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Abstract

Predicting species interactions within ecological networks is vital for understanding ecosystem func-

tioning and the response of communities to changing environments. Traditional link prediction models

often fall short due to sparse and incomplete data and are limited to single networks. Here, we present

a novel approach using inductive link prediction (ILP), which leverages structural similarities across

diverse ecological networks. Our model pools data across communities, and uses transfer learning

to enable prediction within and between different ecological communities. We applied our model to

538 networks across four community types: plant-seed disperser, plant-pollinator, host-parasite, and

plant-herbivore. ILP outperforms non-ILP models, particularly in host-parasite and plant-seed dis-

perser networks. However, the efficacy of cross-community predictions varies, with plant-pollinator

networks consistently under-performing as train and test sets. Moreover, we developed the first method

to computationally estimate the limits of link prediction given a certain proportion of missing links,

in which ILP performs better than a non-ILP model. This study underscores the potential of ILP to

generalize link prediction across different ecological contexts.
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Introduction

Ecosystem services, such as pollination, are fundamental for human societies and result from inter-

actions between many organisms in ecological communities [1]. For example, crop pollination highly

depends on the interactions between wild bees and non-crop flowers [2]. These dependencies can be

described mathematically using networks in which nodes represent species and links represent their in-

teractions. Complete sampling and representation of species interaction networks would enhance our

understanding of the complex indirect dependencies between species. However, given the immense

resources required to attain and validate each interaction [3–5], it is clear that ecological networks are

consistently under-sampled, hampering our ability to analyze their true structure. One way to address

the under-sampling problem is to predict the most probable, yet unconfirmed links [6–12]. Moreover,

predicting interactions helps us understand how ecological networks will respond to anthropogenic

changes and environmental shifts. For example, predicting disease hosts and interactions between

local and invasive species [11]. However, link prediction in ecological networks is highly challenging

because these networks are small (insufficient data) and sparse (many unobserved links and very few

observed ones).

Ecological link prediction models can use information on species traits [9,13] and phylogeny [12], but

these are often difficult to obtain or biased because some taxonomic groups are far more studied than

others. Instead, it is possible to rely on the topology of the known part of the network to predict the

unknown [7,8]. For instance, a well-connected species will likely have another link. Such approaches

that predict missing links based on known properties within the same network are called transductive

link prediction [14]. While this is the primary approach used in ecology so far [7,8], its performance

is hindered in networks where only few links are known or where some parts are known much better

than the others [15,16], two issues prevalent in ecological networks.

To overcome these issues, we take an approach called inductive link prediction (ILP), in which links in

one network are predicted by learning the structure of others [16]. ILP harnesses the principle of uni-

versality [17–20], reflected in ecological networks by cross-system topological similarities [21,22]. The

structure of ecological networks is shaped by multiple ecological and evolutionary processes, including

spatiotemporal distributions, evolutionary history, and neutral processes [23–25]. Despite the very

different nature and idiosyncrasy of ecological systems (e.g., mutualistic vs antagonistic networks),

these processes generate non-random recurring patterns commonly observed in different types of net-

works [26–28]. For example, both antagonistic and mutualistic ecological networks typically exhibit a

heavy-tail degree distribution whereby most nodes have few links (low degree), and a few nodes have

many links (high degree) [29–31]. At the mesoscale level, structures such as nestedness and modularity

have been detected in host-parasite, plant-pollinator, and plant-seed disperser networks [21,32–35].

Cross-system similarities in macroscopic patterns provide an opportunity to increase training data by

using multiple networks within an ILP framework [36,37]. In addition, it enables transfer learning,

where a model trained on data from one domain is applied to predict outcomes in another. The idea

of using transfer learning in ecology has been recently proposed [38], but to the best of our knowledge,

in ecology, only Caron et al. [13] used transfer learning to predict links in food webs in one area (e.g.,

Europe) based on knowledge in another (e.g., Serengetti). Using trait-based predictions, they found

that pairwise interactions are better predicted using a model trained on the same food web than with

models trained on other food webs. However, they did not pool data from different food webs for
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training.

Given the structural similarities between networks from different ecological communities, we hypoth-

esize that ILP is more effective than transductive link prediction for predicting links in ecological

networks. Further evidence for the plausibility of this hypothesis comes from two recent studies that

showed that it is challenging to identify the type of network (e.g., plant-pollinator, host-parasite)

based solely on its structure [22,39]. This is because variation in network structure is similar within

and between different types of ecological networks. On the one hand, this observation means that it

would be challenging to predict the ecological community of a network based on its structure [22]. On

the other hand, the structural similarity of different community types can be utilized for link predic-

tion by enlarging the training dataset. We tested this hypothesis using an ILP model we developed,

which further enables cross-community prediction. We find that our model outperforms transduc-

tive link prediction models in predicting links, but that prediction accuracy varies by community

type. Specifically, plant-pollinator networks weaken cross-community predictions while host-parasite

networks enhance them.

Results

Data

We used the data set compiled by [22] (also later used by [39]). We used networks with ≥ 25 species

and with connectance ≥ 0.1 (Table S1). This data set includes 205 plant-seed disperser networks

(PSD), 217 plant-pollinator networks (PP), 84 host-parasite networks (HP), and 32 plant-herbivore

networks (PH) (538 networks in total). A potential limitation of the data set could be the non-equal

number of networks per community. To test for this, we included the type of community as a feature in

the model, and it was not an important feature in the prediction. In addition, communities represented

by more networks were not necessarily better train or test sets (see results below), indicating that

the number of networks is not a limitation. As previously shown for this data set [22,39], variation in

network structure was not higher between than within networks (Fig. S1).

