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Abstract 

Genetic correlations concentrate genetic variation in certain directions of the multivariate phenotype. 

Adaptation and, under some models, plasticity is expected to occur in the direction of the phenotype 

containing the greatest amount of genetic variation (gmax). However, this may hinge upon environmental 

heterogeneity, which can affect patterns of genetic variation. I use experimental evolution to test whether 

plasticity and phenotypic evolution follow gmax during adaptation to environments that varied in 

environmental heterogeneity. For >25 generations, Drosophila melanogaster populations were exposed to 

six homogeneous or spatially and temporally heterogeneous treatments involving hot (25ºC) and cold 

(16ºC) temperatures. Five wing traits were assayed in both temperatures. Wing morphology diverged 

between populations evolving in homogeneous hot and cold temperatures in a direction of the phenotype 

containing a large proportion of genetic variance, and that aligned closely with gmax at 16ºC, but not 25ºC. 

Spatial heterogeneity produced an intermediate phenotype, which was associated with similar genetic 

variance across assay temperatures compared to all other treatments. Surprisingly, plasticity across assay 

temperatures evolved in a different direction to phenotypic evolution and aligned better with maternal 

variance than gmax. Together, these results provide experimental evidence for evolution along genetic 

lines of least resistance in homogeneous environments, but no support for predicting plastic responses 

from the orientation of genetic variation. These results also suggest that spatial heterogeneity could 

maintain genetic variation that increases the stability of genetic variance across environments. 
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Introduction 

Traits rarely evolve in isolation. Instead, adaptation occurs as coordinated changes in multiple traits that 

leads to the evolution of a multivariate phenotype. This is because changes in any given trait will enact 

changes in other traits that are genetically correlated, which concentrates genetic variation in certain 

directions of the multivariate phenotype. For decades, evolutionary biologists have appreciated that 

genetic correlations can bias evolution towards certain multivariate phenotypes, which can slow 

adaptation if selection lies in a different direction (Arnold 1992; Chenoweth et al. 2010; Cheverud 1984; 

Lande 1979, 1980; McGuigan et al. 2005; Schluter 1996; Zeng 1988). If adaptation is determined by the 

distribution of genetic variation underlying a multivariate phenotype, rather than the direction of 

selection, then it is difficult to understand how rapid adaptive diversification is possible (Schluter 2000). 

We know, however, that genetic variation is not static and can evolve (Doroszuk et al. 2008; Jones et al. 

2004; Roff and Mousseau 1999; Walter et al. 2018), or change in response to the environment (Wood and 

Brodie III 2015). Understanding how the environment affects genetic variation and influences phenotypic 

change remains a fundamental challenge in biology (Careau et al. 2015; Steppan et al. 2002). 

Breeding designs are used to estimate the additive genetic component of the phenotype (i.e., variation 

created by different alleles), which is partitioned from the total phenotypic variance. The additive genetic 

variance and covariance among multiple traits, known as the G-matrix (G), captures the genetic 

architecture underlying a multivariate phenotype of the population (Lande 1979; Lynch and Walsh 1998; 

Walsh and Blows 2009). Genetic correlations among traits, created by pleiotropy or strong linkage, 

concentrate genetic variation into fewer axes (or directions in phenotypic space) than the number of traits 

originally measured (Arnold 1992; Lande 1980). The shape and orientation of G is expected to determine 

the direction of evolution, at least in the short term (Hansen and Houle 2008; Zu et al. 2020). The 

direction in phenotypic space that contains the greatest amount of genetic variation (i.e. the primary axis 

of G, gmax) is of particular interest because it is the direction that adaptation is predicted to follow 

(Marroig and Cheverud 2007; McGlothlin et al. 2018; McGuigan et al. 2005; Schluter 1996). 

Comparative studies have found both support for (Costa et al. 2020; Hangartner et al. 2020; McGlothlin 

et al. 2018; Schluter 1996), and against (Berner et al. 2010; Kimmel et al. 2012; McGuigan et al. 2005; 

Merilä and Björklund 1999), the theory that evolutionary trajectories are determined by the distribution 

and orientation of multivariate genetic variation, but we lack experimental manipulations that test whether 

phenotypic evolution is biased towards gmax. To understand how multivariate genetic variance influences 

evolution, we also need to identify how stable G is across environments, whether G is associated with 

plasticity, and how environmental heterogeneity influences genetic variance. 

Although genetic correlations are expected to maintain stability in G, at least in the short-term (Zeng 

1988), we know that G is not static (Arnold et al. 2008; Wood and Brodie III 2015). Changes in G have 

been observed for taxa that have adapted to contrasting habitats across relatively few generations 
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(Doroszuk et al. 2008; Eroukhmanoff and Svensson 2011). Within a generation, plasticity, the ability for 

a genotype to produce different phenotypes in response to environmental variation (Lind and Johansson 

2007; Via et al. 1995), can affect genotypes differently. Genotypes that vary in plasticity (i.e. show 

genotype-by-environment interactions) are likely to produce changes in G when exposed to different 

environments (Sgrò and Hoffmann 2004; Walter et al. 2021; Wood and Brodie III 2015). If G changes 

rapidly in response environmental change, then it may be difficult to understand when adaptation will 

occur along gmax. 

The relationship between plasticity and genetic variation during adaptation remains unclear. Under the 

‘plasticity-first’ model, adaptation to a new environment occurs when plastic responses that are beneficial 

in the new environment become genetically incorporated (Levis and Pfennig 2016; West-Eberhard 2003). 

One mechanism that could allow an initially plastic response to become genetic is when plasticity lies in 

the direction of gmax, which means that adaptation can occur in the direction of both plasticity and genetic 

variation (Draghi and Whitlock 2012; Lind et al. 2015; Noble et al. 2019). However, a survey of studies 

concluded that the alignment between plasticity and genetic variation depended on the trait, species, and 

environment studied (Noble et al. 2019). Generalizing an alignment between plasticity and additive 

genetic variation may be difficult because the genetic basis of a trait can be different from that of its 

plasticity (Lafuente et al. 2018), and also because many other factors can determine plastic responses. For 

instance, maternal effects and epistasis were found to underlie differences in plasticity between 

populations of Drosophila from different latitudes (van Heerwaarden and Sgrò 2017). Understanding how 

plasticity relates to genetic variation to determine phenotypic responses to new environments therefore 

remains an ongoing challenge. 

Environments are rarely constant and instead vary at different spatial and temporal scales that can 

determine how populations adapt. Environments with greater environmental heterogeneity experience 

more temporal or spatial variation in selection that moves the phenotypic optima, which can slow or 

prevent adaptation to new environments because phenotypic evolution towards any single optimum will 

be difficult (Jones et al. 2004; Steppan et al. 2002). As a consequence, however, greater environmental 

heterogeneity is expected to maintain more genetic variance in a given trait because spatial or temporal 

variation in selection prevents alleles from becoming fixed in the population (Bürger and Gimelfarb 2002; 

Gillespie and Turelli 1989; Mackay 1981; McDonald and Yeaman 2018; Via and Lande 1987). 

Adaptation towards a phenotypic optimum will therefore be more straightforward if conditions are 

relatively homogeneous, whereas populations experiencing greater heterogeneity should show smaller 

changes in phenotype but possess more genetic variation. By using experimental evolution with different 

environments (e.g., temperature) and different levels of environmental heterogeneity that represent more 

natural environments (i.e., fluctuations in temperature), it is possible to test whether evolution is more 
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predictable in homogeneous environments, and understand how genetic variance is affected by 

heterogeneous environments.  

Due to the adaptive significance of wing size and shape in response to temperature in Drosophila 

(Cavicchi et al. 1991; Partridge et al. 1994; Santos et al. 2004), experimental evolution of wing shape is 

ideal to test whether changes in a multivariate phenotype can be predicted from patterns of genetic 

variation. Here, I use a previously published dataset to explore how phenotypic changes due to 

experimental evolution and plasticity are associated with additive genetic variance. For two years of 

experimental evolution, Yeaman et al. (2010a) exposed populations of Drosophila melanogaster to six 

treatments that differed in temperature (25ºC hot and 16ºC cold) and levels of environmental 

heterogeneity, created by moving flies between temperatures (Fig. 1a). Using a reciprocal transplant, they 

found that homogeneous hot and cold treatments showed greater performance in the environment in 

which they evolved, providing evidence for thermal adaptation. They then conducted experimental 

crosses to produce ~300 full-sibling families within each treatment and measured five wing traits (Fig. 

1b) on the parents and multiple offspring to quantify mean phenotype and genetic variance in each wing 

trait. Wings were measured under both temperatures that capture plastic changes between the hot and cold 

treatments. Yeaman et al. (2010a) found that although wing size did not evolve in response to hot and 

cold treatments, wing angles did. In particular, wing angle 7-8-9 (Fig. 1b) was greater in the hot than cold 

treatments, which corresponds with thinner, longer wings under colder temperatures and suggests 

adaptive divergence in wing shape (Cavicchi et al. 1991; Debat et al. 2003; Partridge et al. 1994; Santos 

et al. 2004). Surprisingly, all treatments showed the same amount of genetic variance for all five wing 

traits, suggesting that greater environmental heterogeneity did not maintain higher levels of genetic 

variance in each univariate trait. 

In this study, I use the data from Yeaman et al. (2010a) and extend the analyses by taking a multivariate 

approach to test whether evolved and plastic changes in wing shape align with gmax, and whether 

environmental heterogeneity influenced the outcome. I predicted that populations from hot and cold 

homogeneous environments would show: (1) Little difference in multivariate genetic variance (Fig. 2a-

b); (2) Large changes in mean phenotype due to evolved differences between hot and cold treatments, as 

well as due to plasticity across assay temperatures (Fig. 2a, c); and (3) Changes in mean phenotype due to 

plasticity and evolution would align with gmax, the direction of the phenotype containing the greatest 

amount of genetic variance, assuming that selection has not depleted genetic variance too much (Fig. 2a, 

d-e). By contrast, I predicted that populations exposed to spatial and temporal environmental 

heterogeneity would show less of an evolved change in mean phenotype compared to populations from 

homogeneous environments, and instead show changes in the distribution or orientation of genetic 

variation (Fig. 2a-b). 
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Methods 

Maintenance of experimental lines 

Data for these analyses were obtained from Yeaman et al. (2010b). The maintenance of the experimental 

lines is described in detail in Yeaman et al. (2010a) and will only be reviewed briefly here. A mass-bred 

population was established from a large sample of Drosophila melanogaster collected in September 2005 

from a permanent compost pile at Cawston (British Columbia, Canada). From the wild-caught flies, 298 

isofemale lines were established over three generations at ambient temperature in the laboratory (20-

23ºC), which were then used to create a mass-bred population that was maintained in 32 cages (8 

bottles/cage; cage dimensions: 22cm×25cm×32cm) for six further generations. Populations for 

experimental evolution were established by allowing flies to lay eggs for 2 days in 400 bottles that were 

then distributed evenly among 50 cages, which were randomly assigned to six different 

temperature/heterogeneity treatments with five replicate populations (cages) per treatment (Fig. 1a). The 

six treatments included: Homogeneous (1) hot (25°C) and (2) cold (16°C) treatments, (3) spatial 

heterogeneity, where half the bottles were moved between hot and cold cages, (4) temporal heterogeneity 

created by moving the cages between hot and cold temperatures every four weeks, and homogeneous (5) 

hot and (6) cold treatments with limited migration, created by moving two mated females between hot 

and cold treatments every four weeks (Fig. 1a). Spatial heterogeneity was therefore created by moving 

half the population between cages, producing a migration rate of m~0.5 (proportion of individuals 

replaced per generation) to create a panmictic population experiencing two environments. By contrast, the 

homogeneous treatments with migration experienced a migration rate of around m~0.001, which 

simulates two spatially isolated subpopulations in different environments that experience a small amount 

of gene flow. After 116 weeks (29 vs 58 generations for the cold and hot treatments), the wing 

morphology of each treatment was assayed at 16°C and 25°C. 

