeográficas argentinas.	826
Enciclopedia Argentina de Agricultura y Jardinería 2:1-85.	827
Carpenter R.J., Buchanan A.M. 1993. Oligocene leaves, fruit and	828
flowers of the Cunoniaceae from Cethana, Tasmania. Aust.	829
Syst. Bot. 6:91-109.	830
Carpenter B., Gelman A., Hoffman M.D., Lee D., Goodrich B.,	831
Betancourt M., Brubaker M., Guo J., Li P., Riddell A. 2017.	832
Stan: A Probabilistic Programming Language. J. Stat. Soft.	833
76:1–32.	834
Chacón, J., de Assis, M. C., Meerow, A. W., Renner, S. S. 2012.	835
From east Gondwana to Central America: historical	836
biogeography of the Alstroemeriaceae. Journal of	837
Biogeography: 39(10), 1806-1818.	838
Chifman J., Kubatko L. 2014. Quartet Inference from SNP Data	839
Under the Coalescent Model. <i>Bioinformatics</i> : 30:3317–3324.	840

Crisp M. D., Arroyo M. T., Cook L. G., Gandolfo M. A., Jordan G.	841
J., McGlone M. S., Weston P.H., Westoby M., Wilf P., et al.	842
2009. Phylogenetic biome conservatism on a global scale.	843
Nature 458: 754-756.	844
Donoghue M.J. 2008. A phylogenetic perspective on the distribution	845
of plant diversity. <i>Proc. Natl. Acad. Sci.</i> 105:11549-11555.	846
Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for	847
small quantities of fresh leaf tissue. <i>Phytochem. Bull.</i> 19:11–	848
15.	849
Drummond A. J. Rambaut A.2007. BEAST: Bayesian evolutionary	850
analysis by sampling trees. <i>BMC Evol. Biol.</i> 7:214.	851
Earl D.A., von Holdt B.M. 2012. STRUCTURE HARVESTER: a	852
website and program for visualizing STRUCTURE output	853
and implementing the Evanno method. <i>Conserv. Genet.</i>	854
Resour. 4: 359-361.	855
Eaton D.A.R., Overcast I. 2020. ipyrad: interactive assembly and	856
analysis of RADseq datasets. <i>Bioinformatics</i> . 36:2592–2594.	857
Fick S.E., Hijmans R.J. 2017. WorldClim 2: new 1-km spatial	858
resolution climate surfaces for global land areas.	859
International Journal of Climatology 37, 4302–4315.	860

Francis J.E. 1996. Antarctic palaeobotany: clues to climate change.	861
Terra Antarctica 3:135–140.	862
González-Caro S., Tello J.S., Myers J.A., Feeley K., Blundo C.,	863
Calderón-Loor M., Carilla J., Cayola L., Cuesta F., Farfán	864
W., et al. 2023. Historical Assembly of Andean Tree	865
Communities. Plants 12:3546.	866
Graham, A. 1973. History of the arborescent temperate element in	867
the northern Latin American biota. Vegetation and	868
vegetational history of northern Latin America, 301-314.	869
Graham, A. 1995. Development of affinities between	870
Mexican/Central American and northern South American	871
lowland and lower montane vegetation during the Tertiary.	872
Pp. 11-22 in S. P. Churchill, H. Balslev, E. Forero & J. L.	873
Luteyn (editors), Biodiversity and Conservation of	874
Neotropical Montane Forests. New York Botanical Garden,	875
Bronx.	876
Graham A., Gregory-Wodzicki K.M., Wright K.L. 2001. Studies in	877
Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora	878
from the Eastern Cordillera, Bolivia: implications for the	879
uplift history of the Central Andes. American Journal of	880
<i>Botany</i> 88, 1545–1557.	881

