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Abstract: 24 

Mass-balance ecosystem models including Ecopath with Ecosim (EwE) are widely used tools for 25 

analyzing aquatic ecosystems to support strategic ecosystem-based management.  These models 26 

are typically developed by first tuning unknown parameters to achieve mass balance (termed 27 

“Ecopath”), then projecting dynamics over time (“Ecosim”) while sometimes tuning predator-28 

prey vulnerability parameters to optimize fit to available time-series.  By contrast, population-29 

dynamics (stock assessment) and multi-species models typically estimate a wide range of 30 

biological rates and parameters via their fit to time-series data, assess uncertainty via a statistical 31 

likelihood, and increasingly include process errors as “state-space models” to account for 32 

nonstationary dynamics and unmodeled ecosystem variables.  Here, we introduce a state-space 33 

model “EcoState” (and associated R-package) that estimates parameters representing mass-34 

balance dynamics directly via their fit to time-series data (absolute or relative abundance indices 35 

and fisheries catches) while also estimating the magnitude of process errors using RTMB. A 36 

case-study demonstration focused on Alaska pollock (Gadus chalcogrammus) in the eastern 37 

Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased 38 

and decreased pollock production.  A self-test simulation experiment confirms that estimating 39 

process errors can improve estimates of productivity (growth and mortality) rates. Overall, we 40 

show that state-space mass-balance models can be fitted to time-series data (similar to surplus 41 

production stock assessment models), and can attribute time-varying productivity to both 42 

bottom-up and top-down drivers including the contribution of individual predator and prey 43 

interactions.   44 

 45 
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Introduction 49 

 Ecosystem-based fisheries management (EBFM) has been adopted as a policy goal for 50 

ocean management agencies worldwide (FAO 2003; European Commission 2013; NOAA 2016), 51 

and ecosystem models are an essential tool for evaluating tradeoffs among alternative 52 

management scenarios within EBFM.  There are many types of ecosystem models (Hollowed et 53 

al. 2000; Plagányi 2007; O’Farrell et al. 2017), but one common strategy involves modelling 54 

consumption rates to predict changes in natural mortality and/or individual growth rates for 55 

modeled functional groups.  In particular, mass-balance models track the flow of biomass among 56 

producers, consumers, predators, and fisheries (among other potential variables).  The mass-57 

balance model Ecopath (Polovina 1984) is a foundational example of mass-balance models, and 58 

it represents ecosystem structure by tracking flows between biomass pools given input 59 

parameters for initial biomass, production/biomass ratio, consumption/biomass ratio, diet 60 

composition, and fishery removals for each biomass pool. Input parameters are estimated outside 61 

the modeling framework and entered as known values using information from fishery 62 

independent surveys, fishery dependent sampling, and literature review. Because parameters 63 

come from a variety of disparate sources, it is often necessary to further tune input parameters to 64 

achieve conditions where no group has more removals (consumption and fishing) than 65 

production (i.e., “balance the model”).  Guidelines are widely available for defining consumption 66 

per biomass (Palomares and Pauly 1998), production per biomass (Allen 1971), and for assessing 67 

the plausibility of a proposed Ecopath model (Link 2010).  Ecopath can then be used to quantify 68 

ecosystem stability, optimum fisheries yield, and other metrics of ecosystem structure 69 

(Christensen and Walters 2004).   70 
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 Mass-balance models were subsequently extended to projected dynamics forward in time 71 

given observed fishing rates or under hypothetical management scenarios.  In particular, Ecosim 72 

(Walters et al. 1997; Pauly et al. 2000) recast Ecopath as a set of differential equations, and the 73 

resulting Ecopath with Ecosim (EwE) software remains one of the most widely-used ecosystem 74 

modelling platforms in the world (Colléter et al. 2015).  The Ecopath mass balance is used to 75 

initialize the deterministic dynamic model Ecosim by deriving growth efficiency (initial ratio of 76 

production to consumption) and unobserved mortality parameters (initial production times the 77 

fraction of production not consumed by predators or removed by fishing).  To promote 78 

ecosystem stability, Ecosim incorporates a functional response based on “foraging arena theory” 79 

(Walters et al. 1997), where predators can only forage upon an accessible fraction of prey as 80 

determined by vulnerability parameters (Ahrens et al. 2012).   Ecosim projections therefore 81 

depend upon (and are sensitive to) both the input Ecopath mass-balance parameters and the 82 

vulnerability parameters governing the functional response (Gaichas et al. 2012).  Ecosim 83 

vulnerability parameters are sometimes tuned via fit to predator-prey time-series (Scott et al. 84 

2016; Bentley et al. 2024).  However, time-series predictions of biomass are only calculated 85 

when tuning Ecosim, so this two-stage approach precludes using time-series data to tune the 86 

mass-balance parameters in Ecopath.   87 

Ecopath-with-Ecosim (EwE) has been used to explore potential ecosystem thresholds 88 

(Gaichas et al. 2012), compare the performance of alternative management strategies 89 

(Christensen and Walters 2004; Lucey et al. 2021), and evaluate single-species reference points 90 

(Walters et al. 2005), among many other examples.  EwE has seen less use to set annual fisheries 91 

management policies (e.g., harvest limits), although examples exist for using it to modify 92 
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existing single-species reference points to account for species interactions (Chagaris et al. 2020; 93 

Howell et al. 2021).  94 

 To complement “strategic advice” provided by ecosystem models such as EwE, there is 95 

also increased effort to estimate time-varying parameters within single-species stock assessments 96 

