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Abstract 10 

 11 

Evaluating drivers and the predictability of catch is valuable for the management of mixed 12 

fisheries. Drivers can represent or help to identify levers for management and predictable 13 

catch compositions are a key component of simulation tools and dynamic management 14 

strategies. But modelling mixed fisheries can be challenging due to the large number of taxa, 15 

and analysis typically focuses on a few key species or highly aggregated taxa. 16 

 17 

Here we employ seven types of stacked and joint species models to explore the drivers and 18 

predictability of trawl-level catches in an ocean prawn trawl fishery, in New South Wales, 19 

Australia. Catch data was sourced from an observer program, with 130 taxa able to be 20 

modelled. The main drivers of catch composition were latitude, depth, and seasonality 21 

represented here by water temperature. Water column mixing, lunar illumination, and fishing 22 

effort were also important for some taxa. Up to 60-80 taxa had good predictive skill 23 

(AUC>0.8, >35% decline in mean absolute error relative to an intercept-only model), and an 24 

additional 40-60 taxa had lower but still useful predictive skill (AUC>0.7, 25-35% decline in 25 

error). However, the number of skilful taxa varied considerably among model type. 26 

 27 

The best framework for prediction was stacked random forests using a hurdle modelling 28 

approach, followed by a spatial joint species model. Our results show that predictive models 29 

at a fine spatial-temporal and taxonomic resolutions can be a viable information tool for 30 

highly mixed fisheries, but these tools ultimately need to be tested against specific 31 

management objectives and performance metrics, such as spatial closures and bycatch:target 32 

catch ratios. 33 

Keywords: species distribution modelling, SDM, bycatch, penaeid, spatial management  34 
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1. Introduction 35 

 36 

Highly mixed trawl fisheries are often subject to strict management to monitor and manage 37 

the high number of species caught, included discarded bycatch (Kennelly 1995, Johnsen and 38 

Eliasen 2011, Catchpole et al 2017, Kennelly 2020). Discard of an organism results from two 39 

processes: 1) being caught, and 2) being discarded once caught, and the drivers of the two 40 

processes are likely to be quite different. Here we focus on the first component – catch 41 

composition – by identifying the drivers of catch, and the level of accuracy with which we 42 

can predict trawl catches. Predicting these catches is useful for management tools such as 43 

dynamic spatial management which require finely resolved information on species catches 44 

(Dunn et al 2016, Robert et al 2019, Pons et al 2022, Panzeri et al 2023). If there is generally 45 

low predictability of the ‘where and when’ of catch, then this indicates that dynamic 46 

management is unlikely to be a key management tool, and instead tools such as effort control 47 

and gear modifications (Broadhurst 2000, Broadhurst et al 2012, Poos et al 2010) will be 48 

more successful, plus those which alter the second process – being discarded once caught – 49 

such as market-related levers like marketability. 50 

 51 

Studies modelling patterns in catch often focus on key species, aggregated groups, or 52 

summary variables (e.g. bycatch, or bycatch:target catch) (Dolder et al 2018, Barnes et al 53 

2022, Soto et al 2023), and rarely on the many taxa caught at a fine taxonomic resolution (but 54 

see for example Roberts et al 2022). Given the rapid and diverse development of multi-55 

species modelling (Thorson et al 2016, Ovaskainen et al 2017, Zurell et al 2020), we also 56 

wanted to evaluate and compare different tools for modelling and predicting diverse catch 57 

compositions. We included three general modelling frameworks (generalized additive 58 

models, random forests, and latent variable joint generalised linear models) covering two 59 

approaches to multi-species modelling (stacked species models, and joint species models), 60 

with a goal to identify the tools best suited to predicting catch compositions for a highly 61 

mixed fishery. This fishery is the New South Wales (NSW) ocean prawn trawl (OPT) – a 62 

sector of the Ocean Trawl Fishery – which interacts with many taxa and whose discards can 63 

exceed retained catch (Kennelly et al 1998, Barnes et al 2022). The OPT makes an ideal case 64 

study for a multi-model evaluation of catch composition, due to the requirements for 65 

management and threat assessment (DPI 2007, Fletcher and Fisk 2017, DAWE 2021), and 66 

because a recent observer program has allowed a detailed accounting of all taxa caught 67 

(Johnson and Barnes 2023). 68 
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 69 

Our specific aims were to: 1) identify some key drivers of catch composition in OPT trawls at 70 

fine taxonomic and spatial-temporal scales; 2) quantify the predictive performance of catch 71 

composition in trawls, relate this to species rarity, and identify which modelling approach 72 

performs best for predicting species occurrence and biomass; and 3) identify the potential for 73 

catch composition prediction as a management tool for the OPT, especially with respect to 74 

discarded bycatch. 75 

 76 

2. Materials and Methods 77 

 78 

2.1. Fishery, catch data, and taxa 79 

The Ocean Prawn Trawl fishery (OPT) of NSW is a sector of the NSW Ocean Trawl Fishery, 80 

and targets mainly Eastern king prawn (Melicertus plebejus), although numerous species are 81 

retained (Johnson and Barnes 2023). Typical of trawl fisheries, the diversity of species in the 82 

OPT is high (Kennelly et al 1998, Barnes et al 2022). Vessels in the OPT typically use triple-83 

rigged trawl gear, and a fishing trip typically occurs at night within 3-30 km of shore, with a 84 

single trip comprising 1-5 individual trawls (Johnson and Barnes 2023). An average trawl 85 

fishes an area of 0.44 (0.12-0.85 95%) km2. 86 

 87 

We used observer data of the OPT for this analysis, because these are the only data that 88 

includes accurate locations of catches and contains records of discarded species. The observer 89 

data was collected in 2017-2019, and after minor cleaning contained 1387 trawls recorded 90 

over 421 trips, 29 vessels, and contained observations from all calendar months. Biomass of 91 

taxa caught by the OPT was estimated by trained observers by weighing each taxon. For large 92 

catches, a fixed number of each taxon was subsampled, and total biomass was estimated 93 

using subsample weight and weight of the total catch. For more information on the observer 94 

survey see Johnson and Barnes (2023). 95 

 96 

There were 411 taxa identified in the observer program, and 136 (33%) of the taxa were 97 

recorded by observers at a coarser taxonomic resolution than species. The 411 initial taxa 98 

were too numerous to model effectively, especially given the large number of very rare taxa. 99 

To create the data for model fitting, we: 1) aggregated taxa that were rare, taxonomically 100 

related, and were discarded at similar rates in the fishery (219 taxa); and then 2) excluded 101 

rare taxa from this aggregated data set (those appearing in fewer than 30 trawls, n=89). This 102 
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led to a final data set of 130 taxa, 50 at species level and 80 at a coarser level, which are 103 

listed in Table A1. 104 

 105 

2.2. Modelling approach 106 

Our analysis focuses on predicting trawl-level catch compositions because individual trawl is 107 

the unit of observation most relevant to understanding species interactions and catch drivers, 108 

and the most relevant to fine-scale management efforts such as spatial targeting (Dolder et al 109 

2018) and real-time spatial management (Dunn et al 2016). We also focus on the finest 110 

feasible taxonomic resolution because this allows us to inform species-level management but 111 

in the context of the diverse trawled assemblage.  112 

 113 

We used a suite of model types to evaluate predictive skill of catch composition in the OPT 114 

fishery because each model type has advantages and disadvantages for this task. We used 115 

generalized additive mixed models (GAMMs, Wood et al 2017), random forests (Breiman 116 

2001), and latent variable joint generalised linear models, a type of joint species distribution 117 

model (JSDM, Warton et al 2015, Ovaskainen et al 2017). The GAMMs were included due to 118 

their flexibility and interpretability. GAMMs allow for non-linear relationships between 119 

taxon abundance and covariates, are excellent at modelling spatial patterns, and report 120 

standard regression results such as p-values and goodness-of-fit. The random forests were 121 

included for their flexibility for non-linear responses (greater than GAMMs) and potential to 122 

model rare taxa. Random forests are distribution free and can model complex patterns 123 

between taxon abundance and covariates, including interactions, but are less easy to interpret 124 

and typical study design elements cannot be specified (e.g. random effects). Random forests 125 

can also leverage techniques such as class balancing to improve disproportionate class values 126 

(here, presences and absences) which can improve the prediction of rare taxa (Stock et al 127 

2020, Smith et al 2021). The latent variable JSDM was included because it allowed the 128 

additional modelling of species associations, which can aid the prediction of rare species (Hui 129 

et al 2013, Thorson and Barnett 2017). Additionally, JSDMs can incorporate spatial random 130 

effects, phylogenetic relatedness, and species traits into the model fitting procedure, all of 131 

which can potentially improve predictive power through ‘borrowing’ of information among 132 

taxa (Ovaskainen and Abrego 2020). However, the JSDM used here (‘HMSC’; Ovaskainen et 133 

al 2017) is based on a Bayesian GLM framework, meaning that flexibility of non-linear 134 

responses is lower than the other model types, and that model fitting is very slow which 135 

makes extensive evaluation cumbersome.    136 
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 137 

