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Three Paths Through the Levels of Selection

[A] generation has grown up, especially in America, that scatters the name
“group selection” around like confetti. It is littered over all kinds of cases that
used to be (and by the rest of us still are) clearly and straightforwardly
understood as something else, say kin selection. (Dawkins, 1976/2006, p. 297)

[W]hen everything that was ever called group selection can now be described in
terms of inclusive fitness theory, it is time to take stock of the original empirical
issues at stake. (D. S. Wilson & Wilson, 2007, p. 337)

At which levels of social organization does natural selection operate: the gene, the
individual, or the group? This question has fueled one of the most enduring and
acrimonious debates in all of evolutionary biology, and the answer is important because, to
fully characterize an adaptation, we need to know the forces that shaped it. If gene-,
individual-, and group-level selection are distinct processes, then their products will be
distinct as well.

The suggestion that there may be more than one level of selection dates back to
Darwin’s own writing, and Fisher, Haldane, and Wright each explored the idea, albeit
briefly, in the early days of the Modern Synthesis (Darwin, 1859, 1871; Fisher, 1930;
Haldane, 1932; Wright, 1931). But the debate truly came to life sixty years ago, when
Wynne-Edwards (1962) proposed that organisms were designed by a process of group-level
selection to “homeostatically” regulate reproduction, say, or oust group members “in order
to retrieve the correct balance between population-density and resources” (p. 9).
Maynard Smith (1964) and Williams (1966) took exception to this idea, publishing sharp
critiques of it and, more broadly, of the likelihood that organisms have been designed to
act for the good of their groups. It was against this backdrop that Hamilton (1963, 1964)
introduced inclusive fitness theory—also known as kin selection—an explanation for the
evolution of social behavior that operates at the individual level, and Dawkins (1976/2006)
advanced the gene’s-eye view, a perspective that casts the gene “as the nearest thing we
have to a fundamental, independent agent of evolution” (p. 44). Still, it wasn’t long before
group-level selection arguments began to resurface in more sophisticated forms (Hamilton,
1975; Price, 1972; D. S. Wilson, 1975).

Since then, opinions have become spirited and consensus seems elusive. Indeed, the
quotations at the top of this chapter testify to the remarkable polarity of views. Whereas
some aver that group-level selection is not a useful concept, and should be discarded in
favor of lower-level theories such as kin selection, others assert that kin selection is just a
special case of group-level selection, and only a hierarchical approach gives the whole
picture.

To grapple with this, scholars have travelled three paths through the levels of
selection. There is the discursive path, which takes premises or assumptions about selection
and adaptation and constructs logical, but informal, arguments from them. There is the
statistical path, which takes formal statistical methods and interprets the levels of selection
through them. And there is the causal path, only recently forged, which takes knowledge of
causal relationships in biological systems and formalizes this to determine both the level of
selection and the appropriate statistical approach to use in its analysis. I suggest it is this
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third path that provides a clear way through—allowing us to conclude that, for a given
trait, there is a proper level of selection, and it is the one that is causally apt (Birch &
Okasha, 2015; Godfrey-Smith & Kerr, 2013; Okasha, 2006, 2016; Sober, 1984).

Before we tour these paths, two brief notes. First, this analysis is greatly inspired
by Okasha (2006), and a reader wishing to understand the levels of selection debate in
greater depth would do well to turn there. Second, I have devoted quite a bit of space to
unpacking the statistical and causal methods of the levels of selection, as evolutionary
psychologists are rarely trained in them, but they are needed to understand the debate.
The cost, however, is that I do not also have the space to cover some of their wider
applications, such as species selection and cultural evolution. Nevertheless, I hope to make
the traditional gene-organism-group case general enough that it can be ported to other
domains without too much difficulty.

The Discursive Path

Benefits to groups can arise as statistical summations of the effects of individual
adaptations.... As a very general rule, with some important exceptions, the
fitness of a group will be high as a result of this sort of summation of the
adaptations of its members. On the other hand, such simple summations
obviously cannot produce collective fitness as high as could be achieved by an
adaptive organization of the group itself. (Williams, 1966, pp. 16–17)

Evolutionary theory is heavily mathematized (Otsuka, 2019). But behind every
equation is a premise or assumption from which discursive arguments can be built or
dismantled. These sorts of verbal accounts have paved the way for many important ideas in
evolutionary biology. Darwin, for instance, developed the theory of evolution by natural
selection with just a few key premises: organisms vary in their traits; parents pass their
traits on to their offspring; resources are limited, leading to competition for survival and
reproduction; and some traits are better suited than others to such competition. If these
premises are true, then selection necessarily follows.

A closely related premise, also likely true, is that natural selection is a causal
process.1 This claim is encapsulated in the following definition of selection, which I credit
to Martin Daly: “the differential reproduction of types as a consequence of their
differences.” And it is clearly what Darwin (1859, p. 61) had in mind when he wrote “any
variation, however slight and from whatever cause proceeding, if it be in any degree
profitable to an individual of any species, in its infinitely complex relations to other organic
beings and to external nature, will tend to the preservation of that individual, and will
generally be inherited by its offspring.” Put simply, traits are selected for because of their
“profitable” effects on fitness.

1 Surprisingly, this position is controversial in certain circles. The glossaries of many popular evolution
textbooks contain tortured definitions of natural selection that appear intent on avoiding any mention of
the effect of phenotypes on fitness (Gregory, 2009). Moreover, a school of philosophy has recently cropped
up arguing that contemporary evolutionary theory only traffics in statistical relationships, not causal ones
(reviewed in Otsuka, 2016b, 2019). Attempts to strip the theory of natural selection of its causal
assumptions are misguided: selection has predictive and explanatory power precisely because it makes
these assumptions (Otsuka, 2019).
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The historical integration of Darwinian and Mendelian views made it clear that,
with respect to natural selection, genes are a beginning and fitness is an end. Hence, traits
undergoing selection will tend to be heritable, which is to say that variance in genes causes
variance in traits, at least in part. Likewise, traits undergoing selection will tend to affect
the gene’s fitness, leading to replication. So if selection is operating on a heritable trait,
then it will in some sense be selecting genes and the trait will in some sense be serving the
gene’s fitness. This argument is the heart of the gene’s-eye view of evolution: that genes, as
near-immortal “replicators” being reproduced from one generation to the next, constitute
the proper unit of selection and deserve our attention, whereas organisms, as mere
transitory “vehicles” for the genes, are only a distraction (Ågren, 2021; Dawkins, 1982,
1976/2006).

Nevertheless, the phrase “in some sense” is doing a lot of work in the preceding
paragraph. The causal story of selection and adaptation depends on more than its
beginning (genes) and its end (fitness), and glossing over these details can lead us to some
awkward conclusions. For instance, altruism and spite were historically described as
alternative kinds of self-sacrifice, the actor paying a fitness cost to help recipients in the
former instance and to harm recipients in the latter instance (Hamilton, 1963, 1970). But
it has more recently been argued that, in a population of fixed size, altruism and spite
could be considered two names for the same thing, on the grounds that a gene that
increases the fitness of some parties necessarily decreases the fitness of others (Lehmann
et al., 2006). It does not matter whether the actor also helps or harms a recipient, because
other recipients elsewhere will feel opposing effects when the population can neither shrink
nor grow. By extension, the same is true of selfish and mutually beneficial behavior, since
both entail an increase in the actor’s fitness at the expense of others. And if we distill this
argument even further, treating the actor as just another recipient, we now find that there
is no difference at all between altruism, spite, selfishness, or mutual benefit, because each
of these presupposes the same effect—that a gene increases its fitness at the expense of its
rivals (Krupp, 2013). The result is an amorphous, inscrutable muddle of “behavior.”

All of this is technically true. Yet, any student of social evolution knows that
altruism does not look like spite and selfishness does not look like mutual benefit.
Adaptations designed to feed relatives are not the same as adaptations designed to poison
nonrelatives. Adaptations designed to combat rivals are not the same as adaptations
designed to attract mates. Siderophores are not bacteriocins (Griffin et al., 2004; Inglis
et al., 2009), horns are not nuptial gifts (Gwynne, 2008; McCullough et al., 2014), and the
reason is that adaptations are responses to their direct causes, and they speak to their
direct effects (Krupp, 2013; Okasha, 2016; Patel et al., 2020).

Thermostats and Sorting Toys

The importance of direct causes and effects can be seen with the help of a
thermostat, which turns on the furnace when the temperature drops too low and the air
conditioning when the temperature climbs too high. Temperature is its direct cause, and
even though there are many possible causes of temperature change, such as latitude and air
pressure, the thermostat reacts only to temperature, not to the causes of temperature.
Indeed, we could heat just the thermostat’s sensor in an otherwise cold room, and the air
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conditioning would still turn on. By the same token, once the thermostat turns on, there
are many possible downstream effects. The occupants could become more comfortable or
they could overheat, and the process could strain the electrical grid or contribute to
climate change. The thermostat is ignorant of all of this. Whatever the initial reason and
whatever the eventual effect, the function of the thermostat is to regulate the temperature.

On this logic, understanding the level of selection or adaptation requires more than
simply pointing to “genes” as the input and “fitness” as the output of a black box. An
adaptation optimized by lower-level selection (e.g. at the gene level) will not look the same
as an adaptation optimized by higher-level selection (e.g. at the organism level), and genes
and fitness alone cannot help to distinguish them. What makes this so challenging is that
there will often be alternative characterizations of an adaptation, and these will demand
alternative explanations (Williams, 1966). For example, do humans punish free-riders in
social dilemmas because they have evolved group-level adaptations, such as mechanisms of
strong reciprocity (Bowles & Gintis, 2011), or because they are applying individual-level
adaptations that fortuitously benefit other members of their groups, such as mechanisms of
reputation management (Yamagishi et al., 2012)?

