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Abstract 

Artificial Intelligence (AI) for biodiversity and conservation is growing rapidly, demonstrating great 
potential in reducing the intensive human labor required for data preprocessing, thereby, facilitating larger 
data collections that offer ecological insights at unprecedented scales. However, most of these AI applications 
for biodiversity are still in the early stages of development, hindered by challenges inherent in real-world 
datasets and the limited accessibility of these technologies to practitioners without extensive programming 
knowledge. 

The recent advent of multimodal language (MML) models has significantly expanded the realm of 
possible AI applications in biodiversity research. These models have demonstrated the ability to recognize 
animals and complex concepts, such as animal postures and orientations, without prior exposure during 
training. MML models can also provide explanations for their predictions and interact with humans in natural 
language, thereby making them more transparent, intuitive, and accessible to non-specialists. Despite these 
advancements, there are unique barriers to the use of MML models for biodiversity applications, including 
high computational and financial demands, reliance on prompt engineering for consistent performance on 
large datasets, and insufficient open-source sharing of state-of-the-art methods. 

This paper explores the transformative potential of MML models for biodiversity research, compared 
with traditional machine learning methods, and discusses several potential applications in biodiversity 
research. We also discuss challenges to implementing these models in real-world biodiversity scenarios and 
propose directions for future research to overcome these hurdles. Our goal is to encourage robust discussions 
and research into the integration of MML models to advance AI for biodiversity research and conservation. 

 
 

1 Introduction 
The field of Artificial Intelligence (AI) for biodiversity research and conservation is rapidly gaining traction 
within the ecological and biological sciences [1, 2]. An increasing body of research underscores the advantages 
of integrating AI techniques into biodiversity monitoring tasks, such as wildlife observation with automated 
animal recognition in both imagery/video (e.g., camera traps and aerial photos) [3, 4, 5, 6, 7] and audio data 
sources (e.g., bioacoustics) [8, 9, 10, 11, 12]. These applications have demonstrated potential for reducing the 
substantial human labor traditionally required for data processing [1, 4], thus enabling the collection of more 
extensive datasets, providing ecological granularity at unprecedented spatial and temporal scales [7]. This 
expansion paves the way for a more in-depth understanding of long-term patterns, drivers, and consequences 
of global biodiversity changes. 

While numerous efforts have been made to integrate AI into biodiversity data workflows, the majority remain in 
preliminary and proof-of-concept stages (i.e., unsuitable for practical implementation) due to various technical and 
data-related challenges. These include, but are not limited to, model performance inconsistencies caused by 
severely imbalanced or long-tailed data distribution [13] and differences in datasets and applications (i.e., multi-
domain discrepancies) [14], various issues from the complexity of open-world datasets (e.g., varying data quality 
and novel/unseen categories) [4], and most importantly, the inaccessibility of existing algorithms to practitioners 
with limited programming and engineering knowledge. 

The recent advent of multimodal language (MML) models—models that can process and generate both textual 
content and other data modalities (e.g., video and audio) [15, 16, 17, 18, 19, 20, 21]—has markedly enhanced the 
versatility and possibilities of AI applications [22]. This advancement has garnered considerable interest across 
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disciplines—including the biodiversity and conservation community—as it overcomes many challenges that 
inhibit AI deployment into real-world applications. For instance, an off-the-shelf MML model like GPT-4v can 
recognize animals, even those that closely resemble each other, without seeing them during training (known as 
zero-shot recognition [23]), holding promise for improving model robustness to variations in geographical 
location of the open dataset collection and distribution of species. Our experiments in this paper have also 
demonstrated GPT-4v’s ability to distinguish more complex concepts, such as animal orientations and postures, 
without dedicated training. Additionally, because MML models closely integrate natural language processing with 
other data modalities (e.g., image and audio), these models can provide direct explanations for their predictions in 
natural language, enabling practitioners to better understand why and how these models make predictions. All 
of these capabilities are guided by human language inputs (i.e., text prompts). In other words, most interactions 
between humans and MML models now become natural language-based, eliminating the need for complex 
programming procedures. This can significantly improve the accessibility of AI techniques for practitioners 
with limited engineering and programming experience. 

Despite the promise of MML models, their application faces unique challenges compared to traditional AI 
techniques. These include a significantly higher demand for computational and financial resources [17], a strong 
reliance on developing the correct text prompts (i.e., prompt engineering) for model performance [24, 25], 
limited open-source sharing of advanced MML model methods [17, 26, 15], and a series of systematic failures of 
these methods [27, 28, 29, 30], such as failing to differentiate sentences with quantifiers and numbers. Therefore, 
in this paper, we aim to explore the transformative impact MML models can have on the future of biodiversity 
research and conservation and fully discuss the challenges of such novel techniques within these contexts. We begin 
with a detailed comparison of the fundamental differences between MML models and conventional machine 
learning methods (Section 2) and explore how these differences engender new applications of MML techniques 
in biodiversity research and conservation (Section 3 and 4). Then, we discuss the challenges and limitations we 
have identified for successfully implementing MML models in real-world scenarios and propose future research 
directions to overcome these challenges (Section 5). Our objective is to foster robust discussion and research into 
the sustainable and equitable integration of MML models, which could significantly advance the field of AI for 
biodiversity understanding and conservation. 