Overview of the link prediction pipeline

We developed a pipeline to evaluate the performance of ILP models on multi-network data sets using

nested cross-validation (Fig. 1). We split the data into training, validation and test sets, ensuring that

instances (links) from the same network are always together in the set. We predicted links based on

network properties, which we used as features in the model (feature extraction). In the inner loop, we

used the training and validation sets to tune hyperparameters and select the best model to perform

link prediction on the test set. We performed 5-fold cross-validation in the outer loop. We used

popular machine learning models: logistic regression, random forest, and XGboost. The results did

not qualitatively change between models (Supplementary note ), and we present results for Random

Forest. We considered the significant imbalance between the number of observed and unobserved

interactions [40].

Inductive link prediction outperforms prediction with a single network

To test the hypothesis that collating data across communities would improve link prediction, we

compared our model performance to three models that train and test on a single network at a time

(transductive models). The first two were stochastic block model (SBM) and connectance, which were
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Fig. 1: Pipeline overview. (A) We used nested cross-validation, with 3 and 5 folds in the inner and outer
loops, respectively. We split the data into train, validation, and test sets and calculated network properties
(feature extraction). The validation and test sets contained subsampled links (red x’s). We used the inner
loop to tune the hyperparameters (using random search) and selected the best model to predict links in the
test set in the outer loop. Model evaluation was based on a confusion matrix with TP, TN, FP, and FN
values gathered from the outer loop’s five folds. When splitting the data, we ensured that each network
was included entirely in the set (i.e., we split the data by networks, not by links) and that each network
appeared at least once in the test set. See details in Methods.

previously published and are not based on machine learning [8]). The third was a transductive machine

learning model we developed transductive link prediction (TLP). Overall, the machine learning ILP

and TLP models outperformed SBM and connectance (Fig. 2). ILP predicts 1’s better than TLP as

it has a higher recall but similar precision. However, this comes at the expense of its ability to recover

0’s (lower specificity). Nevertheless, in the overall balance, the ILP model outperforms TLP (higher

BA).

We further evaluated the ILP model using the ROC curve across thresholds. The prediction was highly

accurate when using the full data set or per community (Fig. 3A). Because imbalance restricts the

interpretation of ROC curves, we also used the precision-recall (PR) curve. The PR tradeoff indicates

the ability of the model to retrieve links (recall) while minimizing false positives (precision). The

PR AUC was higher than the random expectation for all communities (Fig. 3B). The AUC of both

curves was similar to that of the TLP model. (Fig. 2). These results did not vary quantitatively when

prediction was performed within each community type (Fig. S2).

The most influential network features were at the node level, including node degree, the PDI index

of specificity [41], and two centrality indices. The only link-level feature was preferential attachment

(the multiplication of the two interacting species’ degrees) (Fig. S3).

Links are predicted better in particular community types

The ROC and PR curves show that predictive ability varies by community type, with the best pre-

dictions performed in host-parasite networks, followed by plant-seed dispersers (Fig. 3). Further

analyzing the evaluation metrics separately for each ecological community reveals more nuanced dif-

ferences (Fig. 4), whereby there are significant differences in prediction metrics between communities
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Fig. 2: Comparison of model performance. The inductive link prediction model was trained and
tested on networks from all communities. We compared ILP to two transductive previously published
models (stochastic block model and connectance; [8]) and one transductive machine learning model that
we developed (TLP). Each boxplot is a distribution of an evaluation metric using a 0.5 classification
threshold, bedsides the ROC AUC and PR AUC. Each data point is a network and boxplots contain
networks from all the five outer folds. BA is balanced accuracy. See definitions of evaluation metrics in
the Methods.

(Kruskal-Wallis test, Table S2, Fig. 4). The ability of our model to retrieve TP links (recall) was

higher in host-parasite and plant-seed disperser communities compared to plant-pollinator and plant-

herbivore communities. However, correctly predicting negative links (specificity) is lower in these two

communities (Dunn post-hoc tests; Table S3).
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Fig. 3: Model evaluation across decision thresholds. The curves represent the performance across the
5 folds, either on all communities or on each community type separately using decision threshold levels
ranging from 0 to 1. (A) The receiver operating characteristic (ROC) curve. The model outperforms
random guessing as all the curves are above the diagonal dashed line, which depicts random guessing. (B)
Model evaluation with the precision-recall tradeoff curve.
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Fig. 4: Distributions of evaluation metrics per test community type. The model was trained on
networks from all communities, and tested separately on each community type. Each data point is a
network and box plots contain networks from all the five outer folds. Evaluation metrics whose labels are
green showed a statistically significant difference between communities (Tables S2, S3). MCC is the only
metric that can be negative (ranges -1 to 1).
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Communities vary in their quality as train and test sets

ILP further allows us to perform cross-community link prediction via transfer learning. We trained

the model using networks from a given community type and used them to predict links in the same

community or in any other. To create unbiased comparisons, we ensured that the number and identity

of the networks in the training set were the same across experiments. For instance, we used the

same host-parasite networks for training when training on all networks or host-parasite networks

alone. Because we are primarily interested in predicting missing links accurately, we focus on the F1

metric. We expected prediction to be more robust within community types (the diagonal in Fig. 5).

This prediction was confirmed for host-parasite and plant-herbivore networks. In contrast, plant-seed

disperser interactions are predicted similarly well when trained on host-parasite or plant-herbivore

networks, and plant-pollinator interactions are better predicted when the model was trained on plant-

seed disperser networks.

