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Abstract

Evolutionary rescue happens when a population survives a sudden environmental change that
initially causes the population to decline toward extinction. A prime example of evolutionary
rescue is the ability of cancer to survive exposure to treatment. One evolutionary mechanism by
which a population of cancer cells can adapt to chemotherapy is aneuploidy. Aneuploid cancer
cells can be fitter in an environment altered by anti-cancer drugs, e.g., because aneuploidy disrupts
the pathways usually targeted by the drugs. Indeed, aneuploidy is highly prevalent in tumors, and
some anti-cancer drugs fight cancer by increasing chromosomal instability. Here, we model the
impact of aneuploidy on the fate of a population of cancer cells. We use multi-type branching
processes to approximate the probability that a tumor survives drug treatment as a function of
the initial tumor size, the rates at which aneuploidy and other beneficial mutations occur, and the
growth rates of the drug-sensitive and drug-resistant cells. Additionally, we investigate the effect
of the pre-existent aneuploid cells on the probability of evolutionary rescue. Finally, we estimate
the tumor’s mean recurrence time to revert to its initial size following treatment and evolutionary
rescue. We propose that aneuploidy can play an essential role in the relapse of smaller secondary
tumors.

Keywords: aneuploidy, evolutionary model, adaptive evolution, cancer, drug resistance, chro-
mosome instability
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Introduction
Aneuploidy in cancer. Each year, approximately 10 million people die from cancer (Kocarnik et al.,
2022). Understanding the factors that contribute to the failure of interventions is of great importance.
One suggested factor is aneuploidy, in which cells are characterized by an imbalanced karyotype and
alterations in the number of chromosomes (Schukken and Foijer, 2018). Aneuploidy is caused by
chromosomal instability and mis-segregation of chromosomes during mitosis. Importantly, changes
in the number of chromosomes and chromosome arms copies allow cancer cells to survive under
stressful conditions such as drug therapy (Ippolito et al., 2021, Lukow et al., 2021, Rutledge et al.,
2016). Indeed, cancer cells are often aneuploid, and aneuploidy is associated with poor patient
outcomes (Ben-David and Amon, 2020, Smith and Sheltzer, 2018).

Ippolito et al. (2021) induced aneuploidy in cancer cell lines by exposing them to reversine, a
small-molecule inhibitor of the mitotic kinase Mpsi1, and then to anti-cancer drugs such as vemu-
rafenib. Reversine-treated cells had a higher proliferation rate following drug exposure than sensitive
cancer cells, due to selection of specific beneficial karyotypes. Similarly, Lukow et al. (2021) induced
aneuploidy in cancer cells and observed that such cells have an advantage compared to sensitive
cells during drug treatment despite having lower fitness before the onset of treatment. One proposed
mechanism through which aneuploidy can confer resistance to anti-cancer drugs is by antagonizing
cell division, which prevents the drugs from damaging DNA and microtubules (Replogle et al., 2020).
Other mechanisms are the selection for specific karyotypes that lead to reduced drug metabolism
(Ippolito et al., 2021) and elevated levels of DNA damage repair due to higher basal levels of DNA
damage (Zerbib et al., 2023).

An essential aspect of aneuploidy is that the rate with which cells become aneuploid, that is,
the rate of chromosome missegregation, is several orders of magnitude higher than mutation rate
(Bakker et al., 2023). Consequently, a cell exposed to stress, such as chemotherapeutic drugs, can
acquire aneuploidy faster than a mutation. Moreover, several proposed anti-cancer drugs elevate
the missegregation rate to fight cancer cells (Lee et al., 2016), as an extremely high chromosome
missegregation rate is incompatible with cell survival and proliferation.

Evolutionary rescue. Populations adapted to a specific environment are vulnerable to environmental
changes, which might cause the population’s extinction. Examples of such environmental changes
include climate change, invasive species, and the onset of drug therapies. Adaptation is a race
against time as the population size decreases in the new environment (Tanaka and Wahl, 2022).
Evolutionary rescue is the process by which the population acquires a trait that increases fitness in the
new environment such that extinction is averted. It is mathematically equivalent to the problem of
crossing of fitness valley (Weissman et al., 2009, 2010). There are three potential ways for a population
to survive environmental change: migration to a new habitat similar to the one before the onset of
environmental change (Cobbold and Stana, 2020, Harsch et al., 2014, Zhou, 2022); adaptation by
phenotypic plasticity without genetic modification (Carja and Plotkin, 2017, 2019, Gunnarsson et al.,
2020, Levien et al., 2021); and adaptation through genetic modifications, e.g., mutation (Gomulkiewicz
and Holt, 1995, Orr and Unckless, 2014, Uecker and Hermisson, 2011, 2016, Uecker et al., 2014).

Gunnarsson et al. (2020) analyzed a model where a tumor consisting of two populations of cancer
cells, one drug-resistant and the other drug-sensitive, can evade extinction by cells switching between
the two phenotypes through epigenetic mutations. They found that even when drug-resistant cells are
barely viable, the epimutations guarantee evolutionary rescue. Evolutionary rescue in a single step,
where an initially declining population has to acquire a mutation to survive extinction after a sudden
environmental change, has been studied by Orr and Unckless (2008, 2014). They analyzed a model
where the mutant strain is present in small numbers at the onset of therapy. They concluded that this
can significantly enhance the population’s probability of survival.
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Most models focus on the probability that at most one mutation rescues the population. How
multiple mutations contribute to the survival of the population is less explored, but Wilson et al.
(2017) have shown that evolutionary rescue is significantly enhanced by soft selective sweeps when
multiple mutations contribute towards evolutionary rescue. Evolutionary rescue that requires two
successive mutations (i.e., two steps) has been investigated by Martin et al. (2013), who tested their
model’s predictions with data from yeast and bacteria experiments. Iwasa et al. (2003, 2004) used
multi-type branching process theory to approximate the probability that a population under strong
selective pressure can survive extinction via succesive mutations.

Here, we study evolutionary rescue after a sudden environmental change caused by initiating
anti-cancer drug treatment. We consider a range of effects of aneuploidy, from tolerance to (partial)
resistance to the drug (Brauner et al., 2016). We estimate the effect of aneuploidy on the tumor’s
evolutionary rescue probability. When aneuploidy provides drug resistance, it can directly rescue
the tumor. However, when aneuploidy provides tolerance to the drug, it may act as an evolutionary
“stepping stone” or “springboard” (Martin et al., 2013, Osmond et al., 2020, Yona et al., 2015),
delaying extinction, and thereby allowing the tumor more time to acquire a resistance mutation on
top of the aneuploid background. As mentioned above, evidence suggests that aneuploidy may be
a common strategy for tumor adaptation to drug therapy. Still, it is unknown how often aneuploidy
provides tolerance and acts as a stepping stone. We also estimate the mean time until a tumor cell
population reaches its pre-treatment size following drug therapy. Given that aneuploidy is present
in many tumors before the onset of therapy (Ben-David and Amon, 2020, Lukow et al., 2021), we
also consider the effect of pre-treatment standing genetic variation on the evolutionary dynamics.
Additionally, we are interested in the timescale of evolutionary rescue and the impact that aneuploidy
has on the time necessary for the tumor to overcome drug therapy.

Methods
Evolutionary model. We follow the number of cancer cells with one of three different genotypes at
time 𝑡: sensitive, 𝑠𝑡 ; tolerant/resistant aneuploid, 𝑎𝑡 ; and resistant mutant, 𝑚𝑡 . These cells divide and
die with rates 𝜆𝑘 and 𝜇𝑘 (for 𝑘 = 𝑠, 𝑎, 𝑚). The division and death rate difference is Δ𝑘 = 𝜆𝑘 − 𝜇𝑘 . We
assume the population of cells is under a strong stress, such as drug therapy, and therefore Δ𝑠 < 0,
whereas the mutant is resistant to the stress, Δ𝑚 > 0. We consider a range of possible values for Δ𝑎,
finding three distinct scenarios: in the first, aneuploid cells are partially resistant, Δ𝑚 > Δ𝑎 > 0; in
the second, aneuploid cells are tolerant, 0 > Δ𝑎 > Δ𝑠 (see Brauner et al., 2016, for the distinction
between susceptible, resistant, and tolerant); in the third, aneuploid cells are non-growing, stationary,
or growing or dying only very slowly, that is, either slightly tolerant or slightly resistant, such that
Δ𝑎 ≈ 0, in a sense that we will make precise below.

We assume that both chromosomal missegregation and mutations occur during the process
of mitosis. Sensitive cells may divide and then missegregate to become aneuploids at rate 𝑢𝜆𝑠.
Both aneuploid and sensitive cells may divide and mutate to become mutants at rates 𝑣𝜆𝑎 and 𝑣𝜆𝑠,
respectively. To model standing genetic variation, we assume that before the onset of therapy, sensitive
cells become aneuploid with rate �̃�𝜆𝑠 (which may differ from 𝑢𝜆𝑠) and that aneuploidy confers a fitness
cost 𝑐 in the drug-free environment, that is, we assume that aneuploid cells have an increased death
rate compared to sensitive cells in a drug-free environment.

See Figure 1 for a schematic representation of the model and Figure 2 for sample trajectories of
the different genotypes.

Stochastic simulations. Simulations are performed using the Gillespie stochastic simulation algo-
rithm (Gillespie, 1976, 1977) implemented in Python (Van Rossum and Others, 2007). The simulation
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monitors the number of cells of each type: sensitive, aneuploid, and mutant. Initially, the population
starts with only sensitive cells, 𝑠0 = 𝑁 , and the other genotypes are initially absent.

The cell population at time 𝑡 is represented by the triplet (𝑠𝑡 , 𝑎𝑡 , 𝑚𝑡). The following describes the
events that may occur (right column), the rates at which they occur (middle column), and the effect
these events have on the population (left column, see Figure 1):

(+1, 0, 0) : 𝜆𝑠𝑠𝑡 (1 − 𝑢 − 𝑣) (birth of sensitive cell) ,
(−1, 0, 0) : 𝜇𝑠𝑠𝑡 (death of sensitive cell) ,
(0, +1, 0) : 𝑢𝜆𝑠𝑠𝑡

(
sensitive cell divides and becomes aneuploid

)
,

(0, 0, +1) : 𝑣𝜆𝑠𝑠𝑡 (sensitive cell divides and becomes mutant) ,
(0, +1, 0) : 𝜆𝑎𝑎𝑡 (1 − 𝑣)

(
birth of aneuploid cell

)
,

(0,−1, 0) : 𝜇𝑎𝑎𝑡
(
death of aneuploid cell

)
,

(0, 0, +1) : 𝑣𝜆𝑎𝑎𝑡
(
aneuploid cell divides and becomes mutant

)
,

(0, 0, +1) : 𝜆𝑚𝑚𝑡 (birth of mutant cell) ,
(0, 0,−1) : 𝜇𝑚𝑚𝑡 (death of mutant cell) .

For the remaining of this paper, we assume that the division rates of sensitive and aneuploid cells
can be written as 𝜆𝑠𝑠𝑡 (1 − 𝑢 − 𝑣) ≈ 𝜆𝑠𝑠𝑡 and 𝜆𝑎𝑎𝑡 (1 − 𝑣) ≈ 𝜆𝑎𝑎𝑡 because 𝑢, 𝑣 ≪ 1 (Table 1). Each
iteration of the simulation loop starts by computing the rates 𝜈𝑘 of each event 𝑘 . We then draw the
time until the next event, Δ𝑡, from an exponential distribution whose rate parameter is the sum of the
rates of all events, such that Δ𝑡 ∼ Exp(∑ 𝑗 𝜈 𝑗 ). Then, we randomly determine which event occurred,
where the probability for event 𝑘 is 𝑝𝑘 = 𝜈𝑘/

∑
𝑗 𝜈 𝑗 . Finally, we update the number of cells of each

genotype according to the event that occurred and update the time from 𝑡 to 𝑡 + Δ𝑡. We repeat these
iterations until either the population becomes extinct (the number of cells of all genotypes is zero) or
the number of mutant cells is high enough so that their extinction probability is < 0.1%, that is, until

𝑚𝑡 >

⌊
3 log 10

log
(
𝜆𝑚/𝜇𝑚

) ⌋ + 1,

which we obtain by solving 1 − (1 − 𝑝𝑚)𝑚𝑡 = 0.999 for 𝑚𝑡 with 𝑝𝑚 = Δ𝑚/𝜆𝑚 as the probability that a
single mutant escapes stochastic extinction (Appendix A).

When simulations are slow (e.g., due to large population size) with runtimes in the order of
days, we use 𝜏-leaping (Gillespie, 2001), where we assume that the change in the number of cells of
genotype 𝑘 in a fixed time interval Δ𝑡 is Poisson distributed with mean 𝜈𝑘Δ𝑡. If the number of cells of
genotype 𝑘 becomes negative, we change it to zero.

Parameterization. To parametrize the simulations, we assume that the cells under consideration are
melanoma cells and rely on Rew and Wilson (2000) and Bozic et al. (2013) for the division and death
rates, respectively. Rew and Wilson (2000) report in vivo measurements of the potential doubling
times (the waiting time for the number of cells in the tumor to double, disregarding cell death) for a
large set of cancer types. The division rate is obtained as 𝜆 = log 2/𝑇 ≈ 0.1 per day. We select this to
be the division rate for sensitive and mutant cells.

