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Designing microbiomes for applications in health, bioengineering, and sustainability is intrinsically linked to a fundamental theoret-
ical understanding of the rules governing microbial community assembly. Microbial ecologists have used a range of mathematical
models to understand, predict, and control microbiomes, ranging from mechanistic models, putting microbial populations and their
interactions as the focus, to purely statistical approaches, searching for patterns in empirical and experimental data. We review
the success and limitations of these modeling approaches when designing novel microbiomes, especially when guided by (inevitably)
incomplete experimental data. Although successful at predicting generic patterns of community assembly, mechanistic and phe-
nomenological models tend to fall short of the precision needed to design and implement specific functionality in a microbiome. We
argue that to effectively design microbiomes with optimal functions in diverse environments, ecologists should combine data-driven
techniques with mechanistic models—a middle, third way for using theory to inform design.

Introduction

Microbiomes are complex systems, comprising multiple taxa interacting with their biotic and abiotic environment, and can be
found from inhospitable cold, heat, and acidity (1), to the familiar host-associated environments of humans, plants, and animals
(2). Across these environments, microbiomes modulate a broad range of functions, from biogeochemical cycles to host health
(3-6). This breadth of possible microbiome function has highlighted the potential for us to engineer microbiomes to produce
novel, beneficial outcomes, or even just to keep pace with the demands of a changing global environment (7). Humans as
engineers of microbiomes have a long history: with records going as far back as 10000 years ago, human populations have been
developing fermented food and drink, including wine, beer, and dairy products (8), extending more recently to produce biofuel,
enhance treatment of infections and inflammatory conditions, increase crop yield, and waste-water treatment (9, 10, 18, 19).
Microbial ommunities can exhibit emergent functions that no one microbe can perform, and there is also evidence for greater
stability and resilience of diverse consortia (12, 13). While we can quantify communities in unprecedented detail(14—17),
the question is whether we can go beyond merely documenting communities, and harness these data to inform design and
engineering of functionally-relevant microbiomes.

A brute-force search for novel or optimized functions is unlikely to be efficient. Theoretical frameworks have often provided
guiding principles in ecology and beyond, suggesting that the right theory might allow us to characterize the outcome of micro-
biome assembly, and thus predict function. The interplay between prediction and theoretical modeling mirrors a related goal
in a seemingly distant area of science: calculating the scattering- or S-matrix in theoretical physics. The S-matrix provides a
framework for mapping initial particles and momenta to predict late-time outcomes following interactions among those incom-
ing particles. While the component parts differ, this resembles the goal of mapping taxonomic and nutrient initial conditions
to late-time community function. We’ll review several microbiome modeling approaches below (20-23). But the difficulty
in matching predictive power with available taxonomic, genomic, and metabolomic data means that we will likely require
a re-thinking of modeling in ecology, and potentially need to embrace data-driven design and control alongside traditional
approaches. This may reveal principles of microbiome design that are independent of any specific theoretical model.

Mechanistic and Phenomenological Models

Models assuming pairwise interactions among microbial taxa (24-26) are characterized by a community matrix, A = {a;;},
where the strength and the sign of the coefficient a;; denotes the effect that species j has on the growth of species i. The
generalized Lotka-Volterra (gLV) model is the standard way to model pairwise interactions, and is able to accommodate many
kinds of observed behaviors: amensalism, commensalism, exploitation, competition, and mutualism; this flexibility as much as
anything else has positioned gLV as a foundational model in studying microbial communities. This approach can be extended
to include higher-order interactions (27-30) or to include the role of space (31). In particular, inspired by Robert May’s use of
random interaction matrices to probe the diversity-stability relationships in ecology, and using tools from physics of disordered
systems, random gLV models have been explored extensively to inform equilibria, community coexistence, stability, and
feasibility outcomes (25, 26, 32).