We further hypothesized that pooling data across all networks (All) for training will improve pre-

dictions (i.e., that the “All” column will have higher values than within-community predictions). In

contrast to our hypothesis, pooling data worsened the predictions. This result can stem from the fact

that plant-pollinator networks are highly sparse, and consistently under-perform (Fig. 3B), affecting

overall predictions. Removing plant-pollinator networks from the training set (No PP) improved pre-

dictions. Yet, training with the No PP pool performs only as well as training with the worst single

community.
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Estimating the bounds of link prediction performance

One issue common to all link prediction studies is the lack of knowledge of the ground truth. That

is, which of the non-existing links are truly missing (if we had this knowledge, we would not need

link prediction). Ideally, link prediction models would guide the field sampling efforts of ecologists

who want to complete their networks. In turn, field data can evaluate model predictions. To date,

no empirical study estimated model performance in light of ground truth. Undertaking such effort is

necessary but may be extremely time consuming because if links were missing in the first place, an

intensive amount of sampling would likely be needed to sample even a few of them. As a starting

point, we take here an alternative computational approach. We calculate the bounds of the ILP and

TLP model predictions across a theoretical range of proportion of missing links. We devised two

scenarios. In the best-case scenario, the false positive links of the models were indeed missing links.

In the worst-case scenario, the predicted negative links are actually positive in nature (see Methods).

We compared the models of the ILP and TLP. Generally speaking, the goal is to accurately predict

missing links, evaluated with recall and F1. Recall is a good measure of our model’s predictive ability

because it is based solely on instances we manipulated (subsampled), which are observed links. The

ILP model outperforms TLP in recovering missing links overall, as indicated by the consistently higher

recall and F1 (which also considers precision) in the best-case and worst-case scenarios. Beyond a

certain threshold of missing links, the models’ recall will decline below the recall we observe in the

data we use (horizontal line). This is because there are more missing links than the FPs predicted by

the models. This threshold is higher in ILP than in TLP (0.33 vs. 0.27), providing further evidence

that ILP is better suited for predicting missing links. In contrast to ILP, the TLP model will better

predict zeros across the range of missing link proportions, as indicated by higher specificity.
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Fig. 6: Bounds of model predictions across proportions of ground-truth missing links. The horizontal
dashed lines depict the current models’ performance. The upper and lower curves (solid lines) represent
the best and worst-case scenarios, respectively. An example for figure interpretation for the red arrows: If
the true proportion of missing links in nature is 0.15, the ILP and TLP models best-scenario recall values
would be ≈ 0.8 and ≈ 0.62, respectively. Bounds were calculated as means, and their confidence intervals
(light-colored ribbons) were calculated across all networks. The ILP model was one in which the train and
test contained networks from all communities.
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Discussion

Species interactions are the backbone of ecosystem functioning. Link prediction helps us improve our

knowledge of species interaction structure and gain insights into how interactions would change in

response to perturbations. However, training data are often incomplete and biased. In this paper,

we take a step forward using ILP, leveraging the structural similarities across different ecological

communities [22]. The ILP approach also allowed us to address data sparsity and incompleteness in

ecological networks by pooling information across multiple ecosystems. It also introduces a method

to predict interactions in entirely new networks via transfer learning, which is particularly valuable

for managing invasive species and predicting disease-host interactions in network contexts.

ILP offers three conceptual advantages over TLP. First, TLP is often limited by the sparse and incom-

plete nature of ecological network data. ILP models overcome these limitations by pooling information

across different systems. Indeed, the model we developed generally outperformed transductive models

per network in predicting 1’s. However, TLP models better predicted 0’s, pointing to a trade-off

between predicting these two classes. Considering that ecologists are most interested in predicting 1’s,

ILP offers a better solution.

While increasing the data set size should theoretically improve predictions, we found that a model

trained on all networks did not perform better than models trained on specific community types.

Specifically, plant-pollinator networks weaken the prediction. This may happen because while nu-

merous instances existed in the data set, plant-pollinator networks had the lowest connectance. [16].

Low connectance leads to a significant imbalance between existing and non-existing links, which can

decrease the precision and recall scores.

Second, TLP models rely on the properties of a single network to predict missing links within that

same network and are not generalized in their ability to predict interactions across various ecological

contexts. In contrast, in ILP, the train and test sets do not need to have the same species. Therefore,

it is possible to train a general model that can later be used to predict links in any new network. Such

a general model can be applied to predict links of invasive species or new disease hosts in a network

context. We trained such a model and predicted links in specific community types. While transfer

learning is a promising approach [13,38], our results indicate that variation between communities

in their quality as training data underscores the need to also consider the unique characteristics

of each community type. Future studies can improve our model by incorporating features specific

to community types, such as traits [9,12,13] or environmental features [42], increasing the train set

performance. Nevertheless, adding traits to a model that trains on different kinds of networks is

challenging due to substantial biases in data availability between species groups (e.g., parasites vs.

birds).

Third, biases in sampling methods and efforts inevitably lead to biases in network data quality and

completeness. Moreover, there is no ground truth to tell us what the actual missing and forbidden links

are. This flaw permeates both the learning process and the evaluative framework. In ILP, missing

links and subsampled links of the tested networks are not used in the learning phase. Therefore,

despite the inherent biases, the evaluation of missing links is better in ILP models. We performed

the first theoretical evaluation of model performance compared to true proportions of missing links

and showed that ILP would retrieve missing links better than TLP. While ILP models provide a
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better guide to detecting missing links, validating their outcomes should be done via field sampling

of well-known systems in which missing and forbidden links can be evaluated with high credibility or

via literature reviews [43].

Prediction accuracy varied across different types of ecological networks. Host-parasite and plant-seed

disperser networks exhibited higher recall and F1 rates than plant-pollinator and plant-herbivore,

indicating better predictive performance for positive links. This may be because host-parasite and

seed-disperser networks involve more specialized animal groups, making their topology more predic-

tive. In contrast, plant-pollinator networks contain diverse, heterogeneous animal species with distinct

behaviors and roles. Furthermore, host-parasite and plant-seed disperser networks have higher con-

nectance (Table S1).

Using networks from multiple communities also allowed us to perform cross-community prediction—

an idea that, to our knowledge, was tested once on only four food webs using trait data [13]. In

contrast to that study, we found that predictions were not necessarily better within each community.