For each treatment (and replicate), 30 randomly picked eggs were placed in each of 20 vials. The vials 

were split across the two assay temperatures and maintained for three generations to prevent maternal 

environmental effects biasing the phenotype. To establish the parental generation, 60 full-sibling families 

were established for each replicate line by mating a male and female randomly selected from each vial 

(n=60 families per replicate, n=300 families per assay, n=600 families per treatment). Parents and four 

offspring (two males and two females) from each full-sibling family were measured (total N»19,000 

individuals). Five wing traits were measured from the landmarks of each wing that included wing size, 

three angles and a distance (Fig. 1b; Yeaman et al. 2010a). Wings were measured by the same person and 

families were processed in blocks of four from each of the six experimental treatments (24 families per 

block) so that any block effects would be shared across all treatments.  
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Estimation of G-matrices 

Table 1 contains descriptions of all matrices and vectors. I estimated genetic, maternal and residual 

(co)variance matrices for the five wing traits by implementing multivariate linear mixed animal models 

(Kruuk 2004) within the R (R Core Team 2021) package MCMCglmm (Hadfield 2010) using 

 𝒚𝒊𝒋𝒌𝒍 = 𝜇 + 𝑆 + 𝑎% + 𝑑& + 𝑒'(%&))	, (1) 

where the global intercept for each trait (𝜇) and sex (S) were included as the only fixed effects. 

Preliminary analyses showed that analyzing male and female offspring separately did not change 

estimates of genetic variance or mean phenotype. The additive genetic merit of each individual is 

represented by 𝑎%, while 𝑑& represents the jth dam from the parental generation. 𝑒'(%&)) represents the 

residual variation. The five normally-distributed wing traits were included as a multivariate response 

variable (𝒚𝒊𝒋𝒌𝒍). Prior to analysis, I standardized all traits by dividing them by their mean within each 

replicate cage, which calculates genetic variance relative to the mean phenotype. I chose this 

standardization because it best represents evolvability (Hansen and Houle 2008; Hansen et al. 2011). I 

used 60 separate implementations of equation 1 to estimate (co)variance matrices for each replicate cage 

(n=5) within each treatment (n=6) measured in each assay (n=2). With c.300 individuals measured per 

replicate cage that were derived from 60 families, estimates of genetic variance show similar levels of 

uncertainty to an analysis that incorporated all replicate cages in each treatment to estimate genetic 

variance (see Methods S1). 

I applied equation 1 with a burn-in of 100,000 Monte Carlo Markov Chain (MCMC) iterations and a 

thinning interval of 1,000 iterations. I extracted the posterior distribution for 𝑎%, 𝑑& and 𝑒'(%&)) from each 

implementation of equation 1, which I used to construct genetic (G), maternal (M) and residual (R) 

covariance matrices. I checked model convergence by ensuring that autocorrelation did not exceed 0.05, 

that the effective sample size exceeded 85% of the number of saved samples and that the weakly 

informative prior did not have undue effect on the parameter estimates. Given that this analysis builds on 

Yeaman et al. (2010a), who found that all estimates of genetic variance were significant, I ensured that 

the animal model analysis produced similar estimates of genetic variance as previously reported. 

For all analyses, I compared G-matrices among treatments and assays, which were calculated as the mean 

of the five replicate cages within each treatment (n=6) and for each assay (n=2). To identify how the 

replicate cages varied in their response to the treatments and assays, I incorporated all 60 G-matrices into 

each analysis. This allowed comparisons among treatments and assays while making sure that the effects 

were consistent across biological replicates. Comparing the 12 average G-matrices yielded identical 

results to an alternative analysis that estimated the 12 G-matrices but with an additional random effect in 

equation 1 to account for differences among the replicate cages (see Methods S1). 
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Prediction 1: Quantifying differences in genetic variance due to temperature and environmental 

heterogeneity 

I then quantified overall differences in G among treatments and assays. Although a range of methods for 

comparing multiple matrices exists, the covariance tensor provides an elegant approach (Aguirre et al. 

2014). By quantifying a matrix (S) that represents differences among all matrices and then decomposing 

S to describe the differences, it is possible to use a single framework to first quantify the extent of 

differences among the original matrices, and then identify how each original matrix contributes to the 

differences among all matrices (i.e. how each matrix contributes to the differences described by S). 

For a detailed description of the covariance tensor approach, see Hine et al. (2009), Aguirre et al. (2014) 

or Figure 2 in Walter et al. (2018). First, S is constructed by quantifying the among-matrix variances and 

covariances for all the elements contained in the original matrices. This means that S represents the raw 

differences among the original n×n matrices (n = number of traits). Diagonal elements of S contain both 

the among-matrix variances in the variances of the original matrices, and the variance in the covariances. 

The off-diagonal elements contain the among-matrix covariances of the variances (of the original 

matrices), and the among-matrix covariances of the covariances. Next, S is decomposed, with the vectors 

describing axes of genetic variance that differ among the original matrices. The eigenvalues of S 

represent the magnitude of differences among the original matrices and are used to test whether 

differences captured by S are significantly greater than null expectations. The eigenvectors of S are then 

scaled and rearranged to calculate the eigentensors, the n×n matrices that represent orthogonal differences 

in the original matrices. 

I used the covariance tensor for two purposes. First, to identify whether I detected biologically 

meaningful differences in genetic variance among treatments, I compared differences among the observed 

matrices to differences expected under a suitable null distribution. The null distribution was created by re-

applying equation 1 to phenotypic data that was reconstructed to contain no differences in genetic 

variance among the treatments, as recommended by Morrissey et al. (2019) (see Methods S2). Second, to 

identify how each treatment contributed to the differences described by each eigentensor, I calculated the 

coordinates (Frobenius product) between each of the original matrices, and each significant eigentensor. 

Put simply, the coordinates quantify the overlap between an eigentensor and each original matrix. 

Differences in the coordinates for any given treatments suggest that they contribute differently to 

describing differences in genetic variance described by that particular eigentensor. 

Prediction 2: Testing for differences in mean multivariate phenotype 

I used a multivariate analysis of variance (MANOVA) to test for differences in multivariate phenotype 

among treatments and assays. I included the five traits as a multivariate response variable, with treatment, 

assay and their interaction as the main effects. I used replicate cages within treatment as the error term to 

test whether differences in mean phenotype were greater among treatments than among replicates within 
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treatments. I extracted the sums of squares and cross product matrices (SSCP) from the MANOVA and 

calculated mean-square matrices by dividing by their corresponding degrees of freedom. I then estimated 

D, the matrix representing differences in multivariate mean phenotype using  

  𝐃 = (𝐌𝐒!-𝐌𝐒"-𝐌𝐒!×").𝐌𝐒$
/0

	, (2) 

where 𝐌𝐒1, 𝐌𝐒2 and 𝐌𝐒1×2 represent the mean-square matrices for treatment, assay and their 

interaction, respectively. 𝐌𝐒4 represents mean-square matrices for replicate and therefore the variation 

within treatments. In an unbalanced design, 𝑛𝑓 represents the average number of observations for each 

replicate (here, the number of families per treatment), calculated using equation 9 in Martin et al. (2008). 

To visualize differences in multivariate phenotype, I used the first two eigenvectors of D to calculate the 

multivariate scores of all treatments and replicates. 

Prediction 3, Test 1: Does genetic, maternal or residual variance align with changes in mean phenotype? 

To test whether genetic, maternal or residual variance align with changes in mean phenotype, I projected 

vectors representing axes of differences in mean phenotype, through G using  

 V%& =
𝒆%𝐆&'	𝒆
89(𝐆&')

	, (3) 

where e represents a vector describing differences in mean phenotype, and 𝐆%& is the genetic covariance 

matrix (for the ith MCMC iteration from the jth treatment) through which e is projected. T represents the 

transpose of a vector. Standardizing by the trace (Tr) of G (i.e. the total genetic variance in G) calculates 

the proportion of genetic variance along the vector e. V%& therefore quantifies the proportion of genetic 

variance in the direction of changes in mean phenotype.  

I used equation 3 to project two different vectors (e) through G: 1) the vector of plasticity, calculated as 

the difference in mean phenotype across assay temperatures, using ∆𝒙4 = 𝒙4:;'< − 𝒙4=;>, where 𝒙4:;'< and 

𝒙4=;> are vectors of trait means in the cold and hot treatments, respectively. ∆𝒙4 quantifies the direction of 

change in multivariate mean phenotype between assays (calculated for each treatment separately). 2) The 

vector representing divergence in mean phenotype across treatments (within each assay), which is the 

first eigenvector of D, calculated using equation 2, but for each assay temperature separately. Because 

plasticity can be determined by maternal and environmental effects, I repeated the analysis using equation 

3 with the maternal (M) and residual (R) covariance matrices to test whether maternal or environmental 

variance aligned with plasticity (changes in mean across assay treatments) or evolved differences in mean 

phenotype among treatments. If changes in mean are associated with maternal or environmental variance 

(i.e. differences among individuals not due to additive genetic effects), then we would observe an 

alignment between changes in mean phenotype with either M or R. 
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To test whether plasticity and evolved changes in phenotype described significantly greater genetic 

variance than null expectations, I compared the observed projections with a null distribution created by 

quantifying the amount of genetic variation described by randomly generated vectors. Vectors were 

constructed by taking n samples (where n is the number of traits) from a uniform distribution between -1 

and 1, and then normalizing the vector to unit length. I then used equation 3 to project the random vectors 

through the posterior distribution of G. Where the observed projections exceed the null distribution 

provides evidence that the observed vectors of plasticity or phenotypic evolution describe greater genetic 

variance than null expectations. 

Prediction 3, Test 2: Did phenotypic evolution occur along genetic lines of least resistance? 

To test whether evolved changes in mean phenotype were more closely aligned with the primary axis of 

G (gmax) than expected under random sampling, I compared the observed alignment between gmax and the 

vectors representing differences in mean phenotype (i.e. plasticity and evolved differences) with a 

suitable null distribution. I constructed the null distribution by calculating the angle between 100,000 

pairs of random vectors, which were generated as described above. If the observed distribution of angles 

between gmax and phenotypic vectors (plasticity and evolved differences) are smaller than distribution of 

the angles between the pairs of vectors generated at random, then there is evidence that changes in mean 

phenotype align better with gmax than expected under random sampling (McGlothlin et al. 2018). 

Genetic variance can change due to drift, selection or environmental variation that can obscure an 

alignment between current estimates of genetic variation and phenotypic change. However, if phenotypic 

evolution occurred along an axis representing a genetic line of least resistance, then such an axis is likely 

to be conserved among G-matrices, even if differences in G are observed. By comparing conserved 

elements of G (here, among treatments) with changes in mean phenotype, it is possible to test whether 

phenotypic evolution has occurred along a line of genetic least resistance that was present in the common 

ancestor (McGlothlin et al. 2018). To quantify conserved elements of G, I used Krzanowski's common 

subspace analysis, which estimates the genetic subspace (H) common to the G-matrices of all treatments 

(Aguirre et al. 2014; Krzanowski 1979). H is constructed from a subset (k) of eigenvectors of G, where 

𝑘 ≤ /
?
 and n is the number of traits. I calculated H using two eigenvectors (k=2 for n=5 traits) from each 

G-matrix (within each assay), which captured >70% of total genetic variance in each treatment. An 

alignment between the subspace, H, with the vector representing evolutionary divergence therefore tests 

whether genetic variance common to all treatments aligns with phenotypic divergence (McGlothlin et al. 

2018). The leading eigenvector of H, h1, is the axis describing the greatest amount of genetic subspace 

that is shared among G estimated in the six treatments. If the angle between h1 and phenotypic 

differences among treatments (within each assay) is close to zero and falls below the null distribution, 

then there is evidence that phenotypic evolution occurred along an axis of genetic variation that is 

conserved among treatments. 
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Results 

Prediction 1: Environmental heterogeneity changed the orientation but not shape of genetic variance  

The G-matrices for all treatments and assays are presented in Table S1, and all 60 G-matrices are 

included as supplementary material. As reported by Yeaman et al. (2010a), estimates of genetic variance 

for all traits were not significantly different across treatments (Table S1). However, for all wing angle 

traits, genetic variance was greater in the cold assay compared to the hot assay (Fig. S1). No change in 

multivariate evolvability in response to environmental heterogeneity for any of the metrics of evolvability 

was observed (Table S2), suggesting that environmental heterogeneity did not significantly affect the 

shape or size of G.  