The gLV model has been used to make predictions for statistical patterns in microbiomes, as well as coarse-grained properties
like the dependence of community stability on community diversity. But the number of parameters required to model a specific
community grows quadratically with the size of the pool, and so a major challenge is posed by the number of experiments
needed to infer these parameters accurately. When considering in-vivo communities like the human gut microbiome, this
data suffers from non-uniformity of sampling times, and experimental noise, although studies have incorporated various
algorithms to address these issues (33—35). Many studies have applied gLV models to infer parameters for in-vitro and in-vivo
communities, and for explanation and prediction of community function (17, 26, 27, 35-38). Though when community
function is something that depends in a non-trivial way on species composition (for example, the production of a metabolite)
additional hypotheses must then be generated and tested for the relationship between composition and function, and this
mapping might well be idiosyncratic to a given community and context. In summary, the strength of the gLV model lies
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in the potential for explaining generic, statistical assembly patterns of microbiomes, and in making specific predictions, but
only when the diversity of a community is relatively small and the relationship between late-time taxonomic composition and
function can be independently estimated.

One of the main drawbacks of the gL.V modelling framework is that it does not account for chemical mediators and resources
and metabolites—some of the key mechanisms underlying species interactions. As a result, gLV parameters inferred from
a system with a given resource and nutrient condition are unlikely to extend to arbitrarily-different resource environments.
Second, the addition of new taxa may change the effective strength of existing pairwise interactions through modification of
resources available to other species (39, 40). This makes pairwise models like the gLV unsuitable for design of consortia
whenever there are strong effects of this type. This issue has been addressed using adaptations of the classic MacArthur’s
consumer-resource model (41) that include explicit dynamics for both abiotic resources and species dynamics (42, 43). More
generally, chemically-mediated interactions via toxins and anti-microbial production (44) can also be included. Consumer-
resource models also hold a lot of promise in incorporating the various aspects of microbial metabolism. Constraints on and
flexibility of microbial metabolism leads to diverse phenotypes and behaviors of consumer-resource dynamics.

These additional mechanisms also generally increase the number of parameters, which makes accurate parameter inference
challenging. This issue is compounded by the fact that it is generally harder to measure and interpret resource concentrations.
These twin difficulties in fitting consumer-resource models means that they have so far been used less often than gLV models
for parameter inference from experiments. More often these models have also been used to explain statistical patterns in
microbial communities, including stability-diversity relationships (42, 43, 45, 46), and qualitative patterns in large, varied data
such as the Human Microbiome and the Earth Microbiome Projects (46, 47). But as estimating metabolite concentrations
becomes more tractable, we expect a continuig move towards fitting consumer-resource model parameters using combined
resource and taxonomic data. Gowda et al (48) used a regression model to map gene content to consumer-resource model
parameters and then used the consumer-resource model to predict metabolite dynamics in consortia, while Ho et al (16) used a
coarse-grained consumer-resource model to characterize communities assembled from a 15-species pool. This work highlights
how conservative metabolomics and spent-media experiments pave the way for using coarse-grained CR models to make
predictions for community function.

In addition to the generalized Lotka-Volterra model and consumer-resource dynamics, more detailed metabolic models
also provide a way of understanding, designing, and controlling microbiomes. Consumer-resource model themselves have
successfully captured and explained the presence of auxotrophy as a stabilizing force in microbiomes, how diauxic shifts
explain coexistence, and the behaviors of slow growing communities. But sequencing across a broad taxonomic range
means that we are able to map the precise metabolic pathways of many individual taxa. Genome-scale metabolic models for
individual taxa can be integrated to build models that capture metabolic functions in whole communities and also summarize
interactions between species. However, most of these consortia comprise only a few strains, bringing scalability into question.
While both consumer-resource and genome-scale models speak to the use of resources, they lie at either end of a mechanistic
spectrum. It could be that intermediate, coarse-grained descriptions of internal metabolism might provide a bridge, trading off
data overhead (the potentially prohibitive requirements for appropriate training data) and mechanistic accuracy. Metabolically
informed consumer-resource models can give insights into small consortia, correctly capturing dynamics and interaction
mechanisms (20, 49-52)

In summary, every mechanistic model we know of has its drawbacks, centering around difficulties in accurately formulating
and fitting these models given limited data. The full spectrum of mechanisms which underpin microbiome stability also
includes spatial structure and dynamics resulting from spatial heterogeneity, adding further complexity to the application of
these models. Any more exhaustive range of mechanistic models would have many of the same (or exacerbated) issues of data
overhead and model specification.