The GAMMs and random forests were used in a ‘stacked’ species distribution modelling 138 

(SDM) approach for multi-species data, and the latent variable JSDM uses a ‘joint’ SDM 139 

approach for multispecies data (Ferrier and Guisan 2006). The stacked SDM approach fits 140 

independent models to each species, then sums their predictions to estimate the community 141 

per observation unit (e.g. the catch in a single trawl). The joint SDM approach fits a model to 142 

all species at once, and can estimate residual correlations among taxa. The joint model also 143 

acknowledges that species interactions are a key part of structuring an observed assemblage. 144 

Furthermore, the JSDM used here includes latent variables to induce the species correlations, 145 

and these variables can then be used to explore the extent of unidentified ecological processes 146 

(Ovaskainen and Abrego 2020). Although a stacked SDM approach allows a different set of 147 

covariates to be included for each species, we wanted to explore performance using a single 148 

model for all species, which would be the most practical scenario when dealing with > 100 149 

species. Stacked and joint models have previously been shown to be similarly accurate for 150 

multispecies modelling (Zurell et al 2020). 151 

 152 

A hurdle (or ‘delta’) modelling method was included for each model type (Maunder and Punt 153 

2004, Zuur et al 2009). This method splits the biomass data into a presence-absence 154 

component (only 1s and 0s), and an abundance-only component (only > 0 values), thus 155 

modelling separately the encounter probability and the positive catch rates. Total catch rates 156 

are then calculated by multiplying the fitted or predicted values from the two components. 157 

Hurdle methods were used for the latent variable JSDM because this was the most accurate 158 

way to model biomass within that modelling framework. Hurdle models were used for 159 

GAMMs and random forests to allow a useful comparison of methods, and because a hurdle 160 

random forest allowed us to include class balancing in the binary component to better model 161 

rare species. This class balancing used a combination of downsampling and synthetic 162 

minority oversampling (SMOTE) to ensure similar class proportions (Stock et al 2020; see 163 

Model details in Appendix A). We also included a single-distribution regression for the 164 

GAMMs and random forests to compare approaches. This was especially useful for the 165 

GAMM which could also use a Tweedie distribution, which provides a useful comparison to 166 

the hurdle model because, unlike the Tweedie, the hurdle assumes independent processes for 167 

its two model components. Thus, our analysis compares seven models: GAMM, GAMM 168 

hurdle, random forest, random forest hurdle, random forest hurdle with class balancing, 169 
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JSDM with latent variables, JSDM with spatial latent variables, taxonomic traits, and 170 

phylogeny. 171 

 172 

All analyses were done in R (R Core Team 2023). The GAMMs were fitted using the ‘mgcv’ 173 

package (Wood 2017), random forests with the ‘randomForest’ package (Liaw and Wiener 174 

2002), and the JSDM was fitted using the ‘Hmsc’ package (Tikhonov et al 2020). Further 175 

details on model fitting are in Appendix A. R code is available at 176 

https://github.com/smithja16/MultiSpeciesModels_Observer. 177 

 178 

2.3. Model covariates 179 

Model covariates were identified based on expert opinion and previous research on trawl 180 

catch composition (Barnes et al 2022, Wang et al 2020), and the final suite of covariates were 181 

chosen using a model selection process with single-species GAMs. The single-species GAMs 182 

used different combinations of likely covariates and the most robust model was the model 183 

with the lowest AIC. The final model contained: latitude (decimal degrees), seafloor depth 184 

(fathoms), sea-surface temperature (SST, C), mixed layer depth (m), lunar illumination 185 

(proportion), and the area fished per trawl (m2); and each variable was continuous. Calendar 186 

month was excluded due to strong collinearity with SST. A vessel covariate was included to 187 

account for correlation in trawls made by the same vessel. This was specified as a random 188 

effect in the GAMMs and JSDMs but excluded from the random forests (otherwise the model 189 

would make predictions for known vessels only). Values for these covariates were sourced 190 

from both observers and model products and are detailed in Table A2. Sources of values used 191 

when predicting to new habitats, used here for a cross validation procedure and to create 192 

example maps of species distributions, are also detailed in Table A2. The two traits included 193 

in the JSDM were asymptotic length (log(cm)) and a general habitat classification (i.e. 194 

benthic, demersal, reef, pelagic). The sources of these traits, and the creation of the 195 

taxonomic tree used in the JSDM, are detailed in Appendix A. 196 

 197 

2.4. Evaluating drivers of catch composition 198 

Our use of three model types as well as stacked and joint models created a valuable ensemble 199 

to conduct model-based inference to explore key drivers among taxa. The latent variable 200 

JSDM provided additional opportunity to explore residual species correlations and variable 201 

importance through the partitioning of variance. Goodness-of-fit of our models was evaluated 202 

using deviance explained (GAMMs), area under the receiver-operator curve (AUC) for 203 
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classification, probit, or logit models, and otherwise R2. Driver importance was determined 204 

using statistical significance (GAMMs), relative importance based on the mean decrease in 205 

accuracy using permutation of out-of-bag data (random forests), and posterior support values 206 

(similar to p-values; JSDMs). For the JSDMs, variance partitioning was used to help evaluate 207 

predictor importance, including the random effects. Maps of some key taxa were also 208 

predicted for an example date to highlight the differences in modelled responses to especially 209 

Latitude and Depth. 210 

 211 

2.5. Evaluating predictive performance 212 

We used repeated k-folds cross-validation to evaluate model predictive skill. Cross-validation 213 

evaluates model performance by fitting a model to a subset of data (a training set) and 214 

measuring how well this model predicts observations withheld from the training data (a test 215 

set). In our study we used k = 5 folds (i.e. 5 random splits into training and test sets), meaning 216 

that the models were trained on 80% of the data and tested against a withheld 20%. We 217 

repeated this three times to derive more accurate estimates of mean performance. For the 218 

JSDM, cross-validation was done using Hmsc’s ‘pcomputePredictedValues’ function to 219 

greatly reduce computation time, and was not repeated but relied on having three MCMC 220 

chains to provide repetition. 221 

 222 

Performance metrics were derived for each species by comparison of the observed and 223 

predicted test data. We calculated two main metrics: AUC and relative mean absolute error 224 

(RMAE). We use AUC and RMAE to estimate ‘discrimination’ and ‘accuracy’ respectively, 225 

i.e. good predictive performance in our study means we correctly identify trawls with higher 226 

and lower catches of a taxa (discrimination), and we can accurately estimate the biomass of a 227 

taxon in the catch (accuracy). AUC was calculated for the hurdle models only, using their 228 

binomial component. RMAE is calculated as the mean absolute difference between observed 229 

and predicted values, normalized by dividing by the mean of observed values. Mean absolute 230 

error was used instead of root mean square error, because the latter places more weight on 231 

outliers, which is less likely to make a fair comparison against an intercept-only baseline (see 232 

below). AUC was calculated using the pROC R package (Robin et al 2011) or within the 233 

Hmsc package. 234 

 235 

For AUC, a value of 0.5 indicates a model that predicts presences and absences at random, 236 

and under 0.7 is typically considered poor predictive performance. To identify values of 237 
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RMAE that indicate good or poor performance, for each taxon we compared RMAE from 238 

their full model with the RMAE when using the mean overall catch of that taxon as predicted 239 

values (i.e. an intercept-only model). Our metric then became the decline in median RMAE 240 

as a proportion of the intercept-only RMAE (indicated by ‘RMAEp’). Using this baseline was 241 

important because species prevalence can influence the RMAE but not necessarily represent a 242 

change in performance. A model which is poor at predicting species abundance will tend to 243 

be no better than an intercept-only model (an intercept-only model will also generate an AUC 244 

around 0.5). 245 

 246 

3. Results 247 

 248 

3.1. Model diagnostics 249 

Goodness of fit was generally moderate to high across model types. The GAMMs had a mean 250 

explained deviance of 34 to 51%, the random forests had a mean R2 around 0.85 (but 251 

machine learning methods are best evaluated with out-of-sample performance), and the 252 

JSDMs had a mean AUC around 0.9 and a mean R2 of 0.5. These goodness-of-fit values 253 

show the reasonably high level of information in the catch compositions and the ability of our 254 

covariates to explain it. 255 

 256 

Residuals for the GAMMs showed the gamma distribution was better suited to fitting larger 257 

abundances and the Tweedie at fitting smaller abundances, but the gamma residuals were 258 

more normal suggesting a better model (admitting it had fewer data to fit). It was also clear 259 

that fitting the same GAMM for all taxa, especially the wiggliness (k parameter), left some 260 

information unexplained, and more complex models for data-rich taxa could improve 261 

relationships with explanatory variables. The JSDMs showed generally good convergence for 262 

the non-spatial model based on values for effective sample size and scale reduction factor, 263 

but this was less clear for the spatial model. For the presence-absence components around 20-264 