The proportion of genetic variation described by each eigenvector was similar for all treatments (Table 

2), which provides further evidence that the shape of G has been conserved among treatments. Similar 

linear combinations of traits describe gmax and g2 for all treatments in the cold assay, suggesting that the 

orientation of G was conserved (Table 2a). In the hot assay, however, different linear combinations of 

traits describe G in the different treatments (Table 2b), suggesting that environmental heterogeneity 

changed the orientation of G, but only at a warmer temperature. In the hot assay, the combinations of 

traits that describe gmax and g2 were the same for all treatments, except the spatial heterogeneity treatment, 

which showed differences in the magnitude of the trait loadings compared to the other treatments (Table 

2b). The pairwise angles between gmax of each treatment (and for g2) quantify how closely aligned the 

leading eigenvectors of G are for each pairwise comparison of treatments. For both gmax and g2, the 

angles between treatments ranged between 2.5-36.7º in the cold assay and between 5.9-25º in the hot 

assay (Table S3), suggesting a similar orientation of G for all treatments. Only spatial heterogeneity in 

the hot assay showed a difference in the orientation of G to the other treatments, whereby gmax and g2 

were in a direction 40.2-59.8º different to the other treatments (Table S3). Therefore, G-matrices 

estimated for populations evolving under spatial heterogeneity showed differences in orientation to 

populations from homogeneous treatments, but only in the hot assay temperature. 

To test for significant differences in G among treatments (within assay), I used a covariance tensor 

approach to identify axes (eigentensors) that describe differences in genetic variance among all treatments 

in a single analysis. No significant eigentensors were found in the cold assay, and only the first 

eigentensor in the hot assay describes greater differences in genetic variance than expected under a null 

distribution (Fig. 3a). Significant differences in genetic variance were therefore only found in the hot 

assay. The first eigentensor described 32% and 57% of the difference in genetic variance in the cold and 

hot assay, respectively (Table S4). To identify which treatments contributed to the differences in G, I 

calculated the coordinates (i.e. the correlation) between each of the original matrices and the eigentensors. 
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In both assays, differences in G were created by differences between the spatial and temporal 

heterogeneity treatments. In the cold assay, temporal heterogeneity showed the greatest difference from 

the other treatments, whereas spatial heterogeneity in the hot assay was significantly different to the 

remaining treatments (Fig. 3b). Significant differences in genetic variance in the hot assay were therefore 

created by differences in the orientation of G in the spatially heterogeneous treatment when compared to 

the homogeneous and temporally heterogeneous treatments. 

Including the G-matrices of all treatments and both assays in a single tensor analysis showed that greater 

differences in genetic variance were created by assay temperature (hot vs. cold), which contrasts with 

smaller differences in genetic variance among treatments within each assay (Fig. 3c). Furthermore, while 

most treatments showed significant differences in G between assays, spatial heterogeneity showed no 

change in genetic variance (Fig. 3c). Given that one trait (wing angle 7-8-9) contributed the most to gmax 

in the cold assay for all treatments, and to gmax for spatial heterogeneity in the hot assay (Table 2), 

changes in genetic variance in this wing angle likely created changes in G across assays. While spatial 

heterogeneity maintained a similar level of genetic variance in angle 7-8-9 across assays, the other 

treatments showed significantly lower genetic variance in the hot assay, when compared to the cold assay. 

This result suggests that across assays, spatial heterogeneity maintained genetic variance in the trait that 

contributes the most to gmax, which created greater stability in G across assay temperatures. 

Prediction 2: Evolved changes in mean multivariate phenotype were nearly orthogonal to plasticity 

Univariate trait means are presented in Table S5. Multivariate mean phenotype changed significantly 

between assays (F1,48=862.39, P<0.0001) and among treatments (F5,48=2.74, P<0.0001). The 

assay×treatment interaction was not significant (F5,48=0.34, P=0.9988), suggesting that all treatments 

responded similarly to assay and that greater environmental heterogeneity did not affect plasticity 

differently to the homogeneous treatments (Fig. 4). Surprisingly, changes in mean phenotype due to 

plasticity (differences between assays) and evolved changes in phenotype among treatments were in 

different directions. The first axis of D (dmax) described 98% of all differences in mean and captured large 

changes in mean phenotype due to plasticity between assay temperatures, but only small differences 

among treatments (Fig. 4 and Table S5). By contrast, the second axis of D (d2) described 1.8% of all 

differences in mean phenotype and captured differences among treatments, but little difference between 

assays. Phenotypic differences due to plasticity (represented by dmax) were created by smaller wings and 

larger wing angles in the hot assay compared to the cold assay. By contrast, evolved differences in 

phenotype among treatments (represented by blue and red lines in Fig. 4) were created by larger wing 

angles and wing veins in the hot homogeneous treatments compared to the cold treatments, but that were 

largely independent of wing size (Table S5 and Fig. 4). 

Prediction 3, Test 1: Genetic variance aligns with evolved differences in mean phenotype, but not 

plasticity across assays 
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Projection of vectors representing changes in mean phenotype due to plasticity (across assay 

temperatures) and evolved differences (between hot and cold treatments), through G, quantified how 

much genetic variation lies in the direction of each vector. The direction of evolved differences in mean 

phenotype among treatments (within assay temperature, d2 in Fig. 4) described a large proportion (c.40%) 

of total genetic variance (Fig. 5), which was greater than null expectations for all treatments (Fig. S2). 

Furthermore, the direction of phenotypic evolution described a similar amount of genetic variance to gmax 

for most treatments (Fig. 5). gmax only described more genetic variance than the direction of phenotypic 

evolution for the temporal treatment in the cold assay and three treatments in the hot assay (temporal 

heterogeneity and the migration treatments; Fig. 5). These results suggest that, as predicted, evolution 

occurred in a direction of the phenotype containing a large amount of genetic variation, which was close 

to gmax. By contrast, and against the prediction that plasticity would also lie in a direction containing a 

large amount of genetic variance, plastic changes across assays only described c.10% of genetic variance 

(Fig. 5). Treatments showed little difference in the amount of genetic variance described for either vector, 

except in the hot assay, where phenotypic evolution described a greater proportion of genetic variance in 

the spatial heterogeneity treatment compared to most other treatments (Fig. 5a). 

To understand why plasticity was in a different direction to evolved changes in mean phenotype and 

aligned poorly with genetic variance, I tested whether the vector of plasticity described a greater 

proportion of maternal and environmental variance. I found that the direction of plasticity across assays 

described a significantly greater proportion (c.22%) of maternal variance compared to genetic variance 

(c.10%) (M in Fig. 5). However, when compared to plasticity, evolved differences in mean phenotype 

described a similar proportion of maternal variance (c.20-30%). Only the spatial heterogeneity treatment 

showed greater maternal variance in the direction of plasticity when compared to the direction of evolved 

differences (Fig. 5). Residual (environmental) variance showed a similar pattern to genetic variance (R in 

Fig. 5) whereby the direction of phenotypic evolution described a greater proportion of residual variance 

(c.27%) than plasticity (c.10%). These results suggest that while maternal variance showed some 

alignment with the direction of plasticity, environmental variance better aligned with evolved changes in 

phenotype.  

Prediction 3, Test 2: Phenotypic evolution occurred along genetic lines of least resistance in 

homogeneous treatments 

The angles between gmax and the vector representing phenotypic evolution (i.e., d2 in Fig. 4) were less 

than 50° for ten (of 12) treatments (Fig. 6), suggesting that changes in mean phenotype were often in a 

direction similar to the major axis of genetic variance. This pattern is stronger in the cold assay where 

angles between gmax and phenotypic evolution were all less than 40°, which contrasted with the range of 

25-50° observed in the hot assay (Fig. 6). In the cold assay, all treatments showed a significantly closer 

alignment between evolved differences in phenotype and gmax than null distribution (Fig. 6). In the hot 
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assay, only spatial heterogeneity and the homogeneous hot treatment showed a significantly closer 

alignment than null expectations (Fig. 6). For the treatments that showed a close alignment between gmax 

and phenotypic evolution there was consistent support across replicate cages with no more than one cage 

per treatment with an angle exceeding 45° from the direction of evolved differences in phenotype (Fig. 

6). All angles between gmax and plasticity between assay temperatures were high (c.75°) and within the 

null expectation (Fig. 6), providing further evidence that plasticity did not align with genetic variance. 

The spatial heterogeneity treatment was the only treatment where G did not change across assays (Fig. 

3b), which was associated with the closest alignment between gmax and the direction of change in mean 

phenotype in both assays (23.7° and 27.1° in the cold and hot assays, Fig. 6). This means that although 

spatial heterogeneity did not affect mean phenotype (spatial heterogeneity is intermediate to the other 

treatments in Fig. 4), G exposed to spatial heterogeneity changed the least between the hot and cold 

assays, and maintained a close alignment between gmax and the direction of evolved differences in mean 

phenotype (Fig. 6). By contrast, the G-matrices estimated from the homogeneous and temporal 

heterogeneity treatments changed significantly across assays, which resulted in a weaker alignment 

between genetic variance and phenotypic evolution in the hot assay, when compared to the cold assay.  

Although the hot assay was associated with changes in genetic variance that meant that gmax did not align 

very closely with phenotypic evolution, it is possible that conserved elements of genetic variance among 

treatments (representing genetic lines of least resistance in the common ancestor) could still align with 

phenotypic evolution. To test whether this was the case, I compared the genetic subspace (H) common to 

all treatments, with the vector representing evolved changes in mean phenotype among treatments (i.e., d2 

in Fig. 4). Eigenvalues of H range from 0 to m, where m is the number of matrices. The closer 

eigenvalues are to m, the more of the original matrices (here, treatments) share the common subspace. I 

found that the first eigenvalue, which describes the direction of greatest shared genetic variance among 

treatments, h1, was 5.9 (5.78-5.98 90% HPD) in the cold assay and 5.85 (5.69-5.97 HPD) in the hot assay 

(Table S6), which is close to the maximum of 6. The angle between h1 and the subspace for each of the 

treatments were all less than 10° (Table S6), suggesting that h1 accurately represented genetic variance 

shared by all treatments. h1 also described a large proportion of genetic variance in all treatments (37-

52%) that is similar to gmax and suggests that h1 represents a conserved axis of high evolvability. As 

evidence that phenotypic evolution occurred in the direction of the shared genetic subspace, h1 showed a 

close alignment with the vector describing evolved differences among treatments (i.e., d2 in Fig. 4) in 

both the cold (mean=25.7°; 20.7, 35.6 90% HPD) and hot (mean=26.1°; 18.5, 58.1 90% HPD) assays. 

The alignment was closer than expected under the null distribution for both assays (Fig. S3), providing 

evidence that phenotypic evolution occurred along genetic lines of least resistance. When the analysis 

was repeated using G for all replicate cages (i.e. by quantifying the shared genetic subspace for 30 G-



	 14	

matrices in each assay), the results were consistent for both the cold (mean=27.4°; 21.8, 36.4 90% HPD) 

and hot (mean=24.5°; 15.5, 48.8 HPD) assays (Fig. S3). 

 

Discussion 

Using populations exposed to different temperatures and levels of environmental variation for >25 

generations, these results represent some of the first experimental evidence supporting evolution along 

genetic lines of least resistance. The main results are visualized in Fig. 7. Populations evolving in 

homogeneous cold and hot temperatures diverged in their mean wing phenotype, which occurred in a 

direction of the phenotype that contained a large proportion (c.40%) of total genetic variance. The axis 

describing the largest amount of genetic variance, gmax, aligned more closely with phenotypic evolution in 

the cold assay (22-37°) compared to the hot assay (27-53°). However, genetic subspace common to all 

treatments aligned with phenotypic divergence (c.26° in both assays), suggesting that phenotypic 

evolution followed genetic lines of least resistance, but that a closer alignment with gmax was obscured by 

environmental effects (i.e., plasticity) in the hot assay. Spatial heterogeneity created little change in mean 

phenotype and was associated with more stable genetic variance that aligned with evolved changes in 

phenotype in both assays. Surprisingly, plasticity changed the phenotype across assays in a direction 

different to that of evolved differences between hot and cold treatments. The direction of plasticity did 

not align with genetic or environmental variance and only showed a moderate alignment with maternal 

variance. Together, these results suggest that phenotypic evolution has occurred along genetic lines of 

least resistance, and that exposure to spatial environmental heterogeneity could stabilize genetic variance, 

whereas temporal heterogeneity was associated with more lability in G. 

Replicate cages showed variation in the orientation of G and their alignment with phenotypic divergence. 

It is therefore possible that genetic drift could affect the orientation of genetic variation, which contrasts 

with the prediction that drift only changes the size of G (Jones et al. 2003). Although beyond the scope of 

this study, future work should identify whether changes in G due to drift influence adaptation and 

phenotypic evolution along genetic lines of least resistance. 