As is widely known, correlation is not causation, and so a trait may increase in the
population without being the target of selection. To borrow an example from Sober (1984),
imagine a toy containing large, white marbles and small, gray marbles (Fig. 1). The toy is
divided into two tiers, with all of the marbles initially together in one tier, and the divider
separating the tiers has holes that allow only the small marbles to pass through to the
second tier. Turn the toy around enough, and you will wind up with the marbles fully
sorted across the two tiers, with the larger stuck on one side and the smaller now on the
other. The marbles are sorted because the divider filters them according to size. Thus, it is
reasonable to say that the marbles in both tiers have been selected for size. Note, however,
that the marbles also happen to be sorted by color, because size and color are confounded.
Still, while there is a sense in which there has been selection of color, it would make little
sense to claim that there was selection for color (Sober, 1984). Sorting by color is merely
incidental to sorting by size, as nothing about its direct cause (marble size) pertains to
color. There is a risk, then, of confounding direct effects with indirect ones, thereby
confusing adaptations with their byproducts (Okasha, 2006; Williams, 1966).

A Semantic Miasma

A further complication to discursive arguments is the “semantic miasma” (Salt,
1979, p. 145) of the discourse, in which foundational terms take on wildly different
meanings from one paper to the next. For example, “altruism” implies a net, lifetime
fitness cost at the population level to the actor in the inclusive fitness sense of the word,
but it does not necessarily imply anything beyond a cost relative to group members in the
multilevel selection sense. Thus, a selfish behavior in an inclusive fitness model could be
considered altruistic in a multilevel model (West et al., 2007). Similarly, “group fitness”
seems to suggest the survival and reproduction of whole groups, but it is nevertheless more
commonly understood and modelled as the average survival and reproduction of the
individuals that make up these groups (A. J. Arnold & Fristrup, 1982; Heisler & Damuth,
1987). While these two meanings can sometimes coincide, they refer to very different
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Figure 1
A sorting toy, adapted from Sober (1984). The toy is divided into two tiers, and the divider
contains holes that only allow the smaller, gray marbles to pass through. If turned enough,
this sorts the larger, white marbles into one tier and the smaller, gray marbles into the
other.

things: group fitness is an aggregate property when measured by the average success of
individuals within groups in making new individuals, known as collective fitness1, but it is
an emergent property when measured by the success of the groups themselves in making
new groups, known as collective fitness2 (Okasha, 2006). And since conceptions of group
fitness form the basis of most multilevel selection models, these two different types of group
fitness equate to two different types of multilevel selection—one concerned with the
reproduction of individuals (multilevel selection 1) and the other concerned with the
reproduction of groups (multilevel selection 2; Heisler & Damuth, 1987; Okasha, 2006).

Emergence is a recurring theme in the levels of selection debate, even beyond
definitions of collective fitness. It arises as a natural result of thinking about groups,
because an effect is broadly emergent when it depends on the contributions of multiple
causes. That is, emergent properties often have a quality of “groupness” about them
(Krupp, 2016). But what is meant, exactly, by emergence is hard to pin down (Okasha,
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2006, 2014). It is commonly argued that group-level selection occurs when emergent
properties are non-additive or frequency-dependent effects of their lower-level causes,
though which properties—traits, fitness, or their relation—must be emergent is a matter of
some dispute (Goodnight et al., 1992; Lloyd, 1988; Salt, 1979; Smaldino, 2014; Vrba, 1989;
Wimsatt, 1980). Others disagree with the non-additivity premise entirely, seeing little
reason to discount aggregate effects of groups (Okasha, 2006, 2014; Williams, 1992;
D. S. Wilson & Sober, 1994a). In the end, the relevance of emergent properties is unclear.

Because it is easy to get lost in the imprecision of verbal arguments, the discursive
path can only lead so far through the levels of selection. There is simply too much
ambiguity over the nuances of important concepts and processes to get hold of a convincing
solution to the problem. Recognizing this, many travelers have instead placed their faith in
the value of statistical models, in the hopes that a more formal approach will offer some
clarity.

The Statistical Path

Partitions never change the total effect, and any total effect may be partitioned
in various ways. Partitions are simply notational conventions and tools of
reasoning. These tools may show logical connections and regularities among
otherwise heterogeneous problems. Because alternative partitions are always
possible, choice is partly a matter of taste. The possibility of alternatives leads
to fruitless debate. Some authors inevitably claim their partition as somehow
true; other partitions are labeled false when their goal or method is
misunderstood or denigrated. (Frank, 1998, p. 12)

As Maynard Smith’s (1964) and Williams’ (1966) critiques made the rounds,
group-level selection’s star began to fade and individual-level theories of social evolution
rose to prominence. Inclusive fitness theory, in particular, could handle an ever-expanding
range of biological problems, including sex ratio evolution, kin discrimination,
parent-offspring conflict, sibling rivalry, and genomic imprinting (West et al., 2008). It
produced formal models, intuitive explanations, and surprising results.

But an important development managed to cement inclusive theory and revive
group-level selection at the same time (Hamilton, 1996; Harman, 2010). A simple
mathematical identity,2 published in Nature thanks to a plot cooked up by Hamilton, could
be used to derive inclusive fitness theory from first principles or to partition selection into a
hierarchical structure, making it possible to study evolutionary change at different levels of
organization within a single, coherent framework. This is the Price equation (Price, 1970).

The Price equation is a complete and fully general description of evolutionary
change in any property, though our focus here will be to track the change of a trait in the
population over successive generations. It can be derived from just a handful of
ingredients—population size, trait values, reproductive success, and a way to distinguish

2 “Simple” is a relative term in the world of mathematics and statistics, but I have tried to make the
equations and expressions in this chapter comprehensible to those with an undergraduate education in the
social sciences. I hope readers find some value in working through the math here.
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individuals—and a bit of algebra. The Price equation can take a number of different forms,
but let us begin with a common one, which is derived in Box 1:

∆z =
selection︷ ︸︸ ︷

Cov(wi, zi) +
transmission bias︷ ︸︸ ︷

E(wi∆zi) . (1)

On the left-hand side of equation (1), ∆z is the change in the population average
trait value or phenotype between parental and offspring generations. On the right-hand
side, Cov(wi, zi) is the covariance between relative fitness (wi) and trait value (zi) of
individuals in the parental generation, and E(wi∆zi) is the expected value or average
change in trait value (∆zi) between parents and their offspring, weighted by relative fitness.
The subscript i denotes an index for each individual in the parental population (Box 1).

Box 1. Deriving the Price Equation.

The Price equation can seem daunting, but it is fairly easy to derive. We will
do that here, keeping three caveats in mind. First, things will get messy, but will be
tidied up at the end. Second, it helps to make a few simplifying assumptions in the
derivation, but they are not strictly necessary. Finally, this derivation takes a few
liberties with statistical notation, as is common practice (for helpful discussions, see
Birch, 2017; Marshall, 2015).

Consider an asexual population of N individuals, each of whom has been as-
signed a unique index i. Individual i bears a trait of value zi, such as its willingness to
fight or whether it grows wings. The average trait value in the population, z, is simply
the sum of all the trait values divided by the number of individuals, or z = (∑

i zi)/N .
Another way of expressing z is E(zi), which can be read as the expected value of zi;
this will be useful later.

Next, individuals produce qi offspring and die, so that there is a second popula-
tion consisting only of the first population’s descendants. The average absolute fitness
in the parental population, q, is the sum of all offspring produced divided by the num-
ber of individuals in the parental population, or q = (∑

i qi)/N , and the fitness of i
relative to the population average is therefore wi = qi/q. The upshot of using relative
fitness is that it will on average be (∑

i wi)/N = 1 when taken over the population; this
will also be useful later. Collecting terms from the parental population, there are now
individual and average trait values (zi and z) and absolute fitness, average absolute
fitness, and relative fitness (qi, q, and wi).

To study evolutionary change from parent to offspring populations, it is helpful
to keep track of the relation between parental and offspring trait values by assigning a
parent’s index to its offspring. That is, offspring bear their own trait values but keep
their parent’s index, connecting the two generations in the analysis. Let the average
trait value over all of i’s offspring in the new population be z′

i, where the prime indicates
offspring rather than parental values. Notably, offspring trait values may deviate from
their parent’s for a number of reasons, a phenomenon known as transmission bias.
Defining transmission bias as the difference between i’s average offspring trait value
and i’s own trait value, ∆zi = z′

i−zi, it follows that z′
i = zi+∆zi. Moreover, the average
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offspring trait value in the population, z′, is the sum of all average offspring trait
values weighted by relative parental fitness (because some individuals may produce
more offspring than others) and divided by the number of individuals in the parental
population, or z′ = (∑

i wiz
′
i)/N .