Data-driven modelling and model-free approaches

Mechanistic models serve as excellent starting points to make sense of microbiomes, but have these clear limitations. Integra-
tion of these models with other approaches may provide a key step needed for effective design and control of microbiomes.
For example, it is possible to combine pairwise genome-scale models with generalized Lotka-Volterra models, as shown
recently in the context predicting engraftment of probiotics in the human gut microbiome (53). A broad range of other
machine learning and statistical methods have also been used to analyze and predict microbiome composition and function.
In the context of colonization prediction, mechanism-agnostic approaches like logistic regression, random forest regression,
and a compositional neural net have been used (23). It may also be possible to guide design of communities and understand
co-variation in host phenotypes and community compositions using generative models that are based off of mechanistic



frameworks like the consumer-resource model (54). A way to improve model performance, wherever possible, is to physically
constrain the model architecture to allow for biologically sensible outcomes (55). These include obvious constraints, like
ensuring that species abundances are non-negative and species which were absent in an assemblage are not predicted to be
present in the steady-state outcome. When the target variable for prediction is a metabolite, the target value can also be
constrained by known biochemical limits and stoichiometry. Furthermore, search for low-dimensional representation of data
via auto-encoders (56) or using graph neural networks that build on microbial interactions as a network (57) may be used be
employed for prediction of community structures. This area current lacks guiding principles, but certainly a range of methods
have been employed to predict (58—61) and understand interactions amongst microbes (62).

The downside to ML-based and deep learning methods is that interpretability might be compromised—we might be able to
predict outcomes within a given parameter range, but we don’t know why we are predicting these well, or where this prediction
might begin to break down. Post-hoc methods like LIME (63) and SHAP (64) have been used to partially address this issue by
building interaction networks, and thus providing both data stratification and insights on biological mechanisms (65). Even
so, these models may be tailored for the specific datasets they were built for, and maybe need to be re-hauled in terms of
hyperparameter tuning or model architecture when translating to other data, undermining their robustness.

Recent work has made progress using ‘middle-ground’, statistical approaches which straddle the divide between mechanistic
models and deep learning methods. To this end, community-function and community abundance landscapes have been
defined and studied (66—68). Inspired by fitness landscapes in evolutionary biology which map genotypes to phenotypes,
these ecological landscapes map community assembly to steady-state composition and function. With this mapping between
composition and function, it has been possible to efficiently navigate the landscape of functions looking for functional
optima. Within the scope of this kind of ‘landscape thinking’, studies demonstrate that across a variety of environments,
both abundances and functions at steady-state can be predicted from species presence/absence data (69, 70). The success of
these approaches suggest that microbial community assembly is constrained: with only a few effective, statistical interactions.
These regression models also show signals of sparsity in the landscape interaction space, akin to sparse higher-order epistasis
in protein and genomics datasets (71). This sparsity of higher-order statistical interactions can be leveraged to infer entire
landscapes from limited experimental data using regression techniques with weights. We think that these signatures of sparsity
may be used to a) aid design of experiments, b) inform and refine mechanism and interaction based models like gLV and
CR, and c) define the role of environmental heterogeneity when probing the same sets of species across habitats. Further
development of these approaches may need to generalize the input-output map to incorporate environmental conditions and
nutrient availability, along side taxonomic composition, as part of the ‘input’, leading to community function as an output. The
landscape might then incorporate regimes where nutrients determine function independent of taxonomy (72), regimes where
taxonomy is key (70), and regimes where both act in concert to determine function.