(Nielsen and Berg 2014).  This generally involves state-space estimation (de Valpine 2002), 97 

which involves estimating both measurement errors (e.g., the difference between predicted and 98 

observed biomass) and process errors (e.g., variation in demographic rates).  Stock assessments 99 

worldwide increasingly use state-space modelling (Stock and Miller 2021), and it is viewed as an 100 

essential feature for future assessment-model development (Punt et al. 2020).  This increased use 101 

arises in part because state-space models can mitigate the bias that otherwise results from 102 

treating some time-varying process as if it was stationary in time (Xu et al. 2020; Stock et al. 103 

2021).  State-space models require estimating the variance of random effects simultaneously 104 

with other parameters, and therefore also requires jointly calculating the likelihood of data given 105 

fixed and random effects as well as the probability of random effects given any hyperparameters 106 

(Thorson and Minto 2015).  107 

 Statistical multispecies models (a.k.a. multispecies statistical catch-at-age) provide an 108 

alternative to whole-of-ecosystem models (e.g., EwE) and state-space population models for 109 

modelling populationand community dynamics.  For example, CEATTLE (Jurado-Molina et al. 110 

2005; Holsman et al. 2016) and GADGET (Begley and Howell 2004) both fit to survey and 111 

fisheries data for multiple interacting species, while tracking how predation affects natural 112 

mortality for those modeled prey species.  These models serve as a useful middle-ground 113 

between whole-of-ecosystem and single-species stock assessment models; they provide more 114 

statistical rigor than EwE by using maximum likelihood or Bayesian methods to fit to time-series 115 
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data (with associated asymptotics and confidence-interval performance), while still tracking top-116 

down (predatory) control of prey species by tracking consumptive interactions.  However, 117 

statistical multispecies models typically do not model the impact of prey availability on predator 118 

growth or survival (termed “bottom-up control”), and therefore cannot account for how changes 119 

in forage availability may affect the productivity of commercially important consumers.   120 

In this study, we introduce the first (to our knowledge) example of fitting a state-space 121 

mass-balance ecosystem model to time-series data, including abundance indices and fishery 122 

catches.  To do so, we adapt the dynamics specified by Ecopath and Ecosim but use RTMB 123 

(Kristensen 2024b) to implement automatic differentiation and fit process errors via maximum 124 

marginal likelihood.  We estimate equilibrium population biomass, nonequilibrium initial 125 

conditions, catchability coefficients, the variance of process errors via fit to available time-series, 126 

as well as other potential parameters (e.g., predator-prey vulnerability).  We distribute our code 127 

as an R package EcoState, initially available on GitHub (https://github.com/James-Thorson-128 

NOAA/EcoState) with full function documentation and user vignettes, and intended for 129 

distribution via CRAN upon full release.  We use real-world data from the eastern Bering Sea to 130 

develop a “minimal realistic model” including 10 functional groups and one detrital pool (11 131 

variables) centered on prey, competitors, and predators for Alaska pollock (Gadus 132 

chalcogrammus).  This case-study suggests that fluctuations in krill are associated with cycles of 133 

lower or higher productivity for pollock.  We also use a simulation experiment involving pelagic 134 

primary producer, demersal detritus, two consumers, and two predators to confirm that we can 135 

recover true parameters with reasonable statistical accuracy and precision.   Finally, we conclude 136 

by discussing directions for future developments of state-space whole-of-ecosystem models, and 137 

how these models compare with state-space surplus production models.   138 

https://github.com/James-Thorson-NOAA/EcoState
https://github.com/James-Thorson-NOAA/EcoState
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Methods 139 

EcoState is a mass-balance model that can be solved for equilibrium mass of different ecosystem 140 

components (e.g., detritus, primary producers, consumers, and predators) that are coupled via 141 

consumption, production, and detrital production/decomposition rates (Polovina 1984).  EcoState 142 

tracks mass-vector 𝛃𝛃 composed of mass 𝛽𝛽𝑠𝑠 for each functional group or detrital pool (called 143 

“variables” in the following), indexed by 𝑠𝑠 ∈ {1,2, … , 𝑆𝑆} where 𝑆𝑆 is the total number of variables.  144 

Each variable is then specified as an (1) autotroph (i.e., primary producer), (2) heterotroph (i.e., 145 

consumer or predator), or (3) detritus.  We attempt to use mathematical notation following 146 

guidelines from Edwards and Auger‐Méthé (2019), particularly by using Greek letters for state-147 

variables (e.g., biomass), Roman for parameters and data, vector-matrix notation (i.e., lowercase 148 

italic for scalars), and avoiding the use of multiple letters for a single parameter.  This results in 149 

some departures from previous Ecopath and Ecosim notation (see Table S1 for a summary of all 150 

notation), although we use similar symbols where practical.  We refer to the combination of 151 

autotrophs and heterotrophs as “biomass” or “taxa,” and we also index variables as prey 𝑖𝑖 ∈152 

{1,2, … , 𝑆𝑆} and predator 𝑗𝑗 ∈ {1,2, … , 𝑆𝑆} in expressions where prey and predators are both 153 

included.  Each variable 𝑠𝑠 is assumed to have a fixed ratio of production to biomass 𝑝𝑝𝑠𝑠, 154 

consumption to biomass 𝑤𝑤𝑠𝑠 (where 𝑤𝑤𝑠𝑠 = NA for detritus and primary producers), and a fixed 155 

𝑆𝑆 × 𝑆𝑆 diet matrix 𝐃𝐃 containing the proportion 𝑑𝑑𝑖𝑖,𝑗𝑗 of diet provided by each potential prey 𝑖𝑖 for 156 

predator 𝑗𝑗 (where 𝑑𝑑𝑖𝑖,𝑗𝑗 = 0 for detritus and primary producers as “predators” 𝑗𝑗 and all “prey” 𝑖𝑖).  157 

Finally, each variable is assumed to have mass that is “used” in the system (i.e., consumed by 158 

predators or removed by fisheries), and this is represented as ecotrophic efficiency 𝑒𝑒𝑠𝑠.   159 