2 Multimodal Language Models 
2.1 Multimodal models 
The exploration of multimodal models has gained considerable attention in recent years, largely due to their 
unique capability to simultaneously process and generate a variety of data types or data modalities, including 
visual, audio, and language. 

In general, there are two types of multimodal models: multimodal contrastive models and multimodal generative 
models. The former focuses on creating a shared multi-dimensional embedding space (i.e., feature space) across 
different data modalities, while the latter uses such a space to generate different modalities of data (Figure 1): 

• Multimodal contrastive models: 
These models encode information from a variety of data types (modalities), such as language/text, imagery, 
and audio data, into a shared feature space. This feature space is where each data sample is encoded or 
represented as a multi-dimensional vector using feature encoders like Convolutional Neural Networks 
(CNNs) [31] or Transformers [32]. Feature representations from semantically related data (e.g., images 
and audio clips from the same animal species), irrespective of their modalities, are aligned in this shared 
feature space through a technique known as Contrastive Learning—a type of machine learning technique 
that aims to maximize the similarities among sample features. This feature space is crucial for the 
effectiveness of downstream applications that utilize the outputs of multimodal contrastive models [33]. 
For example, CLIP (Contrastive Language-Image Pretraining) [15], a Vision-Language Model, learns an 
aligned image-text feature space by training with 400 million image-text pairs. This process creates an 
association between images and texts, enabling recognition from categories defined after the model is 
trained through similarity calculation between texts of post-defined categories and input images (rather 
than relying on predefined categories as would be required for training traditional machine learning models). 
Subsequently, AudioCLIP [34] and Wav2CLIP [35] extend CLIP to the audio modality, embedding audio 
into a shared feature space with images and text, allowing audio data to be directly associated with natural 
language. Recently, Meta AI presented ImageBind [33], a multimodal model that specializes in integrating 
six modalities—text, image/video, audio, depth, thermal, and inertial measurement units (IMU)—into a 
shared feature space where all modalities of data can be interchangeably associated with each other. 

• Multimodal generative models: 
Multimodal generative models move one step further than contrastive models, possessing the capacity 
to generate any mixture of output modalities [36, 37, 38] from various combinations of input modalities. 
For instance, just as the popular Stable Diffusion model [39] can generate images from textual inputs, 
models like Flamingo [17] or GPT-4v [16] can directly generate the textual output “flamingo” when 
presented with a picture of a flamingo bird and a corresponding natural language question (i.e., text 
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prompt), such as “What is this animal?” This capability eliminates the need to convert model outputs 
into categories, as is common in multimodal contrastive models and traditional machine learning 
protocols. In other words, the outputs are not limited to categories predefined or post-defined by humans; 
rather, they can directly generate the outputs based on the inputs to the models. 
 

 
Figure 1: Illustration of multimodal contrastive and multimodal generative models. While multimodal 
contrastive models focus on constructing a shared feature space, aligning features from various input modalities 
such as images, audio, text, and other modalities, multimodal generative models take a step further. They utilize 
this shared feature space to generate any output modalities from any input modalities of data, such as creating 
images from a language description. 

 
2.2 Multimodal language models and conventional machine learning 
Among the many combinations of multiple modalities [40, 41, 42], multimodal language (MML) models have 
emerged as one of the most widely and actively researched areas, spurred by the advancement of single-
modality large language models (LLMs) [43, 44, 26]. One of the fundamental differences between MML models 
and conventional machine learning (supervised or unsupervised) lies in the focus of MML models on aligning 
language concepts and semantics with other data modalities, primarily perceptual ones such as images and audio. 
Moreover, these language concepts and their semantics are not confined to predefined language categories, such 
as a predetermined set of animal species. Instead, they can encompass a wide array of words and phrases 
representing ideas, including descriptive attributes of animals and the relationships between these ideas. 

In traditional machine learning frameworks, perceptual data typically lack direct connections to language 
concepts or semantics. For example, in categorical supervised learning, data are often mapped to discrete 
numerical labels [31], representing the language categories humans predefined (for example, 1 = dogs, 2 = cats). 
However, these categories are often overly simplified abstractions of the ultimate language concepts they aim to 
represent. For example, in an animal species classification dataset, each species is usually labeled with 
numerical numbers, with no relationships between each other (Figure 2 a). However, animal species often have 
taxonomic and morphological relationships, which can provide useful information for model training [45]. A 
species classification model trained with traditional supervised machine learning frameworks would be limited 
by the absence of encoded semantic relationships between these discrete numerical labels, inhibiting the explicit or 
implicit learning of semantic relationships through discrete categorical supervision. Take iWildCam2019 [46], a 
typical categorical wildlife recognition dataset, as an example. Despite containing 7 antelope species, these 
categories are nothing more than independent and discrete digits, indistinguishable from categories such as 
Raccoon or Black Bear. Even though similar looking categories are usually closer to each other in a trained 
feature space in terms of embedding distance [47], the semantic relationships between categories are not naturally 
expressed under label-based supervision. 