Gregory-Wodzicki K.M. 2000. Uplift history of the Central and	882
Northern Andes: a review. <i>Geol. Soc. Am. Bull.</i> 112:1091-	883
1105.	884
Griffiths A.R., Silman M.R., Farfán Rios W., Feeley K.J., García	885
Cabrera K., Meir P., Salinas N., Dexter K.G. 2020.	886
Evolutionary heritage shapes tree distributions along an	887
Amazon-to-Andes elevation gradient. <i>Biotropica</i> 53:38–50.	888
Haldane J.B.S. 1949. Suggestions as to Quantitative Measurement	889
of Rates of Evolution. Evolution 3, 51–56.	890
Harling G.W. Fuentes A.F. 2014. Cunoniaceae. In: P.M. Jørgensen,	891
M.H. Nee, S.G. Beck, editors. Cat. Pl. Vasc. Bolivia,	892
Monogr. Syst. Bot. Missouri Bot. Gard. 127. St. Louis.USA.	893
Missouri Botanical Garden Press:540–542.	894
Hooghiemstra H. 1984. Vegetational and climatic history of the high	895
plain of Bogotá, Colombia: A continuous record of the last	896
3.5 million years. <i>Diss. Bot.</i> 79:368.	897
Hughes, C., & Eastwood, R. 2006. Island radiation on a continental	898
scale: exceptional rates of plant diversification after uplift of	899
the Andes. Proceedings of the National Academy of	900
Sciences: 103(27), 10334-10339.	901

Inglis P.W., Pappas M., Resende L.V., Grattapaglia D. 2018. Fast		
and inexpensive protocols for consistent extraction of high	903	
quality DNA and RNA from challenging plant and fungal	904	
samples for high-throughput SNP genotyping and	905	
sequencing applications. <i>PLoS ONE</i> 13: e0206085.	906	
Jaramillo C., Cárdenas A. 2013. Global warming and neotropical	907	
rainforests: a historical perspective. Annu. Rev. Earth Pl. Sc.	908	
41:741–766.	909	
Lemoine F., Domelevo Entfellner JB., Wilkinson E., Correia D.,		
Dávila Felipe M., De Oliveira T., Gascuel O. 2018.	911	
Renewing Felsenstein's phylogenetic bootstrap in the era of	912	
big data. <i>Nature</i> 556:452–456.	913	
Linan A.G., Schatz G.E., Lowry P.P., Miller A., Edwards C. E.		
2019. Ebony and the Mascarenes: the evolutionary	915	
relationships and biogeography of <i>Diospyros</i> (Ebenaceae) in	916	
the western Indian Ocean. Bot. J. Linn. Soc. 190: 359-373.	917	
Linan A.G., Myers J.A., Edwards C.E., Zanne A.E., Smith S.A.,	918	
Arellano G., Tello J. S. 2021a. The evolutionary assembly	919	
of forest communities along environmental gradients: recent	920	
diversification or sorting of pre-adapted clades?. New Phytol.	921	
232(6): 2506-2519.	922	

Linan A.G., Lowry II P.P., Miller A.J., Schatz G.E., Sevathian JC.,			
Edwards C.E. 2021b. RAD-sequencing reveals patterns of			
diversification and hybridization, and the accumulation of	925		
reproductive isolation in a clade of partially sympatric,			
tropical island trees. <i>Molecular Ecology</i> 30: 4520–4537.	927		
Liu, B., Le, C. T., Barrett, R. L., Nickrent, D. L., Chen, Z., Lu,	928		
L., Vidal-Russell, R. 2018. Historical biogeography of	929		
Loranthaceae (Santalales): Diversification agrees with	930		
emergence of tropical forests and radiation of songbirds.	931		
Molecular Phylogenetics and Evolution, 124, 199-212.	932		
Luebert F., Weigend M. 2014. Phylogenetic insights into Andean			
plant diversification. Front. Ecol. Evol. 2:27.	934		
Mashburn B., Jhangeer-Khan R., Bégué A., Tatayah V., Olsen	935		
K.M., Edwards C.E. 2023. Genetic assessment improves	936		
conservation efforts for the critically endangered oceanic	937		
island endemic <i>Hibiscus liliiflorus</i> . J. Hered. 114:259–270.	938		
Maurin K.J.L. 2008. An empirical guide for producing a dated	939		
phylogeny with treePL in a maximum likelihood framework.	940		
McDougall I.A.N., Chamalaun F.H. 1969. Isotopic dating and			
geomagnetic polarity studies on volcanic rocks from			
Mauritius, Indian Ocean. Geol. Soc. Am. Bull. 80:1419-1442.	943		