Having computed the different terms, it is possible to now work with them
algebraically. Evolutionary change between parent and offspring generations can be
represented as the change in the average trait value between generations,

∆z = z′ − z. (B1.1)

Using the above definitions of z′ and z, equation (B1.1) can be rewritten as

∆z =
∑

i wiz
′
i

N
−

∑
i zi

N
. (B1.2)

Moreover, it was previously shown that z′
i = zi + ∆zi, so equation (B1.2) can be

rewritten as
∆z =

∑
i wi(zi + ∆zi)

N
−

∑
i zi

N
. (B1.3)

Now everything is written entirely in terms of the parental population. Expanding
equation (B1.3) yields

∆z =
∑

i wizi

N
+

∑
i wi∆zi

N
−

∑
i zi

N
. (B1.4)

Recall that the average relative fitness of the population (∑
i wi)/N = 1, so the final

term on the right-hand side of equation (B1.4) can be multiplied by this without
changing its value to give

∆z =
∑

i wizi

N
+

∑
i wi∆zi

N
−

∑
i wi

N
×

∑
i zi

N
. (B1.5)

Finally, rearranging the terms of equation (B1.5) gives:

∆z =
∑

i wizi

N
−

∑
i wi

N
×

∑
i zi

N
+

∑
i wi∆zi

N
. (B1.6)

At this stage, it is possible to apply a pair of definitions from statistics to obtain
the form of equation (1) in the main text. The first definition is that of an expected
value: as noted above, the expected value of a variable x is its average value over the
population, or E(xi) = (∑

i xi)/N . (This could also be written as x instead, but E(xi)
is more commonly used in this case.) Each of the terms on the right-hand side of
equation (B1.6) are expected values in this sense, so can be rewritten as

∆z = E(wizi)− E(wi)E(zi) + E(wi∆zi). (B1.7)

The second definition is that of covariance: the covariance between two variables xi
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and yi is the difference between the expected value of their product and the product
of their expected values, or Cov(xiyi) = E(xiyi)− E(xi)E(yi). Together, the first and
second terms on the right-hand side of equation (B1.7) take this form, and so can be
rewritten as

∆z = Cov(wi, zi) + E(wi∆zi), (B1.8)

which is the same as equation (1) in the main text.

Following Price (1970), equation (1) is usually interpreted as follows: the change in
the average trait over generations is the sum of the effects of selection and transmission
bias on the trait.3 The effect of selection is thought to be captured by the covariance term,
Cov(wi, zi), because selection entails a statistical association between traits and fitness.
Likewise, the effect of transmission bias is thought to be captured by the expectation term,
E(wi∆zi), because it measures the population average, fitness-weighted deviation of
offspring trait values from those of their parents, due to mutation or drift, for instance.
This is meant to separate selection from other forms of evolutionary change.

As the name suggests, the levels of selection problem is concerned with selection,
not transmission bias. Common practice is to assume that there is no such bias, reducing
equation (1) to

∆z = Cov(wi, zi). (2)

Eliminating the transmission bias term from the Price equation requires some tricky
assumptions, but it can nonetheless be useful to do this for the purposes of abstraction
(Birch, 2017).

The Price Multilevel Partition

The Price equation is a common starting point for theories of social evolution. It
can be used to derive individual-level descriptions of selection, including a general form of
Hamilton’s rule, rb− c > 0, that uses regression coefficients to define genetic relatedness
(r), costs to the focal individual or actor (c), and benefits to partners or recipients (b) (Box
2; Birch, 2017; Gardner et al., 2011; Queller, 1992). It can be used to describe selection
taking place at the level of alleles (Gardner & Welch, 2011). And it can be used to
partition selection into the lower- and higher-level components of a hierarchical structure,
which can then be interpreted within a multilevel selection framework (Hamilton, 1975;
Okasha, 2004, 2006; Price, 1972).

To reproduce that framework here, imagine a population subdivided into discrete
groups of an equal number of m individuals—a simplifying assumption, but not one that is
required—and index the groups by k. Let zjk be the trait value and let wjk be the relative
fitness of the jth individual in the kth group. Furthermore, define the average trait value
and average relative fitness of the individuals in the kth group as Zk = (∑

j zjk)/m and

3 After Fisher (1930), there are some forms of the Price equation in which the latter term is referred to as
the effect of the “environment,” but this can be confusing (Frank, 2012). In any case, note that the “E” in
E(wi∆zi) here refers to an expectation, not to the environment.
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Wk = (∑
j wjk)/m, respectively. Zk is thus the group trait value and Wk is group fitness of

the collective fitness1 variety.

Box 2. Deriving Hamilton’s Rule from the Price Equation.

As the Price equation is a general description of evolutionary change, Queller
(1992) was able to derive a general form of Hamilton’s rule from it. First, let the
trait zi be the breeding value of the ith individual, denoted pi. A breeding value can
be thought of as the heritable component of i’s phenotype, as predicted by a linear
combination of the effects of all relevant alleles. Second, let p̂i be the breeding value of
i’s average partner and let p be the average breeding value of the population (Birch,
2017; Gardner et al., 2011). Thus, equation (2) of the main text becomes

∆p = Cov(wi, pi). (B2.1)

Next, let us predict relative fitness, wi, using a least-squares multiple regression
equation of the effects of pi and p̂i:

wi = α + β1pi + β2p̂i + ϵwi
, (B2.2)

where α is baseline fitness (a constant); β1 = βwipi.p̂i
is the partial regression coefficient

of i’s fitness on breeding value, adjusting for partner breeding value; β2 = βwip̂i.pi
is

the partial regression coefficient of i’s fitness on partner breeding value, adjusting for
i’s breeding value; and ϵwi

is the residual term.
Substituting equation (B2.2) into equation (B2.1) gives

∆p = Cov(α + β1pi + β2p̂i + ϵwi
, pi)

= Cov(α, pi) + β1Cov(pi, pi) + β2Cov(p̂i, pi) + Cov(ϵwi
, pi).

(B2.3)

Given that α is a constant and pi cannot covary with ϵwi
, since residuals are not

correlated with predictors in the model, equation (B2.3) reduces to

∆p = β1Cov(pi, pi) + β2Cov(pi, p̂i). (B2.4)

Now, let us rewrite the right-hand side of equation (B2.4) by pulling out
Cov(pi, pi), which is equal to the variance in pi, or Var(pi), to obtain

∆p =
[
β1 + β2

Cov(pi, p̂i)
Cov(pi, pi)

]
Cov(pi, pi)

=
[
β1 + β2

Cov(pi, p̂i)
Var(pi)

]
Var(pi).

(B2.5)

Cov(pi, p̂i)/Cov(pi, pi) = Cov(pi, p̂i)/Var(pi) is the standard regression definition of
genetic relatedness, which can be denoted simply as r. β1 is the effect of the ith
individual’s breeding value on its fitness (holding the effect of partner breeding value
constant), and its inverse can be considered the cost to i of its own behavior, or
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β1 = −c. Likewise, β2 is the effect of partner breeding value on i’s fitness (holding
the effect of i’s breeding value constant), and can thus be considered the benefit to i
given by the partner, or β2 = b. And since the variance in pi can never be negative,
equation (B2.5) can be used to identify the conditions under which the population
average breeding value will increase, ∆p > 0:

rb− c > 0. (B2.6)

This is Hamilton’s rule in its “general” form (Birch, 2017; Gardner et al., 2011; Queller,
1992).

Note that equation (B2.6) assumes the neighbor modulated (also known as the
direct fitness, personal fitness, or kin selection) interpretation of social interactions
rather than the classic inclusive fitness interpretation: instead of taking the perspective
of a focal actor whose actions affect its own fitness and the fitness of one or more recip-
ients (the inclusive fitness approach), it takes the perspective of a focal recipient who
is affected by a number of actors, including itself (the neighbor-modulated approach;
Taylor et al., 2007). Nevertheless, it is easy enough to exchange the benefit received
from partners, b = β2 = βwip̂i.pi

, for a benefit given to recipients, b = β2 = βŵipi.p̂i
,

which allows for the inclusive fitness interpretation instead (Gardner et al., 2011).

The covariance term of equation (2) concerns all individuals in the population, but
if each individual belongs to a discrete group, then it is also true that

Cov(wi, zi) = E[Cov(wjk, zjk)] + Cov(Wk, Zk). (3)

That is, the covariance between relative fitness and trait values across individuals in the
population, Cov(wi, zi), can be decomposed into the expected covariance between
individual fitness and individual trait values within groups, E[Cov(wjk, zjk)], and the
covariance between average group fitness and average group trait values, Cov(Wk, Zk).
Substituting equation (3) into equation (2) gives a partition that appears to separate
lower-level and higher-level components of selection:

∆z =

within-group
selection︷ ︸︸ ︷

E[Cov(wjk, zjk)] +

between-group
selection︷ ︸︸ ︷

Cov(Wk, Zk) . (4)

In keeping with Price (1972) and Hamilton (1975), it is customary to interpret the
two terms on the right-hand side of equation (4) as the effects of within-group selection
and between-group selection, respectively. Thus, lower-level selection is said to act when
E[Cov(wjk, zjk)] ̸= 0 and higher-level selection is said to act when Cov(Wk, Zk) ̸= 0. Of
course, these two forces may work in opposing directions, as in the case of “weak” altruism,
wherein cooperators have lower fitness than defectors within the same group, but
individuals belonging to groups with more cooperators have higher fitness than individuals
belonging to groups with fewer cooperators. Note also that this kind of multilevel
partitioning can be extended further up or down the hierarchy.

Since the Price equation can accommodate genic, individual, and multilevel
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viewpoints, and since it can reproduce and fortify independently derived results (such as
Hamilton’s rule), it is not unreasonable to think that the various theories are only different
perspectives on the same events, seen from different points within a hierarchy. There is a
conciliatory message in this idea: if we move past the language barrier, perhaps we can see
that the gene’s-eye, individual, and multilevel approaches are just different ways of
conceptualizing the same thing, and it may even be useful to switch between them
(Dugatkin & Reeve, 1994; Marshall, 2011; Panchanathan, 2011). For it is an empirical fact
that when the average trait value changes from one perspective, it likewise changes from
every perspective, making the various theories descriptively equivalent. But is this
equivalence enough?