Evolution along genetic lines of least resistance 

Populations from homogeneous treatments showed phenotypic divergence along gmax, suggesting that 

evolution along genetic lines of least resistance (gmax) might only occur if environmental heterogeneity is 

sufficiently low (relative to selection). Adaptation in more spatially or temporally heterogeneous 

environments is likely to be more difficult than for homogeneous environments because the environment 

has a finer grain that allows high gene flow and hinders adaptation (Slatkin 1973, 1978). In the current 

study, homogeneous treatments with migration (two migrants each generation) showed less phenotypic 

divergence in the direction of the homogeneous treatments (without migration), suggesting that low levels 
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of migration are enough to erode adaptation along the genetic line of least resistance, even in response to 

a single environmental variable. Comparative evidence for evolution along lines of genetic least 

resistance (e.g. Costa et al. 2020; McGlothlin et al. 2018; McGuigan et al. 2005; Schluter 1996) could 

therefore be due to lower levels of environmental heterogeneity in the natural habitats in which the 

studied taxa evolved, which could be created, for example, by behavior that smooths environmental 

variation. Whether evolution along gmax only occurs below a threshold of environmental heterogeneity 

remains unexplored but could identify how ecological and genetic constraints together determine the rate 

of adaptation. Such data are especially important for understanding whether rapid adaptation to novel 

environments is possible. 

Although the current study provides evidence for contemporary adaptation along genetic lines of least 

resistance, we still do not understand how and when genetic constraints to adaptation arise. Evidence for 

evolution along genetic lines of least resistance is derived from comparative studies that associate 

phenotypic divergence with axes of genetic variation. While comparative studies provide important 

insights about the current alignment between genetic variation and phenotypic evolution, they make it 

difficult to identify whether the common ancestor possessed similar patterns of genetic variance (but see 

McGlothlin et al. 2018 for a phylogenetic reconstruction of the common ancestor), and cannot test 

whether selection was also in the direction of gmax, or in a different direction that would introduce genetic 

constraints to adaptation (Chenoweth et al. 2010). It is also important to note that comparative evidence 

for adaptation along genetic lines of least resistance rests on the assumption that selection did not deplete 

genetic variation during adaptation to the contrasting temperatures, although the debate about how 

selection depletes multivariate genetic variation is ongoing. Furthermore, it is possible to confuse 

causality using comparative approaches: If correlational selection was in the direction of gmax, then we 

would expect genetic variation in the direction of gmax to be strengthened, which could make gmax the 

consequence of adaptation, rather than determining the direction of adaptation (Arnold et al. 2001; Roff 

and Fairbairn 2012). To understand how genetic correlations among traits determine evolutionary 

trajectories, future experimental evolution studies need to assay multivariate genetic variation and 

selection (ideally including correlational selection) in the common ancestor and then identify whether 

evolutionary trajectories can be predicted in multiple environments (e.g., Magalhães et al. 2007; Mallard 

et al. 2022; Zu et al. 2020). 

Compared to the cold assay, phenotypic evolution in the hot assay showed a weaker association with gmax, 

suggesting that evolutionary trajectories could be harder to predict in warmer environments. However, 

elements of G that were conserved among treatments (and described a large proportion of genetic 

variance) showed a strong association with phenotypic evolution, suggesting that evolution occurred 

along genetic lines of least resistance, even though initially obscured by environmental effects in the hot 

assay. It is therefore possible for evolution to occur along genetic lines of least resistance even when gmax 
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and phenotypic divergence are not well aligned. This is because axes of high evolvability other than gmax 

exist that can allow rapid evolution (Bolstad et al. 2014; Hansen and Houle 2008; Hansen and Voje 

2011). Results in the current study suggest that gmax (cold assay) and the common genetic subspace (in 

both assays) did not perfectly align with phenotypic divergence (angle of c.25°), which suggests that 

adaptation may occur along an axis of high evolvability that is slightly different to gmax. While it is 

possible that changes in G due to plasticity in the hot assay could be a mechanism for coping with 

warmer environments but that still allows evolution along genetic lines of least resistance, it is also likely 

that such changes in G are incidental and are simply a byproduct of genotype-by-environment 

interactions inherent to the population. To better predict evolution, it is therefore important to understand 

how and why G changes across environments, and whether such changes will determine adaptation in the 

short and long-term. 

The effect of environmental heterogeneity on genetic variance 

Against predictions, genetic variance in more heterogeneous environments was not greater than in 

homogeneous environments (Yeaman et al. 2010a). This could be due to several factors: First, because 

selection in heterogeneous environments can favor different traits compared to selection in homogeneous 

environments, it is possible that the spatial and temporally heterogeneous environments could be 

associated with changes in other traits (e.g., early life history traits) that are more important than wing 

shape for adapting to more heterogeneous environments (Beaumont et al. 2009; Ketola and Saarinen 

2015; Magalhães et al. 2014). We therefore need to understand how heterogeneous environments select 

for different traits and identify the consequences for adaptation. Second, given that selection can deplete 

genetic variation, it is possible that constant environments experienced during lab adaptation prior to 

experimental evolution could have reduced genetic variance available to the populations that were then 

exposed to temporal and spatial environmental heterogeneity. If so, then the genetic lines of least 

resistance (gmax) found in this study may have been created by lab adaptation, which could have removed 

genetic variance in the common ancestor, and therefore reduced the ability to detect the maintenance of 

greater genetic variance in more heterogeneous environments.  

Instead of maintaining greater genetic variance, environmental heterogeneity created differences in how 

G responded to assay temperature. In contrast with the other treatments, spatial heterogeneity was the 

only treatment that showed similar estimates of genetic variance in wing angle 7-8-9 across assays (Fig. 

S1). Spatial heterogeneity also showed the closest alignment between gmax and phenotypic divergence 

(Fig. 6). By contrast, temporal heterogeneity was associated with less stability in G and the greatest 

reduction in genetic variance for wing angle 7-8-9 in the hot assay (Fig. S1). While the potential for 

spatial and temporal environmental variation to maintain genetic variation remains poorly understood 

(Yeaman et al. 2010a), it is likely that spatial heterogeneity affects genetic variance (and G) differently to 
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temporal fluctuations, which could determine how plasticity evolves and how adaptation proceeds 

(Björklund and Gustafsson 2015). 

Plastic and evolved responses of fly wings to temperature 

Changes in wing shape and size under different temperatures and assays are likely functional (Cavicchi et 

al. 1991; Debat et al. 2003; Partridge et al. 1994; Santos et al. 2004). Consistent with Condon et al. 

(2014), plasticity produced larger wings in the cold assay compared to the hot assay, whereas 

significantly larger wings did not evolve in the cold homogeneous treatment compared to the hot 

treatment (Table S5). This contrasts with strong patterns of adaptive divergence in wing size in response 

to five years of experimental evolution in cold and hot temperatures (Partridge et al. 1994) and in 

response to a latitudinal cline that reflects a similar temperature gradient (James et al. 1997). By contrast, 

wing angles evolved large differences between hot and cold treatments. Wing angles were smaller in the 

cold assay temperatures and treatments, which produces narrower wings. Larger, narrower wings have 

been shown to improve flight in colder temperatures (Fraimout et al. 2018; Frazier et al. 2008), providing 

functional support for plastic and evolved changes in wing morphology in response to temperature.  

Plastic changes in phenotype were in a different direction to evolved differences among treatments, 

suggesting that changes in mean phenotype due to plasticity and evolution could be determined by 

different processes. While plasticity created large changes in wing size and its negative correlation with 

wing angles, evolved differences between homogeneous hot and cold temperatures involved changes in 

wing angles independent of wing size. Wing size possessed genetic variation an order of magnitude 

smaller than the other wing traits (Table S1), suggesting that even if selection favored adaptive 

divergence in wing size, evolution is likely to be constrained by the low availability of genetic variation 

(Chenoweth et al. 2010). In responding to temperature, changes in wing size (and correlations with other 

traits) are therefore likely to be determined by plasticity rather than selection on genetic variation. Given 

that plasticity aligned better with maternal variance than genetic or environmental variance (Figs. 5-6) 

then, similar to other studies (Galloway et al. 2009; Lind et al. 2020; McAdam et al. 2014), it is possible 

that maternal genetic effects could play some role in plastic changes in wing morphology across 

temperature. If variation in maternal genotypes produce offspring phenotypes that differ in wing size (and 

the correlation with wing shape) along the direction of plasticity, then variation among maternal 

genotypes could, in part, contribute to plasticity. However, it is likely that plastic responses are largely the 

result of historical selection for specific developmental pathways that determine wing responses to 

temperature. 

The poor alignment between genetic variance and plasticity contrasts with the conclusions of a recent 

meta-analysis that plasticity occurs in the direction of gmax (Noble et al. 2019). It is possible, however, 

that plasticity only occurs in the direction of genetic variation when there is high genetic variation in 

plasticity itself, which could occur when plasticity aligns with the direction of selection (Lind et al. 2015). 
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In this scenario, if the loci that are particularly environmentally sensitive contribute to genetic variation 

along gmax, then an alignment between plasticity and gmax will be possible. However, plasticity is likely to 

be the result of selection on genetic variation in plasticity in the past, which could erode genetic variation 

when there is strong purifying selection for developmental pathways that are crucial for coping with 

environmental variation (Oostra et al. 2018). In the wild, Drosophila persist by developing in hot and 

cold temperatures that are often far from optimal. Given the importance of plasticity in wing morphology 

for responding to temperature variation, developmental pathways underlying plasticity could now possess 

little genetic variation as a consequence of strong historical purifying selection that eroded genetic 

variation (Oostra et al. 2018; Steward et al. 2022). It is therefore possible that plasticity could align with 

gmax during the early stages of adaptation when genetic variation for plasticity is greater, but as plasticity 

becomes canalized, genetic variance is reduced and plasticity becomes disassociated from gmax. General 

conclusions about how gmax relates to plasticity remain difficult and require further knowledge on how 

plasticity and genetic variation are related during the early stages of adaptation. 

Conclusions 

Overall, these results reveal that evolution is likely to occur along genetic lines of least resistance in 

homogeneous environments. While spatial heterogeneity was associated with more stability in G, 

temporal heterogeneity showed greater lability in G, which suggests that we need to better understand 

how environmental heterogeneity imposes selection on different traits. Relating plasticity to multivariate 

genetic variation also remains a challenge. If strong purifying selection on developmental pathways 

erodes genetic variation in plasticity, then plasticity might only align with genetic variation during the 

early stages of adaptation. Future work needs to estimate selection and plasticity prior to experimental 

evolution to better understand how the environment and genetic variation impose constraints on 

adaptation. 
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Tables 

Table 1 Glossary of quantitative genetics parameters estimated. 

Term Sym-
bol Calculation Definition 

D-matrix D Covariance of means for multiple 
traits (here, treatment and assay) 

The (co)variance matrix that captures differences in 
mean phenotype across assays and treatments. 

dmax  /  d2 
 

 The first two eigenvectors of D The two axes that describe the direction of the 
greatest differences in mean multivariate phenotype. 

G-matrix G The variance in breeding values for 
all individuals where wing traits were 
measured. Estimated for each cage 
within assay and treatment. 

The additive genetic (co)variance matrix underlying a 
set of traits. Genetic variances on the diagonal and 
genetic covariances among traits off the diagonal. 

gmax  The first eigenvector of G. The axis describing the direction containing the 
greatest amount of additive genetic variance. 

M-matrix M Variance among the dams in the 
pedigree. Estimated for each cage 
within assay and treatment. 

The maternal (co)variance matrix that represents the 
maternal contribution to the phenotype. 

R-matrix R Variance among individual flies after 
removing the genetic and maternal 
effects. Estimated for each cage 
within assay and treatment. 

The residual (co)variance matrix that represents the 
residual phenotype that includes differences among 
siblings not due to additive or maternal effects.  

S-matrix S For each element of G, variances and 
covariances among matrices 
(treatment and assay) are calculated. 

A symmetric matrix used for a tensor analysis that 
captures the element-by-element differences among 
the original G-matrices. 

Eigentensor 
(matrix) 

E Eigenvectors of S describing axes of 
differences in genetic variance and 
that are scaled and rearranged to form 
the eigentensors. 

Orthogonal axes describing differences among the 
original matrices. 

Coordinates 
of an 
eigentensor 

  The correlation between the original 
matrices and each eigentensor. 

Quantifies which matrices contribute to the 
differences among all matrices that are captured by 
an eigentensor. 
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Table 2 Eigendecomposition of G-matrices for all treatments estimated in the (a) cold assay, and (b) hot 

assay. Treatments are labelled along the top row (Hom. = Homogeneous). Eigenvalues have been 

multiplied by 1000 for ease of presentation. Lower and upper represent the 90% HPD credible intervals 

of each eigenvalue. Proportion is of the total genetic variance that each eigenvector describes. Trait 

loadings in bold are greater than 0.2 to aid interpretation. For simplicity only the first three eigenvectors 

of each matrix are presented, which describes >90% of total genetic variance in each matrix. 