Myers N., Mittermeier R., Mittermeier C., da Fonseca G.A.B., Kent	944
J. 2000. Biodiversity hotspots for conservation priorities.	945
Nature 403:853–858.	946
Neves D.M., Dexter K.G., Baker T.R., Coelho de Souza F.,	947
Oliveira-Filho A.T., Queiroz, L.P., Lima H.C., Simon M.F.,	948
Lewis G.P., Segovia R.A., et al. 2020. Evolutionary diversity	949
in tropical tree communities peaks at intermediate	950
precipitation. <i>Sci. Rep.</i> 10:1188.	951
Owusu, S. A., Sullivan, A. R., Weber, J. R., Hipp, A. L., & Gailing,	952
O. 2015. Taxonomic relationships and gene flow in four	953
NorthAmerican Quercus Species (Quercus section Lobatae).	954
Systematic Botany, 40(2), 510–521.	955
Paradis E. & Schliep K. 2019. ape 5.0: an environment for modern	956
phylogenetics and evolutionary analyses in R.	957
Bioinformatics, 35, 526-528.	958
Paris J.R., Stevens J.R., Catchen J.M. 2017. Lost in parameter	959
space: a road map for stacks. <i>Methods Ecol. Evol.</i> 8:1360–	960
1373.	961
Pennington R.T., Dick C.W. 2004. The role of immigrants in the	962
assembly of the South American rainforest tree flora.	963

Philosophical Transactions of the Royal Society of London.	964
Series B: Biological Sciences 359:1611-1622.	965
Pérez-Escobar O.A., Zizka A., Bermúdez M.A., Meseguer A.S.,	966
Condamine F.L., Hoorn C., Hooghiemstra H., Pu Y.,	967
Bogarín D., Boschman L.M., Pennington R.T., et al. 2022.	968
The Andes through time: evolution and distribution of	969
Andean floras. Trends Plant Sci. 27:364-378.	970
Pillon Y., Hopkins H.C., Maurin O., Epitawalage, N., Bradford, J.,	971
Rogers, Z.S., Baker W.J., Forest, F. 2021. Phylogenomics	972
and biogeography of Cunoniaceae (Oxalidales) with	973
complete generic sampling and taxonomic realignments. <i>Am</i> .	974
J. Bot. 108:1181-1200.	975
Poole I., Mennega A.M., Cantrill D.J. 2003. Valdivian ecosystems	976
in the Late Cretaceous and Early Tertiary of Antarctica:	977
further evidence from myrtaceous and eucryphiaceous fossil	978
wood. Rev. Palaeobot. Palynol. 124:9-27.	979
Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of	980
Population Structure Using Multilocus Genotype Data.	981
Genetics 155:945–959.	982
Quiroga M.P., Mathiasen P., Iglesias A., Mill R.R., Premoli A.C.	983
2016. Molecular and fossil evidence disentangle the	984

	biogeographical history of Podocarpus, a key genus in plant	985
	geography. J. Biogeogr. 43:372-383.	986
R Core	e Team. 2023. R: A Language and Environment for Statistical	987
	Computing. R Foundation for Statistical Computing, Vienna,	988
	Austria. https://www.R-project.org/.	989
Rahbe	k C., Borregaard M., Antonelli A., Colwell R., Holt B.,	990
	Nogués-Bravo D., Rasmussen C., Richardson K., Rosing	991
	M., Whittaker R., Fjeldså J. (2019). Building mountain	992
	biodiversity: Geological and evolutionary processes. Science	993
	365:1114-1119.	994
Rambo	o B. 1952. Analise geografica das compostas sul-brasileras.	995
	Sellowia 5:87–159.	996
Ramíre	ez S., González-Caro S., Phillips J., Cabrera E., Feeley K.J.,	997
	Duque Á. 2019. The influence of historical dispersal on the	998
	phylogenetic structure of tree communities in the tropical	999
	Andes. Biotropica 51:500-508.	1000
Raven	P.H., Axelrod D.I. 1974. Angiosperm biogeography and past	1001
	continental movements. Ann. Missouri Bot. Gard. 61:539-	1002
	673.	1003