MML models are not constrained by the sample-to-label mapping typical of supervised learning 
approaches. Instead, they directly align the features (or “embeddings”) of perceptual data directly with 
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language concept features (Figure 2 b). In other words, the learning process of MML models aims to maximize 
similarities between language concept features and features of perceptual data, rather than using predefined 
labels to dictate/supervise where the features of input data should be positioned in the feature space. To achieve 
this feature alignment, most MML models utilize large-scale online datasets comprised of perception-to-
language pairs, such as image-to-language pairs [15] and audio-to-language pairs [48]. This pairing format 
ensures that each perceptual input can be associated with unique language descriptions, thereby not only 
providing a comprehensive breadth of perception-to-language alignment but also effectively eliminating the 
need for predefined labels. Figure 2 b gives an example of how such image-to-language pairs may look like when 
it comes to wildlife imagery. 

Most importantly, since the language concept features learned by large language models (LLMs) are 
continuous instead of categorical and directly encode semantic relationships within the feature space [49], the 
aligned perceptual features also inherit these continuous semantic relationships. Such a continuous feature space 
with intrinsic semantic relationships allow the recognition of subtle similarities and differences between categories 
with complex concepts such as animal orientations and postures (detailed in Section 3), that is not feasible in 
conventional, predefined machine learning protocols. 

For instance, in Figure 2, Koala, Antechinus, and Mouse are encoded as discrete and independent digit labels 
in categorical supervised learning. Conventional supervised learning models would only generalize basic visual 
similarities between Antechinus and Mouse while completely ignoring the phylogenetic relationship between the 
two marsupials, Koala and Antechinus [47]. In contrast, models developed through the alignment of visual and 
language features, particularly Vision-Language Models (VLMs) [15, 20, 19], can compel the features of the 
Koala and Antechinus to be closer in the shared visual-language feature space even before generalizing on visual 
similarities, recognizing both categories as Marsupials, which are semantically distinct from Mouse. These 
semantic relationships, inherently encoded in Vision-Language Models (VLMs) through Large Language 
Models (LLMs) learned from large-scale online textual resources such as Wikipedia, serve as a form of 
supervision to regulate the shared feature space. Therefore, such supervision can further enhance the semantic 
relevance between categories or animals, rather than producing only visual categorical similarities, as is 
common in supervised models. On the other hand, a trained VLM may still consider the Antechinus and Mouse 
visually closer to each other because both resemble mice, allowing for the recognition of both visual similarities 
and semantic relationships. 
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Figure 2: Comparison between conventional supervised learning and MML models on semantic 
relationships. In the conventional supervised learning framework, samples are typically encoded into discrete 
digital labels for recognition tasks. These labels do not possess intrinsic semantic relationships, even when the 
categories they represent are closely related, whether visually or semantically. Conversely, the training of MML 
models is aimed at aligning the features of language with other input modalities. These models do not have 
categorical limitations, and the semantic relationships are naturally encoded and expressed in the shared feature 
space. For instance, even though Koala and Antechinus look distinctly different from each other, these images 
can still have connections to each other in the shared feature space because both Koala and Antechinus are 
encoded as marsupials in the language encoder. 
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3 Multimodal language models and zero-shot recognition 
MML models have revolutionized machine learning by transitioning from conventional sample-to-label mapping 
to sample-to-semantic-association mapping. This paradigm shift introduces a considerable degree of flexibility 
to various AI tasks [36, 50, 17, 51, 52]. Among these tasks, the capability to conduct zero-shot recognition—
recognition of categories and concepts without specifically training on them—is particularly noteworthy. 

Zero-shot recognition with MML models depends largely on the alignment between perceptual information 
(e.g., visual features) and natural languages. For example, as shown in Figure 3, GPT-4v is able to associate 
visible morphological characteristics of animals with their textual descriptions (i.e., vision-language alignment), 
which it can use to differentiate pairs of similar-looking animals without dedicated training. 

Figure 4 (a) also shows an example of how VLMs work in zero-shot categorical recognition without another 
image to compare to. The language prompts included a context section where the VLM was instructed to emulate 
a professional microbiologist with experience in microscopic fungi identification. The model was then asked to 
describe the morphological characteristics from the input microscopy image. Subsequently, we prompted the 
model to generate a categorical prediction based on the visual descriptions. In our test, the model not only 
provided precise descriptions of the visual traits but also successfully classified the genus of the microscopic 
fungi. 

These examples demonstrate not only the recognition potential of MML models, but their generative 
capability to provide natural language explanations for a better interpretation of the results. This generative 
capability is further utilized in studies like [53] to conduct zero-shot animal recognition without the need for 
human text inputs by matching generated descriptions of animal appearances from input images with online 
resources such as Wikipedia. 