30% of the taxa had a poor trace plot for at least one coefficient, and 30-40% for the 265 

abundance-only component. This is not unexpected for very rare or very common species, 266 

which show little variation among observations (Ovaskainen et al 2016). However, these poor 267 

trace plots and the reduced effective sample size show that increasing iterations and the 268 

thinning interval could be beneficial, although this needs to be weighed against our already 269 

long run times. 270 

 271 
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3.2. Drivers of catch composition 272 

Catch composition was driven mainly by location, depth, and seasonality, i.e. Latitude, Depth 273 

and SST. Local water column mixing and illumination (i.e. MLD and Lunar) were also 274 

influential but for fewer taxa. Fishing effort (i.e. Area swept) was frequently the least 275 

important variable, showing that individual trawls are of a consistent level of effort to interact 276 

with most taxa. Covariate importance is most clearly seen in the random forest’s relative 277 

importance metric (Fig. 1a) and the JSDM’s partitioning of variance (Fig. 1b). A similar 278 

pattern was seen across all model types (Table A3). We do not focus here on the specific 279 

responses across species to each variable, because they are varied and numerous. Maps of 280 

predicted biomass for some taxa are shown in Fig. 2, illustrating some of the diverse 281 

relationships to Latitude, Depth, and the environment, as well as some differences among 282 

modelling approaches. 283 

 284 

Fitting the JSDMs with Hmsc allowed us to explore the random effects (latent variables) in 285 

detail, including their relative importance (Fig. 1b). The Vessel identifier contributed much to 286 

the explained information, and we consider it likely this represents predominantly residual 287 

spatial and temporal autocorrelation, and possibly a vessel size effect or characteristic style of 288 

fishing. The Sample (observation-level) random effect typically represents species 289 

interactions and missing covariates. Based on the partitioning of variance, we can see that in 290 

the spatial JSDM the latent variation is around 40% but varying considerably among taxa 291 

(Fig. 1b). The residual correlations induced by the Sample random effect are also insightful 292 

about which taxa may be interacting and the direction of the residual information. The 293 

residual correlations (Figs. A1, A2) show that many taxa are found together more often than 294 

expected, and that the spatial model reduces these correlations (i.e. explains more of the 295 

information). The spatial scale of the leading spatial latent variable was larger and stronger 296 

for the abundance-only component at around 150 km (95% credibility interval 10 to 430 km) 297 

and only 20 km (0 to 460 km) for the presence component. This indicates potentially multiple 298 

structuring environmental variables at smaller and larger scales that remain unknown. 299 

 300 

Traits were somewhat related to patterns in catch compositions, explaining 7% and 15% of 301 

the variation in the presence and abundance-only model components. Traits for body size and 302 

habitat were often correlated with Depth and Latitude; e.g. larger fish were more likely to be 303 

caught at deeper depths, and larger fish had greater catch biomass at more southern latitudes. 304 

Taxonomy was more important, with rho parameters 0.60 (95% credibility interval 0.41-0.75) 305 
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and 0.87 (0.73-0.97) for the presence and abundance-only components respectively, which 306 

indicate a strong taxonomic signal in catch composition. This signal can be challenging to 307 

discern, but one example is that the Pleuronectiformes group of taxa are more likely to be 308 

present in trawls in shallow depths (Fig. A3). 309 

 310 

3.3. Predictive performance 311 

There were 130 taxa included in our analysis, and across most modelling approaches at least 312 

80% had at least some predictive skill (AUC > 0.7, RMAEp > 0.15), and 25-45% had good or 313 

better predictive skill (AUC > 0.8, RMAEp > 0.25; Table 1). Exceptions were the GAMM 314 

hurdle and random forest with class balancing, which each performed poorly for one metric. 315 

We assume that the 89 taxa deemed too rare to model could be included in predictions of 316 

catch composition at a constant mean rate (i.e. an intercept-only model). However, if some of 317 

these species are of great interest, simpler models than we tested (using one or two 318 

covariates) could be informative, although evaluating predictive skill is less reliable with few 319 

records. The five taxa with highest predictive performance that are important taxa to the 320 

fishery were: stout whiting (Sillago robusta), two slipper lobster taxa (Ibacus spp.), 321 

broadbrow flounder (Crossorhombus valderostratus), and tiger flathead (Platycephalus 322 

richardsoni); all taxa are ranked by their performance in Table A4. 323 

 324 

There was considerable variation in performance among modelling approaches (Table 1), but 325 

the random forest hurdle model with and without class balancing were best for discrimination 326 

(AUC), and the random forest hurdle and spatial JSDM were best for accuracy (RMAEp). 327 

Although class balancing improved discrimination this was at the cost of inflated biomass 328 

estimates and a decrease in accuracy (Table 1). The best model for each metric could predict 329 

64% of all taxa (and 73% of key taxa) with good discrimination (AUC > 0.8), and 52% of all 330 

taxa (and 60% of key taxa) with high accuracy (RMAEp > 0.35). Models were often more 331 

accurate (RMAEp) as the prevalence of taxa decreased, which may be because absolute 332 

improvements in predictive performance can be proportionally larger when mean biomass is 333 

very low. The variation in predictive performance and among taxa is illustrated for the 334 

random forest hurdle model in Fig. A4. 335 

 336 

As another illustration of our predictive performance, we show in Figure 3 observed and 337 

predicted catch compositions for an example trawl. The example trawl is from a withheld 338 

dataset in a 5-fold cross validation procedure. The extent that a prediction is wrong in terms 339 
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of total biomass and species richness are useful metrics to help interpret our RMAEp values. 340 

Figure 3 shows these metrics for one sample, where the model with the lowest error was the 341 

random forest hurdle. Over many samples, and for the most common 50 taxa, the mean 342 

observed biomass and number of taxa per trawl was 177 kg and 18.5 taxa; and the mean 343 

prediction error (as shown in Fig. 3) for the seven models ranged from 118 kg (random forest 344 

hurdle) to 148 kg (random forest with class balancing), and 11 taxa (random forest hurdle) to 345 

31 taxa (JSDM non-spatial). The mean number of taxa observed was 24, compared to 346 

predicted which ranged from 39 (GAMM hurdle) to 127 (JSDM non spatial).  347 
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Table 1. Comparison of model predictive performance, based on the number of taxa 348 

categorized by median AUC (a) and RMAEp (b) from cross-validation. Only hurdle models 349 

are included for AUC as they contained a binomial model component. The cumulative 350 

number of taxa summed in the direction of decreasing performance appears in parentheses. 351 

The model with the best performance, i.e. the highest number of cumulative taxa as we move 352 

through the categories, is highlighted in grey; a second model is highlighted if it is within one 353 

taxon. RMAEp is the proportional change in RMAE compared to an intercept-only model, 354 

e.g. if there are 50 taxa with RMAEp scores > 0.35, this indicates that 50 taxa reduced the 355 

error (RMAE) of an intercept-only model by > 35%; this is similar to saying that model 356 

explained > 35% of the variation for those taxa. Each model has two rows, one for all 130 357 

taxa (first row) and one for 30 “primary” and “key secondary” species identified in the 358 

Fishery Management Plan for the ocean trawl fishery (second row, grey text, Table A4). 359 

(a) AUC > 0.9 AUC 0.8-0.9 AUC 0.7-0.8 AUC < 0.7 

GAMM Hurdle 
6 17 (23) 28 (51) 79 (130) 

2 5 (7) 10 (17) 13 (30) 

RF Hurdle 
21 51 (72) 48 (120) 10 (130) 

6 15 (21) 9 (30) 0 (30) 

RF Hurdle Down 
26 57 (83) 39 (122) 8 (130) 

8 14 (22) 8 (30) 0 (30) 

Hmsc non-spatial 
22 40 (62) 47 (109) 21 (130) 

7 12 (19) 9 (28) 2 (30) 

Hmsc spatial 
20 40 (60) 47 (107) 23 (130) 

6 13 (19) 9 (28) 2 (30) 

 360 

(b) RMAEp > 0.35 RMAEp 0.25-0.35 RMAEp 0.15-0.25 RMAEp < 0.15 

GAMM Hurdle 
50 33 (83) 18 (101) 29 (130) 

11 6 (17) 7 (24) 6 (30) 

GAMM Tweedie 
57 32 (89) 25 (114) 16 (130) 

11 9 (20) 4 (24) 6 (30) 

RF Hurdle 
60 49 (109) 14 (123) 7 (130) 

18 10 (28) 2 (30) 0 (30) 

RF Hurdle Down 
13 10 (23) 15 (38) 92 (130) 

5 3 (8) 5 (13) 17 (30) 