Discussion

Approaches to the control and design of microbiomes with optimal functions must wrestle with the question of what’s impor-
tant: no single model can capture and integrate the complexity posed by all the fluctuating biotic and abiotic components of an
ecosystem. While phenomenological and mechanistic models like the generalized Lotka-Volterra and the consumer-resource
models can be, and have been used to design and test functionally beneficial communities, their success in making accurate
predictions is compromised by either model limitations or the number of parameters to fit. This means that models like
generalized Lotka-Volterra, Consumer-resource models, and even metabolic models mostly enjoy success when employed to
understand and explain statistical patterns of communities, rather than precise predictions of function—at least in cases where
these communities comprise large numbers of diverse taxa. On the other hand, approaches which rely on machine learning
methods tend to sideline mechanisms and hence may not be straightforwardly translated to datasets beyond those they were
developed for. In between these two sets of approaches, methods which rely on finding low-dimensional representations of
microbial community-function landscapes may prove to be useful and worthy of further exploration.

We think that some recent successes lay out a potential roadmap, integrating traditional modeling and statistical learning to
understand, predict, and design microbiomes. The key here may be two-fold: first, identifying the right units of analysis.
Coarse-grained taxonomic units, or functional groups, will likely play a role in making microbiome analysis tractable. But
the importance of metabolism and consumer-resource dynamics suggests that we may need to go beyond just finding the
right taxonomic units: we will likely need to identify coarse-grained “modules” of consumers and resources, encoding the
key processes, not just the key players in a microbial community. In short, we need to identify functional groups in natural
communities using methods that go beyond taxonomy and phylogeny.

The end-point of this back-and-forth might resemble progress in other fields. The particle physics S-matrix was at one
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point proposed to be uniquely-determined by fundamental principles (73). Later, it was thought of as predictable, but only
given knowledge of the specific combinations of symmetries and particles in nature, and modeled using the language of
field theory (74). While now the S-matrix is sometimes thought of again as an object of study in its own right, with certain
fundamental features that are independent of any specific, mechanistic models (75). The map from input nutrients and taxa
to late-time community function might turn out to be the S-matrix of microbiome ecology. Understanding this input-output
map may similarly benefit from back-and-forth between mechanistic models and the identification of fundamental, inevitable
structures. Simplifying features in the composition-function landscape certainly suggest that there may be robust rules that
govern this microbial S-matrix. But it could also be that we will only be able to leverage those rules for microbiome design if
we formulate microbiome composition and dynamics in the right language, and using the right variables.

Author Contribution Statement: All authors contributed equally to this manuscript.
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Annotations

* 16 * This study found that resource competition shapes ecological outcomes in a synthetic community of 15 gut strains
derived from humanized mice. They demonstrate how a coarse-grained consumer-resource model can be developed
from supernatant screening and untargeted metabolomics data. This model was then successfully employed to predict
abundances of strains in various assemblages.

e 20 ** This study highlights how genome content information can be applied to predict coarse-grained descriptors of a
community, in this case, the preference for glycolytic versus gluconeogenic substrates in a community of 186 bacteria on
140 carbon sources. This description of the community in terms of preference for either sugars or acid may help provide
insights into interactions within this bacterial community.

7



52 ** This study shows that patterns in community compositions can be discerned by linking shared metabolic traits and
substrate similarity. This leads to successful predictions of community compositions in novel environments.

66 ** This study develops upon, in detail, the idea of structure-function landscapes for microbiomes, inspired from fitness
landscapes in evolutionary biology. It links features of a community, like niche overlap between its members, with the
ruggedness of the corresponding structure-function landscape.

69 ** This study provides a middle-ground approach to study community functions and the structure-function land-
scape. They demonstrate for various synthetic microcosms that the structure-function landscape is smooth, which makes
function prediction possible from relatively low number of observed data-points.

70 ** This study provides a middle-ground approach to study community abundances and functions and the structure-
function and community- composition landscape. They show that the low ruggedness of these landscapes translates to
dominance of effective, low-order interactions amongst the community members. This observation was consequently
used to predict abundances and functions using a method that down-weighs higher-order interactions.