 Hom. Cold Hom. Hot Migration Cold Migration Hot Spatial Temporal 
(a) cold assay gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 

Eigenvalues 2.90 1.96 1.45 2.65 1.83 1.34 2.59 1.87 1.38 2.50 1.73 1.17 2.44 1.86 1.26 2.86 2.07 1.38 

HPD lower 2.52 1.67 1.18 2.28 1.49 1.08 2.23 1.54 1.08 2.11 1.41 0.91 2.12 1.48 1.01 2.53 1.74 1.09 

HPD upper 3.39 2.36 1.66 3.06 2.19 1.54 3.05 2.20 1.53 2.97 2.09 1.33 2.90 2.16 1.43 3.25 2.34 1.56 

Proportion 0.44 0.29 0.22 0.43 0.30 0.22 0.42 0.30 0.22 0.43 0.30 0.20 0.41 0.31 0.21 0.43 0.31 0.21 

Trait loadings:                   

Centroid 0.00 0.00 -0.08 -0.04 -0.02 -0.09 0.01 0.01 -0.12 -0.02 0.04 -0.13 -0.03 -0.01 -0.09 -0.02 -0.04 -0.06 

Line 9-10 -0.36 0.88 -0.29 -0.62 -0.78 -0.04 -0.41 -0.83 -0.36 -0.32 -0.83 -0.45 -0.30 0.90 -0.30 -0.52 -0.84 0.18 

Angle 7-8-9 -0.93 -0.36 0.07 -0.78 0.62 0.02 -0.91 0.41 0.08 -0.94 0.32 0.10 -0.95 -0.30 0.06 -0.85 0.53 0.04 

Angle 3-10-4 -0.04 0.29 0.94 -0.01 -0.04 0.99 -0.07 -0.34 0.92 -0.05 -0.45 0.87 -0.03 0.30 0.94 0.13 0.12 0.97 

Angle 2-4-8 0.04 -0.10 -0.14 0.07 0.04 -0.08 0.09 0.15 -0.10 0.08 0.08 -0.11 0.07 -0.09 -0.13 0.03 -0.08 -0.15 

(b) hot assay gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 gmax g2 g3 
Eigenvalues 2.26 1.91 1.00 2.57 1.66 1.09 2.38 1.45 0.97 2.97 1.87 1.13 2.43 1.31 0.94 2.79 1.68 0.99 

HPD lower 1.92 1.49 0.79 2.06 1.39 0.88 1.96 1.16 0.77 2.45 1.54 0.88 2.07 0.98 0.72 2.16 1.36 0.79 

HPD upper 2.83 2.15 1.17 3.16 1.95 1.27 2.94 1.68 1.12 3.65 2.10 1.31 2.85 1.62 1.11 3.41 1.95 1.19 

Proportion 0.41 0.35 0.18 0.46 0.30 0.19 0.46 0.28 0.19 0.47 0.30 0.18 0.49 0.26 0.19 0.49 0.29 0.17 

Trait loadings:                   

Centroid 0.00 0.01 -0.16 0.03 0.03 0.09 -0.01 -0.04 -0.11 0.00 0.02 -0.09 -0.01 -0.01 -0.11 0.01 0.00 0.07 

Line 9-10 -0.93 0.32 -0.14 -0.86 0.43 0.27 -0.91 0.38 -0.18 -0.94 0.09 -0.32 -0.42 0.85 -0.28 -0.93 0.09 0.35 

Angle 7-8-9 -0.32 -0.94 -0.04 -0.39 -0.90 0.17 -0.37 -0.92 -0.05 -0.06 -0.99 -0.09 -0.89 -0.45 -0.01 -0.16 -0.97 -0.18 

Angle 3-10-4 -0.15 0.01 0.97 -0.31 -0.03 -0.94 -0.19 0.02 0.98 -0.32 -0.05 0.94 -0.13 0.24 0.95 -0.32 0.23 -0.91 

Angle 2-4-8 0.01 0.06 -0.04 0.11 0.06 0.05 0.10 0.05 -0.01 0.09 0.08 -0.10 0.11 -0.09 -0.06 0.09 0.03 0.05 
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Figures 

 

Fig. 1 (a) Treatments of environmental heterogeneity for the experimental evolution experiment from 

Yeaman et al. (2010a), each treatment was applied using five replicate populations with two cages per 

replicate. (b) The wing traits measured, with each trait represented by different colored lines (centroid 

size not pictured). Reproduced with permission. 
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Fig. 2 (a) Conceptual diagram depicting how genetic variance in two traits (Z1 and Z2) that are 

genetically correlated would be associated with plasticity and phenotypic evolution if three predictions 

are true (b-e). Mean phenotypes are represented by filled circles, and G-matrices are represented by the 

ellipses, where gmax is shown as the line along the long-axis of the ellipse, and g2 as the shorter axis that is 

perpendicular to gmax. Populations evolving in homogeneous hot (red) and cold (blue) temperatures 

relative to their common ancestor (black), and a population exposed to alternating temperatures 

representing a heterogeneous environment (gray). Arrows represent plastic changes in mean phenotype 

when exposed to the other temperature. Numbers in panels b-d refer to the predictions. (b) Prediction 1: 

If G is stable in homogeneous environments, we expect to observe similar patterns of genetic variance, 

suggesting little change in G from the common ancestor. Conversely, if environmental heterogeneity 

influences genetic variance, we expect the distribution or orientation of G to change relative to the 

homogeneous treatments (gray ellipse is different to the hot and cold ellipses). (c) Prediction 2: Changes 

in mean phenotype due to plasticity between assays (colored arrows) and evolved changes between 

treatments (solid black arrow) would be significant and occur in similar directions. (d) Prediction 3: As 

evidence that the orientation of genetic variance determines the direction of evolution and plasticity, 

changes in mean phenotype (plasticity across assays and evolved differences among treatments) would 
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occur in a direction of high evolvability (i.e., changes in mean phenotype would align with genetic 

variance). There are two methods for testing an alignment between genetic variance and changes in mean 

phenotype (e): Test 1 – Using matrix projection, vectors representing evolved and plastic changes in 

mean phenotype would describe a similar proportion of genetic variance (Va) to that described by gmax 

(the direction of maximum Va); Test 2 – gmax estimated in each treatment would align closely with both 

plastic and evolved change in mean phenotype with an angle less than 35º (closer than expected under 

random sampling). 
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Fig. 3 Tensor analysis of G revealed significant differences in genetic variance among treatments and 

across assays. (a) Significant differences in genetic variance are represented by eigentensors that describe 

greater differences in observed G (filled circles) compared to the null distribution (open circles with 90% 

HPD intervals). The null distribution is created by calculating the mean from each of 500 separate 

implementations on data containing no expected differences in genetic variance among treatments (see 

Methods S2). Where the posterior mean from the observed estimate of G exceeds the distribution of 

posterior means (calculated from each of the 500 null models), there is evidence for significant difference 

in genetic variance. Only one significant eigentensor in the hot assay describes greater differences in 

genetic variance than expected under the null. (b) The coordinates for the first eigentensor in each assay 

describe how the original matrices (i.e. treatments) contributes to the differences described by each 

eigentensor. Hom. = Homogeneous, Mig. = Migration, Spat. = Spatial and Temp. = Temporal. In the cold 

assay, temporal heterogeneity shows small differences in genetic variance from spatial heterogeneity. In 

the hot assay, spatial heterogeneity shows the strongest differences in genetic variance from the other 

treatments. (c) Including all 12 G-matrices in the tensor analysis shows that assay temperature creates 

large changes in genetic variance for all treatments, except for spatial heterogeneity. 
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Fig. 4 Differences in multivariate mean phenotype separated the hot and cold assays in the first axis 

(dmax), and the six treatments along the second axis (d2). Large circles with error bars (±1 SE) represent 

the mean for each treatment measured in each assay. Small circles represent the mean of each replicate 

cage. Inset table presents the trait loadings for each axis (loadings in bold are greater than 0.2 to aid 

interpretation). Red and blue lines represent the hot and cold dmax, which captures the difference in 

phenotype among treatments within each assay. 
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Fig. 5 For each treatment measured in the cold assay (a) and the hot assay (b), the proportion of genetic 

(G), maternal (M) and environmental (R) variance in the direction of evolved differences in phenotype 

(d2 in Fig. 4) and plasticity associated with changes across assays (dmax in Fig. 4). Colored circles with 

credible intervals (90% HPD intervals) represent the amount of variance described by the average of the 

five replicate cages. Hom. = Homogeneous, Mig. = Migration. Lighter circles represent the posterior 

mean for each replicate cage. Evolved differences among treatments describes a greater proportion of 

genetic variance compared to plastic changes in phenotype. 
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Fig. 6 For both assay temperatures, the angles between gmax and (a) evolution, and (b) plasticity. See inset 

diagrams for a summary of the result: Small angles in (a) suggest a close alignment between gmax and 

phenotypic divergence (d2 in Fig. 4), compared to large angles shown in (b) that suggest no alignment 

between gmax and plasticity (dmax in Fig.4). Large symbols with 90% HPD intervals represent the 

alignment for the posterior distribution of gmax calculated from mean G. Smaller symbols represent the 

alignment estimated for each replicate cage within treatments. Gray circles and credible intervals 

represent the null distribution. 
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Fig. 7 Conceptual diagram summarizing the main results for two traits (Z1 and Z2) with circles 

representing the mean phenotype, ellipses representing G and dashed arrows representing plasticity 

across assay temperatures. Homogeneous hot and cold treatments diverged in mean phenotype along 

genetic lines of least resistance as both gmax (in the cold assay) and shared genetic subspace (for both 

assays). Plasticity changed the phenotype in a different direction to evolution. Temporal and spatial 

heterogeneity made little change in mean phenotype. G changed the most across assay temperatures for 

all treatments (not shown), except for spatial heterogeneity which showed a stable G across assays and a 

consistent alignment with phenotypic divergence. 
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Table S1: G-matrices for each treatment assayed in (a) hot and (b) cold temperatures. Genetic variances 
are presented along the diagonal (gray shading), with genetic covariances above the diagonal. Variances 
and covariance are multiplied by 1,000 to aid interpretation. Genetic correlations are presented below the 
diagonal. Numbers in parentheses represent the 95% HPD intervals for each parameter estimated. 
Correlations in bold are significant and do not overlap zero. 

  (a) Cold assay temperature (b) Hot assay temperature 

Treatment  
Cent-
roid 

Line  
9-10 

Angle  
7-8-9 

Angle  
3-10-4 

Angle  
2-4-8 

Cent-
roid 

Line  
9-10 

Angle  
7-8-9 

Angle  
3-10-4 

Angle  
2-4-8 

Cold 
homogen- 
eous 
(c)  

Centroid 
0.172 

(0.098, 
0.24) 

0.036 
(-0.066, 
0.125) 

0.001 
(-0.112, 
0.103) 

-0.101 
(-0.173, 
-0.017) 

0.012 
(-0.02, 
0.039) 

0.203 
(0.126, 
0.272) 

0.016 
(-0.102, 
0.124) 

-0.013 
(-0.112, 
0.081) 

-0.144 
(-0.228, 
-0.067) 

0 
(-0.028, 
0.027) 

Line  
9-10 

0.06 
(-0.09, 
0.23) 

2.11 
(1.709, 
2.505) 

0.342 
(0.081, 
0.632) 

0.134 
(-0.061, 
0.332) 

-0.154 
(-0.243, 
-0.083) 

0.02 
(-0.14, 
0.19) 

2.276 
(1.728, 
2.842) 

0.073 
(-0.226, 
0.329) 

0.196 
(-0.03, 
0.407) 

0.026 
(-0.061, 
0.106) 

Angle  
7-8-9 

0 
(-0.16, 
0.16) 

0.14 
(0.04, 
0.26) 

2.869 
(2.437, 
3.311) 

-0.006 
(-0.224, 
0.233) 

-0.056 
(-0.132, 
0.042) 

-0.02 
(-0.16, 
0.14) 

0.03 
(-0.1, 
0.16) 

1.999 
(1.649, 
2.378) 

0.046 
(-0.139, 
0.238) 

-0.109 
(-0.183, 
-0.049) 

Angle  
3-10-4 

-0.2 
(-0.34, 
-0.05) 

0.08 
(-0.03, 
0.19) 

0 
(-0.11, 

0.1) 

1.505 
(1.263, 
1.778) 

-0.232 
(-0.302, 
-0.174) 

