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Abstract: 24 

Ecosystem models predict changes in productivity and status for multiple species, and are 25 

important for incorporating climate-linked dynamics in ecosystem-based fisheries management.  26 

However, fishery regulations are primarily informed by single-species stock assessment models, 27 

which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, 28 

etc) using random effects.  We review the general benefits of estimating random effects in 29 

ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) 30 

conditioning interactions upon observed biomass for predators and prey; (3) easier replication of 31 

model results using formal estimation rather than informal model “tuning;” (4) attributing 32 

process errors via comparison among different models.  We then demonstrate these by 33 

introducing a new state-space model EcoState (and associated R-package) that extends mass-34 

balance dynamics from Ecopath with Ecosim.  This model estimates mass-balance (Ecopath) and 35 

time-dynamics (Ecosim) parameters dynamics directly via their fit to time-series data (biomass 36 

indices and fisheries catches) while also estimating the magnitude of process errors using 37 

RTMB.  A real-world application involving Alaska pollock (Gadus chalcogrammus) in the 38 

eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of 39 

increased and decreased pollock production.  A self-test simulation experiment confirms that 40 

estimating process errors can improve estimates of productivity (growth and mortality) rates. 41 

Overall, we show that state-space mass-balance models can be fitted to time-series data (similar 42 

to surplus production stock assessment models), and can attribute time-varying productivity to 43 

both bottom-up and top-down drivers including the contribution of individual predator and prey 44 

interactions.   45 

 46 
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Introduction 51 

 Throughout ecology and fisheries, there is broad agreement that model predictions often 52 

differ from real-world observations, and growing recognition that this discrepancy can be 53 

decomposed into measurement, process, and specification errors using hierarchical (a.k.a., 54 

mixed-effect or state-space) models.  For example, hierarchical models are widely used in 55 

experimental analysis to account for pseudo-replication, comparative and life-history analysis to 56 

account for evolutionary similarity in model residuals (Felsenstein 1985), and population 57 

dynamics to account for unmodeled variation in demographic rates (de Valpine 2002).  58 

Hierarchical models for dynamics over time (“state-space models”) specify a simplified model 59 

for system dynamics that typically involves one or more unknown parameter (“fixed effects”), 60 

and also estimate process errors that represent how dynamics differ from this parametric model.  61 

Process errors (“random effects”) are then shrunk towards a shared mean, where the variance of 62 

these process errors can be estimated as a parameter and controls the magnitude of shrinkage 63 

(Thorson and Minto 2015).   64 

Despite broad recognition about the importance of hierarchical modelling, they see 65 

surprisingly little use in marine ecosystem analysis.  Ecosystem-based fisheries management 66 

(EBFM) has been adopted as a policy goal for ocean management agencies worldwide (FAO 67 

2003; European Commission 2013; NOAA 2016), and ecosystem models are an essential tool for 68 

evaluating tradeoffs among alternative management scenarios within EBFM.  Ecosystem models 69 

generally aim to represent changes in productivity and biomass for ecosystem components via 70 

trophic, technical, or other interactions (Hollowed et al. 2000).  There are many types of 71 

ecosystem models with widely used software including (to name a few) Atlantis (Fulton et al. 72 

2011), Ecopath with Ecosim (EwE), Mizer (Scott et al. 2014), Gadget (Begley and Howell 73 
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2004), and custom-built MICE models (Plagányi et al. 2014).  Each model (and associated 74 

software) typically has different tools to “tune” parameters to improve fit to available data.  For 75 

example, EwE involves a two-stage approach, where mass-balance is first achieved using 76 

Ecopath and then nonequilibrium dynamics are then projected over time using Ecosim.  Ecosim 77 

vulnerability parameters are sometimes tuned via fit to predator-prey time-series (Scott et al. 78 

2016; Bentley et al. 2024).  However, time-series predictions of biomass are only calculated 79 

when tuning Ecosim (not when balancing the model in Ecopath), so this two-stage approach 80 

precludes using time-series data to tune the mass-balance parameters in Ecopath.  Similarly, both 81 

Mizer and Gadget can estimate parameters representing ecosystem dynamics (Begley and 82 

Howell 2004; Spence et al. 2016).  Although Mizer was later extended to estimate process errors 83 

(Spence et al. 2021), this has not been done for other major classes of ecosystem models.   84 

 In contrast to the dearth of hierarchical modelling for marine ecosystems, there is 85 

ongoing research to estimate time-varying parameters within single-species stock assessments 86 

using mixed-effect models (de Valpine 2002; Nielsen and Berg 2014).  Stock assessments 87 

increasingly use state-space modelling (Stock and Miller 2021), and it is viewed as an essential 88 

feature for future assessment-model development (Punt et al. 2020).  This increased use arises in 89 

part because state-space models can mitigate the bias that otherwise results from treating some 90 

time-varying process as if it was stationary in time (Xu et al. 2020; Stock et al. 2021).  91 

Importantly, random effects can also be used to represent systematic deviations away from the 92 

parametric model, and therefore represent “mis-specification error”.  In some cases, the 93 

magnitude of “mis-specification error” can be identified by estimating a new functional form for 94 

a modeled process using random effects (Thorson et al. 2014), while in other cases the “process 95 

error” represents nonstationarity over time in some model parameter.  In either case, estimating 96 
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random effects allows an analyst to then expand the model and quantify how much the variance 97 

of process errors is reduced by a given model development.  In this interpretation, process errors 98 

allow analysts to attribute unmodeled variation to specific hypothesized drivers.   99 

 We propose that hierarchical models will provide several benefits for ecosystem models, 100 

and deserve adoption across the full range of ecosystem-model software.  These benefits include: 101 

1. Better representing biomass cycles and trends for focal species, i.e., where population 102 

dynamics for individual species may be driven by physical variables or interactions that are 103 

not easy to represent explicitly, but whose effect is evident in available time-series.  104 

Hierarchical models can then represent these patterns as process errors, and thereby capture 105 

apparent patterns in stock status.  This model behavior is similar to the treatment of 106 

recruitment-deviations in stock assessment, and it would allow ecosystem models to be used 107 

to measure stock status and trends;   108 

2. Conditioning interactions upon observed biomass for predators and prey, i.e., where trends or 109 

cycles in biomass for dominant predator or forage species (which might not be represented 110 

without process errors) can then be propagated through ecosystem interactions.  Hierarchical 111 

models would therefore ensure that predator consumption or forage availability matches 112 

observed patterns, and that resulting predictions of species interactions are then accurately 113 

represented for other modeled taxa;  114 

3. Easier replication of model results using formal estimation rather than informal model 115 

tuning, i.e., where models can be fitted using a statistical optimizer rather than using “forcing 116 

functions” or ad hoc model changes.  By using a statistical optimizer, hierarchical models 117 

then guarantee that any analyst will arrive at the same model for a given set of data and 118 
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model assumptions. This then allows the model to be updated over time by new analysts, or 119 

replicated independently; 120 

4. Attributing observed patterns to alternative mechanistic drivers, i.e., where the analyst then 121 

seeks to identify changes in model structure that can reduce the magnitude of estimated 122 

process errors.  These changes might include (A) attributing patterns to hypothesized 123 

oceanographic or ecological mechanisms that are measured as covariates, and/or (B) adding 124 

new mechanisms and functional groups to the model.  Hierarchical modelling helps by 125 

allowing models to be rapidly refitted using statistical optimization, and also allows 126 

statistical comparison among alternative models.   127 

These benefits are generally observed in the relatively few ecosystem models that include 128 

process errors (Spence et al. 2021), but have not explored for the wide range of ecosystem 129 

models.   130 

To demonstrate these benefits, we introduce a new state-space mass-balance model that 131 

incorporates both top-down and bottom-up interactions.  Using a case study representing the 132 

eastern Bering Sea centered on prey, competitors, and predators for Alaska pollock (Gadus 133 

chalcogrammus), we demonstrate that estimating process errors improves ecological inference 134 

and expected statistical performance.  Specifically, biomass cycles for krill are associated with 135 

cycles of higher or lower productivity (and resulting biomass) for pollock, and these apparent 136 

decadal cycles are not captured without estimating process errors.  We also use a simulation 137 

experiment to confirm that estimating process errors results in more accurate and precise 138 

estimates of growth and mortality rates than ignoring process errors, and that known parameter 139 

values can be recovered with reasonable precision.  Finally, we conclude by discussing how 140 
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hierarchical ecosystem models might mitigate capacity constraints that hamper wider adoption 141 

and tactical application of ecosystem models.    142 

Methods 143 

We demonstrate the general utility of hierarchical modelling for ecosystem analysis by 144 

introducing an extension of Ecopath with Ecosim that estimates both parametric uncertainty and 145 

the variance of residual variation in biomass dynamics (“process errors”).  The associated R-146 

package EcoState uses RTMB (Kristensen 2024a) to implement automatic differentiation and fit 147 

process errors via maximum marginal likelihood.  Our demonstration is intended in part to 148 

demonstrate that automatic differentiation and the Laplace approximation (via RTMB) can be 149 

used to fit nonlinear ordinary differential equations with many variables, as required for many 150 

ecosystem models.  Parametric uncertainty and process errors have been added previously to 151 

other ecosystem models, e.g., Mizer (Spence et al. 2016, 2021), but EwE has typically separated 152 

mass balance (Ecopath) from biomass projections (Ecosim) and therefore precluded estimating 153 

mass-balance parameters using time-series data.  EcoState is therefore the first (to our 154 

knowledge) model to formally estimate mass-balance and process-error parameters using a mass 155 

balance dynamics, and mass-balance provides an avenue to incorporate bottom-up dynamics 156 

(i.e., where prey availability affects predator productivity).   157 

Benefits of hierarchical modelling for mass-balance ecosystem models 158 

EcoState demonstrates the advantages of hierarchical ecosystem modelling relative to previous 159 

mass-balance models (Christensen and Walters 2004; Lucey et al. 2020) in several ways: 160 

1. Joint modelling:  It combines the mass-balance done by Ecopath with the dynamical 161 

projection from Ecosim within a single statistical model.  It therefore replaces a 2-stage 162 

workflow with a single model, and allows the model to be easily refitted (including 163 
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rebalancing the population scale) when adding/dropping taxa or data. This involves 164 

estimating equilibrium population biomass, nonequilibrium initial conditions, catchability 165 

coefficients, the variance of process errors via fit to available time-series, as well as predator-166 

prey vulnerability, production, and consumption per biomass.  Ecosim has previously been 167 

fitted to estimate vulnerability parameters using likelihood or sum-of-squares methods 168 

(Gaichas et al. 2012; Scott et al. 2016; Bentley et al. 2024), but we do not know of efforts to 169 

jointly estimate mass-balance (Ecopath) and vulnerability (Ecosim) parameters;  170 

2. Process errors:  By estimating process errors, we ensure that estimated mass 𝛽𝛽𝑠𝑠,𝑡𝑡 is shrunk 171 

towards measured values 𝑞𝑞𝑠𝑠𝑏𝑏𝑠𝑠,𝑡𝑡 whenever measurements are available.  This then ensures 172 

that modeled consumption is shrunk towards the quantity expected given that measured 173 

mass, i.e., that systematically over- or underestimating mass for a variable relative to 174 

observations does not propagate into over- or under-estimated consumption for interacting 175 

species. For variables that have no biomass measurements, dynamics are then inferred based 176 

on time-varying productivity resulting from changes in modeled consumption (and resulting 177 

gain and loss rates) conditional upon those estimated process errors; 178 

3. Model bridging:  If the analyst chooses to specify all parameters and turn off process errors, 179 

then dynamics will be similar to those from Ecopath and Ecosim.  This then facilitates model 180 

building, i.e., by starting with published EwE models and progressively “turning on” 181 

different parameters and/or process errors;   182 

4. Forecast variance:  If the analyst chooses to model future years with no available data 183 

regarding absolute or relative mass, they must still specify a value for catch in those future 184 

years.  Having done this, the model will automatically propagate uncertainty about process 185 

errors 𝛜𝛜(𝑡𝑡) and resulting uncertainty about biomass 𝛃𝛃(𝑡𝑡) in those future years; 186 
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5. Exploring ecosystem modules:  Finally, the analyst may want to isolate interactions among a 187 

small subset of taxa (“species module;” Holt 1997).  The model still estimates consumption 188 

among those taxa that are retained, but typically identifies decreased ecotrophic efficiency 189 

for those taxa whose predators are excluded. This addresses ongoing calls for “minimal 190 

realistic models,” whether using mass-balance dynamics (Walters et al. 1997) or otherwise 191 