Mass-balance based on Ecopath 160 
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Similar to Ecopath, equilibrium in EcoState occurs for each variable when its gain matches loss 161 

rate.  To match notation that is common in stock-assessment models, we define equilibrium mass 162 

�̅�𝛽𝑠𝑠 as the average mass in the absence of fishing: 163 

�̅�𝛽𝑖𝑖⏟
Equilibrium

biomass for prey i

× 𝑝𝑝𝑖𝑖⏟
Prey 

production
per biomass

× 𝑒𝑒𝑖𝑖⏟
Prey

ecotrophic
efficiency

= �

⎝

⎜
⎜
⎛

𝑑𝑑𝑖𝑖,𝑗𝑗�
Proportion of

diet for predator
𝑗𝑗 by prey 𝑖𝑖

× �̅�𝛽𝑗𝑗⏟
Equilibrium
biomass for
predator 𝑗𝑗

× 𝑤𝑤𝑗𝑗�
Predator

consumption
per biomass⎠

⎟
⎟
⎞𝑆𝑆

𝑗𝑗=1

 

(1) 

Later, we then incorporate fishing mortality to project ecosystem dynamics away from this 164 

unfished equilibrium.  Unknown values in Eq. 1 can be solved by re-expressing it in vector-165 

matrix notation.  Specifically, gains (left side of Eq. 1) are written as 𝛃𝛃⊙ 𝐩𝐩⊙ 𝐞𝐞, where e.g. 166 

𝛃𝛃⊙ 𝐩𝐩 is the Hadamard (elementwise) product of two vectors 𝛃𝛃 and 𝐩𝐩.  Similarly, losses (right 167 

side of Eq. 1) are s 𝐃𝐃(𝛃𝛃⊙𝐰𝐰).   Equilibrium biomass 𝛃𝛃� is achieved when these rates match, i.e. 168 

𝛃𝛃� ⊙ 𝐩𝐩⊙ 𝐞𝐞 = 𝐃𝐃(𝛃𝛃� ⊙𝐰𝐰), which can be solved for some combination of equilibrium biomass 𝛃𝛃� 169 

and ecotrophic efficiency (Supplementary Materials 2).  Given this equilibrium, we calculate 170 

equilibrium consumption 𝐂𝐂�: 171 

𝐂𝐂� = 𝐃𝐃⊙ �𝟏𝟏�𝛃𝛃� ⊙𝐰𝐰�
𝑻𝑻
� (2) 

where 𝟏𝟏 is a column-vector of 1s such that 𝟏𝟏𝑇𝑇�𝛃𝛃� ⊙𝐰𝐰� is a matrix of equilibrium consumption 172 

𝛃𝛃� ⊙𝐰𝐰 for each predator, repeated as separate rows for each prey.   173 

The fitted model can then be used to solve for equilibrium levels of a specified tracer 𝑦𝑦𝑠𝑠 174 

for each taxon 𝑠𝑠.  For example, trophic level is defined such that 𝐳𝐳 = 𝐳𝐳𝐂𝐂∗ + 𝐲𝐲, where 𝐲𝐲 = 𝟏𝟏 is 175 

the increase in trophic level each time mass is consumed, and 𝐂𝐂∗ is the consumption 𝑐𝑐𝑖𝑖,𝑗𝑗 for each 176 
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prey 𝑖𝑖 by each predator 𝑗𝑗, rescaled to sum to one for each predator to represent a proportion.  177 

This simultaneous equation for trophic level is then solved as 𝐳𝐳 = 𝟏𝟏𝑡𝑡(𝐈𝐈 − 𝐂𝐂∗)+, where (𝐈𝐈 − 𝐂𝐂∗)+ 178 

is the Penrose-Moore pseudoinverse of 𝐈𝐈 − 𝐂𝐂∗ and 𝟏𝟏𝑡𝑡 is a row-vector of 1s.  Alternatively, we 179 

define tracer 𝐲𝐲, e.g., as an indicator vector that is 1 for the base of the pelagic food chain and 0 180 

otherwise, and then calculate the proportion of biomass for each taxon that results from pelagic 181 

production as 𝐳𝐳 = 𝐲𝐲𝑡𝑡(𝐈𝐈 − 𝐂𝐂∗)+.   182 

Time-dynamics based on Ecosim 183 

After Ecopath is applied to achieve mass-balance for all species, Ecosim is separately used to 184 

simulate dynamics forward in time (Pauly et al. 2000; Christensen and Walters 2004).  By 185 

contrast, EcoState uses proposed parameters to solve for missing values that achieve mass-186 

balance, and simultaneously uses those parameters to project dynamics for all variables at times 187 

𝑡𝑡 ∈ {𝑡𝑡1, 𝑡𝑡2, … ,𝑇𝑇} while integrating dynamics over the interval between these times (i.e., from 𝑡𝑡1 188 

to 𝑡𝑡2).  We discretize time into years in the following, but future research could incorporate 189 

seasonal (e.g., monthly) variation using a higher-resolution time-interval with no change in 190 

equations or code.  Similarly, future research could explore how fishing mortality affects the 191 

prey production 𝑝𝑝𝑖𝑖 and predator consumption 𝑤𝑤𝑖𝑖 via its impact on age-structure (Aydin 2004), 192 

although we do not do so here.   193 

Adapting notation from Lucey et al. (2020), EcoState represents similar dynamics as 194 

Ecosim by specifying a differential equation for mass: 195 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝛃𝛃(𝑡𝑡) =