Revell L.J. 2012. phytools: an R package for phylogenetic	1004
comparative biology (and other things). <i>Methods Ecol. Evol.</i>	1005
3:217–223.	1006
Romero E.J. 1986. Paleogene phytogeography and climatology of	1007
South America. Ann. Missouri Bot. Gard. 73:449–461.	1008
Segovia R.A., Armesto J.J. 2015. The Gondwanan legacy in South	1009
American biogeography. J. Biogeogr. 42:209-217.	1010
Segovia R.A., Pennington R.T., Baker T.R., Coelho de Souza F.,	1011
Neves D.M., Davis C.C., Armesto J.J., Olivera-Filho A.T.,	1012
Dexter, K. G. 2020. Freezing and water availability structure	1013
the evolutionary diversity of trees across the Americas. <i>Sc.</i>	1014
<i>Adv</i> . 6:eaaz5373.	1015
Siravo G., Fellin M.G., Faccenna C., Bayona G., Lucci F., Molin P.,	1016
Maden C. 2018. Constraints on the Cenozoic deformation of	1017
the northern Eastern Cordillera, Colombia. Tectonics	1018
37:4311-4337.	1019
Smith A.B., Peterson K.J. 2002. Dating the time of origin of major	1020
clades: molecular clocks and the fossil record. Annu. Rev.	1021
Earth Planet. Sci. 30: 65-88.	1022

Smith S.A., O'Meara B.C. 2012. treePL: divergence time estimation	1023
using penalized likelihood for large phylogenies.	1024
Bioinformatics 28:2689–2690.	1025
Stamatakis A., 2014. RAxML version 8: a tool for phylogenetic	1026
analysis and post-analysis of large phylogenies.	1027
Bioinformatics 30:1312–1313.	1028
Stan Development Team. 2023. RStan: the R interface to Stan. R	1029
package version 2.26.23. https://mc-stan.org/.	1030
Tietje M., Antonelli A., Forest F., Govaerts R., Smith S.A., Sun, M.,	1031
Baker W.J. Eiserhardt W.L. 2023. Global hotspots of plant	1032
phylogenetic diversity. New Phytol. 240: 1636-1646.	1033
Truswell E.M., Macphail M.K. 2009. Polar forests on the edge of	1034
extinction: what does the fossil spore and pollen evidence	1035
from East Antarctica say? Aust. Syst. Bot. 22:57–106.	1036
Van der Hammen T., Werner J., Van Dommelen H.1973.	1037
Palynological record of the upheaval of the Northern Andes:	1038
A study of the Pliocene and lower quaternary of the	1039
Colombian Eastern Cordillera and the early evolution of its	1040
high-Andean biota. Rev. Palaeobot. Palynol. 16:1–122.	1041

Wang S., Meyer E., McKay J.K., Matz M.V. 2012. 2b-RAD: a	1042
simple and flexible method for genome-wide genotyping.	1043
Nat. Methods 9:808–810.	1044
Wiens J.J., Donoghue M.J. 2004. Historical biogeography, ecology	1045
and species richness. <i>Trends Ecol. Evol.</i> 19:639-644.	1046
Willis J. C., H. De Vries H. B. Guppy E. M. Reid, Small J. 1922.	1047
Age and area: a study in geographical distribution and origin	1048
of species. Cambridge University Press, Cambridge.	1049
Winkworth R.C., Donoghue M.J. 2005. Viburnum phylogeny based	1050
on combined molecular data: implications for taxonomy and	1051
biogeography. Am. J. Bot. 92:653-666.	1052
Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A.,	1053
FitzJohn R. G., Beaulieu J.M. 2014. Three keys to the radiation of	1054
angiosperms into freezing environments. <i>Nature</i> 506:89-92.	1055
	1056

Supplementary Material for:

Phylogeny of *Weinmannia* (Cunoniaceae) reveals the Contribution of the Southern Extratropics to Tropical Andean Biodiversity.