(Plagányi et al. 2014). 192 

These features are common in modern stock assessment models, but novel for mass-balance 193 

ecosystem models.   194 

Mass-balance based on Ecopath 195 

EcoState is a mass-balance model that can be solved for equilibrium mass of different ecosystem 196 

components (e.g., detritus, primary producers, consumers, and predators) that are coupled via 197 

consumption, production, and detrital production/decomposition rates (Polovina 1984).  EcoState 198 

tracks mass-vector 𝛃𝛃 composed of mass 𝛽𝛽𝑠𝑠 for each functional group or detrital pool (called 199 

“variables” in the following), indexed by 𝑠𝑠 ∈ {1,2, … , 𝑆𝑆} where 𝑆𝑆 is the total number of variables.  200 

Each variable is then specified as an (1) autotroph (i.e., primary producer), (2) heterotroph (i.e., 201 

consumer or predator), or (3) detritus.  We attempt to use mathematical notation following 202 

guidelines from Edwards and Auger‐Méthé (2019), particularly by using Greek letters for state-203 

variables (e.g., biomass), Roman for parameters and data, vector-matrix notation (i.e., lowercase 204 

italic for scalars), and avoiding the use of multiple letters for a single parameter.  This results in 205 

some departures from previous Ecopath and Ecosim notation (see Table S1 for a summary of all 206 

notation), although we use similar symbols where practical.  We refer to the combination of 207 

autotrophs and heterotrophs as “biomass” or “taxa,” and we also index variables as prey 𝑖𝑖 ∈208 

{1,2, … , 𝑆𝑆} and predator 𝑗𝑗 ∈ {1,2, … , 𝑆𝑆} in expressions where prey and predators are both 209 
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included.  Each variable 𝑠𝑠 at equilibrium is assumed to have a fixed ratio of production to 210 

biomass 𝑝𝑝𝑠𝑠, consumption to biomass 𝑤𝑤𝑠𝑠 (where 𝑤𝑤𝑠𝑠 = NA for detritus and primary producers), 211 

and a fixed 𝑆𝑆 × 𝑆𝑆 diet matrix 𝐃𝐃 containing the proportion 𝑑𝑑𝑖𝑖,𝑗𝑗 of diet provided by each potential 212 

prey 𝑖𝑖 for predator 𝑗𝑗 (where 𝑑𝑑𝑖𝑖,𝑗𝑗 = 0 for detritus and primary producers as “predators” 𝑗𝑗 and all 213 

“prey” 𝑖𝑖).  Finally, each variable is assumed to have mass that is “used” in the system (i.e., 214 

consumed by predators or removed by fisheries), and this is represented as ecotrophic efficiency 215 

𝑒𝑒𝑠𝑠.   216 

Similar to Ecopath, equilibrium in EcoState occurs for each variable when its gain 217 

matches loss rate.  To match notation that is common in stock-assessment models, we define 218 

equilibrium mass 𝛽̅𝛽𝑠𝑠 as the average mass in the absence of fishing: 219 

𝛽̅𝛽𝑖𝑖⏟
Equilibrium

biomass for prey i

× 𝑝𝑝𝑖𝑖⏟
Prey 

production
per biomass

× 𝑒𝑒𝑖𝑖⏟
Prey

ecotrophic
efficiency

= �

⎝

⎜
⎜
⎛

𝑑𝑑𝑖𝑖,𝑗𝑗�
Proportion of

diet for predator
𝑗𝑗 by prey 𝑖𝑖

× 𝛽̅𝛽𝑗𝑗⏟
Equilibrium
biomass for
predator 𝑗𝑗

× 𝑤𝑤𝑗𝑗�
Predator

consumption
per biomass⎠

⎟
⎟
⎞𝑆𝑆

𝑗𝑗=1

 

(1) 

Later, we incorporate fishing mortality to project ecosystem dynamics away from this unfished 220 

equilibrium.  Unknown values in Eq. 1 can be solved by re-expressing it in vector-matrix 221 

notation.  Specifically, gains (left side of Eq. 1) are written as 𝛃𝛃⊙ 𝐩𝐩⊙ 𝐞𝐞, where e.g. 𝛃𝛃⊙ 𝐩𝐩 is 222 

the Hadamard (elementwise) product of two vectors 𝛃𝛃 and 𝐩𝐩.  Similarly, losses (right side of Eq. 223 

1) are s 𝐃𝐃(𝛃𝛃⊙𝐰𝐰).   Equilibrium biomass 𝛃𝛃� is achieved when these rates match, i.e. 𝛃𝛃� ⊙ 𝐩𝐩⊙224 

𝐞𝐞 = 𝐃𝐃(𝛃𝛃� ⊙𝐰𝐰), which can be solved for some combination of equilibrium biomass 𝛃𝛃� and 225 
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ecotrophic efficiency (Supplementary Materials 2).  Given this equilibrium, we then calculate 226 

equilibrium consumption 𝐂𝐂�: 227 

𝐂𝐂� = 𝐃𝐃⊙ �𝟏𝟏�𝛃𝛃� ⊙𝐰𝐰�
𝑻𝑻
� (2) 

where 𝟏𝟏 is a column-vector of 1s such that 𝟏𝟏�𝛃𝛃� ⊙𝐰𝐰�
𝑇𝑇
 is a matrix of equilibrium consumption 228 

𝛃𝛃� ⊙𝐰𝐰 for each predator, repeated as separate rows for each prey.   229 

The fitted model can then be used to solve for equilibrium levels of a specified tracer 𝑦𝑦𝑠𝑠 230 

for each taxon 𝑠𝑠.  This tracer 𝐲𝐲 represents any physical or theoretical quantity that is tracked as it 231 

progresses through the food chain via consumption under the expression 𝐳𝐳 = 𝐳𝐳𝐂𝐂∗ + 𝐲𝐲 where 𝐂𝐂∗ 232 

is the consumption 𝑐𝑐𝑖𝑖,𝑗𝑗 for each prey 𝑖𝑖 by each predator 𝑗𝑗 rescaled to sum to one for each predator 233 

to represent a proportion, and 𝐳𝐳 is the equilibrium concentration of a tracer to be estimated.  For 234 

example, trophic level is defined as a tracer such that 𝐳𝐳 = 𝐳𝐳𝐂𝐂∗ + 𝐲𝐲, where 𝐲𝐲 = 𝟏𝟏 is the increase 235 

in trophic level each time mass is consumed.  This simultaneous equation for trophic level is then 236 

solved as 𝐳𝐳 = 𝟏𝟏𝑡𝑡(𝐈𝐈 − 𝐂𝐂∗)+, where (𝐈𝐈 − 𝐂𝐂∗)+ is the Penrose-Moore pseudoinverse of 𝐈𝐈 − 𝐂𝐂∗ and 237 

𝟏𝟏𝑡𝑡 is a row-vector of 1s.  Alternatively, we define tracer 𝐲𝐲, e.g., as an indicator vector that is 1 238 

for the base of the pelagic food chain and 0 otherwise, and then calculate the proportion of 239 

biomass for each taxon that results from pelagic production as 𝐳𝐳 = 𝐲𝐲𝑇𝑇(𝐈𝐈 − 𝐂𝐂∗)+.   240 

Time-dynamics based on Ecosim 241 

After Ecopath is applied to achieve mass-balance for all species, Ecosim is separately used to 242 

simulate dynamics forward in time (Pauly et al. 2000; Christensen and Walters 2004).  By 243 

contrast, EcoState uses proposed parameters to solve for missing values that achieve mass-244 

balance, and simultaneously uses those parameters to project dynamics for all variables at times 245 

𝑡𝑡 ∈ {𝑡𝑡1, 𝑡𝑡2, … ,𝑇𝑇} while integrating dynamics over the interval between these times (e.g., from 𝑡𝑡1 246 

to 𝑡𝑡2).  We discretize time into years in the following, but future research could incorporate 247 
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seasonal (e.g., monthly) variation using a higher-resolution time-interval with no change in 248 

equations or code.  Similarly, future research could explore how fishing mortality affects the 249 

prey production 𝑝𝑝𝑖𝑖 and predator consumption 𝑤𝑤𝑖𝑖 via its impact on age-structure (Aydin 2004), 250 

although we do not do so here.   251 

Adapting notation from Lucey et al. (2020), EcoState represents similar dynamics as 252 

Ecosim by specifying a differential equation for mass: 253 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛃𝛃(𝑡𝑡) =

⎝

⎜⎜
⎛
𝐠𝐠(𝑡𝑡)�
Growth
rate

− 𝐦𝐦(𝑡𝑡)���
Natural 
mortality

rate

− 𝐟𝐟(𝑡𝑡)�
Fishing
mortality

rate ⎠

⎟⎟
⎞
⊙ 𝛃𝛃𝑡𝑡 

(3) 

where 𝑓𝑓𝑠𝑠(𝑡𝑡) is fishing mortality rate and both growth rate 𝑔𝑔𝑠𝑠(𝑡𝑡) and loss rate 𝑚𝑚𝑠𝑠(𝑡𝑡) are 254 

calculated from annual consumption rate 𝐂𝐂(𝑡𝑡), representing the mass 𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) of prey 𝑖𝑖 consumed 255 

by predator 𝑗𝑗, where 𝑑𝑑
𝑑𝑑𝑑𝑑
𝛃𝛃(𝑡𝑡) = 𝟎𝟎 whenever 𝛃𝛃𝑡𝑡 = 𝛃𝛃� in the absence of fishing.  Future studies 256 

could include net migration, although this is often not considered in stock-assessment models 257 

and therefore ignored here as well.  This equation also assumes that parameters in growth and 258 

natural mortality rates are stationary over time.  Future studies could address ontogenic shifts in 259 

diet by incorporating stanzas (i.e., age-structured models for selected taxa), and could estimate 260 

time-varying diet or other parameters by fitting directly to diet time-series data.  EcoState 261 

provides a general platform for these extensions, although we do not implement them here.   262 

Consumption rate 𝐂𝐂(𝑡𝑡) varies around equilibrium consumption 𝑐𝑐𝑖̅𝑖,𝑗𝑗 based on predator and 263 

prey mass:  264 
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𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) = 𝑐𝑐𝑖̅𝑖,𝑗𝑗�
equilibrium

consumption rate

×
𝑥𝑥𝑖𝑖,𝑗𝑗

𝛽𝛽𝑗𝑗(𝑡𝑡)
𝛽̅𝛽𝑗𝑗

𝑥𝑥𝑖𝑖,𝑗𝑗 − 1 +
𝛽𝛽𝑗𝑗(𝑡𝑡)
𝛽̅𝛽𝑗𝑗�����������

predator functional
response

×
𝛽𝛽𝑖𝑖(𝑡𝑡)
𝛽̅𝛽𝑖𝑖�

prey functional 
response

 

(4) 

where 𝐗𝐗 is the matrix of predator-prey vulnerability parameters containing the vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 265 

for prey 𝑖𝑖 to predator 𝑗𝑗 (Aydin 2004 Eq. 1; Plagányi and Butterworth 2004).  Our model for 266 

consumption (Eq. 4) does not include those processes that are eliminated using default values in 267 

EwE as implemented in the Rpath package (Lucey et al. 2020), and see Supplementary Materials 268 

1 for more discussion.  Given that diet 𝑑𝑑𝑖𝑖,𝑗𝑗 = 0 for each column 𝑗𝑗 associated with autotrophs or 269 

detritus, consumption 𝑐𝑐𝑖̅𝑖,𝑗𝑗 = 0 and 𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) = 0 for autotrophs and detritus as well.   270 

Loss rates 𝑚𝑚𝑠𝑠(𝑡𝑡) are calculated separately for detritus and biomass variables.  271 

Specifically, loss for biomass variables (autotrophs and heterotrophs) results from consumption 272 

and unmodeled natural mortality, while loss for detritus results from consumption and a constant 273 

export rate: 274 

𝑚𝑚𝑠𝑠(𝑡𝑡) =
∑ 𝑐𝑐𝑠𝑠,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝛽𝛽𝑠𝑠(𝑡𝑡)�������
Predation rate