⎝

⎜⎜
⎛
𝐠𝐠(𝑡𝑡)�
Growth
rate

− 𝐦𝐦(𝑡𝑡)���
Natural 
mortality

rate

− 𝐟𝐟(𝑡𝑡)�
Fishing
mortality

rate ⎠

⎟⎟
⎞
⊙ 𝛃𝛃𝑡𝑡 

(3) 
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where 𝑓𝑓𝑠𝑠(𝑡𝑡) is fishing mortality rate and both growth rate 𝑔𝑔𝑠𝑠(𝑡𝑡) and loss rate 𝑚𝑚𝑠𝑠(𝑡𝑡) are 196 

calculated from annual consumption rate 𝐂𝐂(𝑡𝑡), representing the mass 𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) of prey 𝑖𝑖 consumed 197 

by predator 𝑗𝑗.  Future studies could include net migration, although this is often not considered in 198 

stock-assessment models and therefore ignored here as well.  Consumption rate 𝐂𝐂(𝑡𝑡) variation 199 

around equilibrium consumption 𝑐𝑐�̅�𝑖,𝑗𝑗 based on predator and prey mass:  200 

𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) = 𝑐𝑐�̅�𝑖,𝑗𝑗�
equilibrium

consumption rate

×
𝑥𝑥𝑖𝑖,𝑗𝑗

𝛽𝛽𝑗𝑗(𝑡𝑡)
�̅�𝛽𝑗𝑗

𝑥𝑥𝑖𝑖,𝑗𝑗 − 1 +
𝛽𝛽𝑗𝑗(𝑡𝑡)
�̅�𝛽𝑗𝑗�����������

predator functional
response

×
𝛽𝛽𝑖𝑖(𝑡𝑡)
�̅�𝛽𝑖𝑖�

prey functional 
response

 

(4) 

where 𝐗𝐗 is the matrix of predator-prey vulnerability parameters containing the vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 201 

for prey 𝑖𝑖 to predator 𝑗𝑗 (Aydin 2004 Eq. 1; Plagányi and Butterworth 2004).  Our model for 202 

consumption (Eq. 4) does not include those processes that are eliminated using default values in 203 

EwE as implemented in the Rpath package (Lucey et al. 2020), and see Supplementary Materials 204 

1 for more discussion.  Given that diet 𝑑𝑑𝑖𝑖,𝑗𝑗 = 0 for each column 𝑗𝑗 associated with autotrophs or 205 

detritus, consumption 𝑐𝑐�̅�𝑖,𝑗𝑗 = 0 and 𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) = 0 for autotrophs and detritus as well.   206 

Loss rates 𝑚𝑚𝑠𝑠(𝑡𝑡) are calculated separately for detritus and biomass variables.  207 

Specifically, loss for biomass variables (autotrophs and heterotrophs) results from consumption 208 

and unmodeled natural mortality, while loss for detritus results from consumption and a constant 209 

export rate: 210 

𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠(𝑡𝑡) =
∑ 𝑐𝑐𝑠𝑠,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝛽𝛽𝑠𝑠(𝑡𝑡)�������
Consumption rate

+

⎩
⎪
⎨

⎪
⎧ 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)�������
Residual natural
mortality rate

if 𝑠𝑠 is autotroph or heterotroph

𝑣𝑣𝑠𝑠⏟
Export rate

if 𝑠𝑠 is detritus
 

(5) 

where residual natural mortality 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) accounts for predation by unmodeled taxa, 211 

senescence, and disease, and is necessary to achieve mass-balance.  Similarly, 𝑣𝑣𝑠𝑠 is detritus 212 
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export (e.g., decomposition or turnover) rate, which is defined to ensure that net detritus 213 

accumulation matches net consumption plus export at equilibrium: 214 

𝛽𝛽𝑠𝑠� 𝑣𝑣𝑠𝑠 = ��𝑢𝑢𝑗𝑗𝑐𝑐�̅�𝑖,𝑗𝑗(𝑡𝑡)
𝑆𝑆

𝑗𝑗=1

𝑆𝑆

𝑖𝑖=1

+ ��̅�𝛽𝑗𝑗𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)
𝑆𝑆

𝑗𝑗=1�����������������������
Detritus accumulation

− �𝑐𝑐�̅�𝑠,𝑗𝑗(𝑡𝑡)
𝑆𝑆

𝑗𝑗=1�������
Detritus

consumption

 
(6) 

where 𝑢𝑢𝑗𝑗  is the proportion of consumption that is not assimilated for predator 𝑗𝑗 (with 𝑢𝑢𝑗𝑗 = 0.2 by 215 

default) such that total unassimilated consumption ∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1  then accumulates as 216 

detritus.  Similarly, ∑ 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠)𝑆𝑆
𝑠𝑠=1  is the total residual natural mortality, which we assume 217 

flows to detritus following Walters et al. (1997).    218 

Gain rate 𝑔𝑔𝑠𝑠(𝑡𝑡) is then calculated differently for producers, consumers, and detritus: 219 

𝑔𝑔𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑝𝑝𝑠𝑠

𝑤𝑤𝑠𝑠
×
∑ 𝑐𝑐𝑖𝑖,𝑠𝑠(𝑡𝑡)𝑆𝑆
𝑖𝑖=1

𝛽𝛽𝑠𝑠(𝑡𝑡)
if 𝑠𝑠 is heterotroph

𝑝𝑝𝑠𝑠�̅�𝛽𝑠𝑠
𝛽𝛽𝑠𝑠(𝑡𝑡)

×
𝑥𝑥𝑠𝑠,𝑠𝑠

𝛽𝛽𝑠𝑠(𝑡𝑡)
�̅�𝛽𝑠𝑠

𝑥𝑥𝑠𝑠,𝑠𝑠 − 1 + 𝛽𝛽𝑠𝑠(𝑡𝑡)
�̅�𝛽𝑠𝑠

if 𝑠𝑠 is autotroph

∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑒𝑒𝑗𝑗)𝑆𝑆

𝑗𝑗=1

𝛽𝛽𝑠𝑠(𝑡𝑡)
if 𝑠𝑠 is detritus

 