Specifically, plant-pollinator interactions are predicted better when trained on plant-seed disperser

networks. Apart from plant-pollinator networks, the overall between-community prediction was sim-

ilar to within-community predictions. This finding is in line with the notion that different kinds of

ecological networks can be subjected to similar assembly patterns or co-evolutionary dynamics [44],

resulting in similar structures and constraints on interactions [22]. The ability to predict between

communities using topological features reinforces that they share a non-random structure despite

taxonomic differences in their species composition.

In conclusion, our study highlights the potential of ILP models to enhance our understanding of eco-

logical networks by leveraging structural similarities across diverse communities. The ILP model we

developed outperformed transductive models in retrieving links by pooling information from multiple

networks, thus overcoming the limitations of data sparsity and incompleteness. However, our findings

also reveal significant variability in prediction accuracy and the quality of train sets across differ-

ent ecological communities, emphasizing the need for tailored approaches that consider the unique

characteristics of each community. Future work should focus on integrating additional ecological and

environmental variables such as phylogeny and species traits to improve model performance and on

empirically validating predictions to refine further and enhance the applicability of ILP in ecological

research. Developing a unified ILP model that considers the multifaceted nature of ecological networks

could offer a practical solution to predicting links in our rapidly changing ecosystems.

Methods

Nested cross validation and hyperparameters

Nested cross-validation allows optimization of hyperparameters along with an unbiased estimation of

the model’s performance. This reduces the risk of over-fitting by ensuring that the model evalua-

tion is conducted on data not seen during the hyperparameter tuning phase [45]. Hyperparameters

control the learning process rather than being learned from the data, and are set before the training

process begins [46]. The optimal values for the hyperparameters that maximize the machine learn-

ing model’s performance are selected through hyperparameter tuning during that inner loop of the

nested cross-validation (Table S4). We optimized hyperparameters using a random search, which is

a computationally efficient tuning technique. The process involved randomly sampling values from a
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predefined search space, followed by training and evaluating model performance on those values using

the training and validation sets. We used the F1-score as the performance metric to evaluate the

hyperparameter combinations. The average F1-score across all folds was calculated for each random

set of hyperparameters. We repeated this procedure for multiple random sets of hyperparameters, and

the set that yields the highest F1 score was chosen as the optimal solution for the current iteration of

the outer loop.

Because the data includes multiple networks, we used grouped cross-validation to prevent information

leakage between training, validation, and test sets [47]. This method ensures each fold contains entire

networks, increasing model robustness by preventing instances from the same network from appearing

in the training, validation and test sets simultaneously.

We built and evaluated the machine learning models using the Scikit-learn package [48], with the

addition of the xgboost package [49]. We executed hyperparameter optimization through randomized

search using the scikit-learn’s RandomizedSearchCV [48] and the kerastuner package [50]. We used

randomized optimization due to its efficiency in exploring the hyperparameter space with fewer itera-

tions compared to traditional grid search method. We optimized the model’s hyperparameters using

the F1-score.

Link subsampling and feature extraction

Because the goal is to predict missing links (possible yet unobserved interactions [51]), link prediction

requires generating a ground truth. That is, a lack of link (0 in the matrix), of which we are certain

the link actually exists. A common way to do so is by removing some existing links randomly (sub-

sampling) [8,52]. Hence, to emulate real-world under-sampled networks, each network in the validation

and test sets was sub-sampled by randomly removing 20% of the existing links (20% is the standard).

Sub-sampling creates three types of links:

• Existing links: links that exist in the network and were not sub-sampled.

• Non-existing links: links that did not exist in the network. These may be missing or forbidden

(interactions not possible due to some ecological, morphological or other constraints [51]).

• Subsampled links: links that existed in the network and are now missing because they were

subsampled. Because we want to predict instances in which non-existing links should have

existed, sub-sampled links were relabeled as existing after feature extraction.

Each instance in the data set, representing an interaction (or lack of an interaction), between each two

species, constitutes a vector of topological features. Our features encompassed four levels as follows:

• Network-level features: Defined for a whole network (e.g., nestedness). Hence, all the instances

that are related to a network will get the same values for those features. We also included the

type of network (e.g., plant-pollinator).

• Meso-scale level features: defined for groups of nodes (e.g., motifs).

• Link-level features: Defined for a pair of nodes (e.g., preferential attachment: the multiplication

of both node degrees).
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• Node-level features: Defined for to each node (e.g., centrality, degree). Each instance will have

two different versions of the feature, one for each node in the pair.

Feature extraction is done once on all the data, and is not related to the fold. We rescaled numer-

ical features to a range of [0, 1] to ensure that no particular feature dominates others during the

learning process. We calculated feature importance based on the average decrease in Gini impurity

across all trees. Features that are more important are used more frequently and result in significant

improvements in node purity.

For the analysis of ecological networks and extraction of topological features (network properties),

we used the networkx package [53] in Python and the igraph [54] and bipartite [55] R pack-

ages. We handled data manipulation through numpy [56] and Pandas [57,58] in Python. A complete

list of the features we used and their descriptions are provided on the GitHub repository accompany-

ing this article (https://github.com/Ecological-Complexity-Lab/eco_ILP/blob/main/results/

final/features.csv).

Dealing with class imbalance

In machine learning, class imbalance is a situation in which the distribution of classes in the training

data is highly skewed, where one or more classes have considerably fewer samples compared to others.

This imbalance can significantly impact the training and evaluation of prediction models [40]. Clas-

sifiers developed with such skewed data tend to favor the majority class, which can lead to subpar

performance when identifying instances of the minority class. This issue is particularly prevalent in

ecological networks, characterized by their sparsity (i.e., low connectance). In binary classification

tasks, this sparsity creates a disparity between the small number of existing links (positive class) and

the much larger set of non-existing links (negative class) [11,40]. To overcome this problem we incorpo-

rated cost-sensitive learning (Supplementary note ) [48]. Specifically, to make the importance of both

classes equal, we computed their weights inversely proportionally to the frequency of the respective

classes [59,60].