Unfortunately, it isn’t. While the Price equation certainly appears to partition
components of evolutionary change, such as selection and transmission bias or within- and
between-group selection, it does not do so cleanly. Notice, first, that no causal statements
were made in the derivation of equation (1), other than that parents produced offspring.
There was no link made between trait as cause and fitness as effect. Consequently, the
covariance term of equation (1) can only speak to selection of traits, not selection for
them, unless we make particular causal assumptions (Okasha & Otsuka, 2020; Sober,
1984). If we wish to understand adaptive design, theories derived directly from the Price
equation offer little purchase, because they cannot distinguish cause from correlation.

Consider an example in which the Price multilevel partition ascribes the effect of an
asocial, individual-level trait to group-level selection (Heisler & Damuth, 1987; Nunney,
1985; Okasha, 2004; Sober, 1984). In this scenario, individuals bear a trait zi that only
affects their own fitness wi but, because the population has been subdivided into groups,
equation (4) can nevertheless be applied. By chance alone, some groups will contain more
individuals with high relative fitness than will other groups, and so the term Cov(Wk, Zk)
will be nonzero, implying that selection between groups plays a role when it does not.
Thus, even though both fitness and traits vary at the group level in the model, they are
nothing more than byproducts of lower-level variance existing apart from the group
structure.

One solution is to limit the definition of a group to circumstances in which
individuals are engaged in social interactions (“trait groups” in the parlance of Sober &
Wilson, 1998; D. S. Wilson, 1975). Under this definition, it would be impossible to
entertain the idea of group-level selection acting on an asocial trait, because the Price
multilevel partition would never be applied to such a case. This move can be helpful, but
there remains the larger problem that the Price multilevel partition will always mistake
individual-level byproducts for group effects (Okasha, 2004, 2006). For instance, in an
effort to show that kin selection is a special case of group selection, D. S. Wilson and Sober
(1994b) claim that interactions among genetic relatives cause group-level selection because
fitness at the group level varies. Yet this group-level variance is attributable only to the
actions of individuals—the groups themselves are not acting in any capacity. These sorts of
fitness byproducts are precisely what concerned Williams (1966) when he cautioned us not
to confuse individual-level effects with the fortuitous benefits they may entail when
measured at the group level, and the Price multilevel partition does not have a clear
defense against this.

A second concern with the Price equation is that it does not even cleanly partition
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selection and transmission bias in the weaker “selection of” sense. Consider that both
terms on the right-hand side of equation (1) contain fitness, wi. Altering selection by
changing the covariance between fitness and trait value is thus likely to alter transmission
bias, too. This can be fixed by rewriting the Price equation as

∆z = Cov(wi, z′
i) + E(∆z), (5)

which removes fitness from the expectation term (Okasha, 2006). However, in doing so,
transmission bias has been moved into the covariance term, because offspring trait values z′

i

may differ nonrandomly from parental trait values (Godfrey-Smith, 2007; Okasha &
Otsuka, 2020). Framed either way, there is no clean separation of evolutionary processes.

Contextual Analysis

An alternative to the Price multilevel partition, popular among empiricists, is
contextual analysis, which studies multilevel selection with the help of multiple regression
techniques like those used in the derivation of the general form of Hamilton’s rule (Box 2;
Goodnight, 2015). Contextual analysis assigns two trait values to each individual: the
individual’s own value, zjk, and a “contextual” group trait value, Zk, which could be
additive or non-additive (Heisler & Damuth, 1987; Okasha, 2004, 2006). It does this by
predicting individual fitness from both individual and group trait values, holding the other
constant:

wjk = α + β3zjk + β4Zk + ϵjk, (6)

where α is baseline fitness; β3 = βwjkzjk.Zk
is the partial regression coefficient of individual

fitness on individual trait value, adjusting for group trait value; β4 = βwjkZk.zjk
is the

partial regression coefficient of individual fitness on group trait value, adjusting for
individual trait value; and ϵjk is the residual term.

Although contextual analysis has its own origins, it can be integrated with the Price
equation by substituting equation (6) into equation (2), on the understanding that the
individual index i at the population level can be exchanged for the individual and group
indices j and k at the group level (Frank, 2012; Gardner, 2017). This gives

∆z = Cov(α + β3zjk + β4Zk + ϵjk, zjk)
= Cov(α, zjk) + β3Cov(zjk, zjk) + β4Cov(Zk, zjk) + Cov(ϵjk, zjk).

(7)

The first and last terms of the second line of equation (7) can be eliminated because α is a
constant and ϵjk is uncorrelated with zjk by design. Moreover, the covariance between a
variable and itself is simply that variable’s variance, so Cov(zjk, zjk) = Var(zjk). Likewise,
Cov(Zk, zjk) = Var(Zk), because Zk is simply the average of zjk (Okasha, 2004). Equation
(7) can thus be simplified to

∆z =

within-group
selection︷ ︸︸ ︷

β3Var(zjk) +

between-group
selection︷ ︸︸ ︷

β4Var(Zk) . (8)

As with the Price multilevel partition, there again appears to be a separation of
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components at two levels of social organization: assuming that trait values vary,
within-group selection is said to act when β3 ̸= 0 and between-group selection is said to act
when β4 ̸= 0. Comparing equations (4) and (8) shows how the Price multilevel partition
and contextual analysis define the effects of selection in different ways (Okasha, 2004,
2006). The key difference is that the Price multilevel partition identifies any statistical
association between group trait values and group fitness [Cov(Wk, Zk)] as group-level
selection whereas contextual analysis only does so after the effect of individual-level trait
values have been removed [β4Var(Zk)]. This means that when the contextual approach is
applied to the case of an asocial trait, as in the example above, β4 = 0 because the group
trait value adds no new information beyond what is already known from the individual’s
own trait value, and so the method does not detect any group-level selection at work. It
corrects for the individual-level byproduct error made by the Price multilevel partition.

Yet, contextual analysis falls short in other ways. First, it will identify an effect of
group-level selection even when groups do not vary in fitness. The prototypical setting for
this is a problem of “soft” selection or local competition: individuals compete for fitness
within their groups, but each group has the same fitness, typically because the individuals
are competing over shares of a fixed resource. Okasha (2006) offers an example by shifting
down the hierarchy to a problem of meiotic drive, where the “individuals” are alleles and
the “groups” are organisms. Consider a diploid population bearing copies of two alleles, A
and B, at a single locus. For clarity, let us focus on absolute rather than relative fitness
measures and change our notation, dropping the i, j, and k subscripts in favor of subscripts
representing the organism’s genotype (AA, AB, or BB) and the allele’s genic value (A or
B). All organisms have the same absolute fitness, denoted QAA = QAB = QBB, because
resources are fixed. Moreover, segregation among heterozygotes is distorted in favor of the
A allele, or qA > qB. Intuitively, selection at the organism level cannot act under these
circumstances, as every organism performs the same. Nevertheless, genic fitness depends
on an allele’s trait value within their group—the A allele has increased fitness when paired
with a B allele—which means that β4 ̸= 0 (Goodnight et al., 1992; Okasha, 2006). Thus,
contextual analysis detects the action of selection at the organism level in a situation that
does not seem to bear one of the prerequisites of selection: variance in fitness (Okasha,
2006).4

Second, contextual analysis can fail to detect the effect of higher-level selection
when it is acting, as Okasha (2006) shows in a modification of the preceding example, in
which both alleles and organisms face fitness consequences that exactly cancel out. Take
again the above single-locus model, but now allow organismal absolute fitness to vary, such
that QAA = 16, QAB = 12, and QBB = 8, while at the same time setting the fitness of the A
allele to qA = 8 and the fitness of the B allele to qB = 4. There are thus two paths to

4 Goodnight (2015) has rejected the premise that there is no variance in group fitness under soft
selection—again, a context whereby fitness varies at lower levels of organization but is nevertheless
constant at higher levels. Rather, he argued that because β4 ̸= 0, higher-level selection must be acting to
exactly cancel the effect of lower-level selection on the higher level. This may be true in some
circumstances, but as we have seen from the description of the example above, what explains the lack of
organismal fitness variance in this case is fixed resources; selection at the organism level plays no causal
part in the process here. Thus, inferring the existence of a causal path from the results of a statistical
model is a risky maneuver.
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fitness: at the lower level, A alleles outperform B alleles; and at the higher level, organisms
bearing A alleles outperform organisms bearing B alleles. An A allele partnered with
another A allele produces the same number of copies as its partner, whereas an A allele
partnered with a B allele produces 4 more copies than its partner, and therefore has a
fitness advantage at the genic level. Conversely, an organism with an AB genotype
produces 4 fewer offspring than an organism with an AA genotype, thereby completely
offsetting the gene-level advantage of As paired with Bs. Despite this causal dependence of
fitness on “group” context, contextual analysis would assign all of the change in trait values
to selection at the gene level (β3 ̸= 0) and none of it to selection at the organism level
(β4 = 0), because an A allele has the same total fitness irrespective of the identity of its
partner, and the same is true of a B allele (Okasha, 2006, 2016). From the perspective of
contextual analysis, this cancellation effect makes it seem as if the fitness of the A allele
does not depend on the group to which it belongs, but this is wrong: organisms in this
example do in fact vary in fitness in a way that is consequential for the alleles they bear.