Keywords: immigration, diversification, hyperdiversity, tropics, Gondwana

Index

- Supplementary Figure 1
- Supplementary Figure 2
- Supplementary Figure 3
- Supplementary Figure 4
- Supplementary Figure 5
- Supplementary Figure 6
- Supplementary Figure 7
- Supplementary Figure 8
- Supplementary Figure 9
- Supplementary Table 1
- Supplementary Methods

Supplementary Figures

Supplementary Figure 1: Individual-level 2bRAD-seq tree for Weinmannia. Maximum Likelihood tree inferred from concatenated 2bRAD-seq data from 234 individuals of Weinmannia plus outgroups. Tip labels contain: First four letters of senior collector_Collection Number/Species Name/Country abbreviation. Tips labels are colored by country of origin (see legend). Bootstrap support values are shown as branch labels next to nodes. Accessions from multiple populations of the same morphology-based species form generally well-supported clades except in the case of W. reticulata and W. sorbifolia. North Andes clade is expanded in the next page.

Supplementary Figure 2. Species-level Phylogeny for Weinmannia.

SVDQuartets tree inferred from concatenated 2bRAD-seq data from 48 individuals of *Weinmannia* plus 3 individuals in the outgroup. Bootstrap support values are show as node labels, tip labels and branches are colored by country where species were collected. Branch labels were estimated using RAxML using this topology, (see methods).

Supplementary Figure 3. Comparison of RAxML and SVDQuartets Species level trees. *Weinmannia* phylogeny for both methods are compared by highlighting in yellow common spliting patterns. The number of ceros depicted at the nodes trees represent Robinson-Fould distance, among both trees. (Figure generated with TreeDist Package in R)

Supplementary Figure 4. SVDQuartets phylogeny with estimated divergence times of *Weinmannia* species. Median divergence age estimates across bootstrap trees with 95% confidence intervals in blue bars (see methods).

Supplementary Figure 5. Analysis for testing the dispersal from southern latitudes towards the North Andes though the Andes using topology inferred with SVDQuartets excluding Mascarene species. A. Ancestral character estimate for latitude of hypothetical ancestors (nodes). Ancestral states were reconstructed on the SVDQuartets timetree using the minimum latitude of each of the 46 South American Weinmannia species considering reviewed accessions. The colors in the figure depict a continuous gradient of latitude. transitioning from southern temperate regions in blue to northern tropical regions in vellow, with intermediate latitudes in the central Andes represented in red. B. Bayesian linear regression of node age as a function of predicted ancestral latitude: Posterior predictive check. Observed values are represented in red dots. The blue dots represent the maximum a posteriori estimates, skyblue bars represent 95% High density intervals (HDI). C. A posteriori probability distribution for the estimated slope coefficient for latitude as a predictor of node age. Maximum a posteriori (MAP) is equal to β =-0.337and the 95%HDI in blue segment goes from to -0.499 to -0.160 which includes cero, and the 99%HDI goes from -0.555 to -0.0975. This result shows the slope is different from zero (β =0) rejecting the null hypothesis with a 99% of credibility.

Supplementary Figure 6. Null-Hypothesis test for the slope coefficient when modelling Node Age as a function of ancestral latitude based on non-parametric bootstrap. For each topology inferred and subset analysis performed the blue line indicates the estimated slope coefficient for the linear model predicting node age as a function of ancestral latitude. The density plot indicates the null distribution generated with non-parametric bootstrapping. P-value and slope coefficient ± standard deviation indicated in label next to blue lines. **A.** Test performed using the Maximum likelihood Species-tree excluding Mascarene species. **B.** Test performed using the SVDQuartet Species-tree excluding Mascarene species. **C.** Test performed using the Maximum likelihood Species-tree including all *Weinmannia* species in this study. **D.** Test performed using the SVDQuartet Speciestree including all *Weinmannia* species in this study.