Evaluation metrics

Performance of LP models can be evaluated using multiple indices, each providing a different perspec-

tive on the model’s strengths and weaknesses [11,40]. The evaluation is based on a confusion matrix

that contains the number of true positives, true negatives, false positives and false negatives (Supple-

mentary Note ). We used common evaluators adequate for imbalanced data: recall (TP/(TP + FN)),

precision (TP/(TP + FP )), F1 (harmonic mean of precision and recall), specificity (TN/(TN + FP )),

balanced accuracy (the arithmetic mean of recall and specificity), the area under the receiver oper-

ating characteristic curve (ROC AUC), and the area under the precision-recall curve (PR AUC). In

addition, as recently recommended for ecological networks, we also used MCC [40]:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

We evaluated links based on the common threshold of 0.5 (see Supplementary note for details).
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Comparison to transductive models

We compared our model to three transductive link prediction models: The SBM and connectance,

which were previously published [8] and are not based on machine learning, and to a transductive

machine learning model we developed (TLP). All three models train and test on each network sepa-

rately. The models do not separate links between the train and test set. In the train set subsampled

links are classified as non-existing links, while in the test set there is a relabeling of the subsampled

links to existing links.

In SBM, nodes are partitioned into blocks or groups, and the probability of a link between any two

nodes depends on the blocks to which they belong [61]. The probability of a link between two nodes

is higher if they belong to the same block, reflecting community structure. The stochastic block

model is a degree corrected bipartite SBM algorithm, which accounts for the degree heterogeneity

within the blocks. The connectance model is a model used to describe the pattern of interactions in

ecological networks. It assigns a connectivity value to each species, reflecting its propensity to interact

with others. The connectivity values are estimated by using maximum likelihood optimization, which

adjusts the parameters to best fit the observed interaction data [8]. We used the R package cassandRa

(https://github.com/jcdterry/cassandRa) to predict links using these two models. The TLP model

we developed uses random forest with a standard 3-fold cross validation with hyper-parameters tuning

(maximizing f1 score). The model balances the weights of the classes by computing weights inversely

proportionally to the frequency of the respective classes.

Estimating the bounds of link prediction performance

We evaluate the models’ ability to predict links under a range of true missing link values. For a

theoretical proportion p (range 0.05-0.5) of ground-truth missing links, the number of missing links

is calculated as Lm = p × Lne, where Lne is number of zeros in the original matrix. In the best case

scenario, we choose Lm FP links and change them to TP. This simulates a scenario in which the model

indeed predicted links that were not observed. If LFP < Lm (LFP is the number of FP links) we

convert a remainder of Lm −LFP TN links to FN to simulate the scenario in which the links actually

existed in nature. In the worst-case scenario, we choose Lm TN links and convert their class to FN.

This simulates a scenario in which the links actually existed in nature but the model failed to retrieve

them. If LTN < Lm (LTN is the number of TN links) we convert a remainder of Lm − LFN FP links

to TP. After the conversion of links, we recalculate each evaluation metric (e.g., F1, recall) for each

of the two scenarios, to form the upper and lower bounds of model performance per network.

Code and data availability

The data are available in the repository set up in original publication https://osf.io/my9tv/. The

full code and technical descriptions on how to run the pipeline are available on the GitHub repository

https://github.com/Ecological-Complexity-Lab/eco_ILP.
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Fig. S1: Variation in network structure. The PCA shows no clear subgrouping of networks by their class,
reflecting previous studies using the same data set [1,2]. The PCs were calculated using the topological
features we used in the link prediction model.
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Fig. S2: Comparison of model performance per community. The inductive link prediction was
trained on networks from all communities and tested per community type (the results were qualitatively
the same when training and testing was done within the same community type). We compared ILP
to two transductive previously published models (stochastic block model and connectance; [3]) and one
transductive machine learning model that we developed (TLP). Each boxplot is a distribution of an
evaluation metric using a 0.5 classification threshold, bedsides the ROC AUC and PR AUC. Each data
point is a network and boxplots contain networks from all the five outer folds. BA is balanced accuracy.
See definitions of evaluation metrics in the Methods.
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level trophic species (resources) (plants, hosts, seeds).
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Table S1: Summary of network properties. The table provides an overview of the network properties for
different ecological communities, detailing each variable’s mean, median, and range values. N : number of
nodes; Le: number of existing links; Lne: number of nonexisting links; C: connectance, C = Le/(Le+Lne)

Variable Community Mean Median Range

N

Host-Parasite 37.58 33 20-137
Plant-Herbivore 42.53 37 21-78
Plant-Pollinator 43.36 36 20-205

Plant-Seed Dispersers 43.96 36 20-213

Le

Host-Parasite 82.86 63 19-490
Plant-Herbivore 67.69 42.5 22-294
Plant-Pollinator 72.94 52 21-631

Plant-Seed Dispersers 98.59 72 21-720

Lne

Host-Parasite 1622.08 991.5 349-18279
Plant-Herbivore 1997.22 1332.5 409-5996
Plant-Pollinator 2394.52 1260 363-41600

Plant-Seed Dispersers 2585.2 1238 362-44687

C

Host-Parasite 0.28 0.25 0.11-0.61
Plant-Herbivore 0.2 0.165 0.1-0.47
Plant-Pollinator 0.22 0.2 0.1-0.42

Plant-Seed Dispersers 0.28 0.27 0.1-0.71

Table S2: Results of Kruskal-Wallis test to detect differences between communities in multiple evaluation
metrics. The KW test was performed for each metric separately, with communities as factor levels. Dunn
post-hoc tests are in Table S3

Metric χ2 P Value

Balanced Accuracy 5.729 0.126
F1 29.460 1.79× 10−6

MCC 11.310 0.0102
PR AUC 47.862 2.28× 10−10

Precision 25.517 1.20× 10−5

Recall 37.908 2.96× 10−8

ROC AUC 7.053 0.0702
Specificity 37.557 3.51× 10−8
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Table S3: Results of Dunn posthoc tests for the Kruskal-Wallis pairwise comparisons between communities
in multiple evaluation metrics (Table S2). Only significant differences are presented here. Note that the
median values are close for some comparisons despite being statistically significant (e.g., precision for Host-
Parasite vs. Plant-Pollinator). A visualization of the values and their distributions is in the main text, in
Fig. 4.

