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Designing microbiomes for applications in health, bioengineering, and sustainability is intrinsically linked to a fundamental theoret-
ical understanding of the rules governing microbial community assembly. Microbial ecologists have used a range of mathematical
models to understand, predict, and control microbiomes, ranging from mechanistic models, putting microbial populations and their
interactions as the focus, to purely statistical approaches, searching for patterns in empirical and experimental data. We review
the success and limitations of these modeling approaches when designing novel microbiomes, especially when guided by (inevitably)
incomplete experimental data. Although successful at predicting generic patterns of community assembly, mechanistic and phe-
nomenological models tend to fall short of the precision needed to design and implement specific functionality in a microbiome. We
argue that to effectively design microbiomes with optimal functions in diverse environments, ecologists should combine data-driven
techniques with mechanistic models—a middle, third way for using theory to inform design.

Introduction
Microbiomes are complex systems, comprising multiple taxa interacting with their biotic and abiotic environment, and can be
found from inhospitable cold, heat, and acidity (1), to the familiar host-associated environments of humans, plants, and animals
(2). Across these environments, microbiomes modulate a broad range of functions, from biogeochemical cycles to host health
(3–6). This breadth of possible microbiome function has highlighted the potential for us to engineer microbiomes to produce
novel, beneficial outcomes, or even just to keep pace with the demands of a changing global environment (7). Humans as
engineers of microbiomes have a long history: with records going as far back as 10,000 years ago, human populations have
been developing fermented food and drink, including wine, beer, and dairy products (8), extending more recently to produce
biofuel, enhance treatment of infections and inflammatory conditions, increase crop yield, and waste-water treatment (9–12).
Microbial communities can exhibit emergent functions that no one microbe can perform, and there is also evidence for greater
stability and resilience of diverse consortia (13, 14). While we can quantify communities in unprecedented detail (15–18),
the question is whether we can go beyond merely documenting communities, and harness these data to inform design and
engineering of functionally-relevant microbiomes.

A brute-force search for novel or optimized functions is unlikely to be efficient—but theoretical frameworks have often
provided guiding principles in ecology and beyond, suggesting that the right theory might allow us to characterize the outcome
of microbiome assembly, and thus predict function. This interplay between prediction and theoretical modeling mirrors a
related goal in a seemingly distant area of science: calculating the scattering- or S-matrix in theoretical physics. The S-matrix
provides a framework for mapping initial particles and momenta to predict late-time outcomes following interactions among
those incoming particles. Although the component parts differ, this resembles the goal of mapping taxonomic and nutrient
initial conditions to late-time community function, at least in cases where there is a well-defined steady-state, and where
nutrient conditions themselves are not changing dramatically over time. Moreover, physicists calculating the S-matrix have
wrestled with questions similar to those tackled by microbiome scientists. Specifically, a key theme has been the balance
between deriving the S-matrix from specific, mechanistic assumptions in a given field theory, versus identifying general
principles underlying its structure that abstract away the details of these processes (19).

We will review several microbiome modeling approaches below, that in part reflect this analogy with calculating the S-matrix.
We propose that the difficulty in matching predictive power with available taxonomic, genomic, and metabolomic data will
likely require a re-thinking of modeling in ecology and the adoption of data-driven design and control alongside traditional
approaches. This may reveal principles of microbiome design that are independent of any specific theoretical model.

Mechanistic and Phenomenological Models
Models assuming pairwise interactions among microbial taxa (20–22) are characterized by a community matrix, A = {aij},
where the strength and the sign of the coefficient aij denotes the effect that species j has on the growth of species i. The
generalized Lotka-Volterra (gLV) model is the standard way to model pairwise interactions, and is able to accommodate many
kinds of observed behaviors: amensalism, commensalism, exploitation, competition, and mutualism; this flexibility as much as
anything else has positioned gLV as a foundational model in studying microbial communities. This approach can be extended
to include higher-order interactions (23–26) or to include the role of space (27). In particular, inspired by Robert May’s use of
random interaction matrices to probe the diversity-stability relationships in ecology, and using tools from physics of disordered
systems, random gLV models have been explored extensively to inform equilibria, community coexistence, stability, and
feasibility outcomes (21, 22, 28).