Bozic et al. (2013) report the growth rate Δ𝑠 for sensitive melanoma cancer cells from which
they deduce the death rate 0.11 ≤ 𝜇𝑠 ≤ 0.17. We use 𝜇𝑠 = 0.14 per day. Additionally, they observed
the growth rate of cancer cells before treatment to be 0.01, which we use as the growth rate of mutant
cells, which are resistant to the drug. Thus, we use 𝜇𝑚 = 0.1 − 0.01 = 0.09 per day as the death rate
for mutant cells.
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Aneuploid death rate 𝜇𝑎 is set to the same value as the mutant death rates, 𝜇𝑚 = 0.09 per day,
given that aneuploidy increases resistance to the drug, such as cisplatin, by antagonizing cell division
(Replogle et al., 2020). The aneuploid division rate is selected such that the aneuploid growth rate
Δ𝑠 ≪ Δ𝑎 ≪ Δ𝑚 means that 0.06 ≤ 𝜆𝑎 ≤ 0.1. For most of our simulations, we use 𝜆𝑎 = 0.0899
per day, so that aneuploid cells are tolerant and aneuploidy can only act as an evolutionary “stepping
stone” for the generation of the resistant mutant that rescues the tumor (note that this mutant will occur
on the background of an aneuploid genotype).

The missegregation rate in cancer cells is estimated to be between 2.5 × 10−4 − 10−2 per chro-
mosome per cell division (Shi and King, 2005, Thompson and Compton, 2008). Ippolito et al. (2021)
observed that trisomy in Chr 2 and Chr 6 are most likely to confer increased resistance against the
anti-cancer drug vemurafenib for A375 cells. We assume each of these trisomies is formed at the most
likely rate, and as a result, we use �̃� = 10−3 per cell division as the chromosome missegregation rate in
the drug-free environment. Some drugs are known to increase chromosome instability (Mason et al.,
2017, Wang et al., 2019). Specifically, Lee et al. (2016) estimated the effect of different anti-cancer
drugs on the missegregation rate and found a 3-50-fold increase. We thus assume an anti-cancer drug
that causes a 10-fold increase in the chromosome missegregation rate, which gives us 𝑢 = 10−2 per
cell division. We assume the mutation rate is 10−7 per gene per cell division (Loeb, 2001), and since
we assume that a single target gene confers resistance to the drug, we use 𝑣 = 10−7 per cell division.

The fitness cost 𝑐 of aneuploidy before the onset of therapy is difficult to estimate as we are
interested in a specific type of aneuploidy that improves the fitness of cancer cells in an environment
altered by drugs. We estimate 𝑐 = �̃�𝜆𝑠/ 𝑓 , where 𝑓 is the fraction of aneuploid cancer cells. To
estimate 𝑓 , we note that Lukow et al. (2021) mixed sensitive and aneuploid A375 melanoma cells at
1 : 1 ratio, cultured them in a drug-free environment, and observed the ratio evolve as a function of
time with the aneuploid cells declining to 15% after 24 days. Thus, our estimate for the fitness cost is
𝑐 =

���log
[
0.15/(1 − 0.15)

]
/24

��� ≈ 0.07 per day (Chevin, 2011), and the estimated fraction of cancer
cells with the beneficial aneuploidy is 𝑓 = 10−3 × 10−1/0.07 = 0.14%, that is, 0.14% of pre-treatment
cancer cells have the beneficial aneuploidy of interest.

We note that when we refer to drug-sensitive cells, we include those cells that have any aneuploidy
other than trisomy in Chr 2 and 6, as those are the aneuploid cells that are hypothesized to have higher
fitness in the environment altered by drugs such as vemurafenib.

All the parameters discussed above are shown in Table 1.

Density-dependent growth. In our analysis, we assume that cells from the initial population divide
and die independently of each other. However, these cells will compete for resources. We assume
this competition can be ignored because the drug will cause the cell density to rapidly drop below
the carrying capacity where competition is important. To test this assumption, we simulate a logistic
growth model, with division and death rates given by

𝜆′𝑠 = 𝜆𝑠,

𝜇′𝑠 = 𝜇𝑠,

𝜆′𝑎 = 𝜆𝑎,

𝜇′𝑎 = 𝜇𝑎 + 𝜆𝑎
𝑤 + 𝑎 + 𝑚

𝐾
,

𝜆′𝑚 = 𝜆𝑚,

𝜇′𝑚 = 𝜇𝑚 + 𝜆𝑚
𝑤 + 𝑎 + 𝑚

𝐾
,
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where 𝐾 is the tumor carrying capacity. The effective carrying capacity in this model is 𝐾𝑒 =

𝐾Δ𝑎/𝜆𝑎 ≈ 106 for 𝐾 = 108, 𝜆𝑎 = 0.0901, 𝜇𝑎 = 0.09, where we define the effective carrying capacity
to be the population size at which the aneuploid division rate is equal to the aneuploid death rate.

Code and data availability. All source code is available online athttps://github.com/yoavram-
lab/EvolutionaryRescue.

Results

Evolutionary rescue probability
In our model, evolutionary rescue occurs when drug-resistant cells appear and establish (avoid random
extinction) in the population (𝑚𝑡 ≫ 1) before the population becomes extinct (𝑤𝑡 = 𝑎𝑡 = 𝑚𝑡 = 0).
Aneuploidy may contribute to evolutionary rescue by either preventing (when Δ𝑎 > 0) or delaying
(when 0 > Δ𝑎 > Δ𝑠) the extinction of the population before mutant cells appear and establish. We
assume independence between clonal lineages starting from an initial population of 𝑁 sensitive cells
(we check the effect of density-dependent growth on our results below). Define 𝑝𝑠 as the probability
that a lineage starting from a single drug-sensitive cell avoids extinction by acquiring drug resistance.
Thus, 𝑁∗ = 1/𝑝𝑠 is the threshold tumor size above which evolutionary rescue is very likely, and the
rescue probability is given by

𝑝rescue = 1 −
(
1 − 𝑝𝑠

)𝑁 ≈ 1 − e−𝑁𝑝𝑠 = 1 − 𝑒−𝑁/𝑁∗
, (2)

where the approximation (1 − 𝑝𝑠) ≈ 𝑒−𝑝𝑠 assumes that 𝑝𝑠 (but not necessarily 𝑁𝑝𝑠) is small. Indeed,
when 𝑁 < 1/𝑝𝑠, then the probability for evolutionary rescue is 𝑝rescue ≈ 𝑁𝑝𝑠, and when 𝑁 > 1/𝑝𝑠, it
is 𝑝rescue ≈ 1, justifying the definition of 𝑁∗ as the threshold tumor size for evolutionary rescue.

We use multi-type branching-process theory to find approximate expressions eqs. (A4), (A7)
and (A11) for 𝑝𝑠 in three distinct scenarios (Appendix A). Substituting these into 𝑁∗ = 1/𝑝𝑠, we
find approximations for the threshold tumor size, 𝑁∗. In these approximations, an important quantity
is 𝑇∗ =

√︁
𝜆𝑚/4𝑣𝜆2

𝑎Δ𝑚, which is the critical time an aneuploid lineage needs to survive to produce
a resistant mutant that avoids random extinction. First, if aneuploidy is very rare (𝑢𝜆𝑎𝑇∗ < 1), or
if aneuploidy is rare (𝑢𝜆𝑎 < −Δ𝑎) and very sensitive to the drug (Δ𝑎𝑇∗ < −1), then it is likely
that evolutionary rescue will occur through a direct resistance mutation in a sensitive cell without
aneuploidy playing a role in the adaptive dynamics, such that

𝑁∗
𝑚 ≈ |Δ𝑠 |

𝑣𝜆𝑠

𝜆𝑚

Δ𝑚
. (3)

Here, |Δ𝑠 | /(𝑣𝜆𝑠) is the ratio of the rate at which sensitive cells decrease in number and the rate at
which they are mutating. Notably, the aneuploidy parameters (𝑢, 𝜆𝑎, 𝜇𝑎) do not affect 𝑁∗

𝑚.

Otherwise, aneuploidy is frequent enough (𝑢𝜆𝑎 > max
(
−Δ𝑎, 1/𝑇∗)) to affect the evolution of

drug resistance. The threshold tumor size can be approximated by one of the following scenarios,
depending on Δ𝑎𝑇

∗, which represents the change in the aneuploid log-population size during the
critical time,

𝑁∗
𝑎 ≈

|Δ𝑠 |
𝑢𝜆𝑠

·


|Δ𝑎 |
𝑣𝜆𝑎

𝜆𝑚
Δ𝑚
, Δ𝑎𝑇

∗ ≪ −1 (tolerant aneuploids),
2𝜆𝑎𝑇∗, −1 ≪ Δ𝑎𝑇

∗ ≪ 1 (stationary aneuploids),
𝜆𝑎
Δ𝑎
, Δ𝑎𝑇

∗ ≫ 1 (resistant aneuploids).
(4)

These approximations perform very well when compared to the results of stochastic evolutionary
simulations (Figures 3 and 4). The first line describes the scenario in which the treatment still
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effectively kills aneuploid cells but not as quickly as the sensitive cells. In the second scenario,
aneuploid cells are sufficiently resistant, and the expected size of each aneuploid lineage is roughly
1. In both of these scenarios, aneuploidy increases the probability of rescue by slowing or halting the
decrease in the tumor population size, allowing more opportunities to produce resistant mutants. In the
third scenario, aneuploid cells are sufficiently resistant for the population to re-grow the tumor without
additional resistance mutations. Notably, in this scenario the mutant parameters (𝑣, 𝜆𝑚, and Δ𝑚) do
not affect 𝑁∗

𝑎 beyond their effect on 𝑇∗. In all scenarios, 𝑁∗
𝑎 is proportional to 1/𝑢 such that increasing

the missegregation rate 𝑢 will decrease the threshold tumor size (Figure 4B). Furthermore, increasing
the aneuploid growth rate Δ𝑎 (which appears both in the terms and in the conditions), also reduces
the threshold tumor size, with a sharp decrease around Δ𝑎 = 0, but the effect is minor when |Δ𝑎 | is
small compared to 𝑇∗ as this would result in the second scenario where 𝑑𝑁∗

𝑎/𝑑Δ𝑎 = 0 (Figure 4A).
The tumor threshold size decreases with the mutation rate in the first and second scenarios: 𝑁∗

𝑎 is
proportional to 1/𝑣 in the first scenario (tolerant aneuploids) and to

√︁
1/𝑣 in the second scenario

(stationary aneuploids). Furthermore, the growth rate Δ𝑎 < 0 that allows tolerant aneuploids to rescue
the tumor is between −𝑢𝜆𝑎 and −1/𝑇∗, which is proportional to −

√
𝑣. Thus, increasing the mutation

rate 𝑣 will decrease the tumor threshold size 𝑁∗
𝑎, making evolutionary rescue more likely, but only

until 𝑇∗ decerases to a point where Δ𝑎 = 1/𝑇∗.

Using eqs. (3) and (4), we can find the ratio of threshold tumor size for rescue via aneuploidy (𝑢
is high) or via direct mutation (𝑢 is low),

𝑁∗
𝑎

𝑁∗
𝑚

≈


|Δ𝑎 |
𝑢𝜆𝑎
, Δ𝑎𝑇

∗ ≪ −1,
1
𝑢

(
𝑣
Δ𝑚

𝜆𝑚

)1/2
, −1 ≪ Δ𝑎𝑇

∗ ≪ 1,

𝑣
Δ𝑚

𝜆𝑚

(
𝑢
Δ𝑎

𝜆𝑎

)−1
, Δ𝑎𝑇

∗ ≫ 1.

(5)

As expected, this ratio increases with the mutation rate 𝑣 and decreases with the aneuploidy rate 𝑢. In
the first scenario, |Δ𝑎 | /𝑢𝜆𝑎 is the ratio of the expected time for an aneuploid lineage to appear, 1/𝑢𝜆𝑎,
and the expected time until that lineage disappears, 1/|Δ𝑎 |. In the third scenario,

(
𝑣
Δ𝑚

𝜆𝑚

)
/
(
𝑢
Δ𝑎

𝜆𝑎

)
is

the ratio of the rates of appearance of resistant mutants that avoid extinction and partially resistant

aneuploids that avoid extinction. In the second scenario, 1
𝑢

(
𝑣
Δ𝑚

𝜆𝑚

)1/2
=

√︂
Δ𝑎

𝑢𝜆𝑎
𝑣
Δ𝑚

𝜆𝑚

(
𝑢
Δ𝑎

𝜆𝑎

)−1
, which is

the geometric mean of the first and third scenarios.

Interestingly, increasing both the aneuploid division rate, 𝜆𝑎, and the aneuploid death rate, 𝜇𝑎,
such that the growth rate Δ𝑎 remains constant, leads to a decrease in 𝑇∗, pushing the system to the
second scenario. In this scenario, increasing the division rate 𝜆𝑎 should also increase the mutation
rate 𝑣𝜆𝑎 in aneuploid cells, as mutations mostly occur during division, so overall, the threshold tumor
size 𝑁∗

𝑎 is unaffected by the division rate 𝜆𝑎 (i.e., 𝑑𝜆𝑎𝑇∗/𝑑𝜆𝑎 = 0). Thus, if aneuploid cells rapidly
die due to the drug but compensate by rapidly dividing, increasing the division rate will not facilitate
adaptation. This is consistent with experimental findings where aneuploidy confers resistance by
decreasing the division rate (Replogle et al., 2020).