RF 
32 43 (75) 39 (114) 16 (130) 

10 10 (20) 9 (29) 1 (30) 

Hmsc non-spatial 
35 39 (74) 44 (118) 12 (130) 

9 9 (18) 7 (25) 5 (30) 

Hmsc spatial 
68 45 (113) 15 (128) 2 (130) 

16 10 (26) 2 (28) 2 (30) 

 361 

  362 
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 363 

 364 

Fig. 1. a) Relative importance of model covariates for all 130 taxa for the presence 365 

component of the random forest hurdle model, and b) variance partitioning for all taxa from 366 

the presence component of the spatial JSDM. Taxa are ordered in rows from most prevalent 367 

(top) to least prevalent (bottom). In a) colours are the importance metric estimated by the 368 

randomForest R package but scaled from 0 (least important covariate) to 1 (most important 369 

covariate). The large amount of dark blue for ‘Latitude’ indicates that this covariate had a 370 

high, or the highest, importance value for most taxa. Due to our rescaling this plot shows the 371 

relative importance of covariates to each other, rather than their importance relative to the 372 

data. In b) colours are the variance components for the six covariates plus two random effects 373 

(Sample, which is at the observation level and spatially structured; and fishing Vessel). Mean 374 

variance proportions across taxa are Latitude=11.1%, Depth=7.5%, SST=6.6%, MLD=3.2%, 375 

Lunar=1.7%, Area=1.0%, Sample=42.2%, and Vessel=26.6%. 376 
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 377 

 378 

Fig. 2. Maps of predicted biomass of three illustrative taxa (rows), across the seven model 379 

types (columns): GAMM hurdle, GAMM Tweedie, random forest (RF) hurdle, RF hurdle 380 

with class-balancing (Cb), RF, JSDM, and JSDM with spatial random effects. The three taxa 381 

are Eastern king prawn (EKP, Melicertus plebejus), smooth (Balmain) bug (Ibacus chacei), 382 

and Octopodidae. The units for predicted biomass are kg per trawl fishing a constant 0.44 383 

km2 (the mean effort). Each plot has its own colour bar, but for simplicity a single bar is 384 

shown (bottom) and the minimum and maximum units of that colour bar given in each plot 385 

(e.g. for GAM hurdle EKP the darkest green indicates 950 kg per trawl and the lightest grey 386 

indicates 0 kg per trawl). These maps are for the example date 01-05-2016, and the SST and 387 

MLD values used for prediction are from that date; lunar illumination was fixed at 0.5. The 388 

prediction region was limited to the fishable depths (< 270 m, 150 fathoms). The black line in 389 

each plot is a contour line following an arbitrary but constant value for each taxon, and is 390 

used to aid model comparisons. 391 

  392 
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 393 

 394 

Fig. 3. Barplots comparing observed (left) and predicted catch compositions for the seven 395 

model types, for a single example trawl. For the predicted catches, bar colour shows if the 396 

predicted biomass for a taxon is higher (red) or lower (blue) than observed, or if the predicted 397 

taxon was not present in the observed trawl (dark grey). Only the most prevalent 50 taxa are 398 

shown for clarity. The total observed biomass and taxon richness for the top 50 taxa in this 399 

trawl was 154 kg and 21 taxa, and the error (e) in these metrics is listed for each model type. 400 

For example, the random forest hurdle model (RF H) over- or under-estimated the observed 401 

biomass by 59 kg, and 4 taxa that weren’t observed were predicted to occur or vice versa. 402 

The x-axes are (biomass +1) log-transformed for clarity of large and small biomasses, and the 403 

x-axis labels have been corrected (-1). See Fig. 2 caption for model type abbreviations. Taxon 404 

numbers correspond to those in Table A1; some key ones are: 49 Melicertus plebejus; 83 405 

Platycephalus caeruleopunctatus, 39 Ibacus chacei, 109 Sillago robusta, 91 Portunus 406 

pelagicus.  407 
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4. Discussion 408 

4.1. Predictive performance 409 

Trawl fisheries often catch many taxa, and we’ve shown that modelling these fisheries does 410 

not necessarily require extensive aggregation of taxa, and correlative multi-species modelling 411 

(including joint species modelling) is a viable tool for exploring spatial and temporal aspects 412 

of catch composition and its management. Our broad analysis created a useful screening 413 

study to evaluate whether it is worthwhile to include multi-species prediction as part of a 414 

management strategy. We found that there is potential for using catch prediction as a 415 

management tool in our study fishery, with 80% of the taxa across a wide spectrum of 416 

prevalence showing at least some useful predictive skill. We also found that prediction error 417 

can still be large – a likely pattern for all highly mixed fisheries – so great value will come 418 

from more targeted analyses that evaluate predictive performance against metrics tailored for 419 

specific management objectives, e.g. threshold numbers of catches per season for a specific 420 

group of taxa, or the presence of taxa inside and outside proposed closures. More targeted 421 

objectives and applications may also alter how the SDM predictions are calculated, especially 422 

whether a study focuses on predicting trawl biomass or ‘species richness’ (Guillera‐Arroita et 423 

al 2015, Muscatello et al 2021).  424 

 425 

Our choice of model covariates was standard, with catch compositions well explained by 426 

constant spatial variables (latitude and depth) and a dynamic variable representing seasonal 427 

variation (predominantly SST). Customizing SDMs for each taxon would be challenging, and 428 

we approached our analysis here like a repeatable survey program might: using a single set of 429 

covariates for all taxa. However, customizing model structure could have value for further 430 

predictive value, especially given the diversity of taxa in trawl catches (e.g. teleosts, 431 

elasmobranchs, crustaceans, molluscs). JSDMs are more restricted in terms of model 432 

structure, so stacked SDMs have an advantage when model structure or covariates are to be 433 

varied among taxa. 434 

 435 

The JSDMs showed that much of the explained information can be attributed to the random 436 

effects, and that much of this has spatial structure (Fig. 1b). We consider it likely this 437 

represents some missing covariates, and a key covariate would be bottom habitat and its 438 

complexity. However, the spatial scale of the random effect is potentially large (~150 km) so 439 

there may also be larger subregional variation. In any case, further evaluation of potential 440 



17 
 

covariates is worthwhile and may increase the predictive performance of catch composition. 441 

In general, our study shows that whole-catch compositions of highly mixed fisheries can have 442 

predictive potential, but the level of predictive skill will be case-dependent and depend on the 443 

data available (Guillera‐Arroita et al 2015, Norberg et al 2019). Other considerations are 444 

species prevalence and the sampling patterns inherent in fishery-dependent data (Karp et al 445 

2023). The presence of very common taxa was generally predicted with high discrimination. 446 

For example, our target species Eastern king prawn (EKP) was almost always present in 447 

trawls, but we have little information about conditions when it is absent. Consequently, EKP 448 

is predicted to almost always be caught (and has high AUC in the hurdle models), yet the 449 

predicted biomass was only of moderate accuracy (Table A4, rank 59). This does not mean 450 

we cannot predict poorer EKP habitat, we do (although extrapolation is prone to error; Fig. 451 

2), but this result indicates that we need trawl data outside areas targeted by fishers (likely 452 

from an independent survey) to better estimate out-of-sample accuracy and for even moderate 453 

levels of extrapolation. This is likely true for all very prevalent taxa. 454 

 455 

4.2. Modelling approach 456 

The best model in general was the random forest hurdle, although the random forest hurdle 457 

model with class balancing and the spatial JSDM also showed high performance in some 458 

cases. While our GAMMs had a moderate wiggliness (due in part here to avoid the number of 459 

coefficients exceeding observations for rare species) random forests were more flexible, and 460 

could model small-scale spatial hotspots of a taxon. Our cross validation showed this did not 461 

lead to overfitting, although other forms of cross validation (Roberts et al 2017) targeted to 462 

specific management objectives might show different results. We did not fit complex spatial 463 

smoothers, and in such cases GAMMs could be a high performing method. Class balancing 464 

showed promise for the random forest model by improving discrimination. Even though class 465 

balancing inflated presence and thus biomass, the predicted spatial distributions were realistic 466 

and the fitted responses may be more accurate of smoother, and thus more realistic, 467 

environmental responses for rare taxa (Stock et al 2020, Smith et al 2021). So, the use of 468 

class balancing, while not essential, may have value as a member of a model ensemble tested 469 

against more specific objectives. 470 

 471 

Our analysis finds that both stacked and joint species modelling frameworks are useful for 472 

prediction. Previous research has found that the choice of framework is unimportant 473 

compared to other modelling decisions (Zurell et al 2020), although variance can be 474 
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underestimated in stacked models (Harris 2015). Our analysis shows that a JSDM is not 475 

necessarily the best model for prediction, it does provide considerable additional information 476 

on ‘community assembly’, which is our case includes how the community interacts with the 477 

fishing gear. If a JSDM is used spatial random effects seem essential (Norberg et al 2019). 478 