Metric Community 1 Community 2 Median 1 Median 2 P Adjusted

Precision Host-Parasite Plant-Pollinator 0.17 0.15 4.10× 10−11

Precision Plant-Herbivore Plant-Pollinator 0.18 0.15 1.51× 10−7

Precision Plant-Herbivore Plant-Seed Dispersers 0.18 0.18 4.77× 10−2

Precision Plant-Pollinator Plant-Seed Dispersers 0.15 0.18 1.04× 10−18

Recall Host-Parasite Plant-Pollinator 0.67 0.56 4.10× 10−11

Recall Plant-Herbivore Plant-Pollinator 0.51 0.56 1.51× 10−7

Recall Plant-Herbivore Plant-Seed Dispersers 0.51 0.67 4.77× 10−2

Recall Plant-Pollinator Plant-Seed Dispersers 0.56 0.67 1.04× 10−18

PR AUC Host-Parasite Plant-Pollinator 0.37 0.36 4.10× 10−11

PR AUC Plant-Herbivore Plant-Pollinator 0.35 0.36 1.51× 10−7

PR AUC Plant-Herbivore Plant-Seed Dispersers 0.35 0.37 4.77× 10−2

PR AUC Plant-Pollinator Plant-Seed Dispersers 0.36 0.37 1.04× 10−18

Specificity Host-Parasite Plant-Pollinator 0.78 0.83 4.10× 10−11

Specificity Plant-Herbivore Plant-Pollinator 0.88 0.83 1.51× 10−7

Specificity Plant-Herbivore Plant-Seed Dispersers 0.88 0.80 4.77× 10−2

Specificity Plant-Pollinator Plant-Seed Dispersers 0.83 0.80 1.04× 10−18

F1 Host-Parasite Plant-Pollinator 0.28 0.24 4.10× 10−11

F1 Plant-Herbivore Plant-Pollinator 0.27 0.24 1.51× 10−7

F1 Plant-Herbivore Plant-Seed Dispersers 0.27 0.28 4.77× 10−2

F1 Plant-Pollinator Plant-Seed Dispersers 0.24 0.28 1.04× 10−18

MCC Host-Parasite Plant-Pollinator 0.25 0.22 4.10× 10−11

MCC Plant-Herbivore Plant-Pollinator 0.22 0.22 1.51× 10−7

MCC Plant-Herbivore Plant-Seed Dispersers 0.22 0.25 4.77× 10−2

MCC Plant-Pollinator Plant-Seed Dispersers 0.22 0.25 1.04× 10−18
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Supplementary notes on methods

Models applied

Selecting a machine learning model a priori can be challenging [4]. There is no one-size-fits-all solution;

different models have different strengths and weaknesses, and knowing which model will perform

better is often impossible. Some models may perform well on particular data types, while others may

perform better on different ones. Hence, model selection often requires some experimentation. In

practice, trying multiple models and comparing their performance is often a good idea before deciding

on a final model. Furthermore, using a model ensemble—a technique in which multiple models are

combined—can often lead to better results than a single model [5]. In this study, we tried multiple

models and their ensemble. For the ensemble, we averaged the probabilities for each prediction.

The models performed similarly overall, and their ensemble did not improve the results (Fig. S4).

Therefore, in the main text, we present results for random forest. In this section, we describe the

models we used. We present model hyperparameters in Table S4.

To understand how these models work, it is necessary to first explain the terms bagging and boost-

ing [6], two popular ensemble learning techniques. The key difference between bagging and boosting

lies in how they combine multiple models to make predictions. Bagging, which stands for bootstrap

aggregating, is a parallel ensemble technique. In bagging, multiple base models (multiple instances

of the same algorithm) are trained independently on different random subsets of the training data

using bootstrap sampling (sampling with replacement). The outputs of the individual models are

then combined, often through a voting mechanism or by taking the average of their predictions, to

produce a single output. Bagging is often used with decision trees as it has been repetitively shown to

outperform other models. Boosting, on the other hand, is a sequential ensemble technique. Boosting

works by iteratively training multiple weak models on modified versions of the training data, with

each subsequent model trying to correct the errors of the previous models, focusing on the examples

that the previous models misclassified. The training data is re-weighted at each iteration so that the

misclassified examples receive higher weights and are given more importance in subsequent iterations.

The final prediction of the boosted model is a weighted combination of the predictions of all the indi-

vidual models, with the weights determined by the performance of each model on the training data.

More weight is given to models that achieved higher performance.

Logistic regression. This generalized linear model uses a logistic function to model a binary de-

pendent variable. The logistic function maps the linear combination of input variables to a discrete

binary value between 0 and 1, which is interpreted as the probability of the input belonging to a

particular class. During training, the logistic regression algorithm finds the input variables’ best pa-

rameters (coefficients) by minimizing the error between the predicted probabilities and the actual class

labels in the training data. Logistic regression is easy to interpret and implement without necessarily

compromising performance [7].