We can categorize tumors by their size: small tumors with size 𝑁 < 𝑁∗
𝑎 that are unlikely to survive

treatment, intermediate tumors with size 𝑁∗
𝑎 < 𝑁 < 𝑁∗

𝑚 that rely on aneuploidy for evolutionary
rescue, and large tumors with size 𝑁 > 𝑁∗

𝑚 that could overcome the effect of drug treatment without
aneuploidy. For the parameter values in Table 1 with 𝜆𝑎 = 0.0899, 𝜇𝑠 = 0.14, 𝑢 = 10−2, 𝑣 = 10−7,
we are in the tolerant aneuploid scenario, and substituting in eqs. (3) and (4), we have 𝑁∗

𝑎 ≈ 4 × 106

and 𝑁∗
𝑚 ≈ 4 × 107. Hence, we obtain the ratio 𝑁∗

𝑎/𝑁∗
𝑚 ≈ 0.11 (eq. (5)), that is, aneuploidy reduces

the threshold tumor size by approximately 89%. Interestingly, the threshold between small and
intermediate tumors, 𝑁∗

𝑎, is similar to the tumor detection threshold of 4.19 × 106 cells for a wide
variety of tumors (Avanzini and Antal, 2019).

7



Aneuploidy may lead to an increased mutation rate in cancer cells(Garribba et al., 2023, Janssen
et al., 2011, Passerini et al., 2016). Thus, we extended our model to account for this in Appendix
H. We find that increasing the mutation rate in aneuploid cells by one order of magnitude leads to
a decrease in the threshold tumor size of approximately one order of magnitude. Also, it transitions
the system from the first scenario (tolerant aneuploids) to the second scenario (stationary aneuploids)
without changing the aneuploid growth rate, Δ𝑎.

In our analysis, we used branching processes, which assume that growth (division and death)
is density-independent. However, growth may be limited by resources (oxygen, nutrients, etc.) and
therefore depend on cell density. Therefore, we performed stochastic simulations of a logistic growth
model with a carrying capacity. We find that our density-independent approximations agree with
the results of simulations with density-dependent growth for biologically relevant parameter values
(Figure S1).

Standing vs. de-novo genetic variation. In the above, we assumed that at the onset of drug
treatment, the initial tumor consisted entirely of drug-sensitive cells. However, aneuploidy is likely
produced even before the onset of treatment at some rate �̃�, which may be lower in the absence of
drugs, �̃� < 𝑢 (Mason et al., 2017, Wang et al., 2019). Moreover, aneuploidy likely confers a fitness
cost 𝑐 in the absence of drugs (Giam and Rancati, 2015, Replogle et al., 2020). Hence, if the number
of cells in the tumor 𝑁 is large (as expected if the tumor is treated with a drug), there may already be
a fraction 𝑓 ≈ �̃�𝜆𝑠/𝑐 of aneuploid cells in the population (here we assume that the drug affects the
sensitive death rate but not the division rate and therefore we use 𝜆𝑠 for the sensitive division rate in
the drug-free environment).

Therefore, the threshold tumor size for rescue by standing generation variation, �̃�∗
𝑎, is similar to

the threshold for rescue by de-novo variation, 𝑁∗
𝑎, except that the sensitive growth rate |Δ𝑠 | is replaced

by the cost of aneuploidy 𝑐, such that
�̃�∗
𝑎

𝑁∗
𝑎

=
𝑢

�̃�

𝑐

|Δ𝑠 |
. (6)

Comparing this approximation of �̃�∗
𝑎/𝑁∗

𝑎 to results of stochastic simulations, we find that the approx-
imations perform very well (Figure 5). Standing genetic variation will drive evolutionary rescue if
sensitive cells die rapidly (growth rate Δ𝑠 is very negative) due to a strong effect of the drug on sen-
sitive cells or if the cost of aneuploidy in the drug-free environment, 𝑐, is small. In contrast, de-novo
aneuploid cells will have a greater contribution to rescue if the cost of aneuploidy, 𝑐, is large, the effect
of the drug on sensitive cells is weak (Δ𝑠 is close to zero), or if the drug induces the appearance of
aneuploid cells (𝑢 > �̃�). For example, with 𝜆𝑠 = 0.1, 𝜇𝑠 = 0.14, 𝑢 = 10−2, �̃� = 10−3, and 𝑐 = 0.07, the
ratio of the threshold tumor sizes for standing vs. de-novo variation is �̃�∗

𝑎/𝑁∗
𝑎 ≈ 17.5, which means

that de-novo genetic variation is the main driver of evolutionary rescue.

Using eqs. (3), (4) and (6), we can find the ratio of threshold tumor size for rescue via standing
genetic variation to the threshold for rescue via direct mutation,

�̃�∗
𝑎

𝑁∗
𝑚

=
�̃�∗
𝑎

𝑁∗
𝑎

𝑁∗
𝑎

𝑁∗
𝑚

≈ 𝑐

|Δ𝑠 |


|Δ𝑎 |
�̃�𝜆𝑎
, Δ𝑎𝑇

∗ ≪ −1,
1
�̃�

(
𝑣
Δ𝑚

𝜆𝑚

)1/2
, −1 ≪ Δ𝑎𝑇

∗ ≪ 1,

𝑣
Δ𝑚

𝜆𝑚

(
�̃�
Δ𝑎

𝜆𝑎

)−1
, Δ𝑎𝑇

∗ ≫ 1.

(7)

Evolutionary rescue through direct mutation is more likely if the cost of aneuploidy, 𝑐, is very large
or the effect of the drug Δ𝑠 is small. In contrast, standing genetic variation will drive adaptation if
the pre-treatment chromosome missegregation rate, �̃�, is very large. The ratio does not depend on the
rate of chromosome missegregation induced by the drug, 𝑢. However, if the aneuploid growth rate,
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Δ𝑎, increases, evolutionary rescue is driven by standing genetic variation. For the parameter values
of 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, �̃� = 10−3, and 𝑣 = 10−7,
we are in the first scenario (tolerant aneuploids) and obtain the ratio �̃�∗

𝑎/𝑁∗
𝑚 ≈ 1.94, which means

that standing genetic variation does not drive evolution of drug resistance when compared to direct
mutation. We note that for larger values of the pre-treatment chromosome missegregation rate, �̃�,
which are consistent with empirical studies (Table 1), standing genetic variation can drive adaptation
when compared to direct mutation.

Recurrence time due to evolutionary rescue
When evolutionary rescue occurs, the time until the tumor recurs may still be very long. We therefore
explored the time until the tumor recurs, that is, the time until the tumor reaches its original size,
𝑁 . When the expected number of resistant lineages that avoid extinction is small, the expected
recurrence time can be estimated by adding two terms: the mean evolutionary rescue time, which
is the waiting time for the appearance of a resistant lineage that avoids extinction (conditioned on
such an event occurring in the first place), and the mean proliferation time, which is the expected
time for that lineage to grow to 𝑁 cells. However, when the expected number of resistant lineages is
large, the dynamics of the number of mutant cells is deterministic (i.e., it can be modeled by a system
of ODEs, eq. (D2)), and the mean recurrence time cannot be separated into the mean evolutionary
rescue time and mean proliferation time because multiple mutant lineages contribute towards the
mutant population size reaching the initial tumor size. Of particular interest is the distribution of the
evolutionary rescue time and recurrence time with tolerant aneuploid cells (Δ𝑎𝑇∗ ≪ 1), for which we
focus on the parameter values 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09,
𝑢 = 10−2, and 𝑣 = 10−7.

Evolutionary rescue time. We have derived approximations for 𝜏𝑚, the mean evolutionary rescue
time without aneuploidy (𝑢 = 0), and 𝜏𝑎, the mean rescue time with aneuploidy (𝑢 > 0), both condi-
tioned on evolutionary rescue occurring (Appendix C). These approximations agree with simulation
results for small, intermediate, and large tumor sizes (Figures S2 and S6). The mean rescue time with
aneuploidy for small and large tumors follows

𝜏𝑎 ≈
{
− 1

Δ𝑠
− 1

Δ𝑎
, 𝑁 ≪ 𝑁∗

𝑎,
1

𝑣𝜆𝑠𝑁
𝜆𝑚
Δ𝑚
, 𝑁 ≫ 𝑁∗

𝑚 .
(8)

For small tumors (𝑁 ≪ 𝑁∗
𝑎), the mean rescue time is a function of the sensitive and aneuploid growth

rates and independent of the other model parameters, including tumor size (blue line in Figure S6).
Increasing the sensitive or aneuploid growth rates leads to an increase in the mean rescue time, because
the corresponding cells will survive for longer and will produce additional rescue mutations at latter
times. In our focus parameter regime, we have Δ𝑠 = −0.04 and Δ𝑎 = −10−4, such that the mean rescue
time is mainly determined by the aneuploid growth rate, 𝜏𝑎 ≈ 104 days.

For large tumors (𝑁 ≫ 𝑁∗
𝑚), the mean evolutionary rescue time (eq. (8)) is independent of

parameters characterizing aneuploid cells or their production (𝑢, 𝜆𝑎, and Δ𝑎). Increasing the per
division mutation rate, 𝑣 leads to the faster appearance of a rescue mutation and hence reduced mean
rescue time. Finally, increasing the tumor size leads to shorter mean rescue time, as more sensitive
cells can mutate to become resistant.

Given that a fraction 𝑓 ≈ 0.14% of the initial cancer cell population is expected to have beneficial
aneuploidy even before the onset of drug treatment, we want to know whether the mean evolutionary
rescue time is affected by the standing genetic variation. We calculated the mean evolutionary
rescue time with standing genetic variation, 𝜏𝑎 (eq. (C10)), and compared our result with simulations
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(Figure S9). We note that standing genetic variation does not significantly affect the mean evolutionary
rescue time.

We calculate the probability that a rescue mutation has been generated by time 𝑡 in Appendix E.
This allows us to examine whether aneuploidy promotes or delays evolutionary rescue. We find
that aneuploidy promotes evolutionary rescue after 1/Δ𝑎 ≈ 100 days, at a time when no more
rescue mutations are generated through mutations in sensitive cells (Figure 6A). Thus, aneuploidy
increases the window of opportunity for evolutionary rescue. This can have a counter-intuitive
outcome: conditioned on the rescue of the tumor, tumors rescued by aneuploid cells may acquire
rescue mutations later than those rescued by sensitive cells.

Recurrence time. We next approximated the mean time for the population of mutant cancer cells
to reach the initial, pre-treatment population size 𝑁 , which we denote the recurrence time 𝜏𝑟𝑎 (Ap-
pendix D),

𝜏𝑟𝑎 ≈
{
− 1

Δ𝑠
− 1

Δ𝑎
+ log 𝑝𝑚𝑁

Δ𝑚
, 𝑁 ≪ 𝑁∗

𝑎,
1
Δ𝑚

log Δ𝑚−Δ𝑠

𝑣𝜆𝑠
, 𝑁 ≫ 𝑁∗

𝑚 .
(9)

Figures 7 and S7 show the agreement between our approximations and simulation results. For small
tumors (𝑁 ≪ 𝑁∗

𝑎), the mean recurrence time can be approximated as the sum of the mean time for the
first rescue mutation to appear and the mean time for its lineage to reach size 𝑁 . The mean recurrence
time grows logarithmically with tumor size 𝑁 and is the same order of magnitude as the mean
evolutionary rescue time. Increasing the mutant growth rate, Δ𝑚, decreases the recurrence time, while
increasing the sensitive and aneuploid growth rates, Δ𝑠 and Δ𝑎, respectively, increases the recurrence
time. For large tumors (𝑁 ≫ 𝑁∗

𝑚), the dynamics of the number of mutant cells is deterministic, and
the mean recurrence time becomes independent of the initial tumor size 𝑁 . Increasing either the
mutant growth rate, Δ𝑚, or the mutation rate, 𝑣, decreases the time for the tumor to rebound to its
initial size. In addition, drugs that significantly increase the death rate of drug-sensitive cells, 𝜇𝑠,
but do not affect their division rate, 𝜆𝑠, delay cancer recurrence (conditioned on evolutionary rescue).
Consequently, patients treated with such drugs may require a longer period of monitoring to guarantee
the effectiveness of the treatment.

We note that, for small and large tumors, when 𝑁 ≪ 𝑁∗
𝑎 or 𝑁 ≫ 𝑁∗

𝑚, the asymptotic expressions
for the mean recurrence time are independent of the chromosome missegregation rate 𝑢, and therefore,
the rate at which the drug induces aneuploidy has no effect on the time for the tumor to rebound to its
initial size 𝑁 .

Appendix F gives us the probability that a mutant cancer cell population has not reached size 𝑁
by time 𝑡. Figure 6B shows agreement between our approximations and simulation results for various
values of 𝑁 . Additionally, we derive the distribution of the recurrence time for a small tumor with
𝑁 = 106 cells, noting that the distribution is wide and right-skewed (Figure S4). It is highly unlikely
to observe the recurrence of cancer at times smaller than 1

Δ𝑚
log Δ𝑚−Δ𝑠

𝑣𝜆𝑠
≈ 1542 days for the parameter

values in Table 1 with 𝜆𝑎 = 0.0899, 𝜇𝑠 = 0.14, and 𝑣 = 10−7 and independent of initial tumor size
𝑁 (Figure 6B).