(7) 

where the gain rate for heterotrophs is calculated as total consumption across all prey divided by 220 

predator biomass, and multiplied by the ratio of production per biomass and consumption per 221 

biomass (termed growth efficiency).  Alternatively, autotrophs do not consume other modeled 222 

taxa, so their density-dependence is modeled via a Michaelis-Menton (a.k.a. half-saturation) 223 

function (Walters et al. 1997 Eq. 5; Gaichas et al. 2012 Eq. 6) where 𝑝𝑝𝑠𝑠�̅�𝛽𝑠𝑠 is their equilibrium 224 

production and 
𝑥𝑥𝑠𝑠,𝑠𝑠

𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽𝛽�𝑠𝑠

𝑥𝑥𝑠𝑠,𝑠𝑠−1+
𝛽𝛽𝑠𝑠(𝑡𝑡)
𝛽𝛽�𝑠𝑠

 has the same form as the predator functional response for heterotrophs 225 

(Eq. 4).  Finally, detritus accumulates from the unassimilated consumption for all predators and 226 



13 
 

prey ∑ ∑ 𝑢𝑢𝑗𝑗𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑆𝑆
𝑗𝑗=1

𝑆𝑆
𝑖𝑖=1 , as well as unmodeled mortality rate ∑ 𝛽𝛽𝑗𝑗(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑒𝑒𝑗𝑗)𝑆𝑆

𝑗𝑗=1  for each 227 

taxon as prey (Walters et al. 1997).   228 

Finally, EcoState estimates an instantaneous fishing mortality rate for any variable with 229 

catch data in a given year.  To do so, EcoState tracks the harvest 𝜂𝜂𝑠𝑠 for each variable 𝑠𝑠, and treats 230 

vector (𝛃𝛃,𝛈𝛈) of length 2𝑆𝑆 as the augmented set of state variables.  Harvest is itself calculated 231 

from fishing mortality rates 𝛟𝛟(𝑡𝑡) composed of 𝜙𝜙𝑘𝑘(𝑡𝑡) for each fishery 𝑘𝑘, where each fishery has 232 

species selectivity 𝑟𝑟𝑠𝑠,𝑘𝑘 such that the fishing mortality rate for each species is 𝐟𝐟(𝑡𝑡) = 𝐑𝐑𝛟𝛟(𝑡𝑡).  We 233 

also include an additional process-error term 𝛜𝛜(𝑡𝑡) ⊙𝛃𝛃(𝑡𝑡), where 𝜖𝜖𝑠𝑠(𝑡𝑡) represents unmodeled 234 

variation in population growth rates for taxon 𝑠𝑠.   235 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝛃𝛃(𝑡𝑡) =

⎝

⎜⎜
⎛
𝐠𝐠(𝑡𝑡)�
Growth
rate

− 𝐦𝐦(𝑡𝑡)���
Natural 
mortality

rate

− 𝐟𝐟(𝑡𝑡)�
Fishing
mortality

rate

+ 𝛜𝛜(𝑡𝑡)�
Process error 
in biomass rate

⎠

⎟⎟
⎞
⊙ 𝛃𝛃𝑡𝑡 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝛈𝛈(𝑡𝑡) =  𝐟𝐟(𝑡𝑡) ⊙𝛃𝛃(𝑡𝑡) 

(8) 

Including process errors 𝜖𝜖𝑠𝑠,𝑡𝑡 in the differential equation for mass (Eq. 8) implies that mass-236 

balance is maintained on average over time, but not exactly in any single year.  We interpret any 237 

short-term departure from mass-balance as representing processes that are not well approximated 238 

in the model, i.e., annual variation in ecotrophic efficiency, detrital export, growth efficiency, 239 

etc. resulting from unmodeled environmental conditions.   240 

Model fitting 241 

To fit this model, EcoState defines a set of coefficients 𝛉𝛉 =242 

(𝐩𝐩,𝐰𝐰,𝐃𝐃,𝛃𝛃�,𝛟𝛟(𝑡𝑡),𝛅𝛅, 𝛜𝛜(𝑡𝑡),𝐪𝐪,𝛔𝛔𝟐𝟐, 𝛕𝛕2, 𝛎𝛎2).  These are then used to project biomass 𝛃𝛃(𝑡𝑡) through 243 

time and model predictions are compared with available data to calculate a joint likelihood.  We 244 
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then treat process errors 𝛜𝛜(𝑡𝑡) as random effects, and integrate across their values using the 245 

Laplace approximation to calculate the marginal likelihood.  We optimize log-marginal 246 

likelihood to identify the maximum-likelihood estimate for selected parameters.  In the 247 

following, we assume that Ecopath coefficients 𝐩𝐩,𝐰𝐰, and 𝐃𝐃 are known, although future studies 248 

could instead specify Bayesian priors to propagate uncertainty about their values.  Similarly, the 249 

user can control what combination of other parameters are estimated or fixed at known values.  250 

In particular, the user must specify a value for either ecotrophic efficiency 𝑒𝑒𝑠𝑠 or equilibrium 251 

biomass �̅�𝛽𝑠𝑠 (but not both) for each taxon, and EcoState then solves for the unspecified value 252 

(e.g., 𝑒𝑒𝑠𝑠 if �̅�𝛽𝑠𝑠 is treated as a parameter) for each taxon (see Supplementary Materials 2).  This 253 

specified value can be fixed a priori (e.g., fixing ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1 for a taxon 𝑠𝑠 for 254 

which all predators are modeled) or estimated as a fixed effect (e.g., estimating equilibrium 255 

biomass �̅�𝛽𝑠𝑠 for a taxon that has an absolute index of biomass to inform population scale).  We 256 

therefore estimate equilibrium biomass and/or ecotrophic efficiency for some set of taxa, while 257 

jointly projecting biomass 𝛽𝛽𝑠𝑠(𝑡𝑡) in discretized times 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}.   258 