+

⎩
⎪
⎨

⎪
⎧ 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)�������
Residual natural
mortality rate

if 𝑠𝑠 is autotroph or heterotroph

𝑣𝑣𝑠𝑠⏟
Export rate

if 𝑠𝑠 is detritus
 

(5) 

where residual natural mortality 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) accounts for predation by unmodeled taxa, 275 

senescence, and disease.  As a taxon 𝑠𝑠 has more predators explicitly modeled, ecotrophic 276 

efficiency 𝑒𝑒𝑠𝑠 → 1 such that residual mortality 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) → 0, while a taxon with no modeled 277 

predators (𝑒𝑒𝑠𝑠 = 0) will have residual natural mortality of 𝑝𝑝𝑠𝑠.  This one-to-one relationship 278 

between residual mortality and ecotrophic efficiency (for a given production per biomass) is 279 

necessary to achieve mass-balance, such that the proportion of consumptive vs. residual natural 280 

mortality for each taxon is determined upon how many of its predators are represented.  281 
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Similarly, 𝑣𝑣𝑠𝑠 is detritus export (e.g., decomposition or turnover) rate, which is defined to ensure 282 

that net detritus accumulation matches net consumption plus export at equilibrium: 283 

𝛽𝛽𝑠𝑠� 𝑣𝑣𝑠𝑠 = ��𝑢𝑢𝑗𝑗𝑐𝑐𝑖̅𝑖,𝑗𝑗(𝑡𝑡)
𝑆𝑆

𝑗𝑗=1

𝑆𝑆

𝑖𝑖=1

+ �𝛽̅𝛽𝑗𝑗𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)
𝑆𝑆

𝑗𝑗=1�����������������������
Detritus accumulation

− �𝑐𝑐𝑠̅𝑠,𝑗𝑗(𝑡𝑡)
𝑆𝑆

𝑗𝑗=1�������
Detritus

consumption

 
(6) 

where 𝑢𝑢𝑗𝑗  is the proportion of consumption that is not assimilated for predator 𝑗𝑗 (with 𝑢𝑢𝑗𝑗 = 0.2 by 284 

default) such that total unassimilated consumption ∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1  then accumulates as 285 

detritus.  Similarly, ∑ 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)𝑆𝑆
𝑠𝑠=1  is the total residual natural mortality, which we assume 286 

flows to detritus following Walters et al. (1997).    287 

Gain rate 𝑔𝑔𝑠𝑠(𝑡𝑡) is then calculated differently for producers, consumers, and detritus: 288 

𝑔𝑔𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑝𝑝𝑠𝑠

𝑤𝑤𝑠𝑠
×
∑ 𝑐𝑐𝑖𝑖,𝑠𝑠(𝑡𝑡)𝑆𝑆
𝑖𝑖=1

𝛽𝛽𝑠𝑠(𝑡𝑡)
if 𝑠𝑠 is heterotroph

𝑝𝑝𝑠𝑠𝛽̅𝛽𝑠𝑠
𝛽𝛽𝑠𝑠(𝑡𝑡)

×
𝑥𝑥𝑠𝑠,𝑠𝑠

𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽̅𝛽𝑠𝑠

𝑥𝑥𝑠𝑠,𝑠𝑠 − 1 + 𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽̅𝛽𝑠𝑠

if 𝑠𝑠 is autotroph

∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑒𝑒𝑗𝑗)𝑆𝑆

𝑗𝑗=1

𝛽𝛽𝑠𝑠(𝑡𝑡)
if 𝑠𝑠 is detritus

 

(7) 

where the gain rate for heterotrophs is calculated as total consumption across all prey divided by 289 

predator biomass, and multiplied by the ratio of production per biomass and consumption per 290 

biomass (termed growth efficiency).  Alternatively, autotrophs do not consume other modeled 291 

taxa, so their density-dependence is modeled via a Michaelis-Menton (a.k.a. half-saturation) 292 

function (Walters et al. 1997 Eq. 5; Gaichas et al. 2012 Eq. 6) where 𝑝𝑝𝑠𝑠𝛽̅𝛽𝑠𝑠 is their equilibrium 293 

production and 
𝑥𝑥𝑠𝑠,𝑠𝑠

𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽𝛽�𝑠𝑠

𝑥𝑥𝑠𝑠,𝑠𝑠−1+
𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽𝛽�𝑠𝑠

 has the same form as the predator functional response for heterotrophs 294 

(Eq. 4).  Finally, detritus accumulates from the unassimilated consumption for all predators and 295 
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prey ∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1 , as well as unmodeled mortality rate ∑ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑒𝑒𝑗𝑗)𝑆𝑆

𝑗𝑗=1  for each 296 

taxon as prey (Walters et al. 1997).   297 

Finally, EcoState estimates an instantaneous fishing mortality rate for any variable with 298 

catch data in a given year.  To do so, EcoState tracks the harvest 𝜂𝜂𝑠𝑠 for each variable 𝑠𝑠, and treats 299 

vector (𝛃𝛃,𝛈𝛈) of length 2𝑆𝑆 as the augmented set of state variables.  Harvest is itself calculated 300 

from fishing mortality rates 𝛟𝛟(𝑡𝑡) composed of 𝜙𝜙𝑘𝑘(𝑡𝑡) for each fishery 𝑘𝑘, where each fishery has 301 

species selectivity 𝑟𝑟𝑠𝑠,𝑘𝑘 such that the fishing mortality rate for each species is 𝐟𝐟(𝑡𝑡) = 𝐑𝐑𝐑𝐑(𝑡𝑡).  We 302 

also include an additional process-error term 𝛜𝛜(𝑡𝑡) ⊙𝛃𝛃(𝑡𝑡), where 𝜖𝜖𝑠𝑠(𝑡𝑡) represents unmodeled 303 

variation in population growth rates for taxon 𝑠𝑠.   304 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛃𝛃(𝑡𝑡) =

⎝

⎜⎜
⎛
𝐠𝐠(𝑡𝑡)�
Growth
rate

− 𝐦𝐦(𝑡𝑡)���
Natural 
mortality

rate

− 𝐟𝐟(𝑡𝑡)�
Fishing
mortality

rate

+ 𝛜𝛜(𝑡𝑡)�
Process error 
in biomass rate

⎠

⎟⎟
⎞
⊙ 𝛃𝛃𝑡𝑡 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛈𝛈(𝑡𝑡) =  𝐟𝐟(𝑡𝑡) ⊙𝛃𝛃(𝑡𝑡) 

(8) 

Including process errors 𝜖𝜖𝑠𝑠,𝑡𝑡 in the differential equation for mass (Eq. 8) implies that mass-305 

balance is maintained on average over time, but not exactly in any single year.  We interpret any 306 

short-term departure from mass-balance as representing processes that are not well approximated 307 

in the model, i.e., annual variation in ecotrophic efficiency, detrital export, growth efficiency, 308 

residual natural mortality, or resulting from unmodeled environmental conditions.   309 

Model fitting 310 

To fit this model, EcoState defines a set of coefficients 𝛉𝛉 =311 

(𝐩𝐩,𝐰𝐰,𝐃𝐃,𝛃𝛃�,𝛟𝛟(𝑡𝑡),𝛅𝛅, 𝛜𝛜(𝑡𝑡),𝐪𝐪,𝛔𝛔𝟐𝟐, 𝛕𝛕2, 𝛎𝛎2).  These are then used to project biomass 𝛃𝛃(𝑡𝑡) through 312 

time and model predictions are compared with available data to calculate a joint likelihood.  We 313 
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then treat process errors 𝛜𝛜(𝑡𝑡) as random effects, and integrate across their values using the 314 

Laplace approximation to calculate the marginal likelihood, which is feasible at high precision 315 

because we are using automatic differentiation (Skaug and Fournier 2006).  We optimize the log-316 

marginal likelihood to identify the maximum-likelihood estimate for selected parameters, and 317 

compute Empirical Bayes predictions of random effects by optimizing the joint likelihood with 318 

respect to random effects using the MLE for fixed effects.  Finally, we use a generalization of the 319 

delta method to compute standard errors and predictive errors for fixed and random effects (Kass 320 

and Steffey 1989).  EcoState is implemented in the R statistical environment (R Core Team 321 

2023) using RTMB (Kristensen 2024a).  RTMB provides a simplified interface to the Template 322 

Model Builder library (Kristensen et al. 2016), which uses automatic differentiation (AD) for 323 

efficient calculation of model derivatives, as well as the derivative of the Laplace approximation.  324 

We check model convergence by confirming that the gradient of the log-marginal likelihood 325 

with respect to each fixed effect is less than 0.001, and the matrix of 2nd derivatives of the 326 

negative log-marginal likelihood (the outer Hessian matrix) is positive definite; 327 

In the following, we assume that the diet matrix 𝐃𝐃 is known, and explore either fixing 𝐩𝐩 328 

and 𝐰𝐰 or estimating 𝐩𝐩 and 𝐰𝐰 using informative Bayesian priors.  We encourage future research 329 

to adapt Bayesian diagnostics for ecosystem-modelling contexts (Monnahan 2024), but do not 330 

explore it in detail here.  Similarly, the user can control what combination of other parameters 331 

are estimated or fixed at known values.  In particular, the user must specify (or estimate) a value 332 

for either ecotrophic efficiency 𝑒𝑒𝑠𝑠 or equilibrium biomass 𝛽̅𝛽𝑠𝑠 (but not both) for each taxon, and 333 

EcoState then solves for the unspecified value (e.g., 𝑒𝑒𝑠𝑠 if 𝛽̅𝛽𝑠𝑠 is treated as a parameter) for each 334 

taxon (see Supplementary Materials 2).  This specified value can be fixed a priori (e.g., fixing 335 

ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1 for a taxon 𝑠𝑠 for which all predators are modeled) or estimated as a 336 
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fixed effect (e.g., estimating equilibrium biomass 𝛽̅𝛽𝑠𝑠 for a taxon that has an absolute index of 337 

biomass to inform population scale, or fishery depletion is informative about population scale).  338 

We therefore estimate equilibrium biomass and/or ecotrophic efficiency for some set of taxa, 339 

while jointly projecting biomass 𝛽𝛽𝑠𝑠(𝑡𝑡) in discretized times 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}.   340 

We specifically assume that the biomass 𝛽𝛽𝑠𝑠 for each variable 𝑠𝑠 starts at some initial 341 

condition, 𝛽𝛽𝑠𝑠(𝑡𝑡1) = 𝛽̅𝛽𝑠𝑠𝛿𝛿𝑠𝑠, where 𝛿𝛿𝑠𝑠 is the ratio of initial to equilibrium mass for taxon 𝑠𝑠, where 342 

log(𝛿𝛿𝑠𝑠) = 0 by default.  At the beginning of each time-interval, we similarly specify that annual 343 

harvest 𝛈𝛈(𝑡𝑡) = 𝟎𝟎 for all taxon.  We then integrate the differential equation over the interval 344 

(𝑡𝑡, 𝑡𝑡 + 1) using specified values of 𝐩𝐩,𝐰𝐰, 𝐞𝐞,𝐃𝐃,𝛃𝛃�,𝛟𝛟(𝑡𝑡) and 𝛜𝛜(𝑡𝑡), and record the integrated value 345 

𝛈𝛈(𝑡𝑡 + 1) at the end of each interval as the predicted catch occurring for each taxon in that 346 

interval from 𝑡𝑡 to 𝑡𝑡 + 1.  In the following, we specifically use a third-order Adams-Bashford-347 

Moulton method, but also provide an alternative fourth-order Runge-Kutta method where both 348 

are adapted from the pracma package in R (Borchers 2023).  We initially explored alternative 349 

ordinary differential equation (ODE) solvers that are provided by the deSolve package in R 350 

(Soetaert et al. 2010) using package RTMBode (Kristensen 2024b), but found that this approach 351 

was not sufficiently flexible to deal with the Laplace approximation given the specified structure 352 

of EcoState.  We continue this integration for all 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}, while recording biomass 𝛃𝛃(𝑡𝑡) 353 

and harvest 𝛈𝛈(𝑡𝑡) at the end of each year.  We confirmed that results are unchanged when 354 

increasing the number of subintervals evaluated when applying the ODE solver for Eq. 8.   355 

We then calculate the joint likelihood by specifying that biomass measurements follow a 356 

lognormal distribution: 357 

log(𝑏𝑏𝑠𝑠(𝑡𝑡)) ~Normal(log(𝑞𝑞𝑠𝑠𝛽𝛽𝑠𝑠(𝑡𝑡)) ,𝜎𝜎𝑠𝑠2) (9) 
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where 𝑞𝑞𝑠𝑠 is the catchability coefficient representing the proportion of biomass that is available to 358 

a monitoring program for taxon 𝑠𝑠, 𝜎𝜎𝑠𝑠2 is a user-specified variance for the any biomass 359 

measurements, and where 𝑏𝑏𝑠𝑠,𝑡𝑡 = NA ignores this component from the likelihood.  Similarly, we 360 

specify a lognormal distribution for catches: 361 

log(ℎ𝑠𝑠(𝑡𝑡)) ~Normal(log(𝜂𝜂𝑠𝑠(𝑡𝑡)) , 𝜈𝜈𝑠𝑠2) (10) 

where 𝜈𝜈𝑠𝑠2 is a user-specified variance for the any catch data, and where ℎ𝑠𝑠(𝑡𝑡) = NA ignores this 362 

component from the likelihood.  Finally, we specify a distribution for process errors: 363 