Okasha (2006, 2016) argues that the difference between these two problem
cases—the first concerning competition among alleles and the second concerning
competition among organisms—is, at its core, a causal question about which level of fitness
is directly affected by the trait. In the first example, the genic trait directly affects the
fitness of the alleles within the organism, and the organism’s fitness is unaffected; in the
second example, the organismal trait additionally affects the fitness of the organisms
directly, and the alleles come along for the ride. This explains why there is no single,
universal statistical approach that will always square with our intuitions about selection
and adaptation: for each of the many available approaches, there is always a case in which
it will mistake a direct causal effect for an indirect one. Instead, what is needed is an
extra-statistical method that formalizes preexisting knowledge of causal relations and
thereby specifies a corresponding analytical approach (Okasha, 2016; see also Krupp, 2016;
Logue & Krupp, 2016; Otsuka, 2019). That method is the graphical causal model, or
causal graph.

The Causal Path

When the total evolutionary change is written using a statistical partition, as
above, a natural explication of this notion suggests itself: the statistical
associations between variables should reflect direct causal influences in the
world. (Okasha, 2016, p. 443)

It is often said that the different approaches to social evolution are formally
equivalent. This, however, implies that the only formalism that matters to the levels of
selection debate is the statistical kind. While it is true that every approach can be
connected to the Price equation and the outcome will always be the same, this only makes
the various approaches descriptively equivalent (Otsuka, 2019). This sort of equivalence
isn’t very satisfying because we know they are not causally so, and it is not obvious why we
would choose different partitions unless they were meant to suggest different causal
processes (Birch, 2017; Okasha, 2006, 2016). Helpfully, there is a mathematical formalism
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that can be used to identify causal non-equivalence: the causal graph.5
Causal claims require causal assumptions (Otsuka, 2016a, 2019), and causal graphs

permit this by visualizing the presumptive causal relationships generated by the variables
in the model. They got their start with Wright (1920), who drew the first known path
diagrams to specify genetic, environmental, and developmental effects on the expression of
coat colors in guinea pigs. He then used these diagrams to show that the strength of causal
effects could be inferred from them, essentially demonstrating a mathematical
correspondence between causes in the diagram and correlations in the data. This allows
users to estimate causal effects—structural parameters, as familiarly found in structural
equation models—from statistical associations, on the assumption of linearity (Pearl &
Mackenzie, 2018; Wright, 1920).

Today, the prevailing graphical tool in the causal inference literature is the causal
directed acyclic graph (DAG), which we will use here. A DAG is a mathematical object
that encodes qualitative causal assumptions, and so can inform theoretical and empirical
models (Elwert, 2013). It is a nonparametric generalization of the path diagram, allowing
it to express causal relations of any form—not just linear ones. Using prior knowledge of a
biological system, it is possible to lay out the causal assumptions first and then use these
assumptions to determine an appropriate method of analysis. This should reduce the
chances of applying an inappropriate statistical model and making the wrong inferences. As
Hernán and Robins (2020, p. 71) put it, “draw your assumptions before your conclusions.”

Draw Your Assumptions

I have been somewhat liberal in my use of “cause” up to this point. To make it
more explicit, I mean it in the sense that, for a putative cause-effect relationship, had we
made a precise change to the cause, the effect would be different. This is a counterfactual
definition of causality: that the probability of an outcome differs between the scenario that
actually occurred and a counterfactual scenario in which an element has been modified
(Hernán & Robins, 2020; Rubin, 1974). For example, “had I taken the bus rather than
walked to campus, I would have been on time for class” is a counterfactual claim that
implies a causal effect of mode of transit on arrival time. Nothing about this implies that
the cause of interest is the only cause, of course; I may also be late for class because I
forgot to set an alarm and slept in.

To encode causal assumptions in a DAG, nodes or vertices represent random
variables and any single arrow or directed edge running between a pair of nodes represents
a direct causal effect, where the tail leaves the cause and the head enters the effect. For
instance, in Figure 2a, the nodes represent variables S, X, and Y , and the arrows represent
the statements “S directly causes X” (S → X) and “X directly causes Y ” (X → Y ). Note
that this graph also shows an indirect effect of S on Y through its effect on X
(S → X → Y ); hence, X mediates the relationship between S and Y .

DAGs have rules (Elwert, 2013; Hernán & Robins, 2020; Kunicki et al., 2023; Pearl
et al., 2016; Rohrer, 2018). First, as implied by the terms “directed” and “acyclic”,

5 As an alternative to causal graphs, the potential outcomes framework could also be used (Imbens &
Rubin, 2015). However, it is hard to argue with the value of graphical methods to lay out the core levels of
selection problem of transparently specifying trait-fitness relationships.
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(a)

S X Y

(b)

S X Y

(c)

S X Y

Figure 2
Three elementary directed acyclic graph structures. A DAG can be composed of: (a) shorter
and longer chains, such as S → X, X → Y , and S → X → Y , which transmit causal
information; (b) forks, such as X ← S → Y , which transmit spurious associations between
confounded variables; and (c) colliders, such as S → X ← Y , which block associations
between separated variables.

causality only moves forward from cause to effect, in the direction of the arrow, and
variables cannot cause themselves, whether directly or indirectly. Second, DAGs should
include all common causes of the other variables in the DAG. For example, if there is a
variable U that causes both S and X in any of the graphs in Figure 2, then it should be
included in those graphs—even if that variable is unknown or has not been measured.
Third, an arrow does not imply any specific function, sign, or strength of effect. Fourth,
and relatedly, the existence of two or more arrows coming into a single variable (e.g.
S → X ← Y in Fig. 2c) does not specify how the different causes interact. Finally, the
absence of an arrow connecting two variables is a stronger assumption than the presence of
an arrow: a missing arrow signifies a high degree of confidence on the researcher’s part that
there is no direct causal relationship between these variables. In Figure 2b, then, the
absence of an arrow between X and Y conveys the message that there is no causal
relationship between these variables.

There are three ways in which variables can be configured in a DAG: chains, forks,
and colliders (Fig. 2; Elwert, 2013; Kunicki et al., 2023; Pearl et al., 2016; Rohrer, 2018).
A chain is a causal path in which all effects flow in the same direction, as in S → X and
S → X → Y (Fig. 2a). A fork is a noncausal structure that confounds the relationship
between two variables as a function of a third variable—their common cause—as in
X ← S → Y , where S generates a statistical association between X and Y even though
neither variable causes the other (Fig. 2b). Finally, a collider or inverted fork is a structure
that “blocks” or “screens off” the association between two variables that independently
cause a third variable, as in S → X ← Y (Fig. 2c). In this case, we should not expect any
association between S and Y , because they are independent of each other, even though
they both affect X. Crucially, adjusting for, controlling, or conditioning on a variable can
dramatically affect the statistical associations in each of these configurations: adjusting for
a mediating variable in a chain (e.g. X in Fig. 2a) can block the association between the
variables on either side of the mediator; adjusting for a common cause in a fork (e.g. S in
Fig. 2b) can block the spurious association between the variables affected by that cause;
and adjusting for a collider (e.g. X in Fig. 2c) can create a spurious association between
the variables causing the collider.

With its formalization of cause and effect, a DAG can be used to distinguish
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selection for a trait from selection of a trait. For example, recall Sober’s (1984) example of
the two-tiered sorting toy containing larger white and smaller gray marbles (Fig. 1). For
the sake of simplicity, imagine that, during the design process, the toy company’s engineers
were each given a divider with holes of fixed size and then decided the size and color of the
marbles. These decisions weren’t random: the engineers may have matched the marble
colors to the marble sizes, and the marbles were sized to either be larger or smaller than
the holes. For the marbles to sort between tiers after the toy is built, the toy must also be
turned over (perhaps a few times). The DAG in Figure 3 formally represents the causal
assumptions of the system just described: the engineer causes marble color and marble
size; marble size, hole size, and turning of the toy interact to cause sorting of the marbles.

Engineer Marble Size

Marble Color

Hole Size Turning

Sorting

Figure 3
A directed acyclic graph of Sober’s (1984) marble sorting toy. Hole size is fixed, and is
represented so here by enclosing it in a box.

Figure 3 makes it clear that the direct effects Marble Size → Sorting and Turning
→ Sorting reflect selection for marble size and turning, respectively: sorting happens
because the marbles are small enough to pass through the divider, and because turning the
toy increases the chances that a marble will roll into a hole. There is no selection on hole
size because it is fixed, which is denoted in the graph by enclosing it in a box. At the same
time, the fork Marble Color ← Engineer → Marble Size → Sorting that generates the
association between marble color and sorting reflects only selection of, not for, color. Color
has no effect whatsoever on sorting in the DAG, but marbles will nevertheless be sorted by
color because the engineer confounded color with size, and size causes sorting.

But what about the indirect effect of the engineer on sorting? The chain Engineer
→ Marble Size → Sorting clearly shows that the engineer is a cause of the marbles being
sorted over the tiers of the toy. Yet, if we already know the size of a given marble, then we
also know whether it will pass through the divider, irrespective of which engineer produced
the marble. We saw this with the example of the thermostat in a previous section, as well:
the thermostat turns on in response to the temperature at the sensor; it is ignorant of the
causes of temperature change. More generally, if we know all of the direct causes of a
variable X, then its indirect causes add no new information. This is a causal variant of the
Markov property: adjusting for all direct causes of X renders all indirect causes of X
irrelevant.6 In terms of the toy, then, selection is not acting on the engineers, but on

6 Somewhat more strictly, the causal Markov property states that if we adjust for or condition on all
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marble size. Likewise, in terms of natural selection, what matters is the point of interface
between trait and fitness—the direct cause-effect relationship. Selection is not acting on
distal causes of the trait, but on the trait itself (Brandon, 1982; Gould, 1980; Krupp, 2013;
Mayr, 1963; Okasha, 2016).