We specifically assume that the biomass 𝛽𝛽𝑠𝑠 for each variable 𝑠𝑠 starts at some initial 259 

condition, 𝛽𝛽𝑠𝑠(𝑡𝑡1) = �̅�𝛽𝑠𝑠𝛿𝛿𝑠𝑠, where 𝛿𝛿𝑠𝑠 is the ratio of initial to equilibrium mass for taxon 𝑠𝑠, where 260 

log(𝛿𝛿𝑠𝑠) = 0 by default.  At the beginning of each time-interval, we similarly specify that annual 261 

harvest 𝛈𝛈(𝑡𝑡) = 𝟎𝟎 for all taxon.  We then integrate the differential equation over the interval 262 

(𝑡𝑡, 𝑡𝑡 + 1) using specified values of 𝐩𝐩,𝐰𝐰, 𝐞𝐞,𝐃𝐃,𝛃𝛃�,𝛟𝛟(𝑡𝑡) and 𝛜𝛜(𝑡𝑡), and record the integrated value 263 

𝛈𝛈(𝑡𝑡 + 1) at the end of each interval as the predicted catch occurring for each taxon in that 264 

interval from 𝑡𝑡 to 𝑡𝑡 + 1.  In the following, we specifically use a third-order Adams-Bashford-265 

Moulton method, but also provide an alternative fourth-order Runge-Kutta method where both 266 

are adapted from the pracma package in R (Borchers 2023).  We initially explored alternative 267 
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ordinary differential equation (ODE) solvers that are provided by the deSolve package in R 268 

(Soetaert et al. 2010) using package RTMBode (Kristensen 2024a), but found that this approach 269 

was not sufficiently flexible to deal with the Laplace approximation given the specified structure 270 

of EcoState.  We continue this integration for all 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}, while recording biomass 𝛃𝛃(𝑡𝑡) 271 

and harvest 𝛈𝛈(𝑡𝑡) at the end of each year.  We then calculate the joint likelihood by specifying 272 

that biomass measurements follow a lognormal distribution: 273 

log(𝑏𝑏𝑠𝑠(𝑡𝑡)) ~Normal(log(𝑞𝑞𝑠𝑠𝛽𝛽𝑠𝑠(𝑡𝑡)) ,𝜎𝜎𝑠𝑠2) (9) 

where 𝑞𝑞𝑠𝑠 is the catchability coefficient representing the proportion of biomass that is available to 274 

a monitoring program for taxon 𝑠𝑠, 𝜎𝜎𝑠𝑠2 is a user-specified variance for the any biomass 275 

measurements, and where 𝑏𝑏𝑠𝑠,𝑡𝑡 = NA ignores this component from the likelihood.  Similarly, we 276 

specify a lognormal distribution for catches: 277 

log(ℎ𝑠𝑠(𝑡𝑡)) ~Normal(log(𝜂𝜂𝑠𝑠(𝑡𝑡)) , 𝜈𝜈𝑠𝑠2) (10) 

where 𝜈𝜈𝑠𝑠2 is a user-specified variance for the any catch data, and where ℎ𝑠𝑠(𝑡𝑡) = NA ignores this 278 

component from the likelihood.  Finally, we specify a distribution for process errors: 279 

𝜖𝜖𝑠𝑠(𝑡𝑡)~Normal(0, 𝜏𝜏𝑠𝑠2) (11) 

where 𝜏𝜏𝑠𝑠2 and 𝛜𝛜𝑠𝑠 can be fixed at zero a priori to “turn off” process errors for any taxa 𝑠𝑠, or 𝜏𝜏𝑠𝑠2 can 280 

be estimated as a fixed effect and 𝛜𝛜𝑠𝑠 as a random effect.   281 

 EcoState is implemented in the R statistical environment (R Core Team 2023) using 282 

RTMB (Kristensen 2024b).  RTMB provides a simplified interface to the Template Model 283 

Builder library (Kristensen et al. 2016), which uses automatic differentiation (AD) for efficient 284 

calculation of model derivatives.  Specifically, AD allows us to efficiently compute the Laplace 285 

method to approximate the log-marginal likelihood.  We then identify the maximum likelihood 286 

estimate (MLE) for fixed effects by optimizing this log-marginal likelihood, and then compute 287 
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Empirical Bayes predictions of random effects by optimizing the joint likelihood with respect to 288 

random effects using the MLE for fixed effects.  Finally, we use a generalization of the delta 289 

method to compute standard errors and predictive errors for fixed and random effects (Kass and 290 

Steffey 1989).  We check model convergence by confirming that: (1) the gradient of the log-291 

marginal likelihood with respect to each fixed effect is less than 0.001; (2) the matrix of 2nd 292 

derivatives of the negative log-marginal likelihood (the outer Hessian matrix) is positive definite; 293 

and (3) the results are unchanged when increasing the number of subintervals evaluated when 294 

applying the ODE solver for Eq. 9.   295 

EcoState has several advantages relative to previous Ecopath-with-Ecosim (Christensen 296 

and Walters 2004) or Rpath (Lucey et al. 2020) implementations of mass-balance models: 297 

1. Joint modelling:  It combines the mass-balance done by Ecopath with the dynamical 298 

projection from Ecosim within a single statistical model.  It therefore replaces a 2-stage 299 

workflow with a single model, and allows the model to be easily refitted (including 300 

rebalancing the population scale) when adding/dropping taxa or data. Ecosim has previously 301 

been fitted to estimate vulnerability parameters using likelihood or sum-of-squares methods 302 

(Gaichas et al. 2012; Scott et al. 2016; Bentley et al. 2024), but we do not know of efforts to 303 

jointly estimate mass-balance (Ecopath) and vulnerability (Ecosim) parameters;  304 