𝜖𝜖𝑠𝑠(𝑡𝑡)~Normal(0, 𝜏𝜏𝑠𝑠2) (11) 

where 𝜏𝜏𝑠𝑠2 and 𝛜𝛜𝑠𝑠 can be fixed at zero a priori to “turn off” process errors for any taxa 𝑠𝑠, or 𝜏𝜏𝑠𝑠2 can 364 

be estimated as a fixed effect and 𝛜𝛜𝑠𝑠 as a random effect.   365 

Case study:  productivity and mortality for Alaska pollock in the eastern Bering Sea 366 

To illustrate the potential benefits of hierarchical ecosystem models using EcoState, we fit it to 367 

survey data and catches for 11 variables in the eastern Bering Sea from 1982-2021 (Table S2).  368 

This example includes major predators, prey, and competitors for Alaska pollock, including three 369 

fishes (pollock; Pacific cod, Gadus macrocephalus, hereafter referred to as cod; and arrowtooth 370 

flounder Atheresthes stomias), one autotroph (pelagic producers), one detritus variable, five 371 

intermediate consumers (copepods, krill, demersal invertebrates, benthic microbes, and other 372 

pelagic zooplankton), and one predator (northern fur seal, Callorhinus ursinus).  We use 373 

productivity and diet parameters (𝐩𝐩,𝐰𝐰,𝐃𝐃, see Table S3) from previous Rpath and EwE analysis 374 

(Aydin et al. 2007; Whitehouse et al. 2021), which are aggregated using biomass-weighted 375 

averages from those models.  However, we use updated consumption 𝑤𝑤𝑠𝑠 for northern fur seals to 376 

better account for energy needs while in the eastern Bering Sea.  We do not use any information 377 

about ecosystem scale (ecotrophic efficiency 𝑒𝑒𝑠𝑠 or equilibrium biomass 𝛽𝛽𝑠𝑠� ) from a previous 378 
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mass-balance model, to avoid “double-dipping” on data that might have informed previous 379 

models and which we also use during model fitting.  We fit the model using 20 sub-intervals for 380 

the Adams-Bashforth solver per year, but confirm that results are (essentially) unchanged when 381 

increasing this to 30 sub-intervals per year.   382 

This example estimates annual fishing mortality using catch data for the three fishes 383 

(pollock, cod, and arrowtooth founder).  We assume that catches arise from three separate 384 

fisheries (i.e., the fishery selection matrix 𝐑𝐑 is an identity matrix), and specify measurement 385 

error 𝜈𝜈𝑠𝑠 = 0.1.  We also fit to biomass time-series calculated using a design-based estimator 386 

applied to survey data from an annual bottom-trawl survey in the eastern Bering Sea (Lauth and 387 

Conner 2016), and a biomass-time series for northern fur seal (from McHuron et al. 2020), and 388 

see Supplementary Materials 3 for details. Cod and arrowtooth are bottom-associated species, 389 

and we therefore assume that the biomass time-series in the eastern Bering Sea is an absolute 390 

index of biomass (i.e., catchability coefficient 𝑞𝑞𝑠𝑠 = 1).  Similarly, the northern fur seal biomass 391 

index is generated from population models estimating numbers at age for St. Paul and St. George 392 

Islands (we only use values from years with direct surveys occurring at those sites), and we also 393 

assume that it is an absolute index of biomass.  Given this assumption, we then estimate 394 

equilibrium biomass 𝛽̅𝛽𝑠𝑠 and initial abundance relative to equilibrium 𝛿𝛿𝑠𝑠 for cod, arrowtooth, and 395 

northern fur seal as fixed effects.  By contrast, pollock has both demersal and pelagic 396 

components (Monnahan et al. 2021), so we treat the bottom-trawl survey as a relative abundance 397 

index and therefore estimate catchability 𝑞𝑞𝑠𝑠 (which we expect will be < 1) and initial abundance 398 

relative to equilibrium 𝛿𝛿𝑠𝑠.  Similarly, we fit to a relative abundance index (i.e., estimating 399 

catchability coefficient 𝑞𝑞𝑠𝑠) for biomass indices for copepods and other pelagic zooplankton 400 
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(from a fall surface trawl survey), krill (from a summer acoustics survey), and pelagic primary 401 

producers (from satellite chlorophyll-a concentrations averaged from May to October).   402 

For all eight variables without an absolute biomass index, we estimate population scale 403 

by specifying that ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1.  However, future applications could instead use 404 

Bayesian priors on ecotrophic efficiency and/or equilibrium biomass to relax the assumption that 405 

𝑒𝑒𝑠𝑠 = 1 for those eight variables.  Specifying 𝑒𝑒𝑠𝑠 = 1 results in all mortality being due to 406 

consumption for these functional groups (i.e., residual mortality 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) = 0), such that 407 

predator and prey are tightly coupled.  We specify measurement error 𝜎𝜎𝑠𝑠 = 0.1 for all abundance 408 

indices.  We also specify vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 = 2 (the default from Rpath and EwE) for all 409 

heterotrophs, and 𝑥𝑥𝑖𝑖,𝑗𝑗 = 91 (the upper bound from Rpath) for the autotroph.  Finally, we estimate 410 

annual process errors for five taxa (pollock, cod, arrowtooth, copepods, and northern fur seal) as 411 

random effects, and estimate the standard deviation of process-error variation 𝜏𝜏𝑠𝑠 for each of these 412 

taxa as fixed effects. 413 

 We specifically compare estimates from four contrasting specifications of EcoState: 414 

1. Full:  Estimating process errors and fishing mortality, to estimate annual consumption and 415 

productivity resulting from estimated biomass for predators and prey; 416 

2. Priors:  Estimating the same model as Full, but also estimating productivity per biomass 𝑝𝑝𝑠𝑠 417 

and consumption per biomass 𝑤𝑤𝑝𝑝 for each of pollock, cod, arrowtooth, copepods, northern 418 

fur seal, and euphausiids, while specifying a lognormal likelihood penalty with a log-419 

standard deviation of 0.1;  420 

3. No process errors:  Turning off process errors, to estimate the consumption and productivity 421 

that would be expected without estimating annual variation in ecological dynamics; 422 
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4. No catches or process errors:  Turning off process errors and ignoring fishing mortality (i.e., 423 

specifying ℎ𝑠𝑠(𝑡𝑡) = 0 for all taxa), to estimate the equilibrium conditions that are otherwise 424 

expected. 425 

Finally, we also extract a comparable measure of combined (male and female) biomass from 426 

stock-assessment models where available, e.g., total biomass for Pacific cod using model 427 

23.1.0.d (S. Barbeaux et al., 2024 Table 2.26), age 3+ biomass for Alaska pollock (Ianelli et al., 428 

2023 Table 26), and age-1+ biomass for arrowtooth flounder (Shotwell et al., 2023 Table 6.13).   429 

For each model, we record annual growth rate 𝑔𝑔𝑠𝑠(𝑡𝑡) and mortality rate 𝑚𝑚𝑠𝑠(𝑡𝑡). We use this to 430 

illustrate how variation in predators and prey has resulted in time-varying production.  We also 431 

decompose growth-rate and mortality-rate per biomass into the contributions from individual 432 

predators and prey species (additive components of Eq. 7 and 5, respectively), so that we can 433 

attribute changes in production to individual prey and predators.  Fitting the full model with 434 

uninformative starting values required approximately 2 hours on a standard laptop using R 435 

version 4.3.0.   436 

Simulation experiment:  estimating productivity and mortality 437 

To explore the statistical performance of EcoState, we also conduct a “self-test” simulation 438 

experiment.  The experiment involves simulating ecosystem dynamics, simulating abundance 439 

indices and catch data, refitting the model to these data with or without estimating process errors, 440 

and comparing estimates with known (true) values of ecosystem variables for each of 50 441 

simulation replicates.  It explores whether a hierarchical ecosystem model (i.e., estimating 442 

process errors) improves estimates of growth rates 𝑔𝑔(𝑡𝑡) and mortality rates 𝑚𝑚(𝑡𝑡) relative to the 443 

common practice of ignoring process errors.  We also estimate equilibrium biomass 𝛽̅𝛽𝑠𝑠 and the 444 
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variance of process errors for each taxon, such that the experiment confirms whether these 445 

parameters are estimable in an idealized setting.   446 

We specifically simulate dynamics for a fictive ecosystem involving six taxa (see Table 447 

S4): one autotroph (representing pelagic primary production), one detritus (the base of the 448 

benthic foodweb), two consumers (one pelagic and one benthic), and two predators (one pelagic 449 

and one benthic) from 1980-2020.  We also specify that benthic consumers and predators have 450 

slower life-history (lower 𝑝𝑝𝑠𝑠 and higher 𝑤𝑤𝑠𝑠) than their pelagic counterparts.  We specify that 451 

ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 0.9 (i.e., 90% of biomass transfer is captured) for the producers and 452 

consumers, and that predators have equilibrium biomass 𝛽𝛽𝑠𝑠� = 1, and then solve for equilibrium 453 

biomass for the other species (see Fig. 1).  Finally, we specify a vulnerability 𝑥𝑥𝑖𝑖𝑖𝑖 = 2 454 

(representing a Hollings Type-2 predator functional response) for consumers and predators, and 455 

a vulnerability 𝑥𝑥𝑖𝑖𝑖𝑖 = 91 (representing a close-to-constant production-per-biomass) for producers.   456 

  We then simulate an increase in fishing mortality rate for the two predators over the 40 457 

years of simulated dynamics (see Fig. S1), and specify that process errors have a standard 458 

deviation 𝜏𝜏𝑠𝑠 = 0.1 for primary producers and predators, and 𝜏𝜏𝑠𝑠 = 0.02 for consumers (which are 459 

also affected by process errors in both predators and producers).  We simulate abundance indices 460 

and measurements of catch for each species.  We then refit the model using 10 sub-intervals of 461 

the Adams-Bashforth-Moulton ODE solver.  For the “full model” we estimate the difference 462 

between equilibrium and initial biomass 𝛿𝛿𝑠𝑠 and the magnitude of process errors 𝜏𝜏𝑠𝑠 for each 463 

taxon, as well as a single vulnerability 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑖𝑖𝑖𝑖 for all consumers and predators (i.e., 13 464 

fixed effects). We compare this with a “null model” that estimates only 𝛿𝛿𝑠𝑠 and 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (i.e., 7 465 

fixed effects), and ignores process errors.  Finally, we compare error in estimates of model 466 

parameters, as well as annual growth rate per biomass 𝑔𝑔𝑠𝑠(𝑡𝑡) (Eq. 8), mortality rate per biomass 467 
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𝑚𝑚𝑠𝑠(𝑡𝑡) (Eq. 6), and biomass 𝛽𝛽𝑠𝑠(𝑡𝑡) between the full and null models.  We then repeat the 468 

experiment when estimating production per biomass 𝑝𝑝𝑠𝑠 for all six taxa and consumption per 469 

biomass 𝑤𝑤𝑠𝑠 for the four heterotrophs (10 extra parameters), while specifying a lognormal 470 

likelihood penalty with a log-standard deviation of 0.1.  Each replicate of the simulation model 471 

required approximately 10 min on a standard laptop using R version 4.3.0.   472 

Results 473 

For the eastern Bering Sea case study, the full version of the EcoState model (i.e., including 11 474 

variables and fitting to catches using process errors) includes both benthic and pelagic sources of 475 

production (Fig. 1 and Table S3), and has variables that range from trophic level 1 (producer and 476 

detritus) to 4.3 (northern fur seal).  Estimated trends and interannual variation are consistent with 477 

biomass surveys (except for copepods, Fig. 2), and are also consistent with recent stock 478 

assessments when available (i.e., for pollock, cod, and arrowtooth flounder; Fig. 3).  Major 479 

consumers (pollock and cod) show biomass cycles, i.e., elevated biomass from 2000-2005 and 480 

decreased biomass from 2005-2010, followed by elevated biomass from 2012-17 and 481 

subsequently lower biomass.  By contrast, arrowtooth flounder, northern fur seal, and 482 