The detection time 𝜏𝑀𝑎 is defined as the time for the tumor size to reach detection threshold 𝑀 .
We derive the mean detection time for 𝑀 = 107 in Appendix D. We find for small and intermediate-
sized tumors, the detection size 𝑀 has a negligible effect on the mean detection time 𝜏𝑀𝑎 compared
to when the detection size equals the initial population size, 𝑁 (i.e., 𝜏𝑟𝑎 ≈ 𝜏𝑀𝑎 for 𝑁 < 𝑁∗

𝑚). However,
for large tumors, the mean detection time 𝜏𝑀𝑎 decreases logarithmically with tumor size 𝑁 , while the
recurrence time 𝜏𝑟𝑎 is constant (Figure S8). Additionally, for large tumors, we have 𝑀 < 𝑁∗

𝑚 < 𝑁 , so
the mean detection time is shorter compared to the mean recurrence time, that is, the resistant tumor
may be detected before recovering back to its initial size.
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Discussion
We have modeled a tumor–a population of cancer cells–exposed to drug treatment that causes it to
decline in size toward potential extinction. In this scenario, the tumor can be “evolutionary rescued”
or escape extinction via two paths. In the direct path, a drug-sensitive cell acquires a mutation or
aneuploidy that confers resistance and allows it to grow rapidly. In the indirect path, a sensitive cell
first becomes aneuploid, which diminishes the drug’s effect, and then an aneuploid cell acquires a
mutation that confers resistance (Figure 1).

Using multi-type branching processes, we derived the probability of evolutionary rescue of the
tumor under the effects of aneuploidy, ranging from tolerance to partial resistance. We obtained exact
and approximate expressions for the probability of evolutionary rescue (eq. (2)). Our results show
that the probability of evolutionary rescue increases with the initial tumor size 𝑁 , the drug-sensitive
growth rate Δ𝑠, the mutation rate 𝑣, and the aneuploidy rate 𝑢.

When aneuploid cells are partially resistant to the drug (Δ𝑠 ≪ 0 ≪ Δ𝑎 ≪ Δ𝑚), aneuploidy
itself rescues the population (Figure 4A). When aneuploidy only provides tolerance to the drug
(Δ𝑠 ≪ Δ𝑎 ≪ 0 ≪ Δ𝑚), it cannot rescue the population. Instead, it acts as a “stepping stone” through
which the resistant mutant can appear more rapidly, given that the number of aneuploid cells declines
slower than the number of drug-sensitive cells (Figure 2). In this scenario, aneuploidy provides two
advantages. First, it delays the extinction of the population, providing more time for the appearance
of the resistance mutation. Second, it increases the population size relative to a drug-sensitive
population, providing more cells in which mutations can occur, i.e., it increases the mutation supply
(i.e., 𝑁𝑢𝑣𝜆𝑠𝜆𝑎/|Δ𝑠Δ𝑎 |).

We find that aneuploidy can significantly affect evolutionary rescue as it reduces the threshold
tumor size by at least an order of magnitude even when aneuploidy only provides tolerance (Figure 3).
When the number of cells in the tumor is large enough (i.e., 𝑁 ≫ 𝑁∗

𝑚 ≈ 4 × 107), a resistance
mutation will occur in drug-sensitive cells before these cells become extinct (Figure 3). Therefore,
large tumors are likely to be rescued with or without aneuploidy. However, anti-cancer drugs are often
used as adjuvant therapy after resection, in which case the number of cells in the tumor may be below
the detection threshold of ∼ 107 (Bozic et al., 2013). In these cases, aneuploidy can have a crucial
role in the evolutionary rescue of the tumor and, therefore, in cancer recurrence. Indeed, secondary
tumors are estimated to cause the majority of cancer-related deaths (Chaffer and Weinberg, 2011).
The importance of aneuploidy in the evolutionary rescue of secondary tumors is reinforced by the fact
that metastases have been shown to have a chromosome missegregation rate two to three orders of
magnitude higher compared to primary tumors (Kimmel et al., 2023).

Given that the mean time for secondary tumors to adapt to anti-cancer drugs can be of the order
of 1,000 days (Figure S2A), aneuploidy can explain the reappearance of cancer even after initial
remission. The theoretical prediction for the mean rescue time of tumors smaller than 108 cells
is greater than 4 years, consistent with previous estimates of the recurrence time of tumors after
resection (Avanzini and Antal, 2019). We found that aneuploidy complements evolutionary rescue
through direct mutation because it produces rescue mutations mostly after the number of sensitive
cells has decreased to a point where a direct mutation is no longer a feasible option for evolutionary
rescue (Figure 6A).

We hypothesized that standing genetic variation (the existence of aneuploid cancer cells in the
tumor before the onset of therapy) could facilitate evolutionary rescue by reducing the waiting time
for the appearance of aneuploid cells. We found that a drug that reduces the sensitive growth rate and
does not significantly increase the chromosome missegregation rate will likely lead to evolutionary
rescue through standing genetic variation (Figure 5 and eq. (6)). Furthermore, if the fraction of tumor
cells that have the beneficial aneuploidy is 𝑓 ≫ 𝑢𝜆𝑠

|Δ𝑠 | ≈ 2.5%, then evolutionary rescue is more likely
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to occur via standing variation rather than through de-novo aneuploidy. However, for the parameter
values we focus on in our examples (Table 1), this fraction is an order of magnitude lower, and
therefore, we expect evolutionary rescue to occur by de-novo aneuploidy.

Finally, we observe from Figure 4 that only for a restricted region of the parameter space will
aneuploidy act as a “stepping stone” for evolutionary rescue. If the aneuploid division rate is smaller
than 𝜇𝑎

1+𝑢 ≈ 𝜇𝑎 (1 − 𝑢), then evolutionary rescue will occur through direct mutation. As a result, for
most parameter values, aneuploidy will either not play any role in evolutionary rescue or will be the
main driver of adaptation without requiring any mutation (i.e., evolutionary rescue in one step).

Directions for future research Experiments could test our model predictions. For example, to
assess the effect of initial tumor size on the probability of evolutionary rescue, a large culture mass can
be propagated from a single cancer cell in permissive conditions and then diluted to a range of starting
tumor sizes. Then, the extinction or survival of these tumors can be monitored during exposure to
anti-cancer drugs that induce aneuploidy or to saline solution for control (Ippolito et al., 2021). We
can then compare the results of these experiments to predictions of our model to see if tumors with
initial size below the threshold eq. (4) are more likely to become extinct due to drug exposure.

We have assumed that cancer cell lineages are independent and have verified that this is accurate
under simple logistic growth. However, this assumption neglects the potential effects of spatial
structure and local interactions, which may be important in solid tumors. Such tumors can be
spatially heterogeneous, with different genotypes inhabiting cellular niches and immune infiltration
impacting growth in affected regions (Galon et al., 2010, Varrone et al., 2023). This can potentially
impact the probability of evolutionary rescue (Martens et al., 2011). In addition, our model can be
extended to understand evolutionary rescue in different biological contexts, for example, how yeast
populations under stress overcome extinction via aneuploidy (Kohanovski et al., 2024, Pompei and
Cosentino Lagomarsino, 2023).

Conclusions Our results quantitatively suggest that aneuploidy may play an important role in tumor
adaptation to anti-cancer drugs when the tumor size is small or intermediate. Large tumors are
predicted to adapt to anti-cancer drugs through direct mutation. In contrast, smaller tumors are
predicted to become resistant either directly by aneuploidy or by a resistance mutation occurring in
aneuploid cells that serve as evolutionary “stepping stones” (Figure 3). Thus, therapies that increase
the rate of aneuploidy in tumors to combat cancer may also promote drug resistance.
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Name Value Units References
𝑁 Initial tumor size 107 − 109 cells Del Monte (2009)
𝜆𝑠 Sensitive division rate 0.1 1/days Bozic et al.

(2013), Rew and
Wilson (2000)

𝜇𝑠 Sensitive death rate 0.11 − 0.17 1/days Bozic et al.
(2013)

𝜆𝑎 Aneuploid division rate∗ 0.06 − 0.1 1/days -
𝜇𝑎 Aneuploid death rate∗ 0.09 1/days -
𝜆𝑚 Mutant division rate 0.1 1/days Bozic et al.

(2013), Rew and
Wilson (2000)

𝜇𝑚 Mutant death rate 0.09 1/days Bozic et al.
(2013), Carlson
(2003)

𝑢 Missegregation rate 10−2 1/cell division Lee et al. (2016)
𝑣 Mutation rate 10−9 − 10−7 1/cell division Bozic et al.

(2013), Loeb
(2001)

�̃� Missegregation rate in the
drug free environment∗

5 × 10−4 − 2 × 10−2 1/cell division Shi and King
(2005), Thomp-
son and Compton
(2008)

𝑠 Selection coefficient of aneu-
ploidy in the drug free envi-
ronment

0.07 1/days Lukow et al.
(2021)

Table 1: Model parameters. Parameters from Bozic et al. (2013) consider patients with melanoma
treated with the anti-cancer drug vemurfenib, in which resistance is conferred by trisomy in either Chr
2 or Chr 6. We have modified the parameters from Bozic et al. (2013) such that sensitive and mutant
division rates are 𝜆𝑠 = 𝜆𝑚 = log 2/𝑇 ≈ 0.1 instead of their value of 0.14 where 𝑇 is the doubling
time in the absence of cellular death obtained from Rew and Wilson (2000). For a discussion of the
different interpretations of the tumor doubling times see Avanzini and Antal (2019).

Appendices

Appendix A Survival probability of a single lineage
To analyze evolutionary rescue in our model, we use the framework of multitype branching processes
(Harris, 1963, Weissman et al., 2009). This allows us to find explicit expressions for the survival
probability: the probability that a lineage descended from a single cell does not become extinct.

Let 𝑝𝑠, 𝑝𝑎, and 𝑝𝑚 be the survival probabilities of a population consisting initially of single
sensitive cell, aneuploid cell, or mutant cell, respectively. The complements 1− 𝑝𝑠, 1− 𝑝𝑎, and 1− 𝑝𝑚
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Figure 1: Model illustration. (A) A population of cancer cells is composed of drug-sensitive,
aneuploid, and mutant cells, which divide with rates 𝜆𝑠, 𝜆𝑎, and 𝜆𝑚 and die at rates 𝜇𝑠, 𝜇𝑎, and
𝜇𝑚, respectively. Sensitive cells can divide and become aneuploid at rate 𝑢𝜆𝑠. Both aneuploid and
sensitive cells can divide and acquire a mutation with rates 𝑣𝜆𝑎 and 𝑣𝜆𝑠, respectively. Color denotes
the relative growth rates of the three genotypes such that 𝜆𝑠 − 𝜇𝑠 < 𝜆𝑎 − 𝜇𝑎 < 𝜆𝑚 − 𝜇𝑚. (B) Sensitive
cells are sensitive to the drug, while mutant cells are drug-resistant. The aneuploid may be tolerant,
stationary, or partially resistant.
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Figure 2: Sample trajectories of the genotype frequencies. (A) Without aneuploidy (𝑢 = 0),
evolutionary rescue is possible through direct mutation, and in most scenarios, the tumor will become
extinct due to the drug. (B) When aneuploid cells are tolerant (Δ𝑎 < 0), we observe, similar to A, direct
mutation is the only path for evolutionary rescue. (C) When aneuploid cells are stationary (Δ𝑎 ≈ 0),
we observe the appearance of mutant lineages even after the sensitive population has gone extinct,
thus showing that stationary aneuploidy increases the probability of evolutionary rescue. (D) When
aneuploid cells are partially resistant (Δ𝑎 > 0), the tumor is rescued by the aneuploid cell population.
Each plot shows 10 simulations of the number of sensitive, aneuploid, and mutant cells (𝑠𝑡 , 𝑎𝑡 , 𝑚𝑡)
over time 𝑡. Here, 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑣 = 10−7 , 𝑁 = 107; (A)
𝑢 = 0; (B) 𝜆𝑎 = 0.065, 𝑢 = 10−2; (C) 𝜆𝑎 = 0.08999, 𝑢 = 10−2; (D) 𝜆𝑎 = 0.095, 𝑢 = 10−2.
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Figure 3: Aneuploidy facilitates the evolutionary rescue of cancer under drug treatment. The
probability of evolutionary rescue (i.e., the probability that the population does not become extinct),
𝑝rescue, as a function of the initial tumor size, 𝑁 (eq. (2)). Dashed vertical line shows the threshold
tumor size, 𝑁∗