Random Forest. [8,9] . This is a specific version of a bagging method with decision trees. A random

forest model creates a collection of decision trees and combines their predictions to produce a final

output. Decision tree models create a tree-like model of decisions and their possible consequences,

with each internal node representing a feature, each branch representing a decision rule, and each leaf

node representing the outcome class label. The algorithm starts at the root of the tree. It recursively
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splits the data into subsets using a feature that provides the most information gain at that stage

until it reaches a leaf node, representing the predicted class label for the input data. Each tree in the

random forest ensemble is trained on a different random subset of the data and features, and the final

output is the combination of the predictions of all the decision trees, usually made by either averaging

the results for regression tasks or by taking a majority vote for classification tasks.

XGBoost. This gradient-boosting tree-based algorithm is designed for speed and performance [10].

Gradient boosting [11] differs from other boosting algorithms in the way it calculates the weights of the

models. Specifically, gradient boosting uses the gradient descent optimization algorithm to minimize

the model’s loss function. At each iteration, the algorithm calculates the (negative) gradient of the

loss function with respect to the predictions of the previous ensemble. It uses this gradient to adjust

the weights of the new model. The negative gradient represents the direction of the steepest descent

for the loss function, which is the direction that will reduce the loss the most. By fitting a new tree to

the negative gradient, gradient boosting focuses on the examples misclassified in the previous ensemble

and attempts to correct those errors.
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Fig. S4: Model comparison. We evaluated link prediction using various models. Average is a model
ensemble. Overall, model choice did not qualitatively affect the results. Therefore, we present results of
random forest throughout the main text.

Cost-sensitive learning

Cost-sensitive learning uses a parameter that the algorithm considers during the learning process. The

penalty is the cost, which is minimized during the training process. This approach allows dealing with

imbalance while ignoring less samples [12]. The scikit-learn package [13] has a built-in support for

cost-sensitive learning. This implementation provides custom weights to a model’s classes or samples

during training. Depending on the learning algorithm, the loss function is modified to penalize mistakes

according to the provided weights, such that higher weights lead to higher penalizing. Because in our

study, the minority class is the existing links, these are assigned higher importance by using higher
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Table S4: Summary of model hyperparameters. The table provides an overview of the best values
for different parameters across five folds for each model. We optimized hyperparameters using a random
search. We used the F1-score as the performance metric to evaluate the hyperparameter combinations.
RFC: RandomForestClassifier; LR: LogisticRegression; XGB: XGBClassifier.

Model Parameter Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Range
RFC n estimators 300 100 20 100 300 [10, 15, 20, 50, 100, 300]
RFC min samples split 10 10 5 1 3 [1, 2, 3, 4, 5, 10]
RFC min samples leaf 8 12 4 3 4 [3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20]
RFC max samples 0.6 0.9 0.9 0.3 0.6 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
RFC max leaf nodes 8 64 128 64 16 [2, 4, 8, 16, 32, 64, 128]
RFC max features log2 log2 log2 log2 log2 [’sqrt’, ’log2’]
RFC max depth 5 5 50 7 5 [3, 5, 7, 10, 20, 30, 40, 50, 60, None]
RFC criterion gini entropy entropy gini gini [’gini’, ’entropy’]
RFC bootstrap True True True True True [True]
LR solver saga saga saga saga saga [’newton-cg’, ’lbfgs’, ’sag’]
LR penalty l2 l2 l2 l1 l1 [’l2’, ’none’]
LR max iter 300 300 300 300 300 [300]
LR C 0.1 0.01 0.001 0.001 0.001 [100, 10, 1.0, 0.7, 0.5, 0.3, 0.1, 0.01, 0.001]
XGB tree method hist hist hist hist hist [’hist’]
XGB subsample 0.5 0.1 1.0 0.30000000000000004 0.6 [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9, 1.0]
XGB reg lambda 1e-05 100 100 100 0.01 [0, 1e-05, 0.01, 0.1, 1, 100]
XGB reg alpha 1 0 0 0.01 1 [0, 1e-05, 0.01, 0.1, 1, 100]
XGB objective binary:logistic binary:logistic binary:logistic binary:logistic binary:logistic [’binary:logistic’]
XGB n estimators 70 70 80 90 80 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
XGB max depth 7 3 5 5 3 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, None]
XGB learning rate 0.001 0.05 0.3 0.1 0.05 [0.001, 0.01, 0.05, 0.1, 0.2, 0.3]
XGB gamma 0.3 0 0.1 1 1 [0, 0.1, 0.3, 0.5, 1]
XGB colsample bytree 0.2 0.1 0.1 0.1 0.5 [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7000000000000001, 0.8, 0.9, 1.0]
XGB booster gbtree gbtree gbtree gbtree gbtree [’gbtree’]

weights. Specifically, each class automatically gets a weight of 1 but can be set with a higher weight.

For instance, a class with a weight 2 will have double importance. We aimed for ‘balanced’ weights,

which are proportional to the classes’ frequency. For instance, if the training set contains 20 more

times non-existing than existing links, then existing links will get 20 times more importance.

Details on model evaluation metrics

In binary classification, the terms “positive” and “negative” refer to the two possible outcomes, where

the positive class is typically used to denote the class of interest. Here, the positive class is the

presence of a link. There are four possible prediction outcomes defined for binary classification models,

computed by comparing the predicted and actual values of the model’s outputs (Fig. S5):

• True Positives (TP): instances correctly predicted as the positive class. That is, sub-sampled

links that were correctly predicted as existing links.

• True Negatives (TN ): instances correctly predicted as the negative class. That is, non-

existing links that were correctly predicted as non-existing links.

• False Positives (FP): instances falsely predicted as the positive class. That is, non-existing

links that were incorrectly predicted as existing links. This is also known as a Type I error.

• False Negatives (FN ): instances falsely predicted as the negative class. That is, sub-sampled

links that were incorrectly predicted as non-existing links. This is also known as a Type II error.