The alignment of perceptual features with language features and the flexibility of language em- beddings 
can further facilitate unprecedented zero-shot tasks, such as open-vocabulary segmentation and detection 
(Figure 4 b) [55, 56], a technique that allows a model to detect and segment objects in images or scenes using 
a flexible vocabulary that is not limited to a fixed set of categories. In addition, unconventional recognition 
tasks that go beyond rigid categorical recognition are also made possible because natural language is not 
confined to categorical concepts. Figure 4 (c) illustrates the potential of VLMs in recognizing animal 
orientations, even when the animal is in a relatively complex posture, such as lying on the ground. This capability 
could be highly beneficial for downstream tasks such as animal re-identification (re-id) [57], which heavily 
depends on accurately matching animal body markings to the correct side of the animal. More importantly, all 
these different language-based tasks can be realized with a single MML model (GPT-4v in this case), instead of 
using independent models for each task as in traditional machine learning. 

However, as shown in both Figure 3 and 4, zero-shot recognition can heavily rely on text prompts and human 
inputs. In Section 5.1 and 5.3, we discuss these limitations of the reliance on prompt inputs and other systematic 
failures that might occur in the applications of MML models in detail. 
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Figure 3: Vision-Language models understand morphological characteristics. We use GPT-4v to 
differentiate between two sets of animal pairs by providing morphological descriptions to the model with a 
contextual prompt, “Assume you are a wildlife expert”. The model not only correctly differentiates these 
similar-looking animals based on the provided descriptions—implying its understanding of animal 
morphological characteristics—but also provides detailed reasoning for its predictions. 
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4 Other tasks made possible by multimodal language models 
Beyond zero-shot recognition, MML models also enable a range of application tasks that are relatively 
challenging for conventional machine learning techniques. In this section, we list some examples that have 
been made possible by the potential and flexibility of MML models. 

4.1 Learning from very few samples 
One of the tasks that MML models have demonstrated particular success in is few-shot learning—learning from 
very few (e.g., five or ten) training samples. This success is attributed to the surprising ability of LLMs to 
adapt to new tasks with high performance from few examples without extensive training [58]. As presented in 
[17], simply prompting VLMs with as few as four task-specific examples (i.e., train the model to recognize 
target categories with as few as four training samples), such models are able to produce comparable if not 
superior performance than methods fine-tuned on thousands of examples from the same categories. Few-shot 
learning is a task that is relevant to many AI for biodiversity and conservation application scenarios, such as 
endangered species monitoring [59], where such tasks typically involve target categories/animals with limited 
available data. The advancement of few-shot learning with MML models has the potential to improve the 
practical feasibility of these applications, but it has yet to be studied and examined in real-world. 

4.2 Generalization across varied data distributions and domains 
Data distribution variation poses a major challenge in real-world applications of AI for biodiversity and 
conservation, particularly in animal recognition [1, 4]. For example, models trained with conventional supervised 
learning methods may not generalize across different sites—even for the same animal species— due to regional 
variations in different environments, backgrounds, seasons, animal appearances (e.g., trait variation among 
subspecies), and setups of data collection devices [4, 47]. These differences in datasets are referred to as domain 
discrepancies. 

MML models, on the other hand, often have a higher capacity for generalization across various data 
distribution/domains, primarily due to the alignment mechanism between perceptual and language concepts. As 
mentioned in Section 2, the shared feature space of MML models is continuous and does not have hard 
boundaries (e.g., decision boundaries) that define and confine categories; recognition is fully based on how 
similar the input objects/concepts are to the existing language features in the feature space. In other words, 
any objects that look like a bird can be associated to the language concept “bird”, regardless what environment 
these objects are in, thus generalizing across different data domains. Moreover, since most MML models are 
trained on an extensive scale of generic online data—often magnitudes larger than the scale of training data for 
conventional, task-specific machine learning models—the feature space of these models is often robust enough 
to cover large variations of data as well. For example, in [60], the authors have demonstrated that the same 
audio-language model—trained on 2.1 million audio-text pairs from general purpose acoustic data—can 
generalize across eight different bioacoustics datasets (i.e., eight different data distributions) recognizing the 
animals sounds from different datasets without dedicated training and still achieve supervised level performance. 
Despite the potential, the domain generalization capability of current MML models is still limited by the scale of 
domain discrepancies—scale of differences between datasets collected from different domains [61, 62]. When 
the discrepancy is too large (e.g., the differences between general online imagery and real-world wildlife camera 
trap imagery), performance may be impaired. In Section 5.2, 5.4, and 5.5, we review these limitations in detail. 
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Figure 4: Zero-shot task examples with Vision-Language models. (a) In mycology, mycolo- gists typically 
utilize identification keys (i.e., a series of macroscopic and microscopic morphological descriptions formatted 
as dichotomous keys) to systematically conduct taxonomic classification [54]. MML models can mimic these 
attribute-based classification processes and conduct zero- shot recognition without having previously seen such 
species. The recognition can be based on online information, such as that from Wikipedia, to which the MML 
models have access [53]. 
(b) Multimodal recognition is not limited to full image and object recognition. Open-vocabulary segmentation 
and detection are direct extensions of the recognition capabilities of MML models [55], in which categories are 
not predefined, and the number of categories is not fixed. Such methods can be further utilized for tasks such 
as zero-shot foreground / background separation in wildlife image datasets. (c) Moreover, recognition using 
MML models can go beyond rigid categorical identification to more flexible recognition tasks, such as orientation 
recognition. Animal orientation can be complex, varying with animal postures (e.g., lying down or standing); 
therefore, this requires the recognition to be flexible as well. However, conventional supervised models struggle 
with such tasks because they rely on predefined, rigid categories, leaving no room for nuance between these 
categories (e.g., direction between left and front). *All red text in (a), (b), and (c) are generated by GPT-4v. 