𝑎, above which the probability is very high (eq. (4)). Blue dashed line: without
aneuploidy (𝑢 = 0). Black line: tolerant aneuploidy (𝑢 = 10−2, 𝜆𝑎 = 0.0899). Red line: stationary
aneuploidy (𝑢 = 10−2, 𝜆𝑎 = 0.08999). Green line represents the scenario with partially resistant
aneuploidy (𝑢 = 10−2, 𝜆𝑎 = 0.095). Dots for simulations and the error bars for 95% confidence
interval (𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the fraction of simulations in which the tumor has been

rescued, and 𝑛 = 100 is the number of simulations). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 =
0.09, 𝜇𝑚 = 0.09, 𝑣 = 10−7.
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Figure 4: The effect of aneuploidy on tumor threshold size. (A) The threshold tumor size 𝑁∗
𝑎

as a function of the aneuploid growth rate Δ𝑎. The dashed horizontal line shows 𝑁∗
𝑚, the threshold

tumor size without aneuploidy (𝑢 = 0). When aneuploid growth rate is close to or higher than
zero, aneuploidy decreases the threshold tumor size, facilitating evolutionary rescue. The inset
highlights the scenario when aneuploid cells are stationary. Red dots for simulations and error
bars for the 95% confidence intervals obtained with bootstrap (Appendix G). Parameters: 𝜆𝑠 =

0.1, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7. (B) Threshold tumor size
𝑁∗
𝑎 as a function of the ratio of aneuploidy and mutation rates, 𝑢/𝑣. Dashed horizontal line shows

𝑁∗
𝑚, the threshold tumor size without aneuploidy (𝑢 = 0). When the aneuploidy rate is much

higher than the mutation rate, aneuploidy decreases the threshold tumor size, facilitating evolutionary
rescue. Blue line represents the exact formula for threshold tumor size 𝑁∗

𝑎 while the solid black
line represents the approximation (eq. (4)). Red dots represent simulation results, and the error
bars represent the 95% confidence intervals obtained with bootstrap (Appendix G). Parameters:
𝜆𝑠 = 0.1, 𝜆𝑚 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑣 = 10−7.
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Figure 5: Standing genetic variation facilitates the evolutionary rescue of cancer. (A) Ratio
of threshold tumor sizes for rescue by standing genetic variation and by de-novo variation, �̃�∗

𝑎/𝑁∗
𝑎,

when a fraction �̃�𝜆𝑠
𝑐

is aneuploid at the start of treatment, as a function of the sensitive growth rate
Δ𝑠. Standing genetic variation will drive adaptation to the drug if the sensitive population is rapidly
declining (Δ𝑠 ≪ 0) due to a stronger effect of the drug on sensitive cells. Red dots represent simulation
results, and the error bars represent the 95% confidence intervals obtained with bootstrap (Appendix G).
Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, �̃� = 10−3, 𝑢 = 10−2, 𝑣 = 10−7.
(B) Ratio of threshold tumor size �̃�∗

𝑎, when a fraction �̃�𝜆𝑠
𝑐

is aneuploid at the start of treatment,
and 𝑁∗

𝑎 as a function of the ratio of aneuploidy rates �̃�/𝑢. De-novo aneuploids will have a larger
contribution to the appearance of drug resistance if the drug induces the appearance of aneuploid
cells (𝑢 ≫ �̃�). Red dots represent simulation results, and the error bars represent the 95% confidence
intervals obtained with bootstrap (Appendix G). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 =
0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, �̃� = 10−3, 𝑣 = 10−7.
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Figure 6: Aneuploidy extends the window of opportunity for evolutionary rescue. (A) The
probability that a successful mutant has not appeared by time 𝑡. Green line: tolerant aneuploidy
(𝑢 > 0, 𝜆𝑎 = 0.0899). Blue line: stationary aneuploidy (𝑢 > 0, 𝜆𝑎 = 0.089999). Cyan line:
partially resistant aneuploidy (𝑢 > 0, 𝜆𝑎 = 0.095). Black line: no aneuploidy (𝑢 = 0). Aneuploidy
plays an important role in rescuing the tumor cell population as the sensitive population becomes
extinct. Markers represent simulation results, and the error bars represent 95% confidence interval
(𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the fraction of simulations in which a successful mutant has not

been generated, and 𝑛 = 100 is the number of simulations). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.1, 𝜇𝑠 =
0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7, 𝑁 = 107. (B) Probability that a mutant cancer cell
population has not reached size 𝑁 at time 𝑡. Green line: 𝑁 = 106 (small tumor). Red line: 𝑁 = 107

(intermediate-sized tumor). Blue line: 𝑁 = 1010 (large tumor). Increasing the initial tumor size
guarantees that the cancer will relapse. Markers represent simulations, and the error bars represent
95% confidence interval (𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the fraction of the simulations in which

the mutant population size has not reached 𝑁 and 𝑛 = 100 is the number of simulations). Parameters:
𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure 7: Tumor size decreases the mean recurrence time. The mean time for the mutant cell
population to reach size 𝑁 , the initial number of cancer cells. Our inhomogeneous Poisson-process
approximation (solid black line, eq. (D1)) is in agreement with simulation results (red markers with
95% confidence interval obtained with bootstrapping, see Appendix G) for intermediary 𝑁 . The
simulations converge to eq. (D4) (blue dashed line) for large values of 𝑁 . Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 =
0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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are the extinction probabilities, which satisfy each its respective equation (Harris, 1963),

1 − 𝑝𝑠 =
𝜇𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝜆𝑠
+ 𝑢𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝜆𝑠
(
1 − 𝑝𝑎

) (
1 − 𝑝𝑠

)
+

𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝜆𝑠
(
1 − 𝑝𝑠

)2 + 𝑣𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝜆𝑠
(
1 − 𝑝𝑚

) (
1 − 𝑝𝑠

)
,

1 − 𝑝𝑎 =
𝜇𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝜆𝑎
+ 𝑣𝜆𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝜆𝑎
(
1 − 𝑝𝑚

) (
1 − 𝑝𝑎

)
+ 𝜆𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝜆𝑎
(
1 − 𝑝𝑎

)2
,

1 − 𝑝𝑚 =
𝜇𝑚

𝜆𝑚 + 𝜇𝑚
+ 𝜆𝑚

𝜆𝑚 + 𝜇𝑚
(
1 − 𝑝𝑚

)2
.

(A1)

The survival probabilities are given by the smallest solution for each quadratic equation (Uecker
et al., 2015). Therefore we have

𝑝𝑠 =
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚 +

√︃(
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

)2 + 4𝜆2
𝑠

(
𝑢𝑝𝑎 + 𝑣𝑝𝑚

)
2𝜆𝑠

,

𝑝𝑎 =
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 +

√︃(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2 + 4𝜆2
𝑎𝑣𝑝𝑚

2𝜆𝑎
,

𝑝𝑚 =
𝜆𝑚 − 𝜇𝑚
𝜆𝑚

.

(A2)

Note that the equation for 𝑝𝑠 depends on both 𝑝𝑎 and 𝑝𝑚, and the equation for 𝑝𝑎 depends on 𝑝𝑚. To
proceed, we can plug the solution for 𝑝𝑚 and 𝑝𝑎 into the solution for 𝑝𝑠. We perform this for three
different scenarios.

Scenario 1: Aneuploid cells are partially resistant

We first assume that aneuploidy provides partial resistance to drug therapy, 𝜆𝑎 > 𝜇𝑎, and that this
resistance is significant,

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2
> 4𝜆2

𝑎𝑣𝑝𝑚. We thus rewrite eq. (A2) as

𝑝𝑠 =
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

2𝜆𝑠
©­«1 −

√√
1 +

4𝜆2
𝑠

(
𝑣𝑝𝑚 + 𝑢𝑝𝑎

)(
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

)2
ª®¬ , and

𝑝𝑎 =
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

2𝜆𝑎
©­«1 +

√√
1 + 4𝜆2

𝑎𝑣𝑝𝑚(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2
ª®¬ .

Using the Taylor expansion
√

1 + 𝑥 = 1+ 𝑥/2+O(𝑥2) and assuming 𝑢, 𝑣 ≪ 1, we obtain the following
approximation for the survival probability of a population initially consisting of a single sensitive cell,

𝑝𝑠 ≈ − 𝑣𝜆𝑠𝑝𝑚 + 𝑢𝜆𝑠𝑝𝑎
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

(A3)

≈ − 1
𝜆𝑠 − 𝜇𝑠

[
𝑢𝜆𝑠

(
𝜆𝑎 − 𝜇𝑎

)
𝜆𝑎

+
𝑢𝑣𝜆𝑠𝜆𝑎

(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚

(
𝜆𝑎 − 𝜇𝑎

) +
𝑣𝜆𝑠

(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚

]
.

Now 𝑢𝑣 is very small, and if we use the fact that 𝑣 ≪ 𝑢, we have:

𝑝𝑠 ≈
𝑢𝜆𝑠

|Δ𝑠 |
Δ𝑎

𝜆𝑎
. (A4)
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However, if aneuploidy is very rare such that

𝑢𝜆𝑠Δ𝑎

𝜆𝑎
<
𝑣𝜆𝑠Δ𝑚

𝜆𝑚
⇒ 𝑢𝜆𝑎 <

𝑣𝜆2
𝑎Δ𝑚

𝜆𝑚

1
Δ𝑎

<
𝑣𝜆2

𝑎Δ𝑚

𝜆𝑚

1√︁
4𝜆2

𝑎𝑣𝑝𝑚

⇒ 𝑢𝜆𝑎 < 𝑇
∗,

where 𝑇∗ = (4𝑣𝜆2
𝑎Δ𝑚/𝜆𝑚)−1/2 and in the second inequality we used the fact that Δ2

𝑎 > 4𝜆2
𝑎𝑣𝑝𝑚. In

this scenario adaptation is through direct mutation and:

𝑝𝑠 ≈
𝑣𝜆𝑠

|Δ𝑠 |
Δ𝑚

𝜆𝑚
.

Scenario 2: Aneuploid cells are tolerant.

We now assume that aneuploidy provides tolerance to drug therapy, that is, the number of aneuploid
cells significantly declines over time, but at a lower rate than the number of sensitive cells, 𝜆𝑠 − 𝜇𝑠 <
𝜆𝑎 − 𝜇𝑎 < 0. We also assume that the decline are significant,

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2
> 4𝜆2

𝑎𝑣𝑝𝑚. We
rewrite eq. (A2) as

𝑝𝑠 =
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

2𝜆𝑠
©­«1 −

√√
1 +

4𝜆2
𝑠

(
𝑣𝑝𝑚 + 𝑢𝑝𝑎

)(
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

)2
ª®¬ ,

𝑝𝑎 =
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

2𝜆𝑎
©­«1 −

√√
1 + 4𝜆2

𝑎𝑣𝑝𝑚(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2
ª®¬ .

(A5)

Since 𝑢, 𝑣 ≪ 1, the term in the root can be approximated using a Taylor expansion. So, substituting
the expressions for 𝑝𝑎 and 𝑝𝑚, we have

𝑝𝑠 ≈ − 𝑣𝜆𝑠𝑝𝑚 + 𝑢𝜆𝑠𝑝𝑎
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

≈ 1
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

[
𝑢𝑣𝜆𝑠𝜆𝑎

(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎

) − 𝑣𝜆𝑠
(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚

]
≈
𝑣𝜆𝑠

(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚

(
𝜆𝑠 − 𝜇𝑠

) [
𝑢𝜆𝑎(

𝜆𝑎 − 𝜇𝑎
) − 1

]
=
𝑣𝜆𝑠Δ𝑚

𝜆𝑚 |Δ𝑠 |

(
𝑢𝜆𝑎

|Δ𝑎 |
+ 1

)
.

(A6)

If we assume that aneuploidy is not rare (𝑢𝜆𝑎 > |Δ𝑎 |) then we have:

𝑝𝑠 ≈
𝑢𝜆𝑠

|Δ𝑠 |
𝑣𝜆𝑎

|Δ𝑎 |
Δ𝑚

𝜆𝑚
. (A7)

Scenario 3: Aneuploid cells are stationary

We now assume that the growth rate of aneuploid cells is close to zero (either positive or negative),
such that

(
Δ𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2 ≪ 4𝜆2
𝑎𝑣𝑝𝑚. We rewrite eq. (A2) as

𝑝𝑎 =

𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2
√︁
𝜆2
𝑎𝑣𝑝𝑚

(
1 + (𝜆𝑎−𝜇𝑎−𝑣𝜆𝑎𝑝𝑚)2

4𝜆2
𝑎𝑣𝑝𝑚

) 1
2

2𝜆𝑎
. (A8)
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Using a following Taylor series expansion for small
(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2 /4𝜆2
𝑎𝑣𝑝𝑚,

©­«1 +
(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2

4𝜆2
𝑎𝑣𝑝𝑚

ª®¬
1
2

= 1 +
(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2

8𝜆2
𝑎𝑣𝑝𝑚

+ · · · ,

we obtain the approximation

𝑝𝑎 ≈
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2

√︁
𝜆2
𝑎𝑣𝑝𝑚

[
1 + (𝜆𝑎−𝜇𝑎−𝑣𝜆𝑎𝑝𝑚)2

8𝜆2
𝑎𝑣𝑝𝑚

]
2𝜆𝑎

=

𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2
√︁
𝜆2
𝑎𝑣𝑝𝑚 + (𝜆𝑎−𝜇𝑎−𝑣𝜆𝑎𝑝𝑚)2

4
√
𝜆2
𝑎𝑣𝑝𝑚

2𝜆𝑎

=

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2

√︁
𝜆2
𝑎𝑣𝑝𝑚

)2
+ 4𝜆2

𝑎𝑣𝑝𝑚

8𝜆𝑎
√︁
𝜆2
𝑎𝑣𝑝𝑚

=

4𝜆2
𝑎𝑣𝑝𝑚 + 4𝜆2

𝑎𝑣𝑝𝑚

(
1 + 𝜆𝑎−𝜇𝑎−𝑣𝜆𝑎𝑝𝑚

2
√
𝜆2
𝑎𝑣𝑝𝑚

)2

8𝜆𝑎
√︁
𝜆2
𝑎𝑣𝑝𝑚

=
1

2𝜆𝑎

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2

√︃
𝜆2
𝑎𝑣𝑝𝑚

)
.