Our particular set of species traits did not appear to add to predictive performance, but 479 

taxonomic relatedness showed more skill at explaining catch composition, and including this 480 

as an input when jointly estimating environmental drivers may be an advantage of JSDMs. 481 

However, we also found that our JSDM was prone to extrapolation outside the regions of the 482 

data (Fig. 2), whereby unsampled depths predict higher biomasses than observed. This was 483 

likely due to the limitations of the linear and quadratic relationships in the GLM. So, 484 

although the spatial JSDM’s performance was good, this would not be the case for 485 

predictions much outside the region used to fit the data. Although a model like the JSDM 486 

may be highly efficient at fitting data and generating unbiased inference (Ovaskainen et al 487 

2016), this does not necessarily translate to predictive power (Poggiato et al 2021). When 488 

predicting to new values, the latent variables are averaged, and this can greatly reduce a 489 

JSDM’s impressive goodness-of-fit. An exception to this is conditional prediction, in which 490 

joint model predicts some new information in observed samples (Zurell et al 2020). In our 491 

case, the comparatively high performance of the spatial JSDM shows that room for 492 

innovation may be the prediction of unobserved discards from landed species, i.e. conditional 493 

joint prediction (Wilkinson et al 2020, Vallé et al 2023).  494 

 495 

4.3. Management relevance 496 

There is already some spatial management of the OPT, with numerous inshore areas closed to 497 

benthic trawl nets to protect nursery areas (Taylor et al 2021a), and there is noted potential 498 

for adaptive management (Taylor and Johnson 2020, Camp et al 2023). These forms of 499 

management are only viable due to the predictability of the spatial-temporal distribution of 500 

species and their catches. Currently, this closure network benefits some target (e.g. EKP, 501 

stout whiting) and abundant bycatch species (e.g. gurnards, longspine flathead; Taylor et al 502 

2020, Taylor et al 2021b), however further multi-species modelling would inform the utility 503 

of spatial management to address the issue of multi-species bycatch (Pons et al 2022). Such 504 

models could be used to identify and avoid high-bycatch risk fishing, perhaps through the use 505 

of dynamic bycatch risk maps. When this was done post-hoc on real data from a groundfish 506 

fishery, bycatch-to-target ratios decreased by around 50% when removing the top 10% of 507 
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high-risk fishing effort (Stock et al 2020). Well-fitting models across many species are 508 

essential for this to be a viable process. 509 

 510 

We chose to focus on predictive skill at the level of an individual trawl, but there are other 511 

levels which could be useful for key taxa or groups, such as the abundance caught per season 512 

or broad management area. These coarser levels benefit from more data, and some taxa which 513 

showed poor predictive skill here at a trawl level might show useful skill at a coarser level. 514 

Thus, the objective of catch prediction is important to consider when evaluating predictive 515 

skill, and some objectives such as predicting annual bycatch rates of threatened, endangered, 516 

and protected species (TEPS) may be skilful with very little data (Breiner et al 2015, Jannot 517 

et al 2021). In our case, 143 TEPS across seven taxa were caught in 37 trawls (Johnson and 518 

Barnes 2023), but only one aggregated taxon (Syngnathidae) was abundant enough to be 519 

included in our analysis and it showed only moderate predictive skill at a trawl level (Table 520 

A4, rank 97). This means that management tools such as spatial targeting (which require a 521 

fine resolution of prediction) are unlikely to be viable for the management of TEPS catch in 522 

the OPT due to their rarity, but it doesn’t mean that TEPS catches cannot be predicted at 523 

some level, and thus influence management strategies such as closures or effort control. 524 

Given that most of the bycatch biomass in the OPT comes from common taxa, and most 525 

show reasonable predictive skill (Table A4), spatial-temporal management of bycatch, 526 

including minimizing the impact on target catch (Smith et al 2021, Pons et al 2022), remain 527 

viable tools worth exploring for this fishery. 528 

 529 
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APPENDIX 699 

Table A1. Taxa listed alphabetically with their taxon number used in some plots. Also 700 

reported are the two traits and their values specified in their spatial joint species distribution 701 