 

4.3 Enhanced model interpretability 
While traditional models function as “black boxes”, where researchers are unable to trace what features and 
mechanisms the models are using to make predictions, MML models provide an unprecedented level of 
interpretability by the direct alignment between perceptual and language features in the shared feature space. 
Features extracted by conventional deep learning models are typically not interpretable by humans and therefore 
practitioners are often reluctant to trust the predictions obtained from such models, irrespective of the 
performance [47]. In contrast, the shared perceptual-language feature space of multimodal models can provide 
venues for interpreting outputs directly in natural language and ultimately leading to a degree of insight into 
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the inner workings of the model. For example, Figure 3 shows a model providing detailed explanations on why 
it makes its classifications based on the input images and human text prompts. Similarly, the predictions in 
Figure 4 (a) also provide reasoning about why the model thinks the input image is a Penicillium species. In Figure 4 
(c), the model even provides additional information on why it predicts the cheetah’s left side is facing the 
camera, even though this is not a conventional recognition task. These insights can substantially increase the 
interpretability and explainability of AI techniques for practitioners. 

Moreover, interpretability offers the added benefit of facilitating a better understanding of failure cases. In 
traditional supervised learning with discrete class labels, prediction accuracy and similar metrics are the sole 
indicators used to evaluate model performance; this makes it challenging to anticipate the scenarios in which 
the model may fail. However, with natural language-based model interpretability, we can gain a clearer 
understanding of why models fail in certain cases—be it due to algorithmic failure or poor data quality. (Figure 
6). 

4.4 Learning with context 
MML models have facilitated rapid progress in the field of compositional zero-shot learning (CZSL) [50]—a 
task that generalizes AI models to unseen compositions of perceptual attributes such as visual features/objects. For 
instance, CZSL models may be able to identify a lying dog after seeing a lying horse and a dog in the training 
data [63]. CZSL can be further generalized to an area called in-context learning. In-context learning [52, 64], 
originally introduced for language tasks, is a technique for adapting a pre-trained model to novel and unseen tasks 
such as recognizing certain novel animal species without updating the model weights. Such adaptation is 
realized by simply adding a few contextual examples to the input in order to guide the model to the appropriate 
context, like the context prompts in Figure 3 and 4 (a). Such contextual-based prediction and identification is 
not easily achievable through traditional machine learning methods, where the prediction outputs of models 
are usually within a predefined space. Traditional models usually need model update and fine-tuning to adapt 
to any new tasks. 

In-context learning has the potential to be expanded to include broader scenarios and a wider range of 
information, thereby making the interactions between humans and AI more complex. Figure 5 provides a 
conceptual example of the application of in-context learning using MML models. In general, a multimodal 
model tends to provide generalized predictions to start, but with additional context provided, the model can 
adapt to the actual recognition tasks users want it to perform. In addition, if a model encounters difficulty or 
uncertainty during recognition, the introduction of additional context, such as habitat, can help refine the range of 
potential options, thereby augmenting the probability of accurate recognition. Of particular note is that this in-
context learning process usually doesn’t necessitate supplementary training or fine-tuning, as long as the 
requisite contextual knowledge is either pre-encoded or can be extracted from an external knowledge base, such 
as readily accessible online materials like Wikipedia. To realize such complicated interactions between human 
and machines, a dedicated MML model might be necessary. In Section 5.5 and 5.6 we discuss the requirements 
and challenges achieving a practical state of MML model for biodiversity research and conservation in detail. 

4.5 Natural language interaction 
Since the advancement of MML models [65, 66], the interaction between humans and machines has become a 
prominent topic, especially in applied fields where practitioners often lack an engineering background. With the 
language interface, practitioners and researchers do not need to go through programming and engineering 
workflows to obtain model predictions. All interactions between humans and machines can now be based solely 
on natural language, including human instruction, model prediction, and model explanations, as shown in 
Figure 3 and 4. Moreover, as mentioned in Section 3, a single well-trained MML model can handle most of 
the different tasks, potentially across different domains as well, eliminating the need for practitioners to train 
their own models, project by project, which would also require an engineering background. 