(A9)

Plugging this in eq. (A3), the survival probability of a population starting from one sensitive cell is

𝑝𝑠 ≈ − 1
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝜆𝑠𝑝𝑚

[
𝑣𝜆𝑠

𝜆𝑚 − 𝜇𝑚
𝜆𝑚

+ 𝑢𝜆𝑠
2𝜆𝑎

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚 + 2

√︃
𝜆2
𝑎𝑣𝑝𝑚

)]
= − 1

𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠 − 𝑣𝜆𝑠

𝑣𝜆𝑠
𝜆𝑚 − 𝜇𝑚
𝜆𝑚

+ 𝑢𝜆𝑠
2𝜆𝑎

(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝜆𝑎𝑝𝑚

)
+ 𝑢𝜆𝑠

√︄
𝑣
(
𝜆𝑚 − 𝜇𝑚

)
𝜆𝑚


≈ − 1

Δ𝑠

[
𝑣𝜆𝑠

Δ𝑚

𝜆𝑚
+ 𝑢𝜆𝑠 (Δ𝑎 − 𝑣𝜆𝑎)

2𝜆𝑎
+ 𝑢𝜆𝑠

√︂
𝑣Δ𝑚

𝜆𝑚

]
.

(A10)

Using the fact that (
Δ𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2 ≪ 4𝜆2
𝑎𝑣𝑝𝑚 ⇒ Δ𝑎 − 𝑣𝜆𝑎𝑝𝑚

2𝜆𝑎
≪

√︂
𝑣𝜆𝑎Δ𝑚

𝜆𝑚
,

and 𝑣 ≪ 𝑢 we obtain:

𝑝𝑠 ≈
𝑢𝜆𝑠

|Δ𝑠 |

√︂
𝑣𝜆𝑎Δ𝑚

𝜆𝑚
. (A11)

Appendix B Evolutionary rescue probability
Using the fact that Δ𝑎 − 𝑣𝜆𝑎𝑝𝑚 ≈ Δ𝑎 we write the condition

(
Δ𝑎 − 𝑣𝜆𝑎𝑝𝑚

)2 ≪ 4𝜆2
𝑎𝑣𝑝𝑚 as:

Δ2
𝑎 ≪ 4𝜆2

𝑎𝑣𝑝𝑚 ⇒ −1 ≪ Δ𝑎𝑇
∗ ≪ 1,
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where 𝑇∗ = (4𝑣𝜆2
𝑎Δ𝑚/𝜆𝑚)−1/2. Substituting eqs. (A4), (A7) and (A11) into eq. (2), the evolutionary

rescue probability can be approximated by

𝑝rescue ≈
1 − exp

[
−𝑢𝜆𝑎|Δ𝑠 |

𝑣𝜆𝑠
|Δ𝑎 |

Δ𝑚

𝜆𝑚
𝑁

]
, Δ𝑎𝑇

∗ ≪ −1,

1 − exp
[
−𝑢𝜆𝑠|Δ𝑠 |

√︃
𝑣𝜆𝑎Δ𝑚

𝜆𝑚
𝑁

]
, −1 ≪ Δ𝑎𝑇

∗ ≪ 1,

1 − exp
[
−𝑢𝜆𝑠|Δ𝑠 |

Δ𝑎

𝜆𝑎
𝑁

]
, 1 ≪ Δ𝑎𝑇

∗.

(B1)

Appendix C Evolutionary rescue time
We first calculate the expected time for the appearance of the first mutant that rescues the cell
population. This can occur either through the evolutionary trajectory 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 → 𝑚𝑢𝑡𝑎𝑛𝑡 or through
the trajectory 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 → 𝑎𝑛𝑒𝑢𝑝𝑙𝑜𝑖𝑑 → 𝑚𝑢𝑡𝑎𝑛𝑡. We start with the former.

Assuming no aneuploidy (𝑢 = 0), we define 𝑇𝑚 to be the time at which the first mutant cell
appears that will avoid extinction and will therefore rescue the population. Note that if extinction
occurs, that is the frequency of mutants after a very long time is zero, 𝑚∞ = 0, then it is implied that
𝑇𝑚 = ∞, and vice versa if 𝑇𝑚 < ∞ then 𝑚∞ > 0.

The number of successful mutants generated until time 𝑡 can be approximated by an inhomoge-
neous Poisson process with rate 𝑅𝑚 (𝑡) = 𝑣𝜆𝑠𝑝𝑚𝑤𝑡 , where 𝑠𝑡 = 𝑁eΔ𝑠𝑡 is the number of sensitive cells
at time 𝑡. Note that ∫ 𝑡

0
𝑅𝑚 (𝑧)d𝑧 = 𝑣𝜆𝑠𝑝𝑚𝑁

exp[Δ𝑠𝑡] − 1
Δ𝑠

≈ 𝑣𝜆𝑠𝑝𝑚𝑁𝑡, (C1)

by integrating the exponential and because exp[Δ𝑠𝑡]−1
Δ𝑠

=
1+Δ𝑠𝑡+O(𝑡2)−1

Δ𝑠
= 𝑡 + 𝑂 (𝑡2). The probability

density function of 𝑇𝑚 is thus 𝑅𝑚 (𝑡) exp
(
−

∫ 𝑡

0 𝑅𝑚 (𝑧)d𝑧
)

(Allen, 2010). Therefore, the probability

density function of the conditional random variable (𝑇𝑚 | 𝑇𝑚 < ∞) is 𝑓𝑚 (𝑡) =
𝑅𝑚 (𝑡) exp

(
−

∫ 𝑡

0 𝑅𝑚 (𝑧)d𝑧
)

𝑝rescue
.

We are interested in the mean conditional time, 𝜏𝑚 = E
[
𝑇𝑚 | 𝑇𝑚 < ∞

]
, which is given by

𝜏𝑚 =

∫ ∞

0
𝑡 𝑓𝑚 (𝑡)d𝑡 =

∫ ∞
0 𝑡𝑅𝑚 (𝑡) exp

(
−

∫ 𝑡

0 𝑅𝑚 (𝑧)d𝑧
)

d𝑡

𝑝𝑟𝑒𝑠𝑐𝑢𝑒
, (C2)

Therefore, plugging eqs. (2) and (C1) in eq. (C2),

𝜏𝑚 =

∫ ∞

0
𝑡𝑣𝜆𝑠𝑁eΔ𝑠𝑡

e−𝑣𝜆𝑠𝑁𝑝𝑚
eΔ𝑠 𝑡 −1

Δ𝑠

1 −
(
1 − 𝑝𝑠

)𝑁 d𝑡 ≈
∫ ∞

0
𝑡𝑣𝜆𝑠𝑁eΔ𝑠𝑡

e−𝑣𝜆𝑠𝑁𝑝𝑚𝑡

1 − e−𝑁𝑝𝑠
d𝑡. (C3)

Figure S2B show the agreement between this approximating and simulation results.
Assuming aneuploidy is possible (𝑢 > 0), we define 𝑇𝑎 to be the time at which the first mutant
cell appears that will rescue the population. We are interested in the mean conditional time, 𝜏𝑎 =

E
[
𝑇𝑎 | 𝑇𝑎 < ∞

]
.

When 𝑁𝑢𝜆𝑠/|Δ𝑠 | ≫ 1 the aneuploid frequency dynamics is roughly deterministic and therefore
can be approximated by

𝑎𝑡 ≈
𝑁𝑢𝜆𝑠

Δ𝑠 − Δ𝑎

(
eΔ𝑠𝑡 − eΔ𝑎𝑡

)
. (C4)
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As a result, the number of successful mutants created by direct mutation and via aneuploidy can be
approximated by inhomogeneous Poisson processes with the rates

𝑟1 (𝑡) = 𝑣𝜆𝑎𝑝𝑚
∫ 𝑡

0
𝑎𝑧d𝑧 =

𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

Δ𝑠 − Δ𝑎

(
eΔ𝑠𝑡 − 1

Δ𝑠
− eΔ𝑎𝑡 − 1

Δ𝑎

)
, (C5)

𝑟2 (𝑡) = 𝑣𝜆𝑠𝑝𝑚
∫ 𝑡

0
𝑠𝑧d𝑧 = 𝑣𝜆𝑠𝑁𝑝𝑚

eΔ𝑠𝑡 − 1
Δ𝑠

. (C6)

For large initial population sizes we assume that the two processes are independent and as a result,
they can be merged into a single Poisson process with rate 𝑅𝑎 (𝑡) = (𝑟1 + 𝑟2) (𝑡). Consequently, the
mean time to the appearance of the first rescue mutant is

𝜏𝑎 =

∫ ∞
0 𝑡𝑅𝑎 (𝑡) exp

(
−

∫ 𝑡

0 𝑅𝑎 (𝑧)d𝑧
)

d𝑡

𝑝𝑟𝑒𝑠𝑐𝑢𝑒

=

∫ ∞

0
𝑡
(
𝑣𝜆𝑎𝑝𝑚𝑎𝑡 + 𝑣𝜆𝑠𝑝𝑚𝑠𝑡

) exp
[
−𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

Δ𝑠−Δ𝑎

(
eΔ𝑠 𝑡−1
Δ𝑠

− eΔ𝑎𝑡−1
Δ𝑎

)
− 𝑣𝜆𝑠𝑁𝑝𝑚 eΔ𝑠 𝑡−1

Δ𝑠

]
1 − e−𝑁𝑝𝑠

d𝑡, (C7)

which we plot in Figure S2A as a function of the initial population size, 𝑁 .

Paradoxically, we observe from Figure S2 that the mean time of a rescue mutation to appear
is significantly shorter for the scenario when 𝑢 = 0 when compared to the scenario 𝑢 > 0, however
this can be explained by the fact this mean time is conditioned on evolutionary rescue and, as a
result, aneuploidy increase the window of opportunity in which a rescue mutation could appear thus
increasing the mean time as well (Figure 2).

If 𝑁 ≫ 𝑁∗
𝑚 then the mean time 𝜏𝑎 can be written as:

𝜏𝑎 =

∫ ∞

0
e−𝑅𝑎 (𝜏) d𝜏 =

∫ ∞

0
exp

−
𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

Δ𝑠 − Δ𝑎

(
eΔ𝑠𝜏 − 1

Δ𝑠
− eΔ𝑎𝜏 − 1

Δ𝑎

)
− 𝑣𝜆𝑠𝑁𝑝𝑚

eΔ𝑠𝜏 − 1
Δ𝑠

 d𝜏,

and we use the following Taylor series expansions:

eΔ𝑠𝜏 − 1
Δ𝑠

=
1 + Δ𝑠𝜏 +𝑂 (𝜏2) − 1

Δ𝑠
= 𝜏 +𝑂 (𝜏2).

eΔ𝑎𝜏 − 1
Δ𝑎

=
1 + Δ𝑎𝜏 +𝑂 (𝜏2) − 1

Δ𝑎
= 𝜏 +𝑂 (𝜏2),

to obtain a simpler approximation for 𝜏𝑎:

𝜏𝑎 ≈
∫ ∞

0
e−𝑣𝜆𝑠𝑁𝑝𝑚𝜏 d𝜏 =

1
𝑣𝜆𝑠𝑁𝑝𝑚

. (C8)

If 𝑁 ≪ 𝑁∗
𝑎 then we can write Equation (C7) as:

𝜏𝑎 ≈
∫ ∞

0 𝑡𝑣𝜆𝑎𝑝𝑚𝑎𝜏 d𝜏
1 − e−𝑁𝑝𝑠

≈ 𝑢𝑣𝜆𝑎𝜆𝑠𝑝𝑚 |Δ𝑠 + Δ𝑎 |
𝑝𝑠Δ

2
𝑎Δ

2
𝑠

=
1

|Δ𝑠 |
+ 1
|Δ𝑎 |

, (C9)

where in the last line we used the fact that 1/𝑝𝑠 = 𝑁∗
𝑎 and Equation (4).
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If a fraction 𝑓 of the cancer cells are aneuploid when the drug is administered then the rates at
which the rescue mutations are generated can be written as:

𝑟
𝑓

1 (𝑡) = 𝑣𝜆𝑎𝑝𝑚
∫ 𝑡

0
𝑎𝑧d𝑧 =

(
1 − 𝑓

) 𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚
Δ𝑠 − Δ𝑎

(
eΔ𝑠𝑡 − 1

Δ𝑠
− eΔ𝑎𝑡 − 1

Δ𝑎

)
+ 𝑓 𝑣𝜆𝑎𝑁𝑝𝑚

eΔ𝑎𝑡 − 1
Δ𝑎

,

𝑟
𝑓

2 (𝑡) = 𝑣𝜆𝑠𝑝𝑚
∫ 𝑡

0
𝑠𝑧d𝑧 =

(
1 − 𝑓

)
𝑣𝜆𝑠𝑁𝑝𝑚

eΔ𝑠𝑡 − 1
Δ𝑠

,

and the mean evolutionary rescue time is given by:

𝜏𝑎 =

∫ ∞
0 𝑡𝑅

𝑓
𝑎 (𝑡) exp

(
−

∫ 𝑡

0 𝑅
𝑓
𝑎 (𝑧)d𝑧

)
d𝑡

𝑝𝑟𝑒𝑠𝑐𝑢𝑒
, (C10)

where 𝑅 𝑓𝑎 (𝑡) = 𝑟 𝑓1 (𝑡) + 𝑟 𝑓2 (𝑡) and 𝑝𝑟𝑒𝑠𝑐𝑢𝑒 = 1 − exp
[
−

(
1 − 𝑓

)
𝑝𝑠𝑁 − 𝑓 𝑝𝑎𝑁

]
. We plot our approxi-

mation in Figure S9 together with simulated data.