model.  702 

Taxon num. Taxon Asymptotic 

length cm 

Habitat category 

1 Anoplocapros.inermis 35.7 Demersal 

2 Antennariidae.Tetrabrachiidae.Lophichthyidae 35.2 Demersal 

3 Aptychotrema.rostrata 130 Benthic 

4 Atypichthys.strigatus 18 Reef 

5 Bathysauridae.Synodontidae 30.05 Benthic 

6 Brachyura 15 Benthic 

7 Caesionidae.Lutjanidae.Symphysanodontidae 46.85 Demersal 

8 Caproidae 24.1 Demersal 

9 Carangidae 43.7 Coastal_pelagic 

10 Cardinalfish.spp (Apogonidae) 13.5 Reef 

11 Centroberyx.affinis 26 Reef 

12 Centropogon.australis 12 Reef 

13 Charybdis.spp 15 Benthic 

14 Choerodon.spp 28.2 Reef 

15 Chrysophrys.auratus 72.3 Demersal 

16 Class.Asteroidea 20 Benthic 

17 Class.Echinoidea 15 Benthic 

18 Class.Gastropoda 15 Benthic 

19 Congridae.Colocongridae 75.6 Benthic 

20 Crossorhombus.valderostratus 20.99 Benthic 

21 Cynoglossidae 27.79 Benthic 

22 Dactyloptena.spp 22.88 Benthic 

23 Dasyatidae 111.4 Benthic 

24 Dinolestes.lewini 55 Reef 

25 Diodontidae.spp 35.7 Demersal 

26 Draconettidae.Callionymidae 34.02 Benthic 

27 Epinephelus.ergastularius 105.8 Reef 

28 Fistulariidae 22.7 Demersal 

29 Frogfish.spp (Batrachoididae) 30 Reef 

30 Genypterus.spp 106.9 Demersal 

31 Gerreidae 25 Reef 

32 Glaucosoma.scapulare 67.1 Reef 

33 Gonorynchus.greyi 40 Benthic 

34 Halieutaea.spp 25.3 Benthic 

35 Halimochirurgus.spp 25 Demersal 

36 Helicolenus.spp 45 Reef 

37 Heterodontus.spp 150 Demersal 

38 Hypnos.monopterygius 50 Benthic 

39 Ibacus.chacei 20 Benthic 

40 Ibacus.spp 20 Benthic 

41 Jasus.verreauxi 50 Benthic 

42 Lactoria.spp 20 Demersal 

43 Lagocephalus.cheesemanii 22.2 Demersal 

44 Latridae 53.4 Reef 

45 Lepidotrigla.spp 24.9 Benthic 
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Table A1 cont. 704 

Taxon num. Taxon Asymptotic 

length cm 

Habitat category 

46 Loliginidae 40 Coastal_pelagic 

47 Lophonectes.gallus 21 Benthic 

48 Majidae 40 Benthic 

49 Melicertus.plebejus 18 Benthic 

50 Melo.umbilicatus 15 Benthic 

51 Metapenaeus.macleayi 13 Benthic 

52 Meuschenia.scaber 17.7 Demersal 

53 Meuschenia.trachylepis 17.7 Demersal 

54 Microcanthus.strigatus 15 Reef 

55 Monacanthidae 17.7 Demersal 

56 Monocentrididae 24.6 Reef 

57 Moridae.spp 58.4 Demersal 

58 Mullidae 29.2 Demersal 

59 Myliobatidae 108.6 Benthic 

60 Nelusetta.ayraudi 50 Demersal 

61 Nemipteridae 28.8 Reef 

62 Neosebastes.spp. 29.6 Reef 

63 Nototodarus.gouldi 40 Coastal_pelagic 

64 Octopodidae 40 Benthic 

65 Ophichthidae 72.4 Benthic 

66 Opistognathidae 15 Benthic 

67 Optivus.agastos 10 Reef 

68 Order.Stomatopoda 15 Benthic 

69 Order.Teuthoidea 50 Coastal_pelagic 

70 Orectolobus.spp 162 Demersal 

71 Other.flounder (Plueronectiformes) 30 Benthic 

72 Paguroidea.spp 10 Benthic 

73 Pandalidae 15 Benthic 

74 Parapercis.spp 10 Reef 

75 Paraplagusia.bilineata 27.8 Benthic 

76 Parupeneus.spp 29.7 Demersal 

77 Pectinidae 10 Benthic 

78 Penaeoidea.Caride 15 Benthic 

79 Penaeus.spp 20 Benthic 

80 Pentacerotidae 47.9 Demersal 

81 Pinguipedidae 35.6 Benthic 

82 Platycephalus.conatus 49.3 Benthic 

83 Platycephalus.caeruleopunctatus 44.1 Benthic 

84 Platycephalus.longispinis 49.3 Benthic 

85 Platycephalus.richardsoni 61.4 Benthic 

86 Platycephalus.spp 49.3 Benthic 

87 Pomacentridae.spp 15.7 Reef 

88 Pomatomus.saltatrix 96.6 Coastal_pelagic 

89 Porcellanidae.undifferentiated 15 Benthic 

90 Portunidae 20 Benthic 
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Table A1 cont. 707 

Taxon num. Taxon Asymptotic 

length cm 

Habitat category 

91 Portunus.pelagicus 20 Benthic 

92 Portunus.rubromarginatus 20 Benthic 

93 Portunus.sanguinolentus 20 Benthic 

94 Priacanthidae 36.5 Reef 

95 Priacanthus.macracanthus 33.5 Reef 

96 Pseudophycis.spp 60.8 Demersal 

97 Pseudorhombus.jenynsii 36.3 Benthic 

98 Pseudorhombus.tenuirastrum 36.3 Benthic 

99 Rajidae 103.5 Benthic 

100 Samaris.cristatus 31.8 Benthic 

101 Saurida.spp 39.2 Reef 

102 Scomber.australasicus 36 Coastal_pelagic 

103 Scorpaenidae.spp 30.2 Reef 

104 Scyliorhinidae 107.3 Demersal 

105 Scyllaridae.spp 25 Benthic 

106 Sepia.spp 20 Coastal_pelagic 

107 Sepiidae 20 Coastal_pelagic 

108 Sillago.flindersi 26.3 Benthic 

109 Sillago.robusta 18.5 Benthic 

110 Soleidae 27.8 Benthic 

111 Squatinidae 138 Benthic 

112 Syngnathidae 16.1 Reef 

113 Terapontidae 29.1 Reef 

114 Tetraodontidae 29.1 Demersal 

115 Tetrosomus.reipublicae 30 Demersal 

116 Torpedinidae.Narcinidae.Hypnidae 117.67 Benthic 

117 Trachichthyidae 35.4 Demersal 

118 Trachinocephalus.myops 30 Benthic 

119 Trachurus.novaezelandiae 32 Coastal_pelagic 

120 Triakidae.spp 139.7 Demersal 

121 Trichiurus.lepturus 96.8 Demersal 

122 Triglidae.spp 34.1 Benthic 

123 Trygonoptera.testacea 45 Benthic 

124 Trygonorrhina.spp 130 Benthic 

125 Upeneichthys.lineatus 29.2 Demersal 

126 Uranoscopidae 41.9 Benthic 

127 Urolophidae.spp 80.1 Benthic 

128 Volutidae 20 Benthic 

129 Zebrias.scalaris 20 Benthic 

130 Zeus.faber 54.5 Demersal 
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Model details 710 

The GAMMs were fitted using the ‘mgcv’ R package (Wood 2017). The hurdle model 711 

consisted of a logit and gamma distributions. The single model used a Tweedie distribution. 712 

Each covariate was fitted using a thin-plate regression spline, with maximum wiggliness 713 

controlled using the k parameter (k=5 in most cases). The vessel random effect and MLD 714 

were removed from the abundance-only component of the hurdle model, due to avoid the 715 

number of coefficients exceeding the number of observations for the rarest species. For the 716 

GAMMs, an unexpected issue for very common and abundant species was the gamma model 717 

occasionally leading to very large predicted catches (and so large to become negative on the 718 

inverse link scale), which indicates poor performance of this model and distribution. In these 719 

cases we restricted the predictions to the maximum observed catch for that species. We also 720 

evaluated a log link rather than inverse link and the final predictions were very similar. R 721 

code to fit all models can be found at 722 

https://github.com/smithja16/MultiSpeciesModels_Observer.  723 

 724 

The random forests were fitted using the ‘randomForest’ R package (Liaw and Wiener 2002). 725 

The hurdle model used classification trees and regression trees (Stock et al 2020). The single 726 

model used regression trees. All models were fit with two variables randomly sampled at 727 

each split (mtry=2) and 1200 trees, based on tuning of key species models. In classification 728 

tasks it is important to avoid mismatches in the proportions of the minority and majority 729 

classes (here presences and absences), because this can lead to misleading estimates of 730 

accuracy (e.g. a rarely observed taxa may appear to be predicted well by a model that 731 

classifies everything as zeros). For this class balancing, we used downsampling or synthetic 732 

minority oversampling (SMOTE) to ensure similar class proportions (Stock et al 2020). 733 

Downsampling works by randomly reducing the majority class observations (e.g. trawls with 734 

zero catch of a taxa) to match the number of minority class observations (e.g. trawls with 735 

catches of that taxa). SMOTE works by simultaneously downsampling the majority class as 736 

well as oversampling the minority class (Chawla et al 2002), which it does by creating 737 

‘synthetic’ observations with explanatory values derived from linear combinations of n=5 738 

real minority class observations. Because SMOTE creates synthetic observations, we 739 

restricted SMOTE to the rarest or most common taxa. Testing showed this was best used for 740 

taxa with fewer than 140 instances of a minority class (~66 taxa) which is around 10% 741 

prevalence; downsampling was used for all other taxa. Downsampling was done using the 742 

‘caret’ R package (Kuhn 2008), and SMOTE using the ‘smotefamily’ R package (Siriseriwan 743 

2019).  744 

 745 

The latent variable JSDMs were fitted using the ‘Hmsc’ R package (Tikhonov et al 2020a). 746 

This was done only as a hurdle model, using probit and normal distributions, with the 747 

response variable log-transformed for the model with the normal distribution. We fitted two 748 

variants, one with species associations implemented as non-spatial latent variables, and one 749 

with taxonomic traits, a phylogenetic tree, and species associations implemented as spatial 750 

latent variables. We selected these two variants because the latter is very complex and slow to 751 
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fit, and the difference between variants allows us to evaluate whether the added complexity is 752 

required. Spatial latent variables allow residual information to be spatially structured, and 753 

taxonomic traits and a phylogeny allow us to evaluate the extent that similar responses to the 754 

environment relate to similar traits or relatedness. The spatial latent variables (i.e. random 755 

effects) can improve predictions by borrowing information across both species and location 756 

(Ovaskainen and Abrego 2020). We used the Gaussian predictive process method (which 757 

uses knots) to fit the spatial latent variables, as an approximation for big spatial data 758 

(Tikhonov et al 2020b). 759 

 760 

Two traits were included for each taxon in the spatial JSDM models, asymptotic length (cm) 761 

and a general habitat classification (benthic, demersal, reef, coastal pelagic); these are listed 762 

in Table A1. For fish taxa, asymptotic lengths were taken from the R package FishLife 763 

(Thorson et al 2020, Thorson 2023). FishLife is based on information from FishBase 764 

(fishbase.org) but uses models to predict life-history parameter values, which means that 765 

phylogenetic trait imputation is used to predict values for species without information (or for 766 

broader taxonomic levels) from related (or included) species. In a few cases, asymptotic 767 

lengths were taken from local information when FishLife was inaccurate. Asymptotic lengths 768 

for invertebrates were approximated using local knowledge and information from 769 

SeaLifeBase (sealifebase.org). Habitat categories were based on expert opinion and existing 770 

classifications (Truong et al 2017, Goddard et al 2022). The phylogenetic tree for the final 771 

suite of species/taxa (n=130) was calculated using taxonomic relatedness (i.e. a taxonomic 772 

tree), thus specifying phylogenetic distance = 1 for each level of the tree (Thorson et al 2023), 773 

and was built using the ‘ape’ R package (Paradis and Schliep 2019). Compared to a 774 

phylogenetic tree, a taxonomic tree will likely overestimate the distance between closely 775 

related taxa, and vice versa for distantly related taxa, but there was insufficient alternate 776 

information available. 777 

 778 

In the JSDM the SST, MLD, and lunar covariates were fitted as quadratic terms, and all 779 

covariates were centred and scaled to encourage model convergence. Hmsc uses Bayesian 780 

MCMC, and our posterior estimates were derived from three chains, a thinning interval of 20, 781 

and 30,000 iterations excluding the first 10,000 as burn-in. We used Hmsc’s default priors, 782 

and as recommended (because this uses a normal distribution) we centred and scaled the 783 

response variable of the abundance-only component. We evaluated model convergence by 784 

evaluating trace plots, effective sample size, and scale reduction factors (Ovaskainen and 785 