Identifying the Levels of Selection

Okasha (2016) has used the causal graph method to formalize the argument that
the level of selection is determined by the level of fitness directly affected by the trait. We
will follow this method here, with two changes described below. For convenience, we can
call the level of fitness that is directly affected by the trait the “primary” fitness effect. If a
trait directly affects individual fitness, then individual fitness is primary and selection is
therefore operating at the individual level. Conversely, if a trait directly affects group
fitness, then group fitness is primary and selection is operating at the group level.
Dropping the subscripts of the previous section for ease of reading, we can make this
argument precise with the language of a DAG: z → w is a case of individual-level selection,
because the individual trait directly affects individual fitness, and Z → W is a case of
group-level selection, because the group trait directly affects group fitness (Barclay &
Krupp, 2016; Krupp, 2016; Okasha, 2016).7 This marks our first point of departure from
Okasha (2016): although the graphical notation of primary fitness effects remains the
same, Okasha used path diagrams whereas we will use DAGs.

How can we know when a particular level of fitness is primary? In essence, the
distinction amounts to whether, with respect to the trait under selection, the lower-level
units have routes to survive and reproduce within or outside of the higher-level unit versus
routes to survive and reproduce through the higher-level unit’s own survival and
reproduction (Okasha, 2016). If the trait under selection is meiotic drive, alleles can distort
their frequencies within their bearers, and not merely because of the actions of their
bearers. However, if the trait under selection is the ability to find food, alleles receive
fitness by virtue of the success or failure of the organisms bearing them to forage. This
matters because, along any causal path where group fitness is primary, effects are
experienced in exactly the same way by all lower-level units in the group; their fitness
interests are simultaneously aligned. To expand on an analogy given by Barclay and Krupp
(2016), the fitness of each member of a ship’s crew can vary within the ship—some sailors
might thrive, say, whereas others might die—but their fitnesses will also depend, in
precisely the same way, on whether the ship itself makes it back to harbor or goes down at
sea.

“parents” of X—that is, the direct causes of X—then X is independent of all other variables in the graph
except its effects or “descendants” (Hausman & Woodward, 1999). This idea is helpfully captured by the
phrase “given the present, the future is independent of the past.”
7 In most cases, z will entail w and Z will entail W , but it is possible that there are cases in which
individual traits directly cause group fitness (z →W ) and cases in which group traits directly cause
individual fitness (Z → w). In support of Okasha’s (2016) argument that the levels of selection depend on
the level of fitness—rather than on the level of the trait—it should be pointed out that the optimal
individual trait value maximizes group fitness when z →W , and so benefits the group, whereas the optimal
group trait value maximizes individual fitness when Z → w, and so benefits individuals.
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In a practical sense, the proposition above hews closely enough to Dawkins’
(1976/2006) “vehicle” concept that I will also make use of the term, though I mean
something more precise: higher-level selection occurs because a vehicle inextricably binds
the causes and effects of the group members together along at least one path between the
lower-level cause and the lower-level effect. It is thus the fitness of the vehicle that is
primary along this path. The concept does not require complexity of design. It makes no
difference whether the vehicle is a well-integrated organism or a mass of undifferentiated
cells; vehicular complexity is something that evolves. What does matter is that the
lower-level units are united in cause and effect.8

This marks our second point of departure from Okasha (2016): rather than assign
traits and fitness to the group, such as a collective of alleles, they are assigned to the
vehicle that contains the group. In the previous section, a group trait was defined as the
average trait value of the individuals in the group and group fitness was defined as the
average fitness of the individuals in the group. The latter definition is of the collective
fitness1 variety, being an aggregate measure of the ability of lower-level units to survive and
make more lower-level units (Heisler & Damuth, 1987; Okasha, 2006). By the same token,
we might say that the former definition is of the collective trait1 variety, being an aggregate
measure of the trait value of the lower-level units. Collective trait1 and collective fitness1
measures work naturally with the statistical approaches that are the stock-in-trade of the
levels of selection debate. From a causal perspective, however, they are nothing but
trouble. The problem is that, so defined, group traits and group fitness are only statistical
properties, not inherently “real” objects in their own right; as we have already seen, a group
of individuals can be assigned an average group trait and an average group fitness even if
they are a group in name only. All we know of these properties is that they are arithmetic
composites of, and fully determined by, individual traits and individual fitness (their
“parents” in the graph; Berrie et al., in press), and so they may be entirely ephemeral.
Without more information, it is unclear whether they can truly be the cause of anything.9

In contrast, a vehicle is here defined causally, and so is a very real thing. The fitness
of a vehicle seems to be of the collective fitness2 variety, as it is a measure of the united
group’s ability to survive and make new groups (Heisler & Damuth, 1987; Okasha, 2006).

8 There is a certain irony in making vehicular fitness the centerpiece of the levels of selection problem, as
Dawkins (1994, p. 617) has stated “I coined the ‘vehicle’ not to praise it but to bury it.” He went on to say
that “vehicles often turn out to be the objects that we recognise as organisms, but this did not have to be
so. It is not part of the definition of a vehicle. There did not have to be any vehicles at all. Darwinism can
work on replicators whose phenotypic effects (interactors) are too diffuse, too multilevelled, too incoherent
to deserve the accolade of vehicle.” This is almost certainly true, and if it were the case that no vehicle had
ever evolved, then there would indeed be no higher level of selection than the gene. But organisms have
evolved, and other vehicles have, too.
9 A deterministic variable such as an average group trait is a particularly sharp example of the part-whole
“supervenience” problem, as it is known to philosophers (Kim, 1998). Put simply, it could be argued that
since lower-level properties (individual traits and fitness) determine higher-level properties (average group
traits and fitness), causation must reside at the lower level. However, as Okasha (2006) points out, the
question at hand is not whether the whole can be explained by its parts; it is whether there is selection on
the whole rather than on the parts. I submit that we cannot answer this question unless we already know
whether the whole actually exists in the vehicular sense, and therefore whether it can act as a causal force.
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Likewise, we could say that a vehicle’s trait value may be of the collective trait2 variety, as
it is again a measure of the united group. These are only tentative characterizations,
however: we have not been given the causal details to know whether, when the vehicle
reproduces, it makes new groups or simply new individuals; if the latter, neither collective
fitness1 nor collective fitness2 apply. In any case, assigning traits and fitness to the vehicle
makes them stricter forms of collective traits and collective fitness, but moving out of the
statistical realm and into the causal realm compels us to reevaluate the biological meaning
of variables such as group traits and group fitness. The average trait value and average
fitness of a group of alleles are qualitatively different sorts of things than the trait value
and fitness of the vehicle bearing those alleles, even when there is a quantitative
correspondence between the two. For instance, in the context of alleles and organisms, the
average amount of a particular protein produced by a group of alleles would be a collective
trait1 measure and the average number of alleles produced would be a collective fitness1
measure, whereas the visual acuity of an organism would be a vehicular trait and the
number of offspring an organism produced would be a measure of vehicular fitness. The
vehicle’s traits and fitness are causal; group means are not.

With this in mind, let us now make the causal graph method concrete by
considering again Okasha’s (2006) soft selection problem of the previous section. Partners
are pairs of alleles inhabiting a single locus within a diploid organism, and we will fasten
attention on a focal allele. Alleles are drawn from the population—possibly
non-randomly—and we can denote the probability that the average pair are copies of the
focal allele identical by descent as G, also known as the coefficient of consanguinity. Let us
assign the focal allele a genic value g and assign its partner allele a genic value ĝ. These
genic values respectively give rise to trait values z and ẑ, which directly affect each allele’s
ability to take a spot in a fixed number of gametes, w and ŵ. Finally, because the number
of gametes over which the alleles compete are fixed, organisms do not vary in their fitness.
The causal assumptions in this case are encoded in the DAG in Figure 4.
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ĝ

z

ẑ

ZD

w

ŵ

WD

Figure 4
A directed acyclic graph of lower-level selection. Each of the direct effects of traits on
fitness occur at the lower level: z → w, z → ŵ, ẑ → ŵ, and ẑ → w. Double-lined arrows
denote deterministic relationships and doubly enclosed nodes denote deterministic variables.

This example contains no organismal trait, and organismal fitness is fixed, so there
is no reason to include either in the graph. Nevertheless, Figure 4 does include the average
group trait value and average group fitness of the previous section, only because they are
instructive here. To distinguish these deterministic variables from their probabilistic
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counterparts, they are denoted as ZD and WD and enclosed in double boxes, with
double-lined arrows indicating deterministic relationships (K. F. Arnold et al., 2020).
Despite the presence of these variables in the graph, Figure 4 makes it clear that this is a
gene-level selection problem, because it is genic fitness (w and ŵ) that is primary along
every causal path: z → w, z → ŵ, ẑ → ŵ, and ẑ → w. We have not used statistics to tell
us this; we already know the level of selection by reading it off the graph, which was built
from our understanding of the biological system.