The gLV model has been used to make predictions for statistical patterns in microbiomes, as well as coarse-grained properties
like the dependence of community stability on community diversity. But the number of parameters required to model a specific
community grows quadratically with the size of the pool, and so a major challenge is posed by the number of experiments
needed to infer these parameters accurately. When considering in-vivo communities like the human gut microbiome, the
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required data suffers from non-uniformity of sampling times, and experimental noise, although studies have incorporated
various algorithms to address these issues (29–31). Many studies have applied gLV models to infer parameters for in-vitro
and in-vivo communities, and for explanation and prediction of community function (17, 22, 23, 31–34). Though when
community function is something that depends in a non-trivial way on species composition (for example, the production of a
metabolite), additional hypotheses must then be generated and tested for the relationship between composition and function,
and this mapping might well be idiosyncratic to a given community and context (17, 35–37). In summary, the strength of the
gLV model lies in the potential for explaining generic, statistical assembly patterns of microbiomes, and in making specific
predictions, but only when the diversity of a community is relatively small and the relationship between late-time taxonomic
composition and function can be independently estimated.

One of the main drawbacks of the gLV modelling framework is that it does not account for chemical mediators and resources
and metabolites—some of the key mechanisms underlying species interactions. As a result, gLV parameters inferred from
a system with a given resource and nutrient condition are unlikely to extend to arbitrarily-different resource environments.
Second, the addition of new taxa may change the effective strength of existing pairwise interactions through modification of
resources available to other species (38, 39). This makes pairwise models like the gLV unsuitable for design of consortia
whenever there are strong effects of this type. This issue has been addressed using adaptations of the classic MacArthur’s
consumer-resource model (40) that include explicit dynamics for both abiotic resources and species dynamics (41, 42). More
generally, chemically-mediated interactions via toxins and anti-microbial production (43) can also be included. Consumer-
resource models also hold a lot of promise in incorporating the various aspects of microbial metabolism. Constraints on and
flexibility of microbial metabolism leads to diverse phenotypes and behaviors of consumer-resource dynamics (44–51)

These additional mechanisms also generally increase the number of parameters, which makes accurate parameter inference
challenging. This issue is compounded by the fact that it is generally harder to measure and interpret resource concentrations.
These twin difficulties in fitting consumer-resource models mean that they have so far been used less often than gLV models
for parameter inference from experiments. More often these models have also been used to explain statistical patterns in
microbial communities, including stability-diversity relationships (41, 42, 52, 53), and qualitative patterns in large, varied data
such as the Human Microbiome and the Earth Microbiome Projects (53, 54). But as estimating metabolite concentrations
becomes more tractable, we expect a continuing move towards fitting consumer-resource model parameters using combined
resource and taxonomic data. Gowda et al (55) used a regression model to map gene content to consumer-resource model
parameters and then used the consumer-resource model to predict metabolite dynamics in consortia, while Ho et al (18) used a
coarse-grained consumer-resource model to characterize communities assembled from a 15-species pool. This work highlights
how conservative metabolomics and spent-media experiments pave the way for using coarse-grained CR models to make
predictions for community function.

In addition to the generalized Lotka-Volterra model and consumer-resource dynamics, more detailed metabolic models also
provide a way of understanding, designing, and controlling microbiomes. Consumer-resource models themselves can (at least
qualitatively) capture several more complex relationships relating to the uptake and processing of resources. But sequencing
across a broad taxonomic range means that we are able to map the precise metabolic pathways of many individual taxa (56–58).
Genome-scale metabolic models for individual taxa can be integrated to build models that capture metabolic functions in whole
communities and also summarize interactions between species (59–61). However, most of these consortia comprise only a
few strains, bringing scalability into question. While both consumer-resource and genome-scale models speak to the use of
resources, they lie at either end of a mechanistic spectrum. It could be that intermediate, coarse-grained descriptions of internal
metabolism might provide a bridge, trading off data overhead (the potentially prohibitive requirements for appropriate training
data) and mechanistic accuracy. Metabolically informed consumer-resource models can give insights into small consortia,
correctly capturing dynamics and interaction mechanisms (62–66).

In summary, every mechanistic model we know of has its drawbacks, centering around difficulties in accurately formulating
and fitting these models given limited data. The full spectrum of mechanisms which underpin microbiome stability also
includes spatial structure and dynamics resulting from spatial heterogeneity, adding further complexity to the application of
these models. Any more exhaustive range of mechanistic models would have many of the same (or exacerbated) issues of data
overhead and model specification.

Data-driven modelling and model-free approaches
Mechanistic models serve as obvious starting points to build an architecture for microbiomes, but have clear limitations.
Integration of multiple approaches may provide a key step needed for effective design and control of microbiomes. For
example, Brunner and Chia (67) combine pairwise genome-scale modeling with generalized Lotka-Volterra equations in the
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context of engraftment of probiotics in the human gut microbiome. The effectiveness of this particular approach rests on two
inputs: using previously-published GEMs or genomes to build a qualitative, backbone network of possible microbe-microbe
interactions, and then inferring quantitative gLV parameters on this interaction network.