Abrego 2020). As a tip to other users, Hmsc models are complex and slow to fit and a key 786 

element of speeding them up in our study was replacing R’s default algebra libraries with 787 

optimised ones. For this we used OpenBLAS (github.com/xianyi/OpenBLAS), which 788 

increased speeds by a factor of 2-3. Also see the Hmsc vignette on performance for more 789 

information. Even so, the fitting and cross-validation for the spatial model was 790 

computationally expensive and increases greatly above ~1000 samples and ~100 taxa. Also, 791 

the number of polynomial terms and the number of knots in a spatial grid can both increase 792 

run times. Our advice is to start small and build up. Also, running models in parallel was not 793 
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always faster (sometimes slower) so use that feature carefully. We recommend using a PC 794 

with at least 32 GB RAM to avoid memory issues.  795 

 796 

Models predicting probability of presences often use an adjustment or threshold to ensure 797 

realistic numbers of taxa are predicted per observation unit (e.g. per trawl). We applied 798 

thresholding for this reason to all GAMM and random forest models. For the hurdle models, 799 

which calculate a presence-absence component, we used the minimum training presence 800 

threshold (Guillera‐Arroita et al 2015) which uses each taxon’s prevalence as the threshold 801 

(number of presences:number of samples; to a maximum of 0.95) below which a taxon is 802 

considered absent. Our approach was to use this as a truncated threshold which is a more 803 

robust approach (Muscatello et al 2021). This truncation means that above the threshold we 804 

retain the probability of presences, rather than assuming all probability values greater than the 805 

threshold are equal to 1. For the non-hurdle models, we used a minimum biomass threshold, 806 

again to ensure some true zeros were predicted and not just very small values. We used half 807 

the minimum observed biomass for each taxon as that taxon’s biomass threshold, which 808 

ensured we were not too strict when truncating predictions. We admit there are many 809 

approaches to adjusting and thresholding (Liu et al 2005, Guillera‐Arroita et al 2015), and we 810 

chose one that created a good balance between discrimination and accuracy, while avoiding a 811 

discretization of the output which can lose information (Calabrese et al 2014, Guillera‐812 

Arroita et al 2015). Thresholding was not used for the JSDMs, because the biomass estimates 813 

were attained by taking the median of many realizations, each of which multiplied together 814 

one posterior sample from the presence and abundance-only components where the presence 815 

component generated a binary 0-1 value. 816 

 817 

We tested including ‘Trip ID’ as an additional random effect, to explore whether accounting 818 

for residual correlation in trawl catches caught during the same trip improved model 819 

predictions. This was not added by default due to the unacceptable fit time of the spatial 820 

JSDM, and the inability to include this term in the random forests. We tested this random 821 

effect in the GAMM framework and found that predictive performance (as in Table 1) was 822 

about the same or decreased slightly, so we feel that excluding this covariate did not bias our 823 

results. 824 

 825 
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Table A2. Model covariates and their sources. The spatial JSDM also used longitude to 872 

develop the spatial mesh. Longitude was sourced the same was as latitude. 873 
1https://marine.copernicus.eu (product: GLOBAL_MULTIYEAR_PHY_001_030). 874 
2https://www.gebco.net. 3https://cran.r-project.org/web/packages/lunar/.  875 

Covariate Description Source for fitting Source for prediction 

Latitude degrees; the location of trawl 

start  

Recorded by observers 

using GPS 

Latitude of prediction 

data 

Sea surface 

temperature 

°C; seawater potential 

temperature near surface; 

daily mean on day of trawl 

CMEMS 

GLORYS12V1 

reanalysis product1 

CMEMS 

GLORYS12V1 

reanalysis product1 

Mixed layer 

depth 

m; ocean mixed layer 

thickness defined by sigma 

theta; daily mean on day of 

trawl 

CMEMS 

GLORYS12V1 

reanalysis product1 

CMEMS 

GLORYS12V1 

reanalysis product1 

Depth ftm; bottom depth at trawl 

location (approximate mean) 

Recorded by observers 

from vessel sounder 

(high agreement with 

bathymetry chart) 

GEBCO_2023 

bathymetry chart2 

Lunar 

illumination 

Proportion; lunar 

illumination on day of trawl; 

0=new moon, 1=full moon 

‘lunar’ R package3 ‘lunar’ R package on 

dates in prediction 

data; or fixed at 0.5 for 

example maps 

Area fished km2; total area swept per 

trawl, calculated as trawl 

distance × (0.8 × headrope 

distance) 

Headrope distance (m) 

and distance (km) 

were recorded by 

observers, the latter 

using multiple GPS 

coordinates per trawl 

Input as a constant 

mean value 

Vessel vessel identifier; included as 

a random factor in GAMM 

and JSDM, and a factor in 

the random forest 

Recorded by observers Excluded from 

prediction 

 876 

  877 
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Table A3. Summary of covariate importance among models. Numbers are the number of taxa 878 

for which each covariate was influential (thus the maximum value is 130). Covariate 879 

influence is measured: for GAMMs when p < 0.05 for that covariate; for random forests 880 

when a covariate had the highest, or within 50% of the highest, ‘importance’ score (based on 881 

mean decrease in OOB accuracy); and for the JSDMs as posterior support values at 95% 882 

support. Hurdle models are split into their presence (P) and abundance-only (A) components. 883 

The quadratic terms (^2) were used only in some JSDM models. Blank cells indicate the 884 

covariate was excluded from that model. Due to their different calculations, it is unwise to 885 

compare the number of taxa among the three main model types (GAMMs, RFs, JSDMs). The 886 

goal here is to compare the relative importance of covariates within models. The two 887 

covariates with the most influenced taxa are highlighted for each row in two shades of grey. 888 

 Latitude Depth SST SST^2 MLD MLD^2 Lunar Lunar^2 Area 

GAMM 
hurdle P 

70 97 87  54  42  21 

GAMM 
hurdle A 

80 68 62    49  44 

GAMM 
Tweedie 

74 93 92  65  61  50 

RF 
 

111 97 114  85  69  61 

RF Hurdle 
P 

127 106 119  89  74  50 

RF Hurdle 
A 

94 89 96  56  55  49 

RF Hurdle 
Cb. P 

126 106 102  86  77  63 

JSDM P 
 

79 87 77 68 55 34 40 23 42 

JSDM A 
 

65 57 49 41   27 22 19 

JSDM 
Spatial P 

77 83 77 66 60 36 36 23 22 

JSDM 
Spatial A 

65 57 49 41   27 22 19 

 889 

 890 

  891 
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Table A4. Taxa ranked by their approximate predictive skill (highest to lowest). For 892 

simplicity we present here only results from the random forest hurdle model. Each taxon’s 893 

rank is determined by the sum of their two ranks among taxa for AUC score and RMAEp 894 

(higher values indicate better performance). Prevalence (Prev.) is the proportion of observed 895 

trawls in which a taxon occurred. Highlighted in grey are the 26 taxa which make up 80% of 896 

discards by biomass, although some of these taxa are frequently also retained. Highlighted 897 

with red text are 30 taxa that are, or contain, “primary species” or “key secondary species” 898 

identified in the ocean trawl fishery’s Fishery Management Plan relevant to the OPT fishery. 899 