However, none of these potential functionalities have been realized yet, and preliminary research in AI 
assistants has begun to focus on building powerful AI chatbots capable of fluently responding to human 
instructions and contexts with multimodalities to further enhance the usability based on natural language 
interactions [16, 66]. These studies aim to extend the capabilities of AI models to a broader range of tasks such 
as problem-solving and reasoning [67], complex image and video question answering [68, 69], and translation 
[70]. 

Figure 5 is a conceptual example of how we envision an AI assistant might behave in the context of AI for 
biodiversity and conservation, illustrating how machines may gradually become more adaptive to users’ needs 
through human-machine interactions. 

 
 

 
 
5 Challenges and developmental directions 
Despite the flexibility and potential for new tasks enabled by MML models, several limitations still exist that 
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prevent their practical deployment and application in real-world conservation scenarios. In this section, we list 
some of the critical challenges and potential development directions for the use of MML models for biodiversity 
monitoring and conservation. 

 

 
Figure 5: MML models have the ability to adapt to specific domains, providing diverse outputs based on the 
user-provided context through in-context learning. This process is not confined to contexts directly related 
to input samples and can be extended to various other scenarios. For example, it is possible for a multimodal 
model to offer external information, such as determining “if the visible animal is an invasive species in a certain 
region” for an AI Assistant service. This service is made possible through the linkage of comprehensive internet 
knowledge sources with multimodal models like ChatGPT [65], Microsoft Copilot, and Google Gemini [18]. 
 
 
5.1 Prompt engineering and consistent model performance 
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A distinct challenge inherent in MML models lies in the need for input data dependent on manual prompt 
engineering—manual refinement of input text prompts to generate optimal predictions— for consistent model 
performance on certain downstream tasks, such as large-scale categorical recognition and captioning data with 
language descriptions, where we cannot prompt the models sample by sample for optimal performance [24, 25]. 
The choice of text prompts can significantly impact the generated outcomes [25]; some prompts may enhance 
the performance in target tasks like in-context learning [71] (Section 4.4), while others could potentially derail 
task performance entirely (Figure 6). At present, manual prompt engineering is considered the most reliable 
technique for producing high-quality text prompts (i.e., text prompts that produces high-quality predictions) 
[72]. For example, as shown in Figure 6, there is no effective way to prevent the model from generating the idea 
of a “crab-like animal” from the rat image without manually tuning the input text prompt. Such requirement may 
result in added costs in terms of human labor and time for animal recognition using MML models. Currently, the 
practical applicability of this technique is therefore limited in real-world applications due to the lack of clear 
guidelines on generating high-quality prompts for optimal results, context by context. 

A number of approaches have sought to circumvent the need for manual prompts in categorical recognition 
tasks by utilizing captions and descriptions of input samples generated by language models [73, 74, 75, 76, 77, 
78, 53]. However, these methods are either in preliminary stages or carry their own set of limitations, such as 
the dependence on manually predefined visual attributes of objects [74] or inferior recognition performance 
compared to fully supervised models [53]. 

5.2 Language and terminology bias 
The languages generated or used to train existing MML models are often different from domain-specific 
language and terminologies required for ecological and conservation-related prompts. This disconnect creates 
an artificial domain and knowledge gap between pretrained models and real-world applications. For example, 
ornithologists use terms such as caruncles, tectrices or pileum when describing the appearance of various body 
parts of birds, which rarely occur in the general domain training sets of MML models. However, accurately 
understanding such terminology and their connection to visual features in the image can be essential in 
recognizing bird species. Besides domain specific terminologies, existing MML models are largely trained in 
English [79, 16], which may further lead to an imbalanced language representation causing challenges to 
practitioners from non-English speaking areas. 

Instruction tuning is a technique that can address this terminology gap by injecting a relatively small amount of 
additional knowledge/data—compared to the scale of training data—into pretrained models for better performance 
on domain-specific tasks [61]. For instance, [53] successfully instruction-tuned a pretrained VLM to generate 
captions and descriptions with animal-specific terminology for animal imagery from sources like camera traps 
and manual wildlife photographs. However, the resulting caption quality was inconsistent, with some captions 
offering better and more detailed descriptions of animals from input images while others only offered bare 
minimum descriptions (e.g., “this is a monkey-looking animal”), primarily due to the inconsistent quality of 
annotations used for instruction tuning. Even though the requirement for the amount of training data and the 
financial and computational cost for instruction tuning is considered relatively low compared to training MML 
models from scratch or even the traditional transfer learning with supervised approaches, the quality and variety 
within these annotations are critical to ensuring the performance of instruction tuning [80]. Therefore, we still 
need to figure out how to effectively prepare data of sufficient quality and variety for conservation and ecology 
tasks. 
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Figure 6: Prompt engineering and model hallucination. Prompts play a key role in the performance of MML 
models. For example, a standard LLaVA model produced three distinct captions for the same image using three 
slightly different prompts. Interestingly, the first caption identified a “crab-like animal” that didn’t match the 
actual image content—a small rodent partially visible in the image. Unfortunately, there is no metric to evaluate 
the quality of prompts apart from comparing the generated outputs. However, this manual prompt engineering 
method may not be scalable for real-world applications like AI for biodiversity and conservation. (Bold texts 
are information that we think is relevant to describing the animals. Red texts are either wrong or hallucinated 
information by the model). 