-0.31 
(-0.47, 
-0.18) 

0.13 
(-0.01, 
0.26) 

0.03 
(-0.1, 
0.15) 

1.056 
(0.836, 
1.263) 

-0.038 
(-0.095, 
0.018) 

Angle  
2-4-8 

0.06 
(-0.08, 

0.2) 

-0.21 
(-0.33, 
-0.12) 

-0.07 
(-0.16, 
0.05) 

-0.38 
(-0.47, 
-0.29) 

0.249 
(0.212, 
0.285) 

0 
(-0.15, 
0.16) 

0.04 
(-0.1, 
0.17) 

-0.19 
(-0.31, 
-0.09) 

-0.09 
(-0.2, 
0.06) 

0.167 
(0.136, 
0.196)  

           

Hot homogen-
eous 
(h) 

Centroid 
0.167 

(0.106, 
0.226) 

0.09 
(0.006, 
0.173) 

0.062 
(-0.028, 
0.148) 

-0.104 
(-0.186, 
-0.041) 

-0.016 
(-0.045, 
0.008) 

0.166 
(0.103, 
0.222) 

-0.02 
(-0.124, 
0.074) 

-0.057 
(-0.132, 
0.028) 

-0.111 
(-0.181, 
-0.039) 

0.001 
(-0.024, 
0.025) 

Line  
9-10 

0.15 
(0.01, 
0.3) 

2.22 
(1.81, 
2.683) 

0.394 
(0.124, 
0.679) 

0.016 
(-0.174, 
0.245) 

-0.162 
(-0.235, 
-0.07) 

-0.03 
(-0.21, 
0.11) 

2.414 
(1.808, 
2.966) 

0.286 
(0.034, 
0.597) 

0.381 
(0.168, 
0.63) 

-0.185 
(-0.273, 
-0.099) 

Angle  
7-8-9 

0.1 
(-0.04, 
0.23) 

0.17 
(0.03, 
0.28) 

2.409 
(2.017, 
2.827) 

-0.005 
(-0.181, 

0.23) 

-0.096 
(-0.17, 
-0.002) 

-0.1 
(-0.25, 
0.05) 

0.13 
(0, 

0.26) 

1.842 
(1.546, 
2.194) 

0.182 
(0.01, 
0.346) 

-0.182 
(-0.246, 
-0.113) 

Angle  
3-10-4 

-0.22 
(-0.37, 
-0.08) 

0.01 
(-0.12, 
0.12) 

0 
(-0.1, 
0.13) 

1.357 
(1.115, 
1.563) 

-0.097 
(-0.165, 
-0.037) 

-0.24 
(-0.38, 
-0.1) 

0.22 
(0.11, 
0.35) 

0.12 
(0.01, 
0.22) 

1.276 
(1.06, 
1.485) 

-0.136 
(-0.193, 
-0.076) 

Angle  
2-4-8 

-0.09 
(-0.21, 
0.07) 

-0.23 
(-0.34, 
-0.12) 

-0.13 
(-0.23, 

0) 

-0.18 
(-0.29, 
-0.07) 

0.216 
(0.182, 
0.254) 

0 
(-0.14, 
0.14) 

-0.27 
(-0.38, 
-0.14) 

-0.31 
(-0.41, 
-0.19) 

-0.27 
(-0.38, 
-0.17) 

0.191 
(0.16, 
0.227)  

           

Cold spatially 
heterogen-
eous with 
migration 
(mc) 

Centroid 
0.184 

(0.129, 
0.248) 

0.03 
(-0.046, 
0.128) 

-0.029 
(-0.125, 
0.066) 

-0.156 
(-0.234, 
-0.08) 

0.011 
(-0.015, 
0.041) 

0.215 
(0.146, 
0.276) 

0.018 
(-0.091, 
0.123) 

0.061 
(-0.013, 
0.145) 

-0.092 
(-0.164, 
-0.025) 

0.008 
(-0.02, 
0.034) 

Line  
9-10 

0.05 
(-0.1, 
0.2) 

1.951 
(1.558, 
2.368) 

0.296 
(0.006, 
0.577) 

0.158 
(-0.057, 
0.371) 

-0.266 
(-0.346, 
-0.178) 

0.03 
(-0.13, 
0.18) 

2.259 
(1.743, 
2.74) 

0.302 
(0.052, 
0.549) 

0.252 
(0.06, 
0.442) 

-0.182 
(-0.265, 
-0.091) 

Angle  
7-8-9 

-0.04 
(-0.2, 
0.08) 

0.13 
(0.01, 
0.26) 

2.553 
(2.053, 
2.992) 

0.016 
(-0.197, 

0.27) 

-0.094 
(-0.192, 
-0.005) 

0.11 
(-0.02, 
0.24) 

0.16 
(0.03, 
0.28) 

1.628 
(1.336, 
1.932) 

0.097 
(-0.053, 
0.242) 

-0.148 
(-0.215, 
-0.085) 

Angle  
3-10-4 

-0.3 
(-0.43, 
-0.16) 

0.09 
(-0.03, 
0.22) 

0.01 
(-0.12, 
0.13) 

1.457 
(1.211, 
1.716) 

-0.219 
(-0.3, 

-0.154) 

-0.19 
(-0.33, 
-0.05) 

0.16 
(0.04, 
0.27) 

0.07 
(-0.03, 
0.19) 

1.052 
(0.856, 
1.23) 

-0.047 
(-0.098, 
0.003) 

Angle  
2-4-8 

0.05 
(-0.07, 
0.19) 

-0.38 
(-0.47, 
-0.27) 

-0.12 
(-0.23, 

0) 

-0.36 
(-0.45, 
-0.26) 

0.255 
(0.21, 
0.292) 

0.04 
(-0.11, 
0.16) 

-0.29 
(-0.4, 
-0.17) 

-0.27 
(-0.38, 
-0.15) 

-0.11 
(-0.22, 

0) 

0.18 
(0.15, 
0.214) 
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Table S1 
(continued): 
 

  (a) Cold assay temperature (b) Hot assay temperature 

Treatment  
Cent-
roid 

Line  
9-10 

Angle  
7-8-9 

Angle  
3-10-4 

Angle  
2-4-8 

Cent-
roid 

Line  
9-10 

Angle  
7-8-9 

Angle  
3-10-4 

Angle  
2-4-8 

Hot spatially 
heterogeneous 
with migration 
(mh) 

Centroid 
0.192 
(0.13, 
0.26) 

0.022 
(-0.067, 
0.107) 

0.045 
(-0.071, 

0.15) 

-0.142 
(-0.218, 
-0.061) 

0.023 
(-0.011, 

0.05) 

0.181 
(0.122, 
0.245) 

0.04 
(-0.055, 
0.153) 

-0.026 
(-0.099, 
0.061) 

-0.086 
(-0.151, 
-0.01) 

0.016 
(-0.012, 
0.042) 

Line  
9-10 

0.04 
(-0.11, 

0.2) 

1.756 
(1.382, 
2.148) 

0.255 
(-0.004, 
0.534) 

0.232 
(0.019, 
0.429) 

-0.118 
(-0.205, 
-0.05) 

0.06 
(-0.09, 
0.19) 

2.87 
(2.283, 
3.508) 

0.031 
(-0.247, 
0.299) 

0.563 
(0.293, 
0.811) 

-0.196 
(-0.292, 
-0.097) 

Angle  
7-8-9 

0.06 
(-0.1, 
0.22) 

0.12 
(-0.01, 
0.25) 

2.49 
(2.005, 
2.93) 

-0.009 
(-0.219, 
0.223) 

-0.147 
(-0.224, 
-0.05) 

-0.04 
(-0.17, 
0.11) 

0.01 
(-0.1, 
0.14) 

1.896 
(1.591, 
2.21) 

0.064 
(-0.128, 
0.234) 

-0.15 
(-0.219, 
-0.085) 

Angle  
3-10-4 

-0.29 
(-0.43, 
-0.13) 

0.15 
(0.03, 
0.3) 

-0.01 
(-0.12, 
0.12) 

1.307 
(1.039, 
1.537) 

-0.163 
(-0.232, 

-0.1) 

-0.17 
(-0.29, 
-0.02) 

0.28 
(0.15, 
0.39) 

0.04 
(-0.08, 
0.15) 

1.368 
(1.132, 
1.638) 

-0.18 
(-0.249, 
-0.122) 

Angle  
2-4-8 

0.11 
(-0.03, 
0.25) 

-0.18 
(-0.31, 
-0.08) 

-0.19 
(-0.31, 
-0.08) 

-0.3 
(-0.41, 
-0.19) 

0.231 
(0.192, 
0.271) 

0.09 
(-0.06, 
0.23) 

-0.26 
(-0.39, 
-0.14) 

-0.25 
(-0.35, 
-0.15) 

-0.35 
(-0.44, 
-0.24) 

0.198 
(0.161, 
0.229)  

           

Spatially 
heterogeneous 
with panmixia 
(s) 

Centroid 
0.188 

(0.126, 
0.248) 

0.037 
(-0.054, 

0.13) 

0.077 
(-0.02, 
0.167) 

-0.108 
(-0.185, 
-0.035) 

-0.021 
(-0.05, 
0.007) 

0.158 
(0.094, 
0.225) 

0.034 
(-0.051, 
0.117) 

0.032 
(-0.049, 
0.117) 

-0.089 
(-0.152, 
-0.022) 

-0.011 
(-0.036, 
0.011) 

Line  
9-10 

0.06 
(-0.1, 
0.2) 

1.924 
(1.534, 
2.307) 

0.172 
(-0.099, 

0.42) 

0.169 
(-0.003, 
0.372) 

-0.134 
(-0.213, 
-0.057) 

0.07 
(-0.1, 
0.25) 

1.491 
(1.023, 
1.967) 

0.419 
(0.147, 
0.699) 

0.15 
(-0.07, 
0.32) 

-0.191 
(-0.261, 
-0.108) 

Angle  
7-8-9 

0.11 
(-0.03, 
0.24) 

0.08 
(-0.05, 
0.19) 

2.473 
(2.032, 
2.853) 

-0.019 
(-0.219, 
0.193) 

-0.106 
(-0.185, 
-0.022) 

0.05 
(-0.1, 
0.18) 

0.23 
(0.09, 
0.37) 

2.289 
(1.953, 
2.683) 

0.126 
(-0.046, 

0.31) 

-0.195 
(-0.263, 
-0.131) 

Angle  
3-10-4 

-0.22 
(-0.34, 
-0.07) 

0.11 
(-0.01, 
0.22) 

-0.01 
(-0.12, 
0.11) 

1.327 
(1.1, 

1.566) 

-0.189 
(-0.257, 
-0.128) 

-0.22 
(-0.37, 
-0.08) 

0.12 
(-0.02, 
0.29) 

0.08 
(-0.03, 

0.2) 

1.02 
(0.806, 
1.241) 

-0.103 
(-0.157, 
-0.049) 

Angle  
2-4-8 

-0.09 
(-0.23, 
0.03) 

-0.19 
(-0.29, 
-0.08) 

-0.13 
(-0.23, 
-0.03) 

-0.32 
(-0.42, 
-0.23) 

0.265 
(0.23, 
0.302) 

-0.07 
(-0.21, 
0.07) 

-0.35 
(-0.49, 
-0.23) 

-0.29 
(-0.38, 
-0.19) 

-0.23 
(-0.33, 
-0.11) 

0.198 
(0.169, 
0.224)  

           

Temporally 
heterogeneous 
(t) 

Centroid 
0.156 

(0.101, 
0.206) 

0.083 
(-0.006, 
0.158) 

0.014 
(-0.072, 
0.101) 

-0.097 
(-0.17, 
-0.028) 

-0.011 
(-0.039, 
0.014) 

0.159 
(0.101, 
0.231) 

0.002 
(-0.097, 
0.111) 

-0.017 
(-0.098, 
0.057) 

-0.067 
(-0.139, 
0.006) 

0.023 
(-0.003, 
0.046) 

Line  
9-10 

0.14 
(0.01, 
0.28) 

2.342 
(1.954, 
2.695) 

0.362 
(0.113, 
0.657) 

-0.166 
(-0.351, 
0.044) 

0.044 
(-0.036, 

0.12) 

0 
(-0.14, 
0.19) 

2.598 
(2.075, 
3.323) 

0.2 
(-0.082, 
0.468) 

0.544 
(0.3, 

0.791) 

-0.211 
(-0.306, 
-0.115) 

Angle  
7-8-9 

0.02 
(-0.12, 
0.15) 

0.14 
(0.05, 
0.25) 

2.714 
(2.313, 
3.077) 

-0.131 
(-0.323, 
0.084) 

-0.159 
(-0.242, 
-0.079) 

-0.03 
(-0.19, 
0.11) 

0.09 
(-0.03, 
0.22) 

1.749 
(1.412, 
2.067) 

-0.07 
(-0.256, 
0.098) 

-0.087 
(-0.159, 
-0.023) 

Angle  
3-10-4 

-0.2 
(-0.35, 
-0.07) 

-0.09 
(-0.19, 
0.02) 

-0.07 
(-0.17, 
0.03) 

1.446 
(1.234, 
1.696) 

-0.18 
(-0.238, 
-0.113) 

-0.15 
(-0.29, 
0.01) 

0.3 
(0.18, 
0.42) 

-0.05 
(-0.17, 
0.07) 

1.237 
(1.01, 
1.461) 

-0.108 
(-0.169, 
-0.051) 

Angle  
2-4-8 

-0.06 
(-0.19, 
0.08) 

0.06 
(-0.03, 
0.18) 

-0.19 
(-0.29, 
-0.1) 

-0.3 
(-0.39, 
-0.2) 

0.253 
(0.216, 
0.29) 

0.14 
(-0.02, 
0.26) 

-0.31 
(-0.44, 
-0.18) 

-0.15 
(-0.28, 
-0.04) 

-0.22 
(-0.34, 
-0.12) 

0.186 
(0.151, 
0.221) 
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Fig. S1 Estimates of genetic variance for all traits. Dark shapes with 90% HPD intervals represent 

average G for each treatment. Smaller shapes represent the average for each cage within treatment.
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Table S2 Metrics for comparing evolvability among treatments and assays. See Methods S2 for the 

estimation procedure for all metrics. Presented are the posterior means for each metric with the 95% HPD 

(Highest Posterior Density intervals) in parentheses. Hom = Homogeneous, Mig = Migration. 