Appendix D Recurrence time
We define the proliferation time 𝜏𝑝𝑎 to be the time it takes the population of mutant cancer cells to
reach the initial tumor size 𝑁 . The number of rescue lineages generated by the sensitive population is
given by eq. (C5) (see Figure S3):

𝑟1 (∞) = 𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

|Δ𝑠 | |Δ𝑎 |
=
𝑁

𝑁∗
𝑎

,

where we ignore lineages created by direct mutation because we assumed 𝑢𝜆𝑎 > max (−Δ𝑎, 1/𝑇∗),
𝑁 ≪ 𝑁∗

𝑚 and used Equation (4).

This helps us distinguish between two scenarios for the proliferation time. Firstly, when we have
at most one lineages which rescues the cancer cell population:

𝑁 ≪ 𝑁∗
𝑎 .

As a result, the recurrence time is given by (Avanzini and Antal, 2019):

𝜏𝑟𝑎 ≈ 𝜏𝑎 +
log 𝑝𝑚𝑁

Δ𝑚
. (D1)

The factor of 𝑝𝑚 in the second term of eq. (D1) is due to the fact that the lineage is conditioned to
survive genetic drift and the time to reach 𝑁 is shorter then the scenario without this property.

The second scenario is when the sensitive population produces a large number of rescue lineages
in a short period of time. This is given by the condition:

𝑁 ≫ 𝑁∗
𝑎 .

As a result, the recurrence time is obtained by solving the following system of ODEs:

𝑑𝑠

𝑑𝑡
= Δ𝑠𝑠,

𝑑𝑎

𝑑𝑡
= Δ𝑎𝑎 + 𝑢𝜆𝑠𝑠,

𝑑𝑚

𝑑𝑡
= Δ𝑚𝑚 + 𝑣𝜆𝑎𝑎 + 𝑣𝜆𝑠𝑠.

(D2)

30



Solving the system of ODEs for initial condition
(
𝑠(0), 𝑎(0), 𝑚(0)

)
= (𝑁, 0, 0) we obtain:

𝑚 (𝑡) = 𝑁𝑢𝑣𝜆𝑎𝜆𝑠

Δ𝑠 − Δ𝑎

[
eΔ𝑠𝑡 − eΔ𝑚𝑡

Δ𝑠 − Δ𝑚
− eΔ𝑎𝑡 − eΔ𝑚𝑡

Δ𝑎 − Δ𝑚

]
+ 𝑁𝑣𝜆𝑠

eΔ𝑠𝑡 − eΔ𝑚𝑡

Δ𝑠 − Δ𝑚
.

We obtain 𝜏𝑟𝑎 such that 𝑚
(
𝜏𝑟𝑎

)
= 𝑁 by solving:

1 =
𝑢𝑣𝜆𝑎𝜆𝑠

Δ𝑠 − Δ𝑎

[
eΔ𝑠𝜏

𝑟
𝑎 − eΔ𝑚𝜏

𝑟
𝑎

Δ𝑠 − Δ𝑚
− eΔ𝑎𝜏

𝑟
𝑎 − eΔ𝑚𝜏

𝑟
𝑎

Δ𝑎 − Δ𝑚

]
+ 𝑣𝜆𝑠

eΔ𝑠𝜏
𝑟
𝑎 − eΔ𝑚𝜏

𝑟
𝑎

Δ𝑠 − Δ𝑚
. (D3)

This is a transcendental equation which cannot be solved exactly but we can obtain an approximation
by noting that for large 𝜏𝑟𝑎 the above equation can be written as:

1 = 𝑣𝜆𝑠
eΔ𝑚𝜏

𝑟
𝑎

|Δ𝑠 − Δ𝑚 |
,

which has solution:
𝜏𝑟𝑎 ≈

1
Δ𝑚

log
Δ𝑚 − Δ𝑠

𝑣𝜆𝑠
. (D4)

We observe that the terms given by the evolutionary trajectory 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 → 𝑎𝑛𝑒𝑢𝑝𝑙𝑜𝑖𝑑 → 𝑚𝑢𝑡𝑎𝑛𝑡

do not contribute to the above approximation and, as a result, we deduce that it accurate only for
𝑁 ≫ 𝑁∗

𝑚 > 𝑁
∗
𝑎.

Additionally, we note that if we are interested in the time until the tumor reaches a detectable
size 𝑀 then our above analysis is valid but in Equation (D1) we change:

𝜏𝑟,𝑀𝑎 ≈ 𝜏𝑎 +
log 𝑝𝑚𝑀

Δ𝑚
, (D5)

and Equation (D4) becomes:

𝜏𝑟,𝑀𝑎 ≈ 1
Δ𝑚

log
𝑀 (Δ𝑚 − Δ𝑠)

𝑣𝜆𝑠𝑁
, (D6)

which we plot in Figure S8 and observe that our approximations are in agreement with simulations.

Appendix E Distribution of evolutionary rescue time
The probability that a successful mutant has been generated by time 𝑡 is given by:

𝑃 (𝑟𝑒𝑠𝑐𝑢𝑒, 𝑡) = 𝑃 (𝑇𝑎 < 𝑡)

= 1 − exp
{
−

[
𝑟1 (𝑡) + 𝑟2 (𝑡)

]}
= 1 − exp

−

𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

Δ𝑠 − Δ𝑎

(
eΔ𝑠𝑡 − 1

Δ𝑠
− eΔ𝑎𝑡 − 1

Δ𝑎

)
+ 𝑣𝜆𝑠𝑁𝑝𝑚

eΔ𝑠𝑡 − 1
Δ𝑠


 ,

where 𝑇𝑎 is the time at which the first mutant cell appears that will avoid extinction and which was
defined in appendix C.

As a result, the probability that a successful mutant has not been generated by time 𝑡 is:

1 − 𝑃 (𝑟𝑒𝑠𝑐𝑢𝑒, 𝑡) = exp

−

𝑢𝑣𝜆𝑠𝜆𝑎𝑁𝑝𝑚

Δ𝑠 − Δ𝑎

(
eΔ𝑠𝑡 − 1

Δ𝑠
− eΔ𝑎𝑡 − 1

Δ𝑎

)
+ 𝑣𝜆𝑠𝑁𝑝𝑚

eΔ𝑠𝑡 − 1
Δ𝑠


 . (E1)
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Appendix F Distribution of recurrence time
The probability distribution of the time that a lineage, consisting initially of a single cell, will reach
size 𝑁 as time 𝑡 is given by the Gumbel distribution Gumb𝑚𝑎𝑥

(
log 𝑁𝑝𝑚

Δ𝑚
, 1
Δ𝑚

)
(Avanzini and Antal,

2019) with probability density function:

𝐺 (𝑡) = e−𝑝𝑚𝑁e−Δ𝑚𝑡

.

A mutant lineage initiated at time 𝑠, through aneuploidy, at rate 𝑣𝜆𝑎𝑝𝑚𝑎𝑠 reaches size 𝑁 before time
𝑡 with probability 𝐺 (𝑡 − 𝑠) where 𝑠 ≤ 𝑡. As a result, the number of successful mutant lineages which
reach size 𝑁 by time 𝑡 can be approximated by inhomogeneous Poisson random variable with rate:

𝑟 (𝑡) = 𝑣𝜆𝑎𝑝𝑚
∫ 𝑡

0
𝑎𝑠𝐺 (𝑡 − 𝑠) d𝑠

where 𝑎𝑠 is aneuploid population size at time 𝑠 defined in eq. (C4). The proliferation time is defined
as the first time the size of all lineages reaches 𝑁 . When 𝑁 ≪ |Δ𝑠 | |Δ𝑎 | /𝑢𝑣𝜆𝑠𝜆𝑎𝑝𝑚 there is at most a
single mutant lineage that will survive and reach size 𝑁 (Figure S3) and the probability that the size
of that lineage has not reached 𝑁 by time 𝑡 is given by:

𝑃 (𝑚𝑡 ≤ 𝑁) = exp
[
−𝑟 (𝑡)

]
= exp

[
−𝑁𝑢𝑣𝜆𝑠𝜆𝑎𝑝𝑚

Δ𝑠 − Δ𝑎

∫ 𝑡

0

[
eΔ𝑠𝑥 − eΔ𝑎𝑥

]
e−𝑝𝑚𝑁e−Δ𝑚 (𝑡−𝑥 )

d𝑥

]
. (F1)

When 𝑁 ≫ |Δ𝑠 | |Δ𝑎 | /𝑢𝑣𝜆𝑠𝜆𝑎𝑝𝑚 the dynamics of the cancer cell populations is deterministic and
approximated by the system of ODEs shown in eq. (D2). As a result, the size of the mutant cell
population will always be below 𝑁 until time 𝜏𝑟𝑎 and will always be greater after:

𝑃 (𝑚𝑡 ≤ 𝑁) = 1 − 𝐻
(
𝑡 − 𝜏𝑟𝑎

)
, (F2)

where 𝐻 (𝑥) is the Heaviside function:

𝐻 (𝑥) =
{

0, 𝑥 < 0,
1, 𝑥 ≥ 0.

We plot eq. (F1) and eq. (F2) in Figure Figure 6B and compare with stochastic simulations and observe
that our approximation are in agreement.

We observe that for 𝑁 = 107 our formula overestimates the probability that the mutant population
will be smaller then 𝑁 at time 𝑡. This can be explained by the fact that 𝑁 = 107 is an intermediary
scenario where the sensitive population produces a number of rescue lineages that is greater then one
but still sufficiently small such that stochasticity plays an important role in the population dynamics.
As a result, the number of mutant cancer cells will reach 𝑁 faster then the scenario with a single mutant
lineage. Additionally, we observe from Figure 6B that the probability of the mutant cell population
reaching size 𝑁 is approximately zero before time 𝜏𝑟𝑎 which is the recurrence time for the deterministic
scenario. This can be explained as follows: in the deterministic scenario there is a sufficient number
of lineages produced such that there exists a lineage where each descendant will only reproduce and
not die; the time it takes for this lineage to reach 𝑁 is the lower bound for the time of all other lineages
to reach 𝑁 and this time cannot be smaller then 𝜏𝑟𝑎 by definition. Given that for small values of 𝑁 we
expect that at most a single lineage will rescue the tumor, this lineage cannot reach 𝑁 before 𝜏𝑟𝑎 for the
deterministic scenario eq. (D4).
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From eq. (F2) we obtain the distribution of the recurrence time conditional of evolutionary
rescue:

𝑓 (𝑡) = 𝑑

𝑑𝑡

[
𝑃 (𝑚𝑡 ≥ 𝑁)
𝑝𝑟𝑒𝑠𝑐𝑢𝑒

]
= 𝑟′ (𝑡)

exp
[
−𝑟 (𝑡)

]
𝑝𝑟𝑒𝑠𝑐𝑢𝑒

, (F3)

which we plot in Figure S4 and compare with simulations. We note that in the scenario 𝑁 ≫
|Δ𝑠 | |Δ𝑎 | /𝑢𝑣𝜆𝑠𝜆𝑎𝑝𝑚 the distribution becomes the Dirac 𝛿-function (Barton, 1989).

Appendix G Bootstrapping
For the mean times the 95% confidence interval is obtained through bootstrapping in the following
steps: (1) we simulate 𝑇 100 times; (2) we sample with replacement which we store in 𝑇 ′; (3) for each
element of this sample we obtain 𝜏 = E [𝑇 ′]; (4) we repeat steps (2)-(3) 100 times to obtain 𝜏 and
we select the upper and lower limits such that 95% of the values of 𝜏 lie in the interval given by the
bounds.

For the threshold tumor sizes the 95% confidence interval is obtained through bootstrapping in
the following steps: (1) we simulate 𝑝𝑟𝑒𝑠𝑐𝑢𝑒 100 times; (2) we sample with replacement which we
store in 𝑆; (3) for each element of this sample we obtain 𝑁∗

𝑎 = 1/𝑝𝑠 using 𝑝𝑠 = −1/𝑁𝑒 log
(
1 − 𝑆

)
where 𝑆 is the mean of 𝑆 and 𝑁𝑒 is an arbitrary value of the initial population size we selected in order
to calculate 𝑝𝑟𝑒𝑠𝑐𝑢𝑒; (4) we repeat steps (2)-(3) 100 times to obtain 𝑁∗

𝑎 and we select the upper and
lower limits such that 95% of the values of 𝑁∗

𝑎 lie in the interval given by the bounds.