2. Process errors:  By estimating process errors, we ensure that estimated mass 𝛽𝛽𝑠𝑠,𝑡𝑡 is shrunk 305 

towards measured values 𝑞𝑞𝑠𝑠𝑏𝑏𝑠𝑠,𝑡𝑡 whenever measurements are available.  This then ensures 306 

that modeled consumption is shrunk towards the quantity expected given that measured 307 

mass, i.e., that systematically over- or underestimating mass for a variable relative to 308 

observations does not propagate into over- or under-estimated consumption for interacting 309 

species. For variables that have no biomass measurements, dynamics are then inferred based 310 
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on time-varying productivity resulting from changes in modeled consumption (and resulting 311 

gain and loss rates) conditional upon those estimated process errors; 312 

3. Model bridging:  If the analyst chooses to specify all parameters and turn off process errors, 313 

then dynamics will be similar to those from Ecopath and Ecosim.  This then facilitates model 314 

building, i.e., by starting with published EwE models and progressively “turning on” 315 

different parameters and/or process errors;   316 

4. Forecast variance:  If the analyst chooses to model future years with no available data 317 

regarding absolute or relative mass, they must still specify a value for catch in those future 318 

years.  Having done this, the model will automatically propagate uncertainty about process 319 

errors 𝛜𝛜(𝑡𝑡) and resulting uncertainty about biomass 𝛃𝛃(𝑡𝑡) in those future years; 320 

5. Exploring ecosystem modules:  Finally, the analyst may want to isolate interactions among a 321 

small subset of taxa (“species module;” Holt 1997).  The model still estimates consumption 322 

among those taxa that are retained, but typically identifies decreased ecotrophic efficiency 323 

for those taxa whose predators are excluded. This addresses ongoing calls for “minimal 324 

realistic models” using mass-balance dynamics (Walters et al. 1997). 325 

These features are common in modern stock assessment models, but novel for mass-balance 326 

ecosystem models.   327 

Case study:  productivity and mortality for Alaska pollock in the eastern Bering Sea 328 

To illustrate the potential benefits of EcoState, we fit it to survey data and catches for 11 329 

variables in the eastern Bering Sea from 1982-2021.  This example includes major predators, 330 

prey, and competitors for Alaska pollock, including three fishes (pollock; Pacific cod, Gadus 331 

macrocephalus, hereafter referred to as cod; and arrowtooth flounder Atheresthes stomias), one 332 

autotroph (pelagic producers), one detritus variable, five intermediate consumers (copepods, 333 
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krill, demersal invertebrates, benthic microbes, and other pelagic zooplankton), and one predator 334 

(northern fur seal, Callorhinus ursinus).  We use productivity and diet parameters 335 

(𝐩𝐩,𝐰𝐰,𝐃𝐃, see Table S2) from previous Rpath and EwE analysis (Aydin et al. 2007; Whitehouse et 336 

al. 2021), which are aggregated using biomass-weighted averages from those models.  However, 337 

we use updated consumption 𝑤𝑤𝑠𝑠 for northern fur seals to reflect their seasonal residence in the 338 

modeled area.  We do not use any information about ecosystem scale (ecotrophic efficiency 𝑒𝑒𝑠𝑠 or 339 

equilibrium biomass 𝛽𝛽𝑠𝑠� ) from a previous mass-balance model, to avoid “double-dipping” on data 340 

that might have informed previous models and which we also use during model fitting.  We fit 341 

the model using 20 sub-intervals for the Adams-Bashforth solver per year, but confirm that 342 

results are (essentially) unchanged when increasing this to 30 sub-intervals per year.   343 

This example estimates annual fishing mortality using catch data for the three fishes 344 

(pollock, cod, and arrowtooth founder).  We assume that catches arise from three separate 345 

fisheries (i.e., the fishery selection matrix 𝐑𝐑 is an identity matrix), and specify measurement 346 

error 𝜈𝜈𝑠𝑠 = 0.1.  We also fit to biomass time-series calculated using a design-based estimator 347 

applied to survey data from an annual bottom-trawl survey in the eastern Bering Sea (Lauth and 348 

Conner 2016), and a biomass-time series for northern fur seal (from McHuron et al. 2020), and 349 

see Supplementary Materials 3 for details. Cod and arrowtooth are bottom-associated species, 350 

and we therefore assume that the biomass time-series in the eastern Bering Sea is an absolute 351 

index of biomass (i.e., catchability coefficient 𝑞𝑞𝑠𝑠 = 1).  Similarly, the northern fur seal biomass 352 

index is generated from population models estimating numbers at age for St. Paul and St. George 353 

Islands (we only use values from years with direct surveys occurring at those sites), and we also 354 

assume that it is an absolute index of biomass.  Given this assumption, we then estimate 355 

equilibrium biomass �̅�𝛽𝑠𝑠 and initial abundance relative to equilibrium 𝛿𝛿𝑠𝑠 for cod, arrowtooth, and 356 
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northern fur seal as fixed effects.  By contrast, pollock has both demersal and pelagic 357 

components (Monnahan et al. 2021), so we choose to treat the bottom-trawl survey as a relative 358 

abundance index, and therefore estimate catchability 𝑞𝑞𝑠𝑠 (which we expect will be < 1) and initial 359 

abundance relative to equilibrium 𝛿𝛿𝑠𝑠.  Similarly, we fit to a relative abundance index (i.e., 360 

estimating catchability coefficient 𝑞𝑞𝑠𝑠) for biomass indices for copepods and other pelagic 361 

zooplankton (from a fall surface trawl survey), krill (from a summer acoustics survey), and 362 

pelagic primary producers (from satellite chlorophyll-a concentrations averaged from May to 363 