Assay Treatment Dimensionality 
(nD)  

Maximum Evolvability 
(emax) 

Total genetic variance 
(Trace of G) 

Cold Hom. cold 2.27 (2.01, 2.53) 0.0552 (0.0503, 0.0596) 0.0069 (0.0061, 0.0076) 
 Hom. hot 2.29 (2.00, 2.55) 0.0528 (0.0484, 0.0572) 0.0064 (0.0057, 0.0072) 
 Mig. cold 2.33 (2.03, 2.66) 0.0525 (0.0467, 0.0574) 0.0064 (0.0057, 0.0073) 
 Mig. hot 2.27 (1.95, 2.57) 0.0514 (0.0467, 0.0571) 0.0060 (0.0052, 0.0068) 
 Spatial 2.39 (2.04, 2.66) 0.0509 (0.0463, 0.0557) 0.0062 (0.0054, 0.0069) 
  Temporal 2.30 (2.05, 2.57) 0.0548 (0.0504, 0.059) 0.0069 (0.0063, 0.0076) 

Hot Hom. cold 2.34 (2.05, 2.66) 0.0494 (0.0442, 0.0553) 0.0057 (0.0049, 0.0065) 
 Hom. hot 2.16 (1.84, 2.48) 0.0523 (0.046, 0.0591) 0.0059 (0.0050, 0.0067) 
 Mig. cold 2.15 (1.84, 2.46) 0.0499 (0.0439, 0.0558) 0.0053 (0.0047, 0.0061) 
 Mig. hot 2.10 (1.81, 2.41) 0.0558 (0.049, 0.0623) 0.0065 (0.0055, 0.0073) 
 Spatial 2.02 (1.75, 2.29) 0.0506 (0.0458, 0.0557) 0.0052 (0.0044, 0.0059) 
  Temporal 2.07 (1.75, 2.41) 0.0536 (0.0462, 0.06) 0.0059 (0.0050, 0.0068) 
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Table S3 Matrix presenting the angles between gmax for each pairwise comparison of the treatments 

above the matrix diagonal (gray shading), and for g2 below the diagonal. Treatments are labelled within 

colored cells (Hom = Homogeneous, Mig = Migration). In the cold assay, gmax and g2 are conserved 

among all treatments. In the hot assay, however, gmax and g2 are in similar directions for all treatments, 

except spatial heterogeneity, which shows larger angles with all other treatments for both vectors of G.  

Assay   Hom. 
cold 

Hom. 
hot 

Mig. 
cold 

Mig. 
hot 

Spat-
ial 

Tem-
poral 

Cold  Hom. 
cold 

 17.3 4.1 3.3 4.6 14.0 

  Hom. 
hot 21.9  15.1 19.6 21.0 10.7 

  Mig. 
cold 6.1 22.7  5.3 7.6 14 

  Mig. 
hot 10.3 30.0 9.2  2.5 16.5 

  Spat-
ial 4.1 25.3 9.1 9.8  16.8 

    Tem-
poral 27.7 13.1 31.0 36.7 29.6  

Hot  Hom. 
cold 

 12.1 6.4 18.3 45.3 13.9 

  Hom. 
hot 7.0  7.6 19.7 40.2 13.8 

  Mig. 
cold 4.3 6.1  19.3 41.7 14.0 

  Mig. 
hot 14.3 20.3 18.0  59.8 5.9 

  Spat-
ial 45.5 40.5 42.1 59.7  53.9 

    Tem-
poral 18.6 25.1 20.7 16.8 55.2  
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Table S4 Summaries of the covariance tensor analyses that captured differences among G in the cold and 
hot assay temperatures. λ represents the amount of difference in genetic variance described by each 
eigenvector of eigentensor. Eigenvalue of S represents the amount of difference in genetic variance 
described by each eigentensor, and the proportion represents the proportion of the total difference in 
genetic variance. 

Assay Eigen-
tensor 

Prop- 
ortion 

Eigenvalue 
of S (90% 

HPD) 

Eigenvector 
of 

eigentensor 
λ	 Cent-

roid 
Line 
9-10 

Angle 
7-8-9 

Angle 
3-10-4 

Angle 
2-4-8 

Cold E1 0.32 1.54e-07  
(5.06e-08, 
2.62e-07) 

e1,1 -0.952 -0.03 -0.84 -0.38 0.38 -0.1 
   

e1,2 -0.27 0.08 0.34 -0.91 -0.1 0.21 
   

e1,3 0.139 0.48 -0.39 0.08 -0.61 0.48 
   

e1,4 -0.03 0.35 0.15 0.16 0.68 0.61 
   

e1,5 0.006 0.8 0.1 -0.03 0.1 -0.58 
 

E2 0.2 9.5e-08  
(1.26e-08, 
1.74e-07) 

e2,1 -0.904 0.04 -0.02 -1 -0.05 -0.01 
   

e2,2 0.363 -0.11 -0.95 0 0.31 -0.02 
   

e2,3 -0.222 0.16 -0.3 0.05 -0.83 0.44 
   

e2,4 0.034 -0.29 0.13 -0.04 0.36 0.88 
   

e2,5 -0.009 0.94 -0.02 0.02 0.29 0.19 
 

E3 0.14 6.53e-08  
(8.36e-09, 
1.24e-07) 

e3,1 -0.885 0.06 -0.72 -0.44 -0.49 0.2 
   

e3,2 0.405 -0.06 0.49 -0.79 0.12 0.34 
   

e3,3 0.222 -0.02 -0.44 -0.31 0.76 -0.37 
   

e3,4 -0.049 -0.03 -0.21 0.29 0.4 0.84 
   

e3,5 -0.004 1 0.06 -0.02 0.07 0.03 

Hot E1 0.57 4.37e-07  
(1.56e-07, 
6.85e-07) 

e1,1 -0.962 0 -0.94 0.13 -0.32 0.04 
   

e1,2 0.258 -0.12 -0.12 -0.98 -0.03 0.1 
   

e1,3 -0.092 -0.07 0.32 0.02 -0.91 0.24 
   

e1,4 -0.015 0.83 -0.01 -0.05 0.08 0.56 
   

e1,5 0.014 0.55 0.03 -0.15 -0.25 -0.79 
 

E2 0.12 9.58e-08  
(1.4e-08, 
1.72e-07) 

e2,1 0.858 0 -0.68 -0.64 -0.25 0.24 
   

e2,2 -0.51 0.03 0.7 -0.7 0.04 0.16 
   

e2,3 -0.051 0.82 0.11 0.13 -0.54 0.08 
   

e2,4 0.025 0.56 -0.18 -0.1 0.8 0.05 
   

e2,5 -0.014 -0.11 0.05 0.27 0.06 0.95 
 

E3 0.1 7.69e-08  
(1.41e-08, 
1.38e-07) 

e3,1 0.924 -0.06 -0.17 0.98 -0.06 -0.04 
   

e3,2 0.353 0.01 -0.46 -0.12 -0.84 0.26 
   

e3,3 -0.139 0.09 -0.78 -0.09 0.54 0.3 
   

e3,4 -0.043 0.99 0.1 0.07 -0.04 0.06 
   

e3,5 0.005 -0.1 0.38 0.1 0.06 0.91 
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Table S5 Univariate trait means measured for each population in both assays. Hom = Homogeneous, Mig 
= Migration. Numbers in parentheses represent one standard error. 

Assay Treatment Centroid line 9-10 angle  
7-8-9 

angle  
3-10-4 

angle  
2-4-8 

Cold 
Hom. cold 320.95 

(0.41) 
0.0286 

(0.00009) 
89.17 
(0.28) 

15.53 
(0.04) 

84.78 
(0.08)  

Hom. Hot 320.31 
(0.38) 

0.0293 
(0.00008) 

91.59 
(0.28) 

15.81 
(0.04) 

84.19 
(0.08)  

Mig. cold 319.41 
(0.36) 

0.0291 
(0.00008) 

89.91 
(0.25) 

15.65 
(0.03) 

84.44 
(0.08)  

Mig. hot 319.31 
(0.42) 

0.0288 
(0.00008) 

91.37 
(0.29) 

15.79 
(0.04) 

84.51 
(0.09)  

Spatial 321.48 
(0.41) 

0.0289 
(0.00008) 

89.76 
(0.27) 

15.75 
(0.04) 

84.8 
(0.08) 

  
Temporal 322.37 

(0.35) 
0.0288 

(0.00007) 
91.97 
(0.26) 

15.73 
(0.03) 

84.57 
(0.08) 

Hot 
Hom. cold 280.26 

(0.45) 
0.0288 

(0.00009) 
93.76 
(0.25) 

16.15 
(0.04) 

84.03 
(0.08)  

Hom. Hot 279.5 
(0.41) 

0.0295 
(0.00009) 

96.42 
(0.27) 

16.48 
(0.04) 

83.49 
(0.07)  

Mig. cold 278.37 
(0.41) 

0.0293 
(0.0001) 

94.61 
(0.24) 

16.27 
(0.04) 

83.52 
(0.08)  

Mig. hot 277.7 
(0.35) 

0.0289 
(0.0001) 

95.86 
(0.26) 

16.57 
(0.04) 

83.56 
(0.07)  

Spatial 278.69 
(0.4) 

0.0292 
(0.00009) 

95.09 
(0.24) 

16.39 
(0.04) 

83.83 
(0.07) 

  
Temporal 280.03 

(0.39) 
0.0289 

(0.0001) 
95.57 
(0.26) 

16.34 
(0.04) 

83.51 
(0.08) 
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Fig. S2 The direction of evolved changes in phenotype described more genetic variance than expected 

under the null distribution. Circles and credible intervals represent 90% HPD intervals. The observed 

distribution (black) represents the proportion of genetic variance, for each MCMC sample of G, that is 

described by evolution and plasticity. The random distribution (gray) represents the proportion of genetic 

variation described by random vectors for each of MCMC iteration of observed G. Evolved differences 

described a significantly greater proportion of genetic variance than the null. For the hot assay, 

differences between the observed and random distribution are significant at 90% HPD. By contrast, the 

direction of plastic changes in phenotype described very small proportions of genetic variance, which for 

temporal heterogeneity, was lower than expected under random sampling.  
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Table S6 Summary of Krzanowski’s common subspace analysis for the (a) cold and (b) hot assays. The 

top half of the table (this page) contains the analysis for mean G (the average calculated for each 

treatment), while the lower half (on the following page) contains the analysis for all 30 G-matrices (i.e. 

for all replicate cages). Eigenvectors of H (h1- h5) represent axes of shared genetic subspace between the 

matrices, with their associated eigenvalues representing how much the original matrices share the 

common subspace. Eigenvalues of H range from 0 to m (where m is the number of matrices), which 

means that the closer an eigenvalue of H is to m, the more the subspace is shared among the original 

matrices. For mean G, h1 represents the greatest amount of shared subspace, which is shared among all 

matrices because values of 5.9 (out of a possible 6 treatments), suggests that all treatments share the 

subspace identified by h1. Similarly, for G estimated on all 30 replicate cages, h1 has values of 26.3 (cold) 

and 24.8 (hot), suggesting that the subspace is common to almost of the matrices. Loadings represent how 

the linear combination of the original traits describe the subspace. θ is the angle between the subspace of 

each of the original treatments (listed for each row), and each of the eigenvectors describing the common 

subspace. Small angles show that h1 aligns closely with each of the treatments and almost all the replicate 

cages. 