zooplankton are dominated by decadal trends, i.e., arrowtooth showed a large increase in 483 

biomass from 1982-1990, northern fur seal showed a progressive decrease in biomass from 1995 484 

onward, and both krill and primary producers both show a pronounced decline from 2008 485 

onward.  As expected, pollock biomass is higher than the bottom-trawl survey index due to an 486 

estimated catchability coefficient less than one, i.e., log(𝑞𝑞𝑠𝑠) = −0.41, and closely fits specified 487 

catch data (Fig. S3).   488 

The increasing biomass trend for arrowtooth and decreasing trend for northern fur seal 489 

are largely explained by the estimated difference between initial and equilibrium biomass 490 
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(log(𝛿𝛿𝑠𝑠) = −2.42 and 0.27, respectively; see Table S5).  As a result, the trends for these taxa are 491 

also captured by models that ignore process errors, or the null model without process errors or 492 

catches (Fig. 3).  However, the model without process error (blue line in Fig. 3) only captures a 493 

dampened version of the biomass cycles for Pacific cod, and fails to capture the biomass cycles 494 

for pollock or trends for the other species.  Similarly, the model without process errors and 495 

catches estimates lower biomass overall for zooplankton (krill, copepods, and other), pollock, 496 

and benthic variables.  This difference in scale in the model without catches arises because we 497 

specify ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1 for intermediate consumers (to avoid using auxiliary 498 

information to define their population scale).  Without fishery harvest, the model can decrease 499 

copepod biomass from 4 to 2 million tons while still maintaining the biomass of species with 500 

indices of absolute abundance (cod, arrowtooth, and northern fur seals). Similarly, the model 501 

using Bayesian priors (instead of fixed values) for production and consumption per biomass (𝐩𝐩 502 

and 𝐰𝐰) estimates somewhat different biomass for pollock and planktonic taxa (krills, copepods, 503 

etc) but otherwise similar patterns in biomass (Fig. 3).   504 

 The state-space model attributes biomass patterns to annual variation in growth 𝑔𝑔(𝑡𝑡), 505 

natural mortality 𝑚𝑚(𝑡𝑡), fishing mortality 𝑓𝑓(𝑡𝑡) for the three exploited fishes (Fig. 4), and process 506 

errors (Fig. S3).  The model captures substantial variation in growth rate 𝑔𝑔(𝑡𝑡) for these species 507 

because it includes the primary forage for each modeled functional group.  It captures less 508 

variation mortality rates 𝑚𝑚(𝑡𝑡) because it has fewer top-predators, such that cod and arrowtooth 509 

have lower ecotrophic efficiency 𝑒𝑒𝑖𝑖, and therefore attributes mortality 𝑚𝑚(𝑡𝑡) primarily to the 510 

constant mortality term 𝑢𝑢𝑠𝑠 = 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) (e.g., the pink bars for cod mortality in Fig. 5).  Growth 511 

exceeds natural and fishing mortality rates for arrowtooth during the initial years (1982-1995), 512 

which drives an increase in biomass, and this difference subsequently declines towards zero as 513 
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population biomass stabilizes.  Similarly, northern fur seals have lower growth than natural 514 

mortality, in particular from 1995-2000 and again 2005-2015, which drives a decline in biomass 515 

over time.  However, biomass patterns cannot be entirely explained by changes in consumption 516 

driving growth and natural mortality.  Cod and pollock have lower-than-average biomass from 517 

2005-2010, and density dependence causes estimated growth to exceed natural mortality rates 518 

(Fig. 4); however, this density-dependent increase in productivity is offset by negative process 519 

errors 𝜖𝜖𝑠𝑠(𝑡𝑡) (Fig. S3), which allows the model to estimate that lower-than-average biomass 520 

persists over these years.  Similarly, decadal trends for northern fur seal are driven by a sequence 521 

of positive process errors until 2000 followed by negative process errors.   522 

 The model can be used to further decompose growth and mortality rates into the 523 

contribution of individual prey and predator species, respectively (Fig. 5).  This exercise shows 524 

that elevated growth rates for pollock during positive cycles (top-left panel of Fig. 5) are 525 

associated with an increased proportion of krill consumption, while the contribution of copepods 526 

to pollock growth rate has been relatively consistent over time.  Predation on pollock shows a 527 

small but noticeable increase when arrowtooth biomass increased from 1982-1990 (bottom-left 528 

panel of Fig. 5).  However, fluctuations in pollock mortality are largely due to changes in 529 

cannibalism from pollock and predation from cod, during their population cycles.  By contrast, 530 

growth rate for cod largely follows the cycles for pollock as their major prey (red in top-right 531 

panel of Fig. 5).  We do not explicitly model many predators for cod, and hence their natural 532 

mortality is largely attributed to the residual mortality that is constant over time.  Finally, krill 533 

has higher growth and mortality rates than either pollock or cod due to their faster life-history, 534 

and this means that small relative differences (e.g., changing growth 𝑔𝑔𝑠𝑠(𝑡𝑡) from 6 to 5.8) can still 535 

result in large absolute differences in population dynamics.  However, the decline in chlorophyll 536 
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biomass in 2010 (Fig. 2) is immediately apparent in decreased consumption and growth-rate for 537 

krill (Fig. 5), which is synchronous with the decrease in krill biomass around that time.   538 

 Finally, our self-test simulation experiment confirms the state-space model can accurately 539 

estimate annual growth 𝑔𝑔(𝑡𝑡) and mortality 𝑚𝑚(𝑡𝑡) components (red line in Fig. 6), and generally 540 

was more precise than a model that does not estimate process errors (blue line in Fig. 6).  This 541 

difference results from the ability of the state-space model to more-accurately estimate annual 542 

variation in biomass for predators and prey, and therefore also improves the estimates of 543 

consumption 𝑐𝑐𝑠𝑠2,𝑠𝑠1(𝑡𝑡) and resulting estimates of predator growth and prey mortality rates.  Both 544 

the full and null models can accurately estimate the vulnerability and equilibrium biomass 545 

parameters (see Fig. S4).  We also replicate the simulation experiment while estimating 546 

productivity per biomass 𝐩𝐩 and consumption per biomass 𝐰𝐰 using Bayesian priors.  The full 547 

model continues to outperform the model without process errors, although both models have 548 

substantially higher errors for producers and detritus (Fig. S5).   549 

Discussion 550 

We have argued that hierarchical (a.k.a. state-space) modelling will have broad benefits across 551 

the full range of ecosystem models.  These benefits include (1) better representation of system 552 

trends and cycles; (2) propagating errors through species interactions; (3) reproducibility during 553 

model fitting; and (4) attributing process errors to different mechanisms.  We have then 554 

demonstrated these benefits using the first (to our knowledge) state-space extension of the most 555 

widely used mass-balance model1 in fisheries (Colléter et al. 2015).  This extension jointly 556 

estimates mass-balance parameters and process errors via fit to time-series data.  Including 557 

                                                           
1 Ecopath with Ecosim has 487 models compiled online via EcoBase (https://ecobase.ecopath.org/) as accessed 
June 11, 2024.  

https://ecobase.ecopath.org/
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process errors allows us to capture decadal trends and interannual cycles in biomass (which are 558 

otherwise mis-specified in a model that does not have process errors, Fig. S3), and to more 559 

accurately capture the variable growth and mortality rates that result from changes in 560 

consumption.  Estimating parameters via maximum likelihood also allows us to propagate 561 

variance in both fixed effects (e.g., equilibrium biomass) and process errors when predicting 562 

biomass in unsampled years.  This predictive variance includes the contribution of both fixed 563 

effects and process errors, such that biomass has higher predictive uncertainty when distant from 564 

available data and/or for taxa with rapid life-histories.  We distribute our code as an R package 565 

EcoState, initially available on GitHub (https://github.com/James-Thorson-NOAA/EcoState) 566 

with full function documentation and user vignettes (and intended for distribution via CRAN 567 

upon full release) to facilitate ongoing applications and testing.   568 

Although we extended Ecopath with Ecosim here, we suspect that a wide range of 569 

ecosystem analyses could be re-cast as hierarchical models using modern statistical-computing 570 

tools (e.g., RTMB as used here).  This demonstration joins a growing list of hierarchical 571 

ecosystem models where, e.g., the length-structured model Mizer has options to estimate 572 

demographic rates (Spence et al. 2016) and process errors (Spence et al. 2021) via fit to time-573 

series data.  Similarly, multispecies statistical catch-at-age models often estimate recruitment 574 

deviations while accounting for predator-dependent mortality (i.e., top-down control) but not 575 

consumption-dependent growth (i.e., bottom-up control), and are sometimes called “Models of 576 

Intermediate Complexity for Ecosystems” (Plagányi et al. 2014).  Despite these examples, 577 

hierarchical modelling has not previously been adopted for widely used ecosystem models 578 

including Ecopath with Ecosim, Atlantis (Fulton et al. 2011), or Osmose (Shin and Cury 1999).  579 

In these cases, modelers typically explore uncertainty by sampling parameters from a specified 580 

https://github.com/James-Thorson-NOAA/EcoState


29 
 

distribution and summarizing the resulting distribution for model outputs, e.g., in Osmose (Luján 581 

et al. 2024), the Rpath implementation of Ecopath with Ecosim (Whitehouse and Aydin 2020), 582 

or Atlantis (Fulton et al. 2011).  Additionally, software for these models sometimes can estimate 583 

a subset of parameters, e.g., fitting vulnerability (𝑥𝑥𝑖𝑖,𝑗𝑗) parameters in Ecosim via fit to time-series 584 

without otherwise estimating parameters that arise in the Ecopath mass-balance itself (Scott et al. 585 

2016; Bentley et al. 2024), or the “anomaly search” function that explains model residuals using 586 

specified covariates (Shannon et al. 2008).  By contrast, automatic differentiation (e.g., RTMB) 587 

allows efficient calculation of the gradient of the log-likelihood function with respect to 588 

parameters, which allows us to estimate hundreds of coefficients (random and fixed effects) with 589 

little additional code beyond implementing the model dynamics themselves.  We therefore 590 

encourage research exploring the use of RTMB for other classes of ecosystem models, where 591 

penalized likelihood (i.e., fixing process-error variance a priori) would be easier (and therefore 592 

appropriate for more complex models) than the maximum-likelihood estimation used here.   593 

We believe that hierarchical modelling will help to mitigate capacity constraints that limit 594 

the use of ecosystem and multispecies models for short-term fisheries management.  Ecosystem 595 

modelers typically have just a few years to develop a “research” model and then show its 596 

usefulness for management.  Optimizing parameters based on statistical fit to time-series allows 597 

modelers in the related field of stock assessment to rapidly explore hundreds of different 598 

scenarios (from different combinations of estimated parameters and assumed model structure) 599 

when incorporating new data or addressing reviewer or stakeholder input.  In particular, 600 

estimating process errors (e.g., recruitment deviations in age-structured assessments or process 601 

errors here) tends to allow models to have reasonable behavior (i.e., continue to track major 602 

trends) when updated with new data, as required for an operational model that will be 603 
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subsequently updated.  Including fewer species (as we do here) can also address capacity 604 

limitations by (1) reducing model implementation time as an analyst could focus on developing a 605 

smaller set of data inputs, (2) simplifying the peer review process, and (3) reducing model run 606 

time thus allowing more time for running different management scenarios. However, using a 607 

smaller set of taxa also has drawbacks, i.e., it narrows the range of alternate pathways for trophic 608 

interactions, and therefore may result in stronger predator-prey interactions than those estimated 609 

when including more taxa.  Future analysis could also explore whether the variance of process 610 

errors is reduced when adding functional groups.   611 

 This state-space mass-balance model can also be interpreted as a mechanistic model to 612 

incorporate time-varying productivity into biomass-dynamic (a.k.a., surplus production) models.  613 

Biomass-dynamic models are one of the oldest models in ecology (Pearl and Reed 1920) and 614 

fisheries (Russell 1931), and state-space extensions are still widely used to identify stock status 615 

for many fisheries worldwide (Pedersen and Berg 2017; Winker et al. 2020).  These models 616 

typically estimate population scale (equilibrium biomass and a catchability coefficient) by 617 

treating the fishery as a depletion experiment (Magnusson and Hilborn 2007).  We encourage 618 

future research to compare EcoState against state-space biomass-dynamics models.  In particular, 619 