For the ratio of the threshold tumor sizes the 95% confidence interval is obtained through
bootstrapping in the following steps: (1) we simulate 𝑝𝑟𝑒𝑠𝑐𝑢𝑒 100 times for both the scenario when
𝑓 = �̃�𝜆𝑠/𝑐 and 𝑓 = 0; (2) we sample with replacement which we store in 𝑆 𝑓 and 𝑆0; (4) for each
element of 𝑆0 we obtain 𝑁∗

𝑎 = 1/𝑝𝑠 using 𝑝𝑠 = −1/𝑁𝑒 log
(
1 − 𝑆

)
where 𝑆 is the mean of 𝑆0 and 𝑁𝑒

is an arbitrary value of the initial population size we selected in order to calculate 𝑝𝑟𝑒𝑠𝑐𝑢𝑒; (5) for each
element of 𝑆 𝑓 we obtain �̃�∗

𝑎 = 1/𝑝𝑎 using 𝑝𝑎 = − 𝑓 /𝑁𝑒 log
(
1 − 𝑆

)
where 𝑆 𝑓 is the mean of 𝑆 𝑓 and

𝑁𝑒 is an arbitrary value of the initial population size we selected in order to calculate 𝑝𝑟𝑒𝑠𝑐𝑢𝑒; (6) we
repeat steps (2)-(5) 100 times to obtain �̃�∗

𝑎/𝑁∗
𝑎 and we select the upper and lower limits such that 95%

of the values of �̃�∗
𝑎/𝑁∗

𝑎 lie in the interval given by the bounds.

Appendix H Aneuploidy-induced mutation rate
The mutation rate may be increased in aneuploid cells. To account for an increased mutation rate
in cells with the aneuploidy that provides a fitness advantage in the presence of a drug, we extend
our model such that sensitive cells mutate with rate 𝑣𝑠 and aneuploid cells mutate with rate 𝑣𝑎. Note
that sensitive cells include those cells with any other aneuploidy, including those that may cause an
increased mutation rate, and therefore those cases are already covered by the model presented in the
main text. We then calculate the survival probabilities 𝑝𝑠, 𝑝𝑎 and 𝑝𝑠 as in Appendix A,

1 − 𝑝𝑠 =
𝜇𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝑠𝜆𝑠
+ 𝑢𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝑠𝜆𝑠
(
1 − 𝑝𝑎

) (
1 − 𝑝𝑠

)
+

𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝑠𝜆𝑠
(
1 − 𝑝𝑠

)2 + 𝑣𝑠𝜆𝑠

𝜆𝑠 + 𝜇𝑠 + 𝑢𝜆𝑠 + 𝑣𝑠𝜆𝑠
(
1 − 𝑝𝑚

) (
1 − 𝑝𝑠

)
,

1 − 𝑝𝑎 =
𝜇𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝑎𝜆𝑎
+ 𝑣𝑎𝜆𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝑎𝜆𝑎
(
1 − 𝑝𝑚

) (
1 − 𝑝𝑎

)
+ 𝜆𝑎

𝜆𝑎 + 𝜇𝑎 + 𝑣𝑎𝜆𝑎
(
1 − 𝑝𝑎

)2
,

1 − 𝑝𝑚 =
𝜇𝑚

𝜆𝑚 + 𝜇𝑚
+ 𝜆𝑚

𝜆𝑚 + 𝜇𝑚
(
1 − 𝑝𝑚

)2
.

(H1)
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Solving the above equations we obtain

𝑝𝑠 =
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝑠𝜆𝑠𝑝𝑚 +

√︃(
𝜆𝑠 − 𝜇𝑠 − 𝑢𝜆𝑠𝑝𝑎 − 𝑣𝑠𝜆𝑠𝑝𝑚

)2 + 4𝜆2
𝑠

(
𝑢𝑝𝑎 + 𝑣𝑠𝑝𝑚

)
2𝜆𝑠

,

𝑝𝑎 =
𝜆𝑎 − 𝜇𝑎 − 𝑣𝑎𝜆𝑎𝑝𝑚 +

√︃(
𝜆𝑎 − 𝜇𝑎 − 𝑣𝑎𝜆𝑎𝑝𝑚

)2 + 4𝜆2
𝑎𝑣𝑎𝑝𝑚

2𝜆𝑎
,

𝑝𝑚 =
𝜆𝑚 − 𝜇𝑚
𝜆𝑚

.

(H2)

Consequently, the threshold population size can be written as

𝑁∗
𝑎 ≈

|Δ𝑠 |
𝑢𝜆𝑠

·


|Δ𝑎 |
𝑣𝑎𝜆𝑎

𝜆𝑚
Δ𝑚
, Δ𝑎𝑇

∗ ≪ −1 (tolerant aneuploids),
2𝜆𝑎𝑇∗, −1 ≪ Δ𝑎𝑇

∗ ≪ 1 (stationary aneuploids),
𝜆𝑎
Δ𝑎
, Δ𝑎𝑇

∗ ≫ 1 (resistant aneuploids),
(H3)

where 𝑇∗ =
(
4𝑣𝑎𝜆2

𝑎𝑝𝑚

)− 1
2 . This is the same as in eq. (4) except with 𝑣𝑎 instead of 𝑣.

The probability of evolutionary rescue is

𝑝rescue = 1 −
(
1 − 𝑝𝑠

)𝑁 ≈ 1 − e−𝑁𝑝𝑠 = 1 − 𝑒−𝑁/𝑁∗
𝑎 , (H4)

which we plot in Figure S10 for multiple values of 𝑣𝑎. We note that when 𝑣𝑎 = 10−5, we are in the
case of stationary aneuploidy (i.e., Δ𝑎𝑇∗ ≈ −0.55 ).
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Supplementary Figures
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Figure S1: Density dependent growth does not affect the accuracy of our model. Comparison
of results of simulations with density-dependent growth (red markers with with 95% CI) and the
approximation formula (black line, eq. (4) in eq. (2)) with maximum carrying capacity 𝐾 = 108 and
effective carrying capacity 𝐾𝑒 = 𝐾Δ𝑎/𝜆𝑎 ≈ 106. The error bars represent 95% confidence interval of
the form 𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the fraction of simulations in which the tumor has adapted

to the stress and 𝑛 = 100 is the number of simulations. Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0901, 𝜆𝑚 =

0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7, 𝐾 = 108.
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Figure S2: Evolutionary rescue time. Shown is the mean time for appearance of a resistance
mutation the leads to evolutionary rescue (A) with aneuploidy (𝑢 > 0) and (B) without aneuploidy
(𝑢 = 0). Our inhomogeneous Poisson-process approximations (solid black lines, right: eq. (C2), left:
eq. (C7)) is in agreement with simulation results (red markers with 95% quantile intervals obtained with
bootstrapping, see see Appendix G). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 =

0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S3: Aneuploidy increases the number of mutations which rescue the tumor. Shown is
the expected number of mutation, which will rescue the cancer cell population, produced through the
evolutionary trajectory 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 → 𝑚𝑢𝑡𝑎𝑛𝑡 (blue line, eq. (C6)) or through the trajectory 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 →
𝑎𝑛𝑒𝑢𝑝𝑙𝑜𝑖𝑑 → 𝑚𝑢𝑡𝑎𝑛𝑡 (red line, eq. (C5)). Dashed vertical red line represents the threshold tumor
size above which evolutionary rescue is very likely through aneuploidy eq. (4) and the dashed vertical
blue line represents the threshold tumor size above which evolutionary rescue is very likely through
direct mutation eq. (3). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 =

0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S4: Distribution of the recurrence time. Shown is the distribution of the time for the mutant
cell population to reach size 𝑁 , where 𝑁 is the initial number of cancer cells. The red line is analytic
result eq. (F3) overlaid over the histogram of simulations. Parameters: 𝑁 = 106, 𝜆𝑠 = 0.1, 𝜆𝑎 =

0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S5: The probability of evolutionary rescue (i.e., the probability that the population does not go
to extinction), 𝑝rescue, as a function of the initial tumor size, 𝑁 . Dashed vertical line shows the threshold
tumor size, above which the probability is very high. Blue dashed line represents the probability of
evolutionary rescue as a function of 𝑁 without aneuploidy (𝑢 = 0). The black line represents the
scenario where a fraction 𝑓 = 0% of the initial tumor is aneuploid, the red line represents the scenario
with 𝑓 = 5% and the green line represents the scenario with 𝑓 = 50%. The dots represent simulation
results and the error bars represent 95% confidence intervals (𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the

fraction of simulations in which the tumor has adapted to the stress and 𝑛 = 100 is the number of
simulations). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑎 = 0.09, 𝜇𝑚 =

0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S6: Shown is the mean time for appearance of a resistance mutation the leads to evolutionary
rescue with aneuploidy (𝑢 > 0). Our inhomogeneous Poisson-process approximations (solid black
lines, right: eq. (C7)) is in agreement with simulation results (red markers with 95% confidence
intervals obtained with bootstrapping, see Appendix G). Dashed vertical blue line represents the
threshold tumor size above which evolutionary rescue is very likely through aneuploidy eq. (4) and
the dashed vertical green line represents the threshold tumor size above which evolutionary rescue is
very likely through direct mutation eq. (3). Solid lines represents the approximations eq. (8) (𝑁 < 𝑁∗

𝑎

blue line and 𝑁 > 𝑁∗
𝑚 green line). Parameters: 𝜆𝑠 = 0.1, 𝜆𝑚 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 =

0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S7: The mean time for the mutant cell population to reach size 𝑁 , where 𝑁 is the initial number
of cancer cells. Our inhomogeneous Poisson-process approximation (solid black line, eq. (D1)) is
in agreement with simulation results (red markers with 95% confidence intervals obtained with
bootstrapping, see Appendix G) for small and intermediate values of 𝑁 . Dashed vertical blue line
represents the threshold tumor size above which evolutionary rescue is very likely through aneuploidy
eq. (4) and the dashed vertical green line represents the threshold tumor size above which evolutionary
rescue is very likely through direct mutation eq. (3). Solid lines represents the approximations eq. (9)
(𝑁 < 𝑁∗

𝑎 blue line and 𝑁 > 𝑁∗
𝑚 green line). The simulations converge to eq. (D4) (green line) for

large values of 𝑁 ≫ 𝑁∗
𝑚. Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 =

0.09, 𝑢 = 10−2, 𝑣 = 10−7.
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Figure S8: The mean time for the mutant cell population to reach size 𝑀 , where 𝑀 is the tumor
detection size. Our inhomogeneous Poisson-process approximation (solid black line, eq. (D5)) is
in agreement with simulation results (red markers with 95% confidence intervals obtained with
bootstrapping, see Appendix G) for small and intermediate values of 𝑁 . Dashed vertical blue line
represents the threshold tumor size above which evolutionary rescue is very likely through aneuploidy
eq. (4) and the dashed vertical green line represents the threshold tumor size above which evolutionary
rescue is very likely through direct mutation eq. (3). Solid blue line represents the approximation
eq. (D5) with 𝜏𝑎 from eq. (8) for 𝑁 < 𝑁∗

𝑎 and the solid green line represents the approximation
eq. (D6) for 𝑁 > 𝑁∗

𝑚. The simulations converge to eq. (D6) (green line) for large values of 𝑁 ≫ 𝑁∗
𝑚.

Parameters: 𝜆𝑠 = 0.1, 𝜆𝑎 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 =

10−7, 𝑀 = 107.
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Figure S9: Shown is the mean time for appearance of a resistance mutation the leads to evolutionary
rescue with aneuploidy (𝑢 > 0) when a fraction 𝑓 of cancer cells are aneuploid at the start of therapy.
Black lines represent our inhomogeneous Poisson-process approximations (solid black line, eq. (C7);
dashed black line eq. (C10)). Dashed black line is the inhomogeneous Poisson-process approximation
where a fraction 𝑓 of tumor is aneuploid at the onset of drug therapy which is in agreement with simu-
lation results (red markers with 95% confidence intervals obtained with bootstrapping, see Appendix
G). Dashed vertical blue line represents the threshold tumor size above which evolutionary rescue
is very likely through aneuploidy eq. (4) and the dashed vertical green line represents the threshold
tumor size above which evolutionary rescue is very likely through direct mutation eq. (3). Solid
lines represents the approximations eq. (8) (𝑁 < 𝑁∗

𝑎 blue line and 𝑁 > 𝑁∗
𝑚 green line). Parameters:

𝜆𝑠 = 0.1, 𝜆𝑚 = 0.0899, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣 = 10−7, 𝑓 = 0.14%.
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Figure S10: The probability of evolutionary rescue (i.e., the probability that the population does
not become extinct), 𝑝rescue, as a function of the initial tumor size, 𝑁 (eq. (2)). Dashed vertical
line shows the threshold tumor size, 𝑁∗

𝑎, above which the probability is very high (eq. (H3)). Red
dashed line: 𝑣𝑎 = 10−7. blue line: 𝑣𝑎 = 10−6. Green line: 𝑣𝑎 = 10−5. Dots for simulations and the
error bars for 95% confidence interval (𝑝 ± 1.96

√︃
𝑝

(
1 − 𝑝

)
/𝑛 where 𝑝 is the fraction of simulations

in which the tumor has been rescued and 𝑛 = 100 is the number of simulations). Parameters:
𝜆𝑠 = 0.1, 𝜆𝑚 = 0.1, 𝜇𝑠 = 0.14, 𝜇𝑎 = 0.09, 𝜇𝑚 = 0.09, 𝑢 = 10−2, 𝑣𝑠 = 10−7.
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