Taxa Prev. AUC RMAEp Rank 

Sillago.robusta 0.29 0.95 0.61 1 

Helicolenus.spp 0.04 0.93 0.58 2 

Sepia.spp 0.02 1.00 0.47 3 

Centropogon.australis 0.03 0.93 0.52 4 

Pandalidae 0.11 0.94 0.48 5 

Ibacus.spp 0.18 0.91 0.55 6 

Portunus.rubromarginatus 0.25 0.93 0.48 7 

Ibacus.chacei 0.64 0.93 0.48 8 

Trygonoptera.testacea 0.09 0.93 0.47 9 

Heterodontus.spp 0.11 0.90 0.49 10 

Pomacentridae.spp 0.03 0.89 0.52 11 

Crossorhombus.valderostratus 0.21 0.91 0.46 12 

Platycephalus.richardsoni 0.11 0.90 0.45 13 

Choerodon.spp 0.17 0.90 0.44 14 

Pseudorhombus.tenuirastrum 0.27 0.92 0.42 15 

Priacanthidae 0.07 0.95 0.40 16 

Paraplagusia.bilineata 0.05 0.87 0.55 17 

Terapontidae 0.03 0.89 0.46 18 

Penaeus.spp 0.06 0.90 0.44 19 

Lophonectes.gallus 0.20 0.88 0.47 20 

Lactoria.spp 0.03 0.91 0.41 21 

Latridae 0.07 0.85 0.50 22 

Pectinidae 0.05 0.89 0.43 23 

Meuschenia.scaber 0.15 0.89 0.42 24 

Sillago.flindersi 0.51 0.88 0.43 25 

Cardinalfish.spp (Apogonidae) 0.04 0.90 0.40 26 

Other.flounder (Plueronectiformes) 0.48 0.86 0.46 27 

Bathysauridae.Synodontidae 0.23 0.88 0.41 28 

Opistognathidae 0.07 0.96 0.34 29 

Meuschenia.trachylepis 0.05 0.88 0.40 30 

Samaris.cristatus 0.37 0.89 0.39 31 

Trichiurus.lepturus 0.06 0.96 0.32 32 

Caesionidae.Lutjanidae.Symphysanodontidae 0.03 0.83 0.44 33 

Trygonorrhina.spp 0.16 0.85 0.42 34 

Loliginidae 0.25 0.87 0.39 35 

Pseudophycis.spp 0.02 0.94 0.32 36 

Nelusetta.ayraudi 0.10 0.85 0.40 37 

Frogfish.spp (Batrachoididae) 0.05 0.87 0.38 38 

Jasus.verreauxi 0.03 0.87 0.37 39 

Trachinocephalus.myops 0.22 0.86 0.38 40 

Rajidae 0.10 0.90 0.32 41 

Ophichthidae 0.02 0.85 0.39 42 

  900 



35 
 

Table A4 cont. 901 

Taxa Prev. AUC RMAEp Rank 

Penaeoidea.Caridea 0.26 0.84 0.40 43 

Metapenaeus.macleayi 0.04 0.88 0.33 44 

Anoplocapros.inermis 0.33 0.81 0.42 45 

Upeneichthys.lineatus 0.14 0.83 0.39 46 

Portunus.sanguinolentus 0.16 0.86 0.36 47 

Genypterus.spp 0.10 0.88 0.33 48 

Neosebastes.spp. 0.23 0.83 0.38 49 

Nototodarus.gouldi 0.11 0.86 0.33 50 

Urolophidae.spp 0.17 0.83 0.38 51 

Torpedinidae.Narcinidae.Hypnidae 0.03 0.90 0.29 52 

Monacanthidae 0.13 0.75 0.51 53 

Pseudorhombus.jenynsii 0.13 0.86 0.32 54 

Optivus.agastos 0.48 0.75 0.47 55 

Scyliorhinidae 0.09 0.78 0.40 56 

Nemipteridae 0.16 0.83 0.34 57 

Centroberyx.affinis 0.10 0.87 0.30 58 

Melicertus.plebejus 0.99 0.98 0.22 59 

Halieutaea.spp 0.03 0.83 0.36 60 

Halimochirurgus.spp 0.11 0.89 0.28 61 

Charybdis.spp 0.22 0.82 0.37 62 

Portunus.pelagicus 0.20 0.82 0.37 63 

Octopodidae 0.85 0.76 0.42 64 

Class.Echinoidea 0.21 0.80 0.38 65 

Caproidae 0.09 0.77 0.41 66 

Tetraodontidae 0.24 0.74 0.43 67 

Saurida.spp 0.28 0.79 0.37 68 

Pomatomus.saltatrix 0.07 0.82 0.33 69 

Microcanthus.strigatus 0.04 0.83 0.32 70 

Soleidae 0.07 0.84 0.30 71 

Gerreidae 0.04 0.78 0.38 72 

Zebrias.scalaris 0.17 0.77 0.39 73 

Platycephalus.conatus 0.46 0.77 0.38 74 

Parupeneus.spp 0.29 0.80 0.33 75 

Zeus.faber 0.08 0.85 0.29 76 

Atypichthys.strigatus 0.02 0.85 0.28 77 

Sepiidae 0.74 0.81 0.32 78 

Tetrosomus.reipublicae 0.22 0.80 0.32 79 

Trachurus.novaezelandiae 0.53 0.77 0.37 80 

Carangidae 0.06 0.82 0.29 81 

Parapercis.spp 0.06 0.84 0.26 82 

Lagocephalus.cheesemanii 0.34 0.79 0.32 83 

Platycephalus.longispinis 0.70 0.80 0.29 84 

Order.Teuthoidea 0.37 0.81 0.29 85 

Brachyura 0.07 0.71 0.40 86 

Antennariidae.Tetrabrachiidae.Lophichthyidae 0.12 0.79 0.30 87 

Pinguipedidae 0.03 0.79 0.29 88 

Portunidae 0.58 0.74 0.35 89 
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Table A4 cont. 903 

Taxa Prev. AUC RMAEp Rank 

Hypnos.monopterygius 0.25 0.77 0.32 90 

Draconettidae.Callionymidae 0.49 0.75 0.33 91 

Majidae 0.07 0.81 0.26 92 

Paguroidea.spp 0.15 0.79 0.28 93 

Mullidae 0.07 0.79 0.28 94 

Class.Gastropoda 0.06 0.79 0.28 95 

Myliobatidae 0.03 0.84 0.15 96 

Syngnathidae 0.02 0.75 0.30 97 

Pentacerotidae 0.07 0.75 0.31 98 

Epinephelus.ergastularius 0.08 0.78 0.27 99 

Dactyloptena.spp 0.04 0.78 0.26 100 

Gonorynchus.greyi 0.35 0.78 0.25 101 

Class.Asteroidea 0.17 0.74 0.29 102 

Moridae 0.04 0.79 0.22 103 

Priacanthus.macracanthus 0.66 0.74 0.29 104 

Cynoglossidae 0.07 0.77 0.26 105 

Scorpaenidae 0.06 0.76 0.26 106 

Aptychotrema.rostrata 0.43 0.74 0.28 107 

Order.Stomatopoda 0.48 0.70 0.30 108 

Fistulariidae 0.05 0.69 0.30 109 

Dasyatidae 0.05 0.75 0.25 110 

Glaucosoma.scapulare 0.13 0.77 0.21 111 

Triglidae.spp 0.02 0.78 0.14 112 

Uranoscopidae 0.13 0.72 0.27 113 

Platycephalus.spp 0.09 0.76 0.21 114 

Trachichthyidae 0.07 0.74 0.24 115 

Congridae.Colocongridae 0.39 0.73 0.25 116 

Triakidae 0.08 0.71 0.26 117 

Platycephalus.caeruleopunctatus 0.72 0.74 0.23 118 

Diodontidae 0.10 0.73 0.23 119 

Squatinidae 0.02 0.72 0.23 120 

Chrysophrys.auratus 0.03 0.68 0.25 121 

Dinolestes.lewini 0.07 0.73 0.19 122 

Lepidotrigla.spp 0.86 0.70 0.22 123 

Scyllaridae.spp 0.02 0.67 0.23 124 

Scomber.australasicus 0.06 0.72 0.05 125 

Monocentrididae 0.04 0.68 0.20 126 

Orectolobus.spp 0.04 0.69 0.02 127 

Volutidae 0.02 0.62 0.15 128 

Melo.umbilicatus 0.02 0.66 -0.02 129 

Porcellanidae 0.04 0.59 0.00 130 
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 906 
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Fig. A1. Residual correlations at the observation-level from the presence component of non-908 

spatial JSDM, at the 95% support level. Red indicates species that are caught together more 909 

often than expected from the model, and blues less often than expected. Strong correlations 910 

can indicate a missing covariate, and this matrix supports that. Clusters of taxa are indicated 911 

by black squares, and are clustered together based on similarity of their residual correlations. 912 

Clusters were made using the ‘Wards D2’ method in the ‘corrplot’ R package (Wei and 913 

Simko 2021, https://github.com/taiyun/corrplot), and using a visual selection of a 914 

parsimonious number of clusters. 915 
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 917 

 918 

Fig. A2. Residual correlations at the observation-level from the presence component of 919 

spatial JSDM, at the 95% support level. Red indicates species that are caught together more 920 

often than expected from the model, and blues less often than expected. Strong correlations 921 

can indicate a missing covariate, and this matrix has fewer correlations than the non-spatial 922 

model (Fig. A1); this is likely due to the spatial random effects in the spatial JSDM 923 

explaining much of the residual correlation in the non-spatial JSDM. Clusters of taxa are 924 

indicated by black squares, and are clustered together based on similarity of their residual 925 

correlations. Clusters were made as in Fig. A1. 926 

  927 



39 
 

 928 

 929 

Fig. A3. Signs of fitted beta coefficients and related taxonomic tree for the spatial JSDM 930 

model. Coefficients important with 95% support are coloured red (positive beta coefficient) 931 

or blue (negative beta coefficient). The Pleuronectiformes group is indicated by the red box – 932 

note that all taxa in this group have a negative beta for the Depth covariate. The plot has been 933 

truncated for clarity (lower taxa not shown). 934 
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 935 

 936 

Fig. A4. a) AUC and b) RMAE results from cross-validation for the random forest hurdle model. These shows the spread of results from the 15 937 

folds for each taxon. Taxa are ordered from least prevalent (left) to most prevalent (right), and taxa numbers are listed in Table A1. In a) taxa 938 

which have a median AUC > 0.7 are highlighted in red. In b) boxplots are coloured by the respective RMAEp value (the metric summarised in 939 

Table 1), with taxa showing the most reduction in RMAE compared to an intercept-only model highlighted in red (> 0.35 proportional reduction 940 

in RMAE), and the least improvement in green (0.05-0.15). Although the lowest RMAE values are seen for the most common taxa, the highest 941 

proportional improvement is often for the rarer taxa. 942 