EcoState would provide a parsimonious approach to predict nonstationary parameters resulting 620 

from changing predator or prey biomass (Aydin 2004), while allowing estimates of the 621 

catchability coefficient in some cases.  We hypothesize that trophic interactions could result in 622 

population-cycles that are otherwise missing from single-species biomass-dynamic models 623 

(Walters and Kitchell 2001), and could also change the shape of the production function (and 624 

resulting biological reference points).   625 
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Our case-study illustrates several of our claimed advantages of hierarchical ecosystem 626 

modelling.  Specifically, the ecosystem includes both cyclic and long-term biomass trends that 627 

are not well captured by a mass-balance model without process errors (also noted by Aydin and 628 

Mueter 2007).  In particular, primary producers have declined by nearly 30%, and this is 629 

synchronous with a declining trend in krill biomass.  Previous studies have debated the relative 630 

importance of top-down and bottom-up control for krill biomass (Ressler et al. 2012, 2014), and 631 

our study identifies declining chlorophyll-a concentrations (and its impact on growth) as a 632 

potential mechanism (see Fig. 4 bottom-left panel).  The model then attributes a small decline in 633 

productivity for pollock to this depressed krill biomass.  These types of multi-level bottom-up 634 

impacts are not represented by statistical multispecies models, and emphasizes the importance of 635 

improved monitoring for krill in understanding climate-impacts on ecosystem productivity.  636 

However, we note that bottom-up forcing is also favored by model assumptions, i.e., assuming 637 

ecotrophic efficiency 𝑒𝑒𝑖𝑖 = 1 for prey groups (thus eliminating non-predation natural mortality) 638 

and assuming that vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 = 2.  In particular, future studies should seek to identify 639 

whether declining primary producers is associated with an increase in consumption 𝑤𝑤𝑠𝑠 and/or 640 

production 𝑝𝑝𝑠𝑠 per biomass, which could offset the food-web impacts of declining primary 641 

producers (Nielsen et al. 2023).   642 

 Our case-study also illustrates how hierarchical ecosystem modelling allows us to 643 

compare across alternative model structures using a small set of modeled taxa.  Recent Rpath 644 

models for the eastern Bering Sea have included nearly 100 taxa (Aydin et al. 2007; Whitehouse 645 

et al. 2021), and the resulting model is typically used to evaluate strategic (long-term) tradeoffs 646 

among management strategies.  By contrast, our EcoState model includes only 10 functional 647 

groups and one detrital pool; this small size is relatively rare for mass-balance models (although 648 
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see Chagaris et al. 2020), although pooling taxa still results in nearly 80% of biomass from the 649 

full Rpath model being included (see Supplementary Materials S3).  Including fewer taxa allows 650 

us to calculate a high-accuracy solution to the differential equation for biomass while still 651 

integrating across random effects, as required when estimating the variance of process errors.  It 652 

also allows us to provide a statistically rigorous prediction of ecosystem variables (and 653 

associated uncertainty) beyond the range of abundance indices.  These predictions could then be 654 

used for seasonal-to-decadal forecasting, identifying annual status relative to ecosystem targets, 655 

or other tactical (short-term) management decisions (Plagányi 2007).  Real-world application 656 

could compare model performance using an ensemble of simple-to-complex models using 657 

EcoState, and could evaluate performance both statistically or by identifying a reduction in 658 

process error variance (see 4th benefit of hierarchical models in the Introduction).   659 

 Finally, we recommend that hierarchical models (whether in stock assessment or 660 

ecosystem models) are used to attribute process errors to additional oceanographic, ecological, 661 

physical drivers.  We have specified that process errors are independent and identically 662 

distributed, but recent research has demonstrated how to specify a dynamic structural equation 663 

model (DSEM) representing lagged and simultaneous causal effects among process errors 664 

(Thorson et al. 2024).  We therefore envision that future studies could treat annual covariates 665 

(e.g., ocean temperature or predator-prey overlap) as additional model variables that are treated 666 

as measured without error, and then estimate how these covariates then affect process errors.  667 

This is somewhat akin to the “forcing functions” that are estimated using covariates in Ecopath-668 

with-Ecosim, although DSEM would allow missing covariate values to be imputed based on 669 

temporal and multivariate correlations, similar to recent practices in stock assessment 670 

(du Pontavice et al. 2022). For example, previous research suggests that the summer “cold pool” 671 
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affects predator-prey overlap (Thorson et al. 2021), and this in turn affects predator consumption 672 

and diet composition (Goodman et al. 2022).  These types of causal chains can be represented 673 

using DSEM and allow detailed specification of how covariates affect modeled processes.  Once 674 

the magnitude and trend for process errors has been estimated using a hierarchical model, it then 675 

opens up a huge scope for additional research to attribute these patterns to hypothesized 676 

ecosystem drivers.     677 
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Fig. 1:  Estimated trophic level (y-axis) and pelagic proportions (x-axis) for the eastern Bering Sea 888 

case study (top panel) or the simulation experiment (bottom panel).  Taxa are labeled 889 

alphabetically following their row-order in Table S3 and S4, respectively, with vertex circles 890 

having size representing the log-mass of each variable, and the edges color-coded to represent the 891 

log-consumption flowing from predator to prey.  We compute “Pelagic proportion” by treating 892 

“Pelagic prod.” and “Producer” as the source of pelagic production in each model, respectively.   893 

 894 

  895 
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Fig. 2 – Estimated abundance (y-axis in teragrams a.k.a. million metric tons, black line) +/- one 896 

standard error (grey shaded ribbon) in each year (x-axis) for each modeled variable (panels), 897 

plotted against the indices of biomass (black dots) for cod, arrowtooth, northern fur seals, 898 

Pollock, Copepods, Other Zooplankton, Krill, and Primary producers.  For pollock, we also show 899 

the raw index of biomass (x-symbols) and the index divided by the estimated catchability 900 

coefficient (black dots), to show the estimated biomass relative to the bottom-trawl survey scale.  901 

Note that Benthic invertebrates, Benthos, and Detritus have neither absolute nor relative 902 

abundance available. 903 

 904 

  905 
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Fig. 3:  Comparison of biomass estimates using the full model (black), a null model without 906 

process errors or catches (red), a “priors” model that estimates productivity per biomass 𝑝𝑝𝑠𝑠 and 907 

consumption per biomass 𝑤𝑤𝑠𝑠 for selected species using a lognormal prior (orange), and a 908 

“measurement-error” model that includes catches but no process errors (blue), where each shows 909 

+/- one standard error as shading, as well as a comparable stock-assessment estimate of male and 910 

female biomass where available (black dotted lines).  Note that the “full” and “priors” models are 911 

nearly identical (and therefore difficult to distinguish) for cod and arrowtooth.   912 

 913 
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Fig. 4 – Estimated rates that affect productivity, i.e., 𝑔𝑔(𝑡𝑡) (production rate; green) and 𝑚𝑚(𝑡𝑡) 915 

(mortality rate including consumption; blue) for each modeled species in the eastern Bering Sea 916 

using the “full” model, as well as 𝑓𝑓(𝑡𝑡) (fishing mortality rate; red) for the three species with 917 

fishery catches, showing the predicted value (line) +/- 1 standard error (shaded area).  Note that 918 

change in biomass 𝑑𝑑
𝑑𝑑𝑑𝑑
𝛽𝛽(𝑡𝑡) = �𝑔𝑔(𝑡𝑡) − 𝑓𝑓(𝑡𝑡) −𝑚𝑚(𝑡𝑡) + 𝜖𝜖(𝑡𝑡)� × 𝛽𝛽(𝑡𝑡) (where process error 𝜖𝜖 is 919 

plotted separately in Fig. S2) such that 𝑔𝑔 has a positive effect while 𝑚𝑚 and 𝑓𝑓 have negative 920 

effects  921 

  922 
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Fig. 5 – Stacked barplot showing growth rate 𝑔𝑔(𝑡𝑡) (left column) or natural mortality rate 𝑚𝑚(𝑡𝑡) 923 
(right column) using the “full” model for pollock (top row, i.e., matching green and blue lines in 924 
first panel of Fig. 3), cod (middle row, i.e., second panel of Fig. 3), and krill (bottom row, i.e., 8th 925 
panel of Fig. 3), while decomposing these demographic rates into the contribution for each prey 926 
species (i.e., each component of Eq. 5 for Growth) or for each predator species as well as a 927 
constant residual mortality rate (i.e., each component of Eq. 6 for Natural mortality), where 𝑀𝑀0 928 
(pink) indicates residual natural mortality.   929 

 930 
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Fig. 6 – Range of errors that covers 10% and 90% of the 50 simulation replicates (y-axis) for 932 

each year (x-axis) in annual estimates of growth from consumption (𝑔𝑔), mortality due to 933 

predation (𝑚𝑚) (columns), or biomass (𝛽𝛽) for each simulated species (rows) for either the state-934 

space model (red shading) or the same model but without estimating process errors in dynamics 935 

(blue shading), and also showing the median error for both models (red and blue lines, 936 

respectively).  Note that the two predators (bottom two rows) experience no predation (see Table 937 

S3) such that their mortality is specified without error and therefore not shown.   938 

 939 
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Supplementary Materials 1:  Simplifying functional responses 940 

In the main text, we present a formula for consumption (Eq. 4) that eliminates additional terms 941 

that can be used to represent ecological interactions among predators and prey.  We follow 942 

default settings from Rpath (described in Lucey et al. (2020)), and only eliminate terms that are 943 

not used given those default values.  Here, we summarize how Eq. 4 results from the default 944 

values used for these additional terms: 945 

1. Foraging time:  Ecosim can be configured to represent prey-specific foraging time.  Lucey et 946 

al. (2020) defines prey-specific foraging time 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑖𝑖,𝑚𝑚 (see Eq. 19-22 of that paper) and an 947 

adjustment rate 𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖.  Their default is to start 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑖𝑖,𝑚𝑚 = 1 in the initial time, with 948 

adjustment rate 𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖 = 0, such that 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝑖𝑖,𝑚𝑚 = 1 for all subsequent times.  As a result, 949 

prey-specific foraging time is constant, and this specification avoids integrating additional 950 

state variables.  Lucey et al. (2020) states that the EwE software uses a default value of 951 

𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖 = 0.5, so EcoState does not correspond to the default values for the EwE software.    952 

2. Forcing functions:  Ecosim can be configured to include forcing functions, which represent 953 

unmodeled variation in consumption.  We instead assume that these are captured in estimated 954 

process errors, and do not include the option in our definition of consumption.   955 

3. Prey functional response:  Ecosim can be configured to represent the prey functional 956 

response (third term of the right-hand-side of Eq. 4) using a parameter representing predator-957 

specific handling time that controls the shape of the functional response.  We again refer to 958 

notation from Lucey et al. (2020 Eq. 19-22), which defines predator-specific handling time 959 

parameter 𝐷𝐷𝑖𝑖𝑖𝑖 (which accounts for predator saturation as prey become abundant), and 960 

functional-response parameter 𝜃𝜃 (𝜃𝜃 = 1 results in a Holling’s Type-2 and 𝜃𝜃 = 2 results in a 961 
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Holling’s Type-3 functional response).  Their default is 𝐷𝐷𝑖𝑖𝑖𝑖 = 1000 and 𝜃𝜃 = 1, and they note 962 

that “for practical use, values 𝐷𝐷𝑖𝑖𝑖𝑖 > 1000  are indistinguishable from infinity” for parameter 963 

𝐷𝐷𝑖𝑖𝑖𝑖.  We therefore instead define 𝐷𝐷𝑖𝑖𝑖𝑖 → ∞, where these values for 𝐷𝐷𝑖𝑖𝑖𝑖 and 𝜃𝜃 then simplify to 964 

the linear prey functional response that is included in the main text.   965 

4. Facilitation and multispecies functional response:  Ecosim includes parameters that control 966 

whether consumption for a given pair of predator and prey is affected the biomass of other 967 

predators or prey.  This then represents e.g., facilitation or interference competition.  Default 968 

values from Lucey et al. (2020) eliminate those responses, so we do not include them in Eq. 4 969 

notation.   970 

We recommend that future research explore the costs (e.g., computational time), benefits (e.g., 971 

ecological realism and stability), and trade-offs (e.g., statistical parsimony) that arise when 972 

adding these back in.   973 
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Supplementary Materials 2:  Solving for scale for each taxon 1082 