 
5.3 Systematic failures and hallucinations 
Additionally, MML models can exhibit systematic failures [28], which may greatly impact downstream 
applications. Systematic failures are errors in the model prediction triggered under specific conditions. For 
instance, some models may miss negative context, that is, a negation in a description, resulting in near equivalent 
representations for the text with and without negation (e.g., “tree without leaves” and “tree with leaves” being 
represented the same way). This can potentially lead to a flawed understanding of visual scenes. Moreover, 
models may fail to distinguish sentences that use quantifiers, such as some and many or specific numbers, 
leading to incorrect understanding of quantities of objects in images, such as the number of animals in a camera 
trap image. Figure 7 shows a VLM model can yield totally opposite results when the input prompts include 
numbers compared to when they do not. 

Uncovering and addressing systematic failures in multimodal feature representations is an active area of 
research that defines the fundamental limitations of any practical deployment of such models [27, 28, 29, 30]. When 
it comes to biodiversity and conservation applications, such as querying data to assess whether a dataset 
contains invasive or endangered species, errors (either false positives or false negatives) can carry associated 
risks to downstream tasks such as decision and policy making. Understanding the potential pitfalls of different 
methods with such systematic failures is crucial when recommending such techniques to the ecological 
community. 
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Figure 7: Systematic failures with numbers. The model can make totally opposite predictions when numbers 
are included in the input prompts, especially when these numbers are uncertain, such as the ranges provided in 
the prompts (7-17 and 30-60). 

When it comes to generative tasks, including image captioning, it can eventually cause model halluci- nation 
(e.g., models perceive non-existent content as existing due to various algorithmic idiosyncrasies). There is currently 
no effective way to control hallucinations except for manual oversight. Despite an increase in recent studies 
addressing the issue of hallucinations in large language models [81], research on hallucinations in MML models 
remains in the preliminary stages. Hallucinations often stem from a mismatch between different data modalities 
(i.e., embedding confusion). For instance, a MML model might incorrectly respond with “yes” to queries like 
“Is X present in this image?” where X represents any animals or other objects, just like the “crab-like animal” 
the model predicts in Figure 6. Such hallucination can be massively detrimental to real-world applications, 
especially in tasks that require high precision, such as animal movement and habitat monitoring. [53] has shown 
potential of using instruction tuning methods and caption confidence scores to limit the caption hallucinations; 
however, how similar techniques can be applied in the real world remains to be studied. 

5.4 The cost of model tuning 
Known instances where the efficacy of MML models is not guaranteed –terminology gaps, systemic failures, 
hallucinations– largely result from the models being trained on generic internet data rather than domain specific 
data [82, 83, 15]. While MML models generally are better at generalizing to different data domains and 
distributions compared to conventional machine learning methods, pronounced domain discrepancies (i.e., data 
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differences between domains) may still cause inconsistent performance and errors [61, 62]. Given that 
applications of AI in biodiversity and conservation often encompass domain-specific tasks that may exhibit 
substantial domain differences compared to the generic internet training data (e.g., the difference between well-
framed and well- lit internet images of animals and real-world noisy, obfuscated wildlife camera trap imagery), 
and necessitate generalization across diverse regions, time periods, sensor types, and projects focusing on 
specific animals [1, 4], it becomes imperative to adapt existing multimodal models to cater to these distinctive 
requirements. While machine learning practitioners often rely on fine-tuning strategies to bridge the domain 
discrepancies between training and real-world inference data [84, 85], the high cost in terms of money, time, 
carbon footprint, computational resources, and data volume associated with multimodal models makes full 
model fine-tuning impractical within constrained computational budgets. 

The substantial demand for computational resources is one of the key constraints of training and fine-tuning 
MML models. For instance, the Flamingo [17] model used 1,536 TPU chips, along with a substantial training 
period of 15 days, which is far beyond the scale of accessible resources for most academic and conservation 
groups. This requirement sometimes even extends to model inference (i.e., using the models for predictions) 
[66] particularly for models that uses LLMs as their language encoders like Flamingo [17] and GPT-4v [16]. 
For example, according to the pricing page of OpenAI (https://openai.com/pricing), GPT-4v costs $0.04 per 
1000 tokens, which is roughly one 224×224 image plus a paragraph of three to four hundred words. Such intensive 
resource requirements result in limited distribution and deployment of large-scale multimodal models in 
domain/task specific and resource-limited areas such as biodiversity research and conservation that usually have 
large scale datasets. 

There exist methodical approaches and research directions specifically aimed at mitigating the costs 
associated with fine-tuning large-scale models for downstream tasks and domains (particularly in terms of time 
and money), thereby facilitating their adoption in real-world AI for biodiversity and conservation applications. 
Techniques such as model adaptors [86], parameter efficient tuning [85, 87], model distillation [88], and model 
compression [89] are such examples that reduce the financial and computational costs of model adaptation, 
fine-tuning, and subsequent inference. These techniques work either by introducing newly added smaller-scale 
trainable parameters [85, 87] or by compressing and distilling smaller-scale models from the original large-scale 
models to cater downstream tasks (i.e., tasks that further make use of the outputs of these models) [90, 89]. 