Indeed, inspection of Figure 4 shows exactly why it would be a mistake to infer the
level of selection from a statistical model that is indifferent to the causal assumptions built
into the graph: even though there is no causal path between ZD and WD, they share
multiple common causes—including z and ẑ—via multiple different forks, and are therefore
thoroughly confounded. Contextual analysis introduces bias when measuring the gene-level
effect, because ZD is a collider and adjusting for it in the calculation of β3 opens up a new
non-causal path (z → ZD ← ẑ → w). Moreover, because ẑ confounds the relationship
between ZD and w via the fork ZD ← ẑ → w, contextual analysis incorrectly attributes the
gene-level effect of ẑ on w to the group-level trait ZD in the calculation of β4, which is why
it detects group-level selection even when group fitness does not vary. Conversely, the Price
multilevel partition only gets this case right because group fitness does not vary, and so WD
is constant. Had it instead been allowed to vary, the Price multilevel partition would
incorrectly attribute lower-level effects to higher-level selection, as noted above in Wilson
and Sober’s (1994b) argument that variance in fitness among sibling groups shows that kin
selection is a form of group-level selection.

Next, consider a problem in which selection acts only at the level of the organism.
Partners are again pairs of alleles with genic values g and ĝ at a single locus, but the trait
values they generate, z and ẑ, combine to create an organismal trait, ZV. This in turn
directly affects the organism’s fitness, WV. Here, the V subscript indicates that ZV and WV
are vehicular properties—in this case, the organism’s trait and the organism’s survival and
reproduction—and the latter causes genic fitnesses w and ŵ as a result of organismal
reproduction. The DAG in Figure 5 encodes these causal assumptions, showing that
organismal fitness is primary along the only causal path to fitness (ZV → WV) and
establishing this as a problem of organism-level selection. Importantly, a statistical model
that takes only a lower-level approach, such as the gene’s-eye view, would be unable to
recognize the effect of higher-level selection at work here, because it is not informed by the
causal assumptions identified in the graph.

G

g

ĝ

z

ẑ

ZV WV

w

ŵ
Figure 5
A directed acyclic graph of higher-level selection. The only direct effect of a trait on fitness
occurs at the higher level: ZV → WV.
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Now consider Okasha’s (2006) example of the previous section in which selection
operates at both genic and organismal levels. Let alleles produce traits that bias
segregation within the organism and let these traits further produce an organismal trait
that directly affects organismal fitness. These two paths combine the lower- and
higher-level causal processes of Figures 4 and 5 to give the DAG in Figure 6, which shows
this to be a problem of multilevel selection: genic fitness is primary along four causal paths
(z → w, z → ŵ, ẑ → ŵ, and ẑ → w) and organismal fitness is primary along a fifth
(ZV → WV). Such a problem demands a multilevel statistical model that properly accounts
for each of the different causal and non-causal paths. However, neither the Price multilevel
partition nor contextual analysis would be appropriate, for the reasons already discussed.
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Figure 6
A directed acyclic graph of multilevel selection. Direct effects of traits on fitness occur at
both lower and higher levels: z → w, z → ŵ, ẑ → ŵ, ẑ → w, and ZV → WV.

Finally, consider two additional scenarios that conform to the causal structure of the
DAG in Figure 4, and which can help to address the relevance of “emergent” group
properties in determining the level of selection (Krupp, 2016; Logue & Krupp, 2016). In
the first scenario, let us return once again to the same soft selection case that initially
inspired Figure 4, but now assume that alleles produce one of two trait values, A and B,
which distort segregation. If both alleles produce the same trait value (i.e. both A or both
B), then both receive a payoff of 1; however, if the alleles produce different trait values,
then the A allele receives a payoff of 2 and the B allele receives a payoff of 0. This kind of
interaction is additive but frequency dependent, whereby payoffs depend on how common a
given trait value is in the population. Nevertheless, nothing about the DAG in Figure 4
needs to change to accommodate this particular payoff structure: w and ŵ remain direct
effects of the interaction between z and ẑ, and selection is therefore acting at the lower
level.

In the second scenario, let us now shift the frame up from alleles to organisms and
remove the soft selection constraint on the deterministic fitness WD of groups. Here,
partners both producing A trait values each receive a payoff of 2, partners both producing
B trait values each receive a payoff of 0, and, in mixed pairs, the A partner receives −1
while the B partner receives 2. Hence, the payoffs are synergistic and frequency-dependent,
and WD now varies. And yet, selection still only acts at the lower level: nothing about this
scenario requires any change to the causal assumptions laid out in Figure 4, and so
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organismal fitness remains primary. Thus, despite the existence of emergent properties in
both scenarios, a lower-level model is causally apt whereas a higher-level model is not.

The Place Where the Paths Meet

No causal assumption in, no evolutionary prediction out. (Otsuka, 2019, p. 45)

Travelers have typically made their way through the levels of selection either by the
discursive or the statistical path. The former is built on foundational claims, including the
proposition that natural selection is a causal process. Most can agree on this much, but
none of the arguments that follow can be made verbally precise enough to come to a
definitive answer. The latter path recognizes precision as its greatest strength and reveals a
kind of formal unity among the different perspectives, in which every statistical partition
can be derived from or integrated with the Price equation. Yet, if these partitions are
meant to have any meaning, then each fails under certain conditions. The result is a set of
extremely general mathematical formulations that describe, but do not predict or explain,
evolutionary change.

More recently, a third path has opened up. Marrying causality to formality, this
path begins by using prior knowledge of the system under study to encode qualitative
assumptions about causal processes in a graph. The next steps are to use the graph to
determine the direct effects of traits on fitness. And the path ends at a place where the
other two paths meet. In one direction are many of the causal intuitions of the discursive
path, now made precise. In the other direction are many of the techniques of the statistical
path, now suitably tailored to identify the causal effects of the problem case. With an
understanding of the rules of a DAG, both intuition and technique can be read right off the
graph.

For instance, the graphs in Figures 4–6 relate the conditions needed to identify
causal effects and the consequences of applying the wrong statistical model. It does not
make sense to measure the effect of a group trait on group fitness in the case of Figure 4,
because no such effect exists, and the deterministic variables ZD and WD are only
spuriously connected—this DAG is a visual guide to the byproduct problem Williams
(1966) warned of. Conversely, it does make sense to study this effect in the cases of Figures
5 and 6, because there is a causal path between the group trait and group fitness in these
models. Moreover, if the aim is to measure the effect of the lower-level trait z on
lower-level fitness w—a reasonable empirical question, even if z is not always the target of
selection—it would be better to adjust for ẑ in each of these three cases than to adjust for
the higher-level trait ZD or ZV. In the DAG of Figure 4, this is because ZD is a collider, so
adjusting for it can open up non-causal paths whereas adjusting for ẑ does not. In the
DAG of Figure 5, this is because ZV fully mediates the effect of z on w, so adjusting for ZV
blocks the effect of z whereas adjusting for ẑ does not. And in the DAG of Figure 6, this is
because adjusting for ZV both blocks a legitimate path and opens an illegitimate one.

The graphs in Figures 4–6 also each relate a basic causal chain of development and
selection whereby genes cause traits and traits cause fitness. These same chains show that
selection acts on traits: for example, adjusting for the lower-level trait z in the chain
g → z → w renders the indirect effects of genes on fitness moot, and adjusting for the
higher-level trait ZV in the chain g → z → ZV → WV renders the indirect effects of both
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lower-level traits and genes on fitness moot. This has several consequences. First, as has
been suggested before, selection only “sees” traits, not genes (e.g. Brandon, 1982; Gould,
1980). Genes are of course part of the larger causal story, but they are not enough to
provide a complete account of adaptation (Krupp, 2013). Second, as Okasha (2016) argues,
the direct effect of traits on fitness implies that selection at different levels of social
organization can occur. Specifically, selection at level X comes about when traits directly
cause fitness at level X (e.g. z → w or ZV → WV). This is how we identify the levels of
selection.

Replicators and Vehicles Revisited

It is possible to shed more light on the greater evolutionary process by connecting
the parent generation to the offspring generation in a graph. For instance, if we let Ω be
the frequency of copies of the focal allele in the parental population, let ω′ and ω̂′ be,
respectively, the number of copies of the focal allele derived from the focal allele and its
partner in the offspring population, and let Ω′ be the frequency of copies of the focal allele
in the offspring population, then we can modify the higher-level selection graph of Figure 5
to produce the graph in Figure 7. This expanded DAG shows the causal process of
evolutionary change of the lower-level units over one generation, from Ω to Ω′. Within this
larger process, we can also see subprocesses of genetic relatedness or assortment
(g ← G→ ĝ), trait development (g → z → ZV ← ẑ ← ĝ), selection (ZV → WV), and
replication (g → ω′ ← w and ĝ → ω̂′ ← ŵ), which is an interaction between the genic value
of the template being used to make copies and the number of copies being made.
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ĝ
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ŵ

ω′

ω̂′

Ω′

Figure 7
A directed acyclic graph of evolutionary change via higher-level selection. Although there is
an effect of genic value on the frequency of copies of the focal allele in the offspring
population (g → ω′ and ĝ → ω̂′), selection nevertheless occurs only at the higher level
(ZV → WV) in this graph.

Although Dawkins’ (1982, 1976/2006) “replicator” and “vehicle” concepts rarely
feature in formal models of evolutionary change, the causal structure of Figure 7 puts them
on solid footing, though their meanings are refined. To adapt a definition from Hull (1981,
p. 33), a replicator is something that passes on its value directly in replication. In the
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current context, the replicator is a gene that passes on its genic value, because it serves as
a template for the production of copies; this is the effect of g on ω′ and of ĝ on ω̂′. In
principle, however, a replicator can be anything that directly causes the value of the
replicates to match its own value, implying the possibility of entitites like epigenetic
replicators and cultural replicators (Bonduriansky & Day, 2018). A replicator is not
required for selection, though it may be important in the process of adaptation
(Godfrey-Smith, 2009). Moreover, if a replicator is involved in the evolutionary process, it
does not need to be responsible for the number of replicates being produced (Hull, 1981).
To define a replicator, all that matters is that it directly causes the replicate to assume its
value.