For each taxon 𝑠𝑠, the user must choose whether to treat equilibrium biomass 𝛽̅𝛽𝑠𝑠 or 1083 

ecotrophic efficiency 𝑒𝑒𝑠𝑠 as a parameter for that taxon.  A different choice can be made for each 1084 

taxon, and EcoState then solves for the unspecified value for each taxon (e.g., solves for 𝑒𝑒𝑠𝑠 if 𝛽̅𝛽𝑠𝑠 1085 

is specified for taxon 𝑠𝑠).  The user can specify one (but not both) of 𝛽̅𝛽𝑠𝑠 and 𝑒𝑒𝑠𝑠 for any single 1086 

taxon, and at least one taxon must have 𝛽̅𝛽𝑠𝑠 to avoid a degenerate solution of 𝛃𝛃� = 𝟎𝟎 (Polovina, 1087 

1984).  This algorithm is included in Rpath (Lucey et al., 2020), but we repeat it here using 1088 

notation from EcoState for readers who are not familiar with the algorithm.   1089 

Specifically, we define indicator 𝑎𝑎𝑠𝑠 as: 1090 

𝑎𝑎𝑠𝑠 = �0 if 𝛽𝛽𝑠𝑠 is specified
 1 if 𝑒𝑒𝑠𝑠 is specified 1091 

such that EcoState will treat 𝛃𝛃�{𝐚𝐚=0} and 𝐞𝐞{𝐚𝐚=1} as specified values and will solve for the value of 1092 

𝛃𝛃�{𝐚𝐚=1} and 𝐞𝐞{𝐚𝐚=0}.  We first calculate consumption 𝑐̃𝑐𝑖𝑖 for each prey 𝑖𝑖 given any specified values 1093 

of 𝛽̅𝛽𝑗𝑗 for predators 𝑗𝑗: 1094 

𝑐̃𝑐𝑖𝑖 = � 𝛽𝛽𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗
𝑗𝑗∈{𝐚𝐚=1}

 1095 

We next define a vector that includes all specified values multiplied by production per biomass, 1096 

𝐱𝐱 = 𝐩𝐩⊙ �(𝟏𝟏 − 𝐚𝐚) ⊙𝛃𝛃� + 𝐚𝐚⊙ 𝐞𝐞�, and define the matrix of prey-consumption-per-predator 1097 

biomass for those species where ecotrophic efficiency is specified, 𝐙𝐙 = 𝐃𝐃⊙ (𝟏𝟏𝐰𝐰𝑇𝑇) ⊙ (𝟏𝟏𝐚𝐚𝑇𝑇).  1098 

We seek to solve for the unspecified values 𝐲𝐲 = 𝐚𝐚⊙ 𝛃𝛃� + (𝟏𝟏 − 𝐚𝐚) ⊙𝐞𝐞.  To do so, we calculate: 1099 

𝐲𝐲 = (diag(𝐱𝐱) − 𝐙𝐙)−1𝐜𝐜� 1100 
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where diag(𝐱𝐱) is a diagonal matrix with diagonal elements of 𝐱𝐱.  We then plug 𝐲𝐲 into the 1101 

unknown values, 𝛃𝛃�{𝐚𝐚=1} = 𝐲𝐲{𝐚𝐚=1} and 𝐞𝐞{𝐚𝐚=0} = 𝐲𝐲{𝐚𝐚=0}. 1102 

  1103 
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Supplementary Materials 3:  Data standardization 1104 

 1105 

Zooplankton Sampling and Data Processing 1106 

Zooplankton was collected using oblique tows of paired bongo nets (20 cm frame, 153 1107 

μm mesh and 60 cm frame, 333 or 505 μm mesh) (Incze et al., 1997; Napp et al., 1996). The 1108 

tows were within 5-10 m of the bottom depending on sea state and depth was monitored 1109 

continuously using a SeaBird FastCAT CTD. Volume filtered was estimated using a General 1110 

Oceanics flowmeter mounted inside the mouth of each net. Samples were preserved in 5% 1111 

buffered formalin/seawater. Whole sample displacement volumes were estimated by first 1112 

concentrating all animals onto a sieve using a small mesh size (53 μm) and all water was allowed 1113 

to drain from the sieve. The animals are then added to a graduated cylinder of known volume and 1114 

the difference in volume was recorded in mL. Zooplankton were identified to the lowest 1115 

taxonomic level and stage possible at the Plankton Sorting and Identification Center in Szczecin, 1116 

Poland, and verified at the Alaska Fisheries Science Center, Seattle, Washington, USA. A 1117 

methodological change in zooplankton collection occurred in 2012, when the 60 cm frame net 1118 

had its mesh changed to 505 μm. The majority of taxa were not affected by this change; 1119 

however, the potential for some differences to arise were noted, see Kimmel and Duffy-1120 

Anderson (2020) for details.  1121 

Biomass was estimated for whole samples by converting the displacement volume (mL) 1122 

to biomass using literature equations (Wiebe et al. 1975, Wiebe 1988). Biomass estimates for 1123 

individual species were calculated from abundance (ind m-3) estimates. Individual stage weight 1124 

(wet mass) was estimated from laboratory measurements for Calanus marshallae/glacialis, 1125 

Neocalanus spp. (N. plumchrus and N. flemingeri combined), and N. cristatus (Hopcroft unpub.) 1126 

(Sullaway, In revisions). Note that the ability to distinguish between these Calanus species 1127 
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morphologically is based on taxonomic characters that require significant processing time (Frost, 1128 

1974). This appears to be a problem across the genus as it has been suggested that the ability to 1129 

distinguish between C. glacialis and C. finmarchicus in Atlantic waters can only be 1130 

accomplished with DNA methods (Choquet et al., 2018). Recent results suggest that most 1131 

Calanus spp. in the Bering Sea may in fact be C. glacialis (Tarrant et al., 2021). Similarly, N. 1132 

flemingeri and N. plumchrus are closely related species in both size and mass (Miller, 1988); 1133 

therefore, these two species were not distinguished in this analysis. Individual masses for the 1134 

following stages were then summed for each sampling event to produce a single biomass 1135 

estimate for copepodite stages C1-C6, with C6 being the adult stage. Wet mass was converted to 1136 

dry mass or carbon using literature equations (Wiebe, 1975, 1988). Total large copepod biomass 1137 

was then substracted from the whole sample biomasses to remove that contributing fraction to 1138 

produce the large copepod and the other zooplankton biomass time-series. 1139 

 1140 

Northern Fur Seals 1141 

Northern fur seal pups have been routinely counted on the Pribilof Islands (St. Paul Island, St. 1142 

George Island) since the 1950s.  From 1982 to 1992, pup counts were largely conducted annually 1143 

on St. Paul Island and biennially on St. George Island, whereas from 1992 onwards they were 1144 

largely biennial on both islands. Counts of the entire population are not possible because at any 1145 

given time a certain proportion of the population is at sea. The Pribilof Island population has 1146 

been in decline since the mid-to-late 1990s, primarily driven by declines on St. Paul Island, 1147 

although it is unknown which component of the population is driving the decline. To estimate 1148 

population size, we used the modeling approach described in McHuron et al. (2020), which 1149 

resulted in a total of 11 different estimates of numbers at age for male and female fur seals. 1150 

Animals <2 years of age were not included in population estimates since pups predominately rely 1151 
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on milk from their mother while in the eastern Bering Sea, and once they depart on their post-1152 

weaning migration, most pups do not return until two years of age. See Supplementary Text in 1153 

McHuron et al. (2020) for a more complete description.  Population biomass in each year was 1154 

estimated by multiplying the numbers at age for each sex (averaged across all 11 models) with 1155 

age-sex specific mass estimates (Trites & Bigg, 1996) and then summing across all age and sex 1156 

classes. The resulting population estimate was multiplied by ca. 30% to account for the fact that 1157 

fur seals are seasonal residents of the eastern Bering Sea, spending on average of 105 - 109 days 1158 

foraging in the model area.  We only used biomass estimates from years where empirical 1159 

estimates of pup production were available.  1160 

 1161 

Ecopath parameters 1162 

Estimates of production per biomass (𝑝𝑝𝑠𝑠 and called P/B elsewhere), consumption per biomass 1163 

(𝑤𝑤𝑠𝑠 and called Q/B elsewhere), and diet composition were derived from previous Ecopath with 1164 

Ecosim models for the eastern Bering Sea.  Detailed parameter estimation methods for all EBS 1165 

EwE functional groups can be found in Aydin et al. (2007).  Specifically: 1166 

• Groundfish groups combined mortality estimates from the literature and stock assessments 1167 

with growth information available from field studies or the literature. Groundfish diet 1168 

compositions were obtained from the NOAA/AFSC groundfish food habits monitoring 1169 

program (Livingston et al., 2017). The groundfish diet compositions were combined across 1170 

predator size classes by taking the weighted average of age-specific consumption, weighted 1171 

by the product of abundance-at-age from stock assessments, size-at-age from assumed 1172 

growth functions, and ration-at-size from bioenergetic models.   1173 

• Northern fur seal production was estimated with Siler’s (1979) competing risk model  as 1174 

modified by Barlow and Boveng (1991) to construct a general model of survivorship. The 1175 
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northern fur seal diet composition was compiled from the literature.  However, we substitute 1176 

a bioenergetic calculation for consumption per biomass based on a recently published 1177 

bioenergetic model (McHuron unpublished work), which corrected for seasonal residency in 1178 

the modeled area; 1179 

• Zooplankton production rates and diet compositions were estimated from values reported in 1180 

the literature. The copepod consumption rate was retrieved from the literature, while the 1181 

consumption of euphausiids and other zooplankton was estimated with an assumed growth 1182 

efficiency.  1183 

• Benthic invertebrate production rates were from the literature and consumption was 1184 

estimated with an assumed growth efficiency. Estimates of P/B and Q/B for commercial 1185 

crabs were derived from stock assessment information. Benthic invertebrate diet 1186 

compositions were derived from literature sources. The production of benthic microbes were 1187 

derived from literature values for pelagic microbes. The Q/B of benthic microbes was 1188 

estimated assuming a growth efficiency of 0.35, and the diet composition was assumed to 1189 

consist entirely of detritus. 1190 

We then aggregated multiple groups to create the variables used here.  This aggregation is done 1191 

by taking the biomass-weighted average of production per biomass 𝑝𝑝𝑠𝑠, consumption per biomass 1192 

𝑤𝑤𝑠𝑠, and diet proportions 𝑑𝑑𝑖𝑖,𝑗𝑗 across multiple taxa from Whitehouse et al. (2021).  Pollock, cod, 1193 

arrowtooth, and northern fur seal all aggregated juvenile and adult stages from Whitehouse et al. 1194 

(2021).  Similarly, Chloro included large and small phytoplankton, and Benthic_invert included 1195 

tanner, snow, and king crabs, pandalid shrimps, benthic zooplankton, motile epifauna, structural 1196 

epifauna, and infauna.  The biomass variables from Whitehouse et al. (2021) that are aggregated 1197 

into our 10 biomass variables (i.e., excluding detritus) represents 79% of the total biomass from 1198 
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Whitehouse et al. (2021).  The diet-composition matrix was then rescaled to ensure that each 1199 

predator had proportions that summed to one.   1200 

 1201 

Primary producers 1202 

Satellite chlorophyll-a concentration data from 1998 to 2023 for the southern (<60 N) Bering Sea 1203 

middle and outer shelf (50-180 m bottom depth) were used to calculate annual time series trends. 1204 

We compiled 8-day satellite chlorophyll-a concentration (ug l-1) at a 4 km-resolution from The 1205 

Hermes GlobColour website: http://hermes.acri.fr/ (Maritorena et al., 2010). This product is a 1206 

standardized merged chlorophyll-a product, combining remote sensing data from SeaWiFS, 1207 

MERIS, MODIS, VIIRS and OLCI. chlorophyll-a concentration data. Data were averaged for 1208 

the months May to October for the middle and outer southern Bering Sea shelf region. 1209 

Chlorophyll-a concentration data from locations near river plumes from the Yukon and 1210 

Kuskowim rivers can be highly uncertain and were excluded, following recommendations in 1211 

Brown et al. (2011). 1212 

  1213 
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Supplementary Materials 4:  Additional tables and figures 1214 

Table S1:  Notation used in the model presentation and results, including the symbol, units, a 1215 
brief description, and the type.  Note that notation differs from past Ecopath-with-Ecosim 1216 
standards, to avoid using multiple symbols to indicate a single variable (Edwards & Auger‐1217 
Méthé, 2019).   1218 

Symbol Units Description Type 
𝑠𝑠 - Species Index 
𝑖𝑖 - Prey Index 
𝑗𝑗 - Predator Index 
𝑡𝑡 - Time index Index 
𝑘𝑘 - Fishery Index 