Moving beyond this kind of gluing together different types of mechanistic approaches, there has also been a trend to employ
statistical and machine learning methods for predicting outcomes for a specific microbiome composition, without any reference
to the specific mechanisms underlying those outcomes. We think of these as data-driven, or model-free approaches, meaning
that there is no specific model choice invoked to structure the predictions being made. On the other hand, there clearly are
choices being made in order to build these statistical predictions, even if these choices are not biologically-motivated, and this
has led to a range of distinct statistical methods being used to make predictions for microbiomes.

For exampe, Baranwal et al (24) have shown that a variant of recurrent neural networks (RNN-LSTM) trained on temporal data
can outperform a generalized Lotka-Volterra model, especially when tested on data from a simulated model with higher-order
interactions. That Lotka-Volterra models cannot recapitulate higher order interactions might not be surprising, but the success
of the the neural network approach was not guaranteed either, and yet made it possible to predict multiple community functions,
primarily concentrations of short chain fatty acids, along with the abundances of species in a 25-species dataset, generated in
vitro. In the related context of predicting colonization success of a given strain, mechanism-agnostic approaches like logistic
regression, random forest regression, and compositional neural nets have also been used to make successful predictions (68).
It has been proposed that more generally we may be able to guide design of communities and understand co-variation in
community composition using generative models (69), and a range of methods have been employed to predict (70–73) and
understand interactions amongst microbes (74).

Despite this promising array of methods, the single most highlighted downside to data-driven methods may be that our
level of understanding is limited, and biological interpretability is compromised. That is, we might be able to predict
outcomes successfully within a given parameter range, but we do not know why we are predicting these well, or where this
prediction might begin to break down. An important feature of these approaches has been the degree to which predictions
are constrained in order to bake in biologically sensible outcomes (75). These include obvious constraints, like ensuring that
species abundances are non-negative and species which were absent in an assemblage are not predicted to be present in the
steady-state outcome. Similarly, when the target variable for prediction is a metabolite, the target value can also be constrained
by known biochemical limits and stoichiometry. For interpretability, LIME (76) and SHAP (77) have been used to partially
address this issue by building post-hoc interaction networks, after the machine learning has been carried out. This approach
can thus provide some insight into biological mechanisms (78). Even so, these models may need to be tailored for the specific
datasets they were built for, and thus require overhauling when translating to other data, undermining their generality.

The Middle Ground
Recent work has made progress using statistical approaches which straddle the divide between mechanistic models and
statistical learning. The central object of interest addressed so far in these approaches is the ecological landscape. Inspired
by landscapes in evolutionary biology which map genotypes to phenotypes (79, 80), these ecological landscapes map
initial community composition to steady-state abundances and functions. Community landscapes have been defined and
studied in multiple recent papers, showing that it may be possible to efficiently navigate this landscape to design microbial
communities (81–83).

What exactly defines the ‘middle-ground’-ness of this kind of landscape thinking? First, the object of interest is fundamentally
biological, given that the effect of individual taxa on other taxon abundances, and/or community function, naturally emerges
from the landscape framework. Thus, a certain kind of biological interaction is inherently part of this description. Further,
multiple studies demonstrate that across a variety of environments, both abundances and functions at steady-state can be
predicted from species presence/absence data (84–87), and these predictions do not rest on the assumption of any particular
mechanistic framework.

The success of these approaches show that microbial landscapes are highly constrained, with only a few strong interactions.
This signal of sparsity in the landscape interaction space, akin to sparse higher-order epistasis in protein and genomics datasets
(88), can be leveraged to infer entire landscapes from limited experimental data using regression techniques with appropriate
weightings (86). We think that these signatures of sparsity may be used to a) aid design of experiments, b) engineer desirable
microbial communities, c) inform and refine mechanism and interaction based models like CR and gLV, and d) define the
role of environmental heterogeneity when probing the same sets of species across habitats. Further development of these
approaches may generalize the input-output map to incorporate environmental conditions and nutrient availability, alongside
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taxonomic composition, as part of the model input, to predict community properties as an output. The landscape might then
incorporate regimes where nutrients determine function independent of taxonomy (44), regimes where taxonomy is key (86),
and regimes where both act in concert to determine function.