Supplementary Figure 7. Analysis for testing the dispersal from southern latitudes towards the North Andes though the Andes using topology inferred with Maximum Likelihood including Mascarene species. A. Ancestral character estimate for latitude of hypothetical ancestors (nodes). Ancestral states were reconstructed on the SVDQuartets timetree using the minimum latitude of each of the 48 Weinmannia species in this study considering reviewed accessions. The colors in the figure depict a continuous gradient of latitude, transitioning from southern temperate regions in blue to northern tropical regions in vellow, with intermediate latitudes in the central Andes represented in red. B. Bayesian linear regression of node age as a function of predicted ancestral latitude: Posterior predictive check. Observed values are represented in red dots. The blue dots represent the maximum a posteriori estimates, skyblue bars represent 95% High density intervals (HDI). C. A posteriori probability distribution for the estimated slope coefficient for latitude as a **predictor of node age.** Maximum a posteriori (MAP) is equal to β =-0.493 and the 95%HDI in blue segment goes from to -0.713 to -0.280 which includes cero, and the 99%HDI goes from -0.778 to -0.207. This result shows the slope is different from zero ($\beta = 0$) rejecting the null hypothesis with a 99% of credibility.

Supplementary Figure 8. Analysis for testing the dispersal from southern latitudes towards the North Andes though the Andes using topology inferred with SVDQuartets including Mascarene species. A. Ancestral character estimate for latitude of hypothetical ancestors (nodes). Ancestral states were reconstructed on the SVDQuartets timetree using the minimum latitude of each of the 48 Weinmannia species in this study considering reviewed accessions. The colors in the figure depict a continuous gradient of latitude. transitioning from southern temperate regions in blue to northern tropical regions in vellow, with intermediate latitudes in the central Andes represented in red. B. Bayesian linear regression of node age as a function of predicted ancestral latitude: Posterior predictive check. Observed values are represented in red dots. The blue dots represent the maximum a posteriori estimates, skyblue bars represent 95% High density intervals (HDI). C. A posteriori probability distribution for the estimated slope coefficient for latitude as a predictor of node age. Maximum a posteriori (MAP) is equal to β =-0.489 and the 95%HDI in blue segment goes from to -0.716 to -0.289 which includes cero, and the 99%HDI goes from -0.773 to -0.208. This result shows the slope is different from zero ($\beta = 0$) rejecting the null hypothesis with a 99% of credibility.

Supplementary Figure 9. Exploratory analysis of thermal niche conservatism and altitudinal niche evolution in relation to latitudinal migration in Weinmannia. Panels A-C show ancestral character reconstruction under Brownian Motion across 48 Weinmannia species. Panels D-F display scatterplots of evolutionary rates (droot) vs. node depth with fitted linear models (blue curve), slope estimates are indicated in the bottomleft of each plot and the MRCA of the trichosperma-boliviensis clade is marked by a triangle. Colors represent continuous gradients for each variable: A and D represent mean annual temperature (BIO1), B and E represent elevation, and C and F represent latitude.

Supplementary Table 1. Significance test to evaluate wether estimated mean evolutionary rates (droot) differed from zero under linear model droot ~ variable – 1. Populational mean *droot* estimates (Intercept coefficients), standard errors and wald-test (t and p.val).

variable	estimated	erro	t	p.va
	mean	r		1
Mean annual temperature	-0.00235	0.001 71	-1.372	0.172
Elevation	0.01933	0.001 71	11.30 4	0.000 0
Latitude	0.02506	0.001 71	14.65 5	0.000 0

Supplementary Methods

Supplementary methods 1 – Bayesian regression. Bayesian regression analysis. We developed a hierarchical Bayesian regression to assess correlation structures from nesting patterns between phylogenetic nodes, considering evolutionary relationships in latitude observations. The model, implemented in Stan v. 2.18.2 (Carpenter et al. 2017) via Hamiltonian MCMC, was run in R using the rstan package v. 2.26.23 (Stan Development Team 2023). Full Stan code is provided in Supplementary Materials 1. The linear predictor function is defined as:

$$\mu_{n=} = \alpha_{int} + \beta^* X_n + \theta_n \tag{1}$$

Where μ_n is the linear predictor for the expected node age Y_n for each observation at node n, α_{int} is the intercept, X_n is the estimated ancestral latitude, β is the slope representing the change in Y for a one-unit change in X, and θ_n is the random effect for each node capturing unexplained variation. Random effects were drawn from a multivariate normal distribution, accounting for correlations from shared evolutionary history according to the following function:

$$\theta n \sim multinormal(0_N, \Sigma)$$
 (2)