From Figure 3 and 4, we can also see that a generalized MML model can already function within a wildlife 
context; therefore, a dedicated MML model trained for ecology and conservation from the ground up may not be 
necessary. However, research into the cost-efficient MML model updating techniques is still in its preliminary 
stages with respect to real-world applications. This area, therefore, requires further research and exploration. 

5.5 Biodiversity datasets 
Despite the cost of model fine-tuning, the lack of wildlife multimodal datasets also hinders the development of 
such models in the applications of AI to biodiversity monitoring and conservation. Presently, the most notable 
contributions to the development of large-scale ecology datasets for AI/ML are embodied by LILA 
(https://lila.science/) and iNaturalist [91]. These datasets, however, are predominantly designed for traditional 
sample-to-label based machine learning tasks. Datasets for MML tasks need to have different modalities that 
are directly associated with each other and at least one language description for each of the imagery or audio 
samples. BioCLIP [92] is a recent effort to create a multimodal dataset for biodiversity and conservation. However, 
the language aspect of the dataset is mainly based on direct information from the Tree of Life, rather than on 
image-specific contextual and descriptive information such as the ones in Figure 2. The descriptive information 
is crucial for the semantic alignment of MML models as it helps define and incorporate ecological and 
conservation context information into MML models. However, creating such datasets is no trivial task; it 
requires the collection and annotation of data across multiple modalities, a process that can be both time-
consuming and resource-intensive. As mentioned in Section 5.2, techniques such as instruction tuning can 
significantly reduce the requirement for training data to update existing MML models for biodiversity and 
conservation- specific tasks and data. How to effectively and efficiently collect such data, or to augment 
existing biodiversity datasets with additional modalities—perhaps through collective approaches such as citizen 
science—remains an open question, particularly when it comes to ensuring the quality required for techniques 
like instruction tuning. 

5.6 Closed-source models and open-source efforts 
The landscape of state-of-the-art MML models is largely dominated by closed-source algorithms and datasets 
[17, 26, 15, 66]. This approach significantly hampers the advancement of MML models and poses a barrier to 
scientific progress in various fields, especially when modifications to existing MML models are typically 
exclusive to contracted partners and paid services [16], making them less accessible to practitioners. 
Furthermore, these closed-source strategies inhibit researchers from fully grasping the underlying mechanisms 
of these algorithms, even through paid services, thereby curtailing the potential for specific model modifications 
for different projects, tasks, and applications in real-world settings. For instance, the absence of transparency 
makes it impossible to understand the training process, data volume, and details of model design, such as in 
GPT-4v [16], let alone make any structural and algorithmic modifications to the models. This lack of 
accessibility is one of the main reasons why studies such as [53] and [92] can only use less well-developed 
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MML models to produce their wildlife models, as models like GPT cannot easily be modified by general 
researchers. 

While open-source initiatives—mainly driven by the academia—like Open-Flamingo [93], Open- CLIP 
[94], LION [82] and BioCLIP [92] are commendable efforts to mitigate this challenge and afford developers more 
accessible methods, they unfortunately fall short of achieving the performance standards set by their closed-source 
counterparts [94]. Even if the cost of model training and accessibility of biodiveristy and conservation-focused 
datasets were not a concern, the lack of technological transparency still makes training models for AI for biodiversity 
and conservation a challenging task. This is also one of the reasons why existing open-source efforts often have 
subpar performance. However, more research is needed to provide additional evidence on whether the 
performance differences between open-source efforts and their closed-source counterparts matter in real-world 
fields like conservation AI. 

 

6 Conclusion 
In conclusion, MML models stand as a revolutionary advancement in AI, providing a robust and adaptable 
approach poised to transform the realms of biodiversity research and conservation. This innovative technique 
facilitates a multitude of tasks, including zero-shot learning, few-shot learning, domain generalization, and 
enhanced model interpretability. Moreover, it significantly improves the accessibility of AI for practitioners 
through natural-language-based human-machine interactions. However, the deployment of these multimodal 
models in ecological research and conservation practice in particular remains challenged by several barriers, 
including the need for extensive computational resources, the requirement for prompt engineering for consistent 
performance on large datasets, systematic model failure and hallucination, and insufficient open-source sharing 
of state-of-the-art methods. Moving forward, it is imperative to address these challenges through continued 
research and development. Efforts should focus on enhancing the computational efficiency of multimodal 
models, reducing their cost, and increasing their transparency to facilitate wider adoption and innovation. 
Ultimately, by overcoming these obstacles, AI can play a crucial role in biodiversity and conservation efforts 
worldwide, providing tools that are not only powerful and efficient but also equitable and accessible. It is our 
hope that this discussion will spur further research and collaboration across disciplines to realize the full 
potential of MML models in biodiversity research and conservation. 
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