On the other hand, several challenges remain for the landscape framework and the middle-ground. The most obvious is that
the landscape has so far been treated as a map from initial composition to a steady-state—a description that inspired our S-
matrix analogy in the introduction above. But several studies show that steady-states may not be guaranteed, even in the very
long-term (90), or typical for microbial communities (91, 92). Thus whether this approach can be extended to incorporate
those situations will be key for its generality. Another complication is that even if environmental conditions and nutrient
availability are successfully incorporated into the landscape approach, these too may be highly variable over time. The success
of middle-ground approaches may lie in thinking of them as limiting cases. Or, it could be that the landscape thinking explored
in recent papers turns out to be just one corner of the middle-ground, and that there may be many other approaches that combine
interpretability alongside statistical tractability.

Discussion
Approaches to the control and design of microbiomes with optimal functions must wrestle with the question of what is
important: no single model can capture and integrate the complexity posed by all the fluctuating biotic and abiotic components
of an ecosystem. Although phenomenological and mechanistic models like the generalized Lotka-Volterra and the consumer-
resource models can be, and have been used to design and test functionally beneficial communities, their success in making
accurate predictions is compromised by either model limitations or the number of parameters to fit. This means that models
like generalized Lotka-Volterra, consumer-resource models, and even metabolic models mostly enjoy success when employed
to understand and explain statistical patterns of communities, rather than precise predictions of function—at least in cases
where these communities comprise large numbers of diverse taxa. On the other hand, approaches which rely on machine
learning methods tend to sideline mechanisms and hence may not be straightforwardly translated to datasets beyond those they
were developed for. In between these two sets of approaches, methods which rely on finding low-dimensional representations
of microbial community-function landscapes may prove to be useful and worthy of further exploration.

We think that some recent successes lay out a potential roadmap, integrating traditional modeling and statistical learning to
understand, predict, and design microbiomes. The key here may be to find the right unit of analysis. Coarse-grained taxonomic
units, or functional groups, will likely play a role in making microbiome analysis tractable. Although this idea has been
around for a while in ecology, it may need to be revisited and re-hauled in the light of importance of microbial metabolism and
consumer-resource dynamics. These suggest that we may need to go beyond just finding the right taxonomic units: we will
likely need to identify coarse-grained modules of consumers and resources (18), encoding the key processes, not just the key
players in a microbial community. In short, we need to identify functional groups in natural communities using methods that
go beyond taxonomy and phylogeny (93).

The end-point of this back-and-forth might resemble progress in other fields. The particle physics S-matrix was at one
point proposed to be uniquely determined by fundamental principles (94). Later, it was thought of as predictable, but only
given knowledge of the specific combinations of symmetries and particles in nature, and modeled using the language of
field theory (95). While now the S-matrix is sometimes thought of again as an object of study in its own right, with certain
fundamental features that are independent of any specific, mechanistic models (19). The map from input nutrients and taxa
to late-time community function might turn out to be the S-matrix of microbiome ecology. Understanding this input-output
map may similarly benefit from back-and-forth between mechanistic models and the identification of fundamental, inevitable
structures. Simplifying features in the composition-function landscape certainly suggest that there may be robust rules that
govern this microbial S-matrix. But it could also be that we will only be able to leverage those rules for microbiome design if
we formulate microbiome composition and dynamics in the right language, and using the right variables.
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Annotations
• 18 * This study found that resource competition shapes ecological outcomes in a synthetic community of 15 gut strains

derived from humanized mice. They demonstrate how a coarse-grained consumer-resource model can be developed
from supernatant screening and untargeted metabolomics data. This model was then successfully employed to predict
abundances of strains in various assemblages.

• 65 ** This study highlights how genome content information can be applied to predict coarse-grained descriptors of a
community, in this case, the preference for glycolytic versus gluconeogenic substrates in a community of 186 bacteria on
140 carbon sources. This description of the community in terms of preference for either sugars or acid may help provide
insights into interactions within this bacterial community.

• 66 ** This study shows that patterns in community compositions can be discerned by linking shared metabolic traits and
substrate similarity. This leads to successful predictions of community compositions in novel environments.

• 81 ** This study develops upon, in detail, the idea of structure-function landscapes for microbiomes, inspired from fitness
landscapes in evolutionary biology. It links features of a community, like niche overlap between its members, with the
ruggedness of the corresponding structure-function landscape.

• 85 ** This study provides a middle-ground approach to study community functions and the structure-function land-
scape. They demonstrate for various synthetic microcosms that the structure-function landscape is smooth, which makes
function prediction possible from relatively low number of observed data-points.

• 86 ** This study provides a middle-ground approach to study community abundances and functions and the structure-
function and community- composition landscape. They show that the low ruggedness of these landscapes translates to
dominance of effective, low-order interactions amongst the community members. This observation was consequently
used to predict abundances and functions using a method that down-weighs higher-order interactions.
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