Where 0_N is a zero-mean vector of length N (the number of nodes) and Σ is the phylogenetic covariance matrix. We generated this matrix using the makeL1 function from the RRphylo package in R (Castiglione et al. 2018), which constructs an NxN matrix of branch lengths for all root-to-node paths, capturing hierarchical relationships between node pairNode age Yn was modeled as a likelihood function with normally distributed error with mean drawn from μ_n as follows:

$Yn \sim normal(\mu_n, \varepsilon_n)$ (3)

Where ε_n is the residual standard deviation, capturing unexplained variation in Y after accounting for X and random effects (θ). The model was fitted using four independent MCMC chains, each running 3,000,000 iterations. For efficiency, chains were thinned every 10 iterations, yielding 300,000 samples per chain, with the first 50,000 discarded as burn-in. The max_treedepth was set to 10 to address divergent transitions during sampling.

Supplementary methods 2 – Exploratory analysis of thermal niche conservatism. To support our hypothesis of Weinmannia's south-to-north migration with an extratropical origin, we assessed thermal niche conservatism across the phylogeny. We performed ancestral reconstructions of mean annual temperature (BIO1) and elevation using a time-calibrated ML species-level phylogeny. BIO1 values were extracted from WorldClim 2 (Fick & Hijmans 2017) at a 0.5 arc-second resolution, and elevation was estimated from geo-referenced herbarium specimen data.

To evaluate trait conservatism, we used a color gradient to map observed and reconstructed values onto the species-tree edges using the 'contMap' function in phytools v.2.1, under a Brownian motion model. We assessed whether ancestral values at basal nodes were retained throughout the tree by calculating the Darwin (*d*) rate of trait evolution per unit time (Haldane 1949) for each node using reconstructed values of BIO1, Elevation, and Latitude. The rate of change from each node to the root node (putative extratropical ancestor) was calculated as d_{root}. As follows:

$$d_{\text{root}} = \left[\ln(X_i) - \ln(X_{\text{root}})\right] / \Delta time) \tag{4}$$

Where X_i was the estimated value for each *i* node and X_{root} was the estimated value of that same trait for the root node, the MRCA of all *Weinmannia*. $\Delta time$ is the distance in million years from the root node to the *i* node. To statistically assess if d_{root} differed significantly between the reconstructed traits (BIO1, Elevation, and Latitude), we employed a generalized linear model (GLM) framework fitting a Gaussian GLM without an intercept, allowing the mean d_{root} to be estimated independently for each trait as follows:

$$d_{root} \sim trait - 1$$
 (5)

The resulting coefficients represent the mean d_{root} for each group (BIO1, Elevation, and Latitude). We used Wald tests from the GLM summary to determine if the mean d_{root} for each group was significantly different from zero. Estimated values close to zero were taken as evidence for conservatism of the ancestral values across nodes. Additionally, we performed pairwise t-tests to compare the means of d_{root} between each trait group.

References Supplementary methods

- Carpenter B., Gelman A., Hoffman M.D., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., Riddell A. 2017. Stan: A Probabilistic Programming Language. *J. Stat. Soft.* 76:1–32.
- Castiglione S., Tesone G., Piccolo M., Melchionna M., Mondanaro A., Serio C., Di Febbraro M., Raia P. 2018. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. *Methods in Ecology and Evolution* 9:974–983.
- Haldane, J.B.S., 1949. Suggestions as to Quantitative Measurement of Rates of Evolution. Evolution 3, 51–56.

Stan Development Team. 2023. RStan: the R interface to Stan. R package version 2.26.23. https://mc-stan.org/.