 

 (a) Cold assay     (b) Hot assay    
 Mean G  Mean G 

 h1 h2 h3 h4 h5  h1 h2 h3 h4 h5 
Eigenvalue of 
H 5.9 5.31 0.76 0.02 0.01  5.85 5.66 0.46 0.02 0.01 

HPD 5.78, 
5.98 

4.61, 
5.85 

0.18, 
1.47 

0.01, 
0.03 

0.00,  
0.02   

5.69, 
5.97 

5.16, 
5.96 

0.08, 
1.09 

0.01, 
0.03 

0.00,  
0.03 

Trait loadings            
Centroid -0.02 0.00 0.11 -0.13 0.99  0.01 0.00 0.1 -0.57 0.81 
Line 9-10 -0.29 -0.93 0.22 0.05 -0.02  -0.67 0.69 0.27 0.05 0 
Angle 7-8-9 -0.96 0.28 -0.06 0.04 0.00  -0.7 -0.71 0.04 0.06 0.04 
Angle 3-10-4 0.00 -0.21 -0.95 0.17 0.13  -0.21 0.17 -0.95 0.04 0.15 
Angle 2-4-8 0.06 0.08 0.17 0.97 0.11   0.1 0.00 0.1 0.81 0.56 

θ            
Hom. cold 5.41 14.05 74.65 87.75 88  7.96 8.41 79.29 85.84 87.26 
Hom. hot 6.56 15.62 72.55 87.44 87.95  7.46 10.25 77.01 88.21 87.71 
Mig. cold 6.78 18.18 70.55 86.23 87.77  6.15 10.84 77.8 87.32 87.07 
Mig. hot 5.70 18.08 70.78 87.43 87.76  7.48 6.77 79.69 88.36 88.07 
Spatial 5.82 10.90 77.3 88.26 87.73  8.83 17.39 70.41 86.66 87.51 
Temporal 6.65 23.55 65.37 85.88 88.27   7.27 13.15 74.74 88.00.00 87.96 
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Table S6 (cont’d) 
 

 (a) Cold assay    (b) Hot assay    
 G for the Replicate cages  G for the Replicate cages 

 h1 h2 h3 h4 h5  h1 h2 h3 h4 h5 
Eigenvalue of 
H 26.27 20.48 12.44 0.46 0.36  24.76 23.02 11.27 0.55 0.40 

HPD 24.71, 
27.67 

18.21, 
23.07 

9.48, 
14.99 

0.29, 
0.65 

0.22,  
0.50   

23.31, 
26.39 

20.86, 
25.11 

8.35, 
13.82 

0.30,  
0.87 

0.23, 
0.63 

Trait loadings            
Centroid -0.02 0.00 -0.1 0.99 -0.11  0.01 0.00 -0.09 0.94 0.34 
Line 9-10 -0.45 -0.87 -0.19 -0.04 -0.05  -0.68 -0.66 -0.32 0.00 -0.06 
Angle 7-8-9 -0.89 0.45 0.05 -0.01 -0.04  -0.69 0.72 -0.01 0.03 -0.07 
Angle 3-10-4 -0.03 -0.18 0.96 0.08 -0.17  -0.23 -0.21 0.94 0.11 -0.05 
Angle 2-4-8 0.07 0.06 -0.14 -0.13 -0.98   0.11 0.00 -0.06 0.33 -0.94 

θ            
Hom. cold 1 21.28 37.65 42.98 82.53 84.91  27.05 35.72 42.17 80.2 83.14 
Hom. cold 2 18.79 24.52 57.43 82.61 84.95  10.96 16.51 73.02 82.83 82.97 
Hom. cold 3 14.15 63.52 23.20 83.90 82.42  27.30 39.95 35.12 84.05 83.06 
Hom. cold 4 9.13 27.48 60.66 85.36 86.78  25.74 14.83 61.38 82.43 82.71 
Hom. cold 5 11.74 16.82 69.21 85.14 86.75  12.10 19.01 67.42 85.26 85.34 
Hom. hot 1 17.54 35.25 48.06 83.35 84.42  14.15 42.79 43.21 83.88 84.67 
Hom. hot 2 15.40 28.27 55.57 85.18 84.95  31.56 17.64 53.18 82.10 83.80 
Hom. hot 3 12.01 32.62 55.67 83.01 84.52  18.63 30.97 49.94 87.05 85.25 
Hom. hot 4 16.97 31.83 51.09 86.10 83.56  17.70 31.9 52.94 81.08 84.00 
Hom. hot 5 16.73 28.52 56.35 81.58 85.67  17.83 12.89 68.31 84.04 86.04 
Mig. cold 1 29.13 40.58 33.66 85.28 84.79  36.85 37.63 33.55 77.90 82.02 
Mig. cold 2 7.89 39.76 49.56 85.51 85.58  11.24 16.87 71.41 82.84 85.47 
Mig. cold 3 14.03 21.67 64.03 83.81 84.87  31.67 48.48 21.41 84.07 84.61 
Mig. cold 4 35.64 30.37 37.86 80.04 83.28  7.62 13.00 78.86 85.59 81.53 
Mig. cold 5 11.00 30.29 57.73 84.28 84.80  22.54 15.35 63.48 80.72 86.25 
Mig. hot 1 16.37 30.38 56.86 81.82 82.00  25.97 8.98 62.53 85.77 85.36 
Mig. hot 2 22.59 49.63 29.31 83.39 84.13  9.29 11.22 76.12 85.23 87.28 
Mig. hot 3 17.68 22.97 59.22 83.00 86.07  43.23 35.34 23.61 84.55 85.78 
Mig. hot 4 12.13 22.14 65.57 83.05 84.96  16.12 29.94 54.69 82.25 85.89 
Mig. hot 5 24.95 33.13 44.48 82.37 83.35  45.23 21.23 34.91 83.26 85.52 
Spatial 1 18.33 16.78 65.32 84.67 83.14  29.23 23.65 48.71 85.65 83.59 
Spatial 2 19.93 61.28 22.07 83.18 79.71  9.13 20.14 68.88 83.61 86.15 
Spatial 3 33.39 21.26 45.89 86.28 85.69  27.18 49.83 28.24 82.31 80.56 
Spatial 4 8.33 10.31 78.26 84.46 86.74  19.39 30.20 54.61 83.15 81.02 
Spatial 5 19.61 37.39 45.32 80.93 85.58  10.14 24.35 64.74 84.04 84.01 
Temporal 1 8.04 41.28 48.44 85.05 84.48  27.45 16.65 57.03 85.54 86.92 
Temporal 2 26.81 17.82 55.33 86.09 83.52  24.67 50.65 28.58 80.61 84.40 
Temporal 3 13.25 39.92 46.19 83.96 85.71  15.47 20.75 63.00 85.79 84.48 
Temporal 4 21.25 10.25 65.95 87.17 86.02  21.50 22.15 57.82 83.75 84.50 
Temporal 5 17.02 52.02 32.23 83.61 84.83   10.97 16.19 70.83 86.19 85.87 
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Fig. S3 For G estimated as the mean of each treatment, and for all 30 matrices in an assay, the observed 

angle (black) between shared genetic subspace and phenotypic divergence are smaller than expected by 

the null distribution (gray). Credible intervals represent 90% HPD intervals. In the hot assay, the observed 

distribution does not overlap the null distribution at 87% and 90%, respectively for mean G and replicate 

G.
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Methods S1 Comparing G estimated as the mean for each treatment versus for each replicate cage  

To ensure that the estimates of G accurately represent genetic variance for each treatment, I calculated 

mean G for each treatment using two methods and then compared them to estimates of G for all the 

replicate cages within each treatment. First, I calculated G for all replicate cages (n=60 matrices) using 

equation 1 (as described in the main text) and then I estimated the average of all the replicate cages within 

each treatment. This produced 12 G-matrices (G1). With the second approach, I estimated mean G (n=12 

matrices) by including an additional random effect into equation 1, bk, which represents the kth replicate 

cage within each treatment (G2). To compare the two methods for estimating an average G, I first 

projected the observed eigenvectors of G1 and G2 through their posterior distributions using the matrix 

projection (from equation 3): V%&) =
𝒆'(
% 𝐆&'	𝒆'(
89(𝐆&')

, where the kth eigenvector of G estimated in the jth 

treatment is projected through the ith MCMC iteration. Tr represents the trace of G, which means that the 

projection yields the proportion of total genetic variance. I then used the same method to project the same 

eigenvectors (from both estimates of mean G) through the G-matrices of all replicate cages. If mean G 

accurately reflects the G-matrices of the replicate cages, then each eigenvector of G should describe a 

similar amount of genetic variance for the posterior distribution of mean G and the posterior distribution 

of G estimated for each of the replicate cages. Fig. S4 shows that the eigenvectors for both methods of 

estimating average G describe similar proportions of genetic variance for average G, and G estimated for 

all replicate cages. 

To ensure that differences captured in mean G are the same for both methods of estimating average G, I 

then used the covariance tensor analysis on G1, G2 and then incorporated the five replicate cages for each 

treatment. Fig. S5 shows that both methods for estimating an average G produce the same results, and 

that by incorporating G estimated for all the replicate cages, we can see that differences in G are driven 

by the spatially heterogeneous treatment in the hot assay (as reported in the main text), which is reflected 

by a consistent pattern shown by all replicate cages for this treatment (Fig. S5). 

 



 

	 48	

 
Fig. S4 Eigenvectors of average G (G1 and G2) describe a similar proportion of variance in the G-matrices estimated in the replicate cages.
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Fig. S5 Coordinates from the covariance tensor analysis that includes both estimates of average G (G1 

and G2), and the replicate cages (in gray). Both methods for estimating an average G produced the same 

results, and replicate cages were consistent within each treatment. 
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Methods S2 Estimation of a suitable null distribution to test for significant differences in G. 

To calculate a suitable null distribution for among-treatment differences in G, I used the approach 
outlined in the accompanying supplemental simulations and Morrissey et al. (2019). Each assay was 
analyzed separately. For each MCMC iteration of the observed array, I calculated the average G among 
treatments (representing no differences in G) and estimated breeding values for the entire pedigree. I then 
constructed the phenotypes around the breeding values by adding means and variance for each component 
of equation 1 (see supplementary code). I re-applied equation 1 on the newly constructed phenotypic data 
for each randomization. I used this approach because it estimates no differences in genetic variance 
among treatments, while keeping all other components the same as the observed models. This provides a 
suitable null distribution of no genetic differences among G-matrices. 

Given the extensive time taken for each model, I constructed phenotype datasets for 500 MCMC 
iterations of the observed model. I also reduced the total number of iterations but kept the thinning 
interval and burn-in the same as the observed model. This reduces the computational requirements while 
ensuring convergence is the same as the observed model. I saved 100 iterations from each model and 
calculated the mean G-matrix for each model – this means that differences in the posterior mean of the 
observed model needs to be compared to the null distribution created by taking the posterior mean of the 
500 models. I then constructed the null distribution for G as the difference among the treatments for the 
500 implementations (quantified using the covariance tensor approach). If the posterior mean of the 
observed model described greater differences among G than the null distribution, then there is evidence 
for significant differences among G following experimental evolution. Overall, I applied equation 1 to 
500 models for each of the observed G-matrices. 

 

Methods S3 Estimating metrics of multivariate evolvability 

To test whether G changed in response to the temperature and heterogeneity treatments, I first estimated 
three summary metrics of evolvability using the posterior distribution of G (Kirkpatrick 2009): 1) The 
effective number of dimensions (nD), defined as the sum of the eigenvalues divided by the first 
eigenvalue; 2) Maximum evolvability (emax), represented by the square root of the leading eigenvalue, 
and; 3) Total genetic variance, estimated as the sum of the variances (the trace) of G. Differences among 
G-matrices in any of these metrics would suggest changes in the amount or distribution of genetic 
variance. 
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