ℎ𝑠𝑠(𝑡𝑡) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Catch for each species 𝑠𝑠 and time 𝑡𝑡 Data 
𝑏𝑏𝑠𝑠(𝑡𝑡) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Biomass index Data 
𝑝𝑝𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Production rate per biomass (elsewhere called PB) Specified  
𝑤𝑤𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Consumption rate per biomass (elsewhere called QB) Specified  
𝑥𝑥𝑖𝑖,𝑗𝑗 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Vulnerability for prey 𝑖𝑖 to predator 𝑗𝑗 (called 𝑋𝑋𝑖𝑖𝑖𝑖 in Walters 

et al. (1997)) 
Specified  

𝑑𝑑𝑖𝑖,𝑗𝑗 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Diet fraction for prey 𝑖𝑖 and predator 𝑗𝑗 Specified  
𝑟𝑟𝑠𝑠,𝑓𝑓 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Selectivity ratio for each species 𝑠𝑠 in a given fishery 𝑓𝑓 Specified 
𝜎𝜎𝑠𝑠2 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Measurement error variance for biomass indices Specified 
𝜈𝜈𝑠𝑠2 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Measurement error variance for catch data Specified 
𝑦𝑦𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Tracer release for taxa 𝑠𝑠 Specified 
𝛽̅𝛽𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Equilibrium biomass Estimated  

𝜙𝜙𝑘𝑘(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Annual fishing mortality rate Estimated 
𝑞𝑞𝑠𝑠 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Catchability coefficient for species 𝑠𝑠 Estimated 
𝛿𝛿𝑠𝑠 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Difference between biomass and equilibrium biomass in the 

initial time 
Estimated 

𝜏𝜏𝑠𝑠2 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Process error variance for biomass dynamics Estimated 
𝜖𝜖𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Process error variation Estimated 
𝛽𝛽𝑠𝑠(𝑡𝑡) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Modeled biomass Derived 
𝜂𝜂𝑠𝑠(𝑡𝑡) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Modeled catch Derived 
𝑔𝑔𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Growth rate Derived 
𝑒𝑒𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Ecotrophic efficiency Derived  
𝑣𝑣𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Detritus export (a.k.a. turnover) rate Derived 
𝑢𝑢𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Unmodeled mortality rate (elsewhere called 𝑀𝑀0) Derived  

𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Consumption for each prey 𝑖𝑖 and predator 𝑗𝑗 Derived 
𝑐𝑐𝑖̅𝑖,𝑗𝑗 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Equilibrium consumption Derived 
𝑔𝑔𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Growth rate per biomass Derived 
𝑚𝑚𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Natural mortality rate per biomass Derived 
𝑓𝑓𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒−1 Fishing mortality rate per biomass Derived 
𝑧𝑧𝑠𝑠(𝑡𝑡) 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 Tracer concentration for predator 𝑠𝑠 Derived 
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Table S2:  Data sets used for fitting the eastern Bering Sea case study 1220 

Data set Years covered Details Reference 
Cod, pollock, and 

arrowtooth 
biomass 

1982-2023 (annual) Using the design-based 
biomass index from a 
summer bottom trawl 
survey 

(Markowitz et al., 
2022) 

Copepod and 
Other pelagic 
zooplankton 
biomass index 

2008, 2009, 2011, 
2014, 2016, 2018, 
2021, 2022 

From an oblique-tow small-
mesh pelagic trawl, 
averaging Spring (May) and 
Fall (September) densities  

(Incze et al., 1997; 
Kimmel & Duffy-
Anderson, 2020) 

Primary 
production 
biomass index 

1998-2023 (annual) From satellite chlorophyll-a 
concentration 
measurements, averaged 
from May through October 
of each year 

 

Krill biomass 2004, 2006-2010, 
2012, 2014, 2016, 
2018, 2022 

From summer acoustic-
midwater trawl survey 

(Ressler et al., 
2012) 

Northern fur seal 
biomass 

1982-2018 (biennial 
after 1990) 

 (McHuron et al., 
2020) 

Total catch 
biomass for 
cod, pollock, 
and arrowtooth 

1982-2023 (annual) From stock assessments (S. J. Barbeaux et 
al., 2022; Ianelli et 
al., 2022; Shotwell 
et al., 2021) 

Ecopath 
parameters and 
diet matrix 

NA From previous Rpath model (Aydin et al., 2007; 
Whitehouse et al., 
2021) 
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Table S3:  Ecopath parameters (rows) specified or calculated for each taxa (column) in the eastern Bering Sea case study (see Table 1222 
S1 for units, where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is using million metric tons and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is using years), and also showing diet proportions for prey (rows) 1223 
given each taxa as predator (columns).  Note that cod, arrowtooth, and northern fur seal (NFS) estimate equilibrium biomass 𝛽̅𝛽𝑠𝑠 given 1224 
the assumption that their catchability coefficient 𝑞𝑞𝑠𝑠 = 1, and ecotrophic efficiency 𝑒𝑒𝑠𝑠 is calculated to match that value.  For other 1225 
species, we specify ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1 and equilibrium biomass 𝛽̅𝛽𝑠𝑠 is calculated to match that value.   1226 

 
 

Pollock Cod Arrow. Copepod Other 
zoop. 

Pelagic 
prod. 

NFS Krill Benthic 
invert 

Benthic 
microbes 

Detritus 

Pa
ra

m
et

er
 o

r d
er

iv
ed

 
qu

an
tit

y 

type hetero hetero hetero hetero hetero auto hetero hetero hetero hetero detritus 
𝑤𝑤𝑠𝑠 4.226 2.745 1.201 27.74 10.19 NA 57.764 15.64 11.912 104.29 NA 
𝑝𝑝𝑠𝑠 0.825 0.507 0.186 6 3.57 99.407 0.094 5.48 2.43 36.5 0.5 
𝛽̅𝛽𝑠𝑠 7.186 1.639 0.896 3.95 0.325 1.39 0.005 2.324 11.706 1.186 390.038 
𝑒𝑒𝑠𝑠 1 0.073 0.176 1 1 1 0 1 1 1 1 
𝑢𝑢𝑠𝑠 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Trophic level 3.332 3.828 4.156 2 2.443 1 4.344 2.294 2.576 2 1 
Pelagic prop. 0.876 0.338 0.819 1 0.975 1 0.863 1 0.024 0 0 

Pr
ey

 p
ro

po
rti

on
s (
𝑑𝑑 𝑠𝑠

2,
𝑠𝑠 1

) Pollock 0.109 0.332 0.8 0 0 0 0.977 0 0 0 0 
Cod 0.001 0.007 0 0 0 0 0.023 0 0 0 0 
Arrowtooth 0.001 0.001 0.004 0 0 0 0 0 0 0 0 
Copepod 0.388 0.001 0 0 0.301 0 0 0.294 0.002 0 0 
Other zoop. 0.033 0 0 0 0.049 0 0 0 0 0 0 
Pelagic prod. 0 0 0 1 0.6 0 0 0.706 0.007 0 0 
NFS 0 0 0 0 0 0 0 0 0 0 0 
Krill 0.357 0.028 0.113 0 0.025 0 0 0 0.011 0 0 
Ben. Invert 0.112 0.632 0.082 0 0.025 0 0 0 0.158 0 0 
Ben. microbe 0 0 0 0 0 0 0 0 0.311 0 0 

 Detritus 0 0 0 0 0 0 0 0 0.511 1 0 
 1227 
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Table S4:  Ecopath parameters in the simulation experiment (see Table S2 caption for details) 1229 

 
 Producer Detritus 

Pelagic 
consumer 

Benthic 
consumer 

Pelagic 
predator 

Benthic 
predator 

 Type auto detritus hetero hetero hetero hetero 

Pa
ra

m
 

𝑤𝑤𝑠𝑠 NA NA 10 4 3 1 
𝑝𝑝𝑠𝑠 90 0.5 4 1 0.2 0.1 
𝛽̅𝛽𝑠𝑠 0.11 10.02 0.78 1.33 1 1 
𝑒𝑒𝑠𝑠 0.9 0.9 0.9 0.9 0 0 
𝑢𝑢𝑠𝑠 0.2 0.2 0.2 0.2 0.2 0.2 

Trophic level 1 1 2 2 3 3 
𝑢𝑢𝑠𝑠 9 0.05 0.4 0.1 0.2 0.1 

Pr
ey

 
pr

op
or

tio
ns

 
(𝑑𝑑

𝑠𝑠 2
,𝑠𝑠 1

) 

Producer_1 0 0 0.9 0.3 0 0 
Producer_2 0 0 0.1 0.7 0 0 
Consumer_1 0 0 0 0 0.8 0.4 
Consumer_2 0 0 0 0 0.2 0.6 
Predator_1 0 0 0 0 0 0 

 Predator_2 0 0 0 0 0 0 
 1230 

 1231 
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Table S5:  List of estimated parameters and standard errors in the eastern Bering Sea case study, 1232 
listing the parameter name (see definitions in Table S1), the Taxon 𝑠𝑠, the maximum likelihood 1233 
estimator, and the standard error 1234 

Parameter Taxon Estimate SE 
log(𝛿𝛿𝑠𝑠) Pollock -0.416 0.124 

 Cod -0.38 0.159 
 Arrowtooth -2.424 0.267 
 NFS 0.27 0.221 

log�𝛽̅𝛽𝑠𝑠� Cod 0.494 0.123 
 Arrowtooth -0.11 0.247 
 NFS -5.385 0.2 

log(𝜏𝜏𝑠𝑠) Pollock -1.128 0.141 
 Cod -1.591 0.148 
 Arrowtooth -1.997 0.192 
 Copepod 0.128 0.169 
 NFS -3.259 0.35 

log(𝑞𝑞𝑠𝑠) Pollock -0.412 0.109 
 Copepod 0.102 0.104 
 Chloro 4.836 0.124 
 Other_zoop 1.848 0.098 
 Krill 2.098 0.121 
 1235 

  1236 
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Fig. S1 – Simulated time-series (y-axis) for each year (x-axis) of growth 𝑔𝑔(𝑡𝑡) (left column), 1237 
natural mortality 𝑚𝑚(𝑡𝑡) (middle column), or biomass 𝛽𝛽(𝑡𝑡) (right column) for each simulated taxa 1238 
(rows). 1239 
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Fig. S2 – Fits to catch data for the three species with a directed fishery, showing predicted 𝜂𝜂𝑠𝑠(𝑡𝑡) 1241 

(black line) +/- 1 standard error (grey shaded area) and observed catch ℎ𝑠𝑠(𝑡𝑡) (black bullets). 1242 

 1243 
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Fig. S3 – Annual estimates of process-error 𝜖𝜖𝑠𝑠(𝑡𝑡) (black lines) +/- 1 standard error (grey shaded 1245 
area) for those species for which it is estimated. 1246 

 1247 
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Fig. S4 – Performance (Box: 10% to 90% range; Line: mean) for estimated parameters in the 1249 
simulation experiment, showing the true value (red), and estimates from the full (green) or null 1250 
model (blue) for each of 13 parameters, where the single vulnerability parameter 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1251 
represents the predator-prey functional response for all predators and prey, 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1 +1252 
exp(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋_𝑖𝑖𝑖𝑖) where 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋_𝑖𝑖𝑖𝑖 is the estimated parameter with unbounded support, and 1253 
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋_𝑖𝑖𝑖𝑖 is shown here.  Note that the null model does not estimate process errors, and, 1254 
therefore, has no value listed for the standard deviation of process errors (𝜏𝜏𝑠𝑠).   1255 

 1256 
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Fig. S5 – Range of errors that covers 10% and 90% of the 50 simulation replicates for each year 1258 
in annual estimates of growth from consumption (𝑔𝑔), mortality due to predation (𝑚𝑚), or biomass 1259 
(𝛽𝛽) for each simulated species (see Fig. 6 caption for details), when replicating the simulation 1260 
experiment while estimating productivity per biomass 𝑝𝑝𝑠𝑠 for all six taxa and consumption per 1261 
biomass 𝑤𝑤𝑠𝑠 for the consumers and predators using a lognormal prior with a log-standard 1262 
deviation of 0.1 1263 

 1264 
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Fig. S6 -- Performance for estimated parameters in the simulation experiment (see Fig. S4 1266 
caption for details), showing the true value (red), and estimates from the full (green) or null 1267 
model (blue) for each of 23 parameters when also estimating production per biomass 𝑝𝑝𝑠𝑠 for all 1268 
six taxa and consumption per biomass 𝑤𝑤𝑠𝑠 for consumers and predators.   1269 
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