The output of machine learning models is a probability of a link (Fig. S5). This continuous output

is transformed into a categorical (positive / negative) prediction via a threshold. The threshold

is typically 0.5, with values > 0.5 considered a link (and values below as a no-link). Therefore,

classification into the four categories above depends on the threshold applied. The relationship between

true positives, false positives, false negatives, and true negatives are summarized in a confusion matrix

from which the following metrics are calculated.

ROC-AUC : The area under the receiver operating characteristic curve is a graphical representation

of the actual positive rate (y axis) versus the false positive rate (x axis) of a model across different
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decision thresholds. The ROC-AUC score ranges from 0 to 1, where a score of 1 represents a perfect

classification model, while a score of 0.5 represents a model with random guessing.

Although the ROC-AUC is a common measure, the number of true negatives in imbalanced data sets

is very large, so even with a substantial number of false positives, the false positive rate might remain

relatively small. This means that the ROC curve might not fully capture the cost of misclassifying a

substantial number of the minority class instances. A better way to evaluate predictions in imbalanced

data sets is by combining precision and recall metrics. Precision and recall provide a more granular

understanding of a model’s performance. They emphasize the importance of being confident about

the most crucial prediction. These metrics act as safeguards against models that might achieve high

overall accuracy/ROC-AUC by merely predicting the majority class, which, as discussed in section ,

is an easy task in imbalanced data.

Precision : The proportion of correctly predicted positive instances out of all positive predictions:

TP

TP + FP
(S1)

Precision is important when false positives are costly. For example, falsely predicting an interaction

can lead ecologists to spend research efforts trying to validate a forbidden link in nature.

Recall or sensitivity : The proportion of correctly predicted positive instances out of all actual

positive instances. Recall is important when false negatives are costly. For example, not predicting

missing links can have consequences for conservation.

TP

TP + FN
(S2)

PR AUC : There is a tradeoff between precision and recall, which depends on the prediction threshold.

To evaluate this tradeoff, the area under the PR curve provides a single number that summarizes the

overall performance of a model across all possible classification thresholds. Like the ROC-AUC curve,

the PR curve is calculated across all thresholds.

F1-score : Another way to evaluate the precision-recall tradeoff is via a balanced measure of per-

formance that reflects the classifier’s ability to identify true positive instances while avoiding false

positives. The F1-score is defined as the harmonic mean between precision and recall:

F1 =
2 ∗ precision ∗ recall
precision+ recall

(S3)

Specificity : The proportion of correctly predicted negative instances out of all actual negative in-

stances:

TN

TN + FP
(S4)

While recall and precision focus on true positives, specificity focuses on the retrieval of true negatives.

Balanced accuracy : Balanced accuracy aims to balance the prediction ability for links and no-links,

particularly in situations where the classes are imbalanced. It is the average of the true positive rate

(sensitivity or recall) and the true negative rate (specificity):
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recall + specificity

2
(S5)

MCC : The Matthews Correlation Coefficient (MCC) takes into account the balance ratios of the four

confusion matrix categories (TP, TN, FP, FN), and is, therefore, a balanced measure that can be used

even if the classes are of very different sizes [14]. MCC values range from −1 to +1. A coefficient of

+1 indicates a perfect prediction, 0 indicates no better than a random prediction, and −1 indicates

total disagreement between prediction and observation.
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Fig. S5: Link prediction example for a host-parasite network. Values inside matrix cells are the
predicted link probabilities. The sub-sampled links are marked with X. Cells above the 0.5 threshold are
classified as links. Correct and wrong classifications are colored green and red, respectively. Therefore, true
positives are green with X, true negatives are green, false positives are red (no X) and false negatives are
red with X.

Exploration of the classification threshold

Given ecological networks’ imbalanced and noisy nature, we explored how the classification threshold

affects the PR tradeoff. As a first step, we plotted the link probabilities generated by the model.

The non-existing links were generally correctly classified (≈ 0.83% out of 183K non-links; Fig. S6A).

This is expected in imbalanced data sets. However, for the subsampled links, only ≈ 0.63% out

of 9K were classified correctly (Fig. S6B). This mismatch underlies the tradeoff between precision

and recall. Further exploration of the precision-recall tradeoff (Fig. S7) indicated that there is no

apparent threshold to choose from, and so we decided to use the common value of 0.5. In a more

detailed examination of each community separately, as shown in Fig. S8, we observed a pronounced

right-skewed distribution of the sub-sampled links. Specifically, there was a more apparent separation

between the two link types in both host-parasite and plant-seed disperser networks.
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A. Non−existing Links B. Subsampled Links
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Fig. S6: Distribution of link probabilities obtained from the model. The histograms depict the
distribution of the predicted probabilities for our binary classification task, representing the two classes
in the test set: non-existing links (A) and sub-sampled links (B). The x-axis represents the predicted
probabilities ranging from 0 to 1, while the y-axis represents the frequency of the observations. The dashed
red line represents the decision threshold of 0.5.
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Fig. S7: The precision-recall tradeoff as a function of classification threshold. The tradeoff is
presented when testing on all communities (A) or per community type (B-D). Each data point on the curve
corresponds to a distinct cutoff threshold value (x-axis).
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Fig. S8: Distribution of link probabilities across different ecological communities. The kernel
density estimate (KDE) curves of the three communities: (A) Host-parasite networks, (B) Plant-pollinator
networks, and (C) plant-speed disperser networks. The distributions for non-existing links and sub-sampled
links are depicted in blue and orange, respectively. The x-axis represents the predicted probabilities ranging
from 0 to 1, while the y-axis denotes the density estimation of the observations. A dashed red line marks
the decision threshold of 0.5. The overlap between the blue and orange distributions represents areas of
prediction ambiguity. In regions where non-existing links (blue) surpass the decision threshold, false positives
emerge, negatively influencing precision. Conversely, in the region where sub-sampled links (orange) fall
below the threshold, it results in false negatives, negatively influencing recall.
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