Conversely, a vehicle is something that brings about a unity of cause and a unity of
effect by tethering lower-level units together: all of the units it contains are parties to the
trait, even if they are not themselves causes of that trait; and all are equally affected by its
consequences, on average, when it directly operates on fitness. This is not quite Dawkins’
(1982) own definition of a vehicle, nor is it Hull’s (1981) definition of an “interactor,” but it
is very close. The key difference is that when a vehicle acts on the world, it effectively
compels its lower-level constituents to act together (a trait vehicle, ZV) and to gain or lose
fitness together (a fitness vehicle, WV). Defined in this way, a vehicle is more than a group:
it has its own traits and its own fitness, and by virtue of its existence, it represses
competition among its contents via at least one causal route, aligning their fitness interests
(Frank, 2003). These distinctions are vital to the causal position. If the groups under
study do not themselves have traits, survive, or reproduce in any actual sense, then it
stands to reason that it is the individual group members that are directly acting, surviving,
and reproducing, and the DAG should be drawn as such. Hence, a group trait cannot be a
cause and group fitness cannot be an effect—let alone a primary one—if they are not
vehicular properties as defined above.

This puts the collective trait1 and fitness1 concepts in a tough spot, as they are
rarely causally apt, and this may sometimes be true of collective trait2 and fitness2 as well.
But that does not mean we cannot follow the success of individual genes. As the DAG in
Figure 7 shows, it is simple enough to track an individual allele both before and after the
vehicle bearing it has acted on fitness. Take the social amoeba Dictyostelium discoideum
which, when starved, aggregates in large numbers to form a multicellular “slug” that
travels to a new location and develops into a fruiting body composed of spores and a stalk.
The slug is a vehicle that benefits its cellular cargo equally in several ways: its motility
takes them to better environments, its sheath protects them from predation, and its stalk
keeps the spores off the ground and helps with their dispersal (Medina et al., 2019). Each
of these benefits entails identical expected fitness gains for the individual cells, but they are
first accrued by the slug, whose traits affect its own survival and reproduction. While it is
true that a slug does not descend from a clear slug lineage (Okasha, 2006), the causal
approach does not require one. If a slug’s survival and reproduction does not qualify as
either collective fitness1 or collective fitness2, because groups of amoebae do not produce
groups of amoebae and slugs do not produce slugs, then perhaps we are instead dealing
with what might be called collective fitness1.5, the survival and reproduction of higher-level
units that make new lower-level ones. From a causal perspective, the collective fitness
terminology does not really matter, because the goal is not to shoehorn a causal model into
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an already-existing statistical model, but to generate a new statistical model that respects
the assumptions of the causal model.

The vehicle and its traits are emergent properties of lower-level parts, and there
have been numerous attempts to operationalize the levels of selection as depending on
emergence of one kind or another (e.g. Gould & Lloyd, 1999; Smaldino, 2014; Vrba, 1989).
As we have seen, however, emergence does not inherently change the causal structure of a
DAG, because DAGs are nonparametric representations of cause-effect relations;
frequency-dependent and synergistic payoffs can be accommodated without modifying the
graph. Likewise, what are often characterized as emergent effects can be represented either
by a higher-level trait borne by a vehicle (as in ZV → WV) or as the interaction of
lower-level traits borne by separate lower-level units (as in z → w ← ẑ). The choice of
representation is not a matter of taste, but again depends on whether there is a vehicle, as
defined with respect to cause and effect, and whether the trait directly causes fitness at
that level. In other words, what makes a vehicle special is not that it is emergent, but that
it is unifying.

Still, the causal basis of replicators and vehicles is not a vindication of the broader
agenda of the gene’s-eye view. The replicator is rarely a direct cause of selection, and
cannot be thought of as the “true” object of selection without mistaking the agential
metaphor of the selfish gene for something more literal. And thanks to its coordination of
fitness interests, the vehicle turns out not to be disposable, as Dawkins (1994) would have
it, but indispensable to the levels of selection problem: whenever lower-level units obtain
fitness through the survival and reproduction of the vehicle, it is the vehicle’s traits that
are selected for and the vehicle’s fitness that is primary. This makes the level of adaptation
dependent on the level of selection (Gardner & Grafen, 2009; Okasha & Paternotte, 2012;
Williams, 1966).

Specifically, lower-level adaptation occurs when there is selection on lower-level
traits, leading to their optimization, as is the case along the paths z → w and ẑ → ŵ in
Figure 4. These traits should appear designed to serve the interests of the lower-level unit
that caused it. Similarly, higher-level adaptation occurs when there is selection on
higher-level traits, leading to their optimization, as is the case along the path ZV → WV in
Figure 5. These traits should appear designed to serve the interests of the vehicle and
therefore all of the lower-level units contained within. However, adaptation under
multilevel selection, as depicted by Figure 6, is less straightforward. If the lower-level
optimum differs from the corresponding higher-level optimum, there is no reason to expect
adaptation at either level (Gardner & Grafen, 2009; Okasha & Paternotte, 2012). Even if
both levels pull the population in the same direction at first, the lower- and higher-level
trait values will eventually evolve to be a compromise between the optima at the two
levels. However, if the difference between them is reasonably small or if the effect of
selection at one level is much weaker than the other—both subjective judgments, to be
sure—then adaptation can arise at either level (Gardner & Grafen, 2009).

Draw Your Conclusions

Answers to questions about the levels of selection cannot be found in the data
alone, as is widely assumed. They will always start with the causal assumptions. With the
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causal graph approach, the levels of selection problem thus becomes an exercise in drawing.
And when this is done correctly, it is possible to read both the levels of selection and their
associated analyses straight from the graph.

With respect to selection, the assumptions that matter most pertain to the point of
interface between traits and fitness. The trick is to identify which level of fitness is primary
along each causal path (Okasha, 2016): selection at a given level occurs when traits
directly cause fitness at that level. It is not an especially complicated task to identify traits
and fitness at the gene level. A genic trait is a direct product, like a protein, and genic
fitness is typically the number of copies of the gene being produced. Gene-level selection
takes place, then, when a gene product directly increases the number of copies of the gene.
At higher levels, however, things can get harder. Most would have no trouble accepting
selection at the level of the organism, but what about selection at the level of
chromosomes, cells, groups of organisms, or species?

Arguably, our comfort with the idea of selection at the level of the organism reflects
causal intuitions of what an organism is: a causal force that interacts with the world and
has its own fitness. From a genetic perspective, an organism is a vehicle, in that its
lower-level passengers together bear the same cause and feel the same effect along a causal
pathway. That is, the vehicle imposes an expected “cause and effect homogeneity” on the
lower-level units, even if those units can also take other paths to fitness while still riding in
the vehicle. By extension, to decide whether there is selection at a given level, one must
first be able to locate the vehicle as defined here—if there is one at all—and determine its
involvement in the causal process. If such a vehicle does exist, and it does bear associated
traits that cause fitness, then it should be added to the graph; otherwise, it can be left out.
The vehicle is therefore not a basic element of the evolutionary process, but selection
cannot operate at higher levels without it.

Vehicles don’t need to be complex things, as previously noted. A yeast floc is little
more than a clump of cells that adhere to one another when exposed to environmental
stress—protecting the interior cells at the expense of the exterior ones (Smukalla et al.,
2008). A floc’s size and shape are some of its traits and the proportion of surviving cells is
a measure of its fitness. But vehicles don’t need to be living things, either. Cages have
been used in experiments as vehicles for groups of chickens, where stock for subsequent
generations are chosen on the basis of total egg production (Muir, 1996). Hence, there may
be many ways to impose vehicular structure on individuals, including cultural innovations.

Others have also pointed to the higher-level unit as being critical to the levels of
selection problem, for similar reasons. Hull (1981, p. 33) conceives of an interactor as a
holistic cause of fitness, “directly interacting as cohesive wholes”. Conversely, D. S. Wilson
and Sober (1994b, p. 591) conceive of it as a holistic effect, stating that the “essence of the
vehicle concept is shared fate”, though they define this statistically (using a collective
fitness1 measure) rather than causally. But the causal graph formalization offers a more
precise rationale. It suggests that it is unity of cause and unity of effect, along at least one
causal path, that defines the vehicle for our purposes. This cannot be determined through
inspection of the data, but by making causal assumptions based on an understanding of
the system.

In sum, committing to the causal graph approach forces us to think critically about
the assumptions we must make to answer empirical questions about natural selection. In so
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doing, it makes a number of things clear. First, “assumption-free” models may be useful
organizing frameworks, but they cannot be truly general explanations. The gene’s-eye
view, inclusive fitness, and multilevel selection are not competing approaches, nor are they
different ways of looking at the same thing. They are different frameworks appropriate to
describing different causal processes, occurring at different levels of selection. Second, the
average trait values and fitness of a group of lower-level units are not, in and of themselves,
causal forces. They are deterministic variables, useful for statistical modelling but not for
causal modelling. Third, replicators and vehicles appear in the evolutionary process, but
their effects are not entirely as advertised. Replicators are often far removed from the
trait-fitness interface, challenging the notion that they are the real targets of selection, and
higher-level vehicles unite their lower-level units in both cause and effect, challenging the
notion that vehicles are peripheral to selection. Finally, the levels of selection depend on
the primary level of fitness, as Okasha (2016) argues, because it is at this level that trait
values are selected and therefore optimized. Adaptation at different levels reflects different
causal forces, and therefore requires different explanations.
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