October).   364 

For all eight variables without an absolute biomass index, we estimate population scale 365 

by specifying that ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1.  This specification avoids using “expert opinion” 366 

to define the equilibrium biomass 𝛽𝛽𝑠𝑠� , where this expert opinion might be informed by previous 367 

EwE modelling.  However, future applications could instead use Bayesian priors on ecotrophic 368 

efficiency and/or equilibrium biomass to relax the assumption that 𝑒𝑒𝑠𝑠 = 1 for those eight 369 

variables.  Specifying 𝑒𝑒𝑠𝑠 = 1 results in all mortality being due to consumption (i.e., residual 370 

mortality 𝑝𝑝𝑠𝑠(1 − 𝑒𝑒𝑠𝑠) = 0), such that predator and prey are tightly coupled.  For all abundance 371 

indices we specify measurement error 𝜎𝜎𝑠𝑠 = 0.1.  We also specify vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 = 2 (the 372 

default from Rpath and EwE) for all heterotrophs, and 𝑥𝑥𝑖𝑖,𝑗𝑗 = 91 (the upper bound from Rpath) 373 

for the autotroph.  Finally, we estimate annual process errors for five taxa (pollock, cod, 374 

arrowtooth, copepods, and northern fur seal) as random effects, and estimate the standard 375 

deviation of process-error variation 𝜏𝜏𝑠𝑠 for each of these taxa as fixed effects. 376 

 We specifically compare estimates from three contrasting specifications of EcoState: 377 

1. Full:  Estimating process errors and fishing mortality, to estimate annual consumption and 378 

productivity resulting from estimated biomass for predators and prey; 379 



20 
 

2. No process errors:  Turning off process errors, to estimate the consumption and productivity 380 

that would be expected without estimating annual variation in ecological dynamics; 381 

3. No catches or process errors:  Turning off process errors and ignoring fishing mortality (i.e., 382 

specifying ℎ𝑠𝑠(𝑡𝑡) = 0 for all taxa), to estimate the equilibrium conditions that are otherwise 383 

expected. 384 

For each model, we record annual growth rate 𝑔𝑔𝑠𝑠(𝑡𝑡) and mortality rate 𝑚𝑚𝑠𝑠(𝑡𝑡). We use this to 385 

illustrate how variation in predators and prey has resulted in time-varying production.  We also 386 

decompose growth-rate and mortality-rate per biomass into the contributions from individual 387 

predators and prey species (additive components of Eq. 8 and 6, respectively), so that we can 388 

attribute changes in production to individual prey and predators.  Fitting the full model with 389 

uninformative starting values required approximately 2 hours on a standard laptop using R 390 

version 4.3.0.   391 

Simulation experiment:  estimating productivity and mortality 392 

To explore the statistical performance of EcoState, we also conduct a “self-test” simulation 393 

experiment.  This experiment involves simulating ecosystem dynamics, simulating abundance 394 

indices and catch data, refitting the model to these data, and comparing estimates with known 395 

(true) values of ecosystem variables for each of 50 simulation replicates.  We specifically 396 

simulate dynamics for a fictive ecosystem involving six taxa (see Table S3): one autotroph 397 

(representing pelagic primary production), one detritus (the base of the benthic foodweb), two 398 

consumers (one pelagic and one benthic), and two predators (one pelagic and one benthic) from 399 

1980-2020.  We also specify that benthic consumers and predators have slower life-history 400 

(lower 𝑝𝑝𝑠𝑠 and higher 𝑤𝑤𝑠𝑠) than their pelagic counterparts.  We specify that ecotrophic efficiency 401 

𝑒𝑒𝑠𝑠 = 0.9 (i.e., 90% of biomass transfer is captured) for the producers and consumers, and that 402 
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predatorshave equilibrium biomass 𝛽𝛽𝑠𝑠� = 1, and then solve for equilibrium biomass for the other 403 

species (see Fig. S5).  Finally, we specify a vulnerability 𝑥𝑥𝑖𝑖𝑗𝑗 = 2 (representing a Hollings Type-2 404 

predator functional response) for consumers and predators, and a vulnerability 𝑥𝑥𝑖𝑖𝑗𝑗 = 91 405 

(representing a close-to-constant production-per-biomass) for producers.   406 

  We then simulate an increase in fishing mortality rate for the two predators over the 40 407 

years of simulated dynamics (see Fig. S0), and specify that process errors have a standard 408 

deviation 𝜏𝜏𝑠𝑠 = 0.1 for primary producers and predators, and 𝜏𝜏𝑠𝑠 = 0.02 for consumers (which are 409 

also affected by process errors in both predators and producers).  We simulate abundance indices 410 

and measurements of catch for each species.  We then refit the model using 10 sub-intervals of 411 

the Adams-Bashforth-Moulton ODE solver.  For the “full model” we estimate the difference 412 

between equilibrium and initial biomass 𝛿𝛿𝑠𝑠 and the magnitude of process errors 𝜏𝜏𝑠𝑠 for each 413 

taxon, as well as a single vulnerability 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥𝑖𝑖𝑗𝑗 for all consumers and predators (i.e., 13 414 

fixed effects). We compare this with a “null model” that estimates only 𝛿𝛿𝑠𝑠 and 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (i.e., 7 415 

fixed effects), and ignores process errors.  Finally, we compare error in estimates of model 416 

parameters, as well as annual growth rate per biomass 𝑔𝑔𝑠𝑠(𝑡𝑡) (Eq. 8), mortality rate per biomass 417 

𝑚𝑚𝑠𝑠(𝑡𝑡) (Eq. 6), and biomass 𝛽𝛽𝑠𝑠(𝑡𝑡) between the full and null models.  Each replicate of the 418 

simulation model required approximately 10 min on a standard laptop using R version 4.3.0.   419 

Results 420 

For the eastern Bering Sea case study, the full version of the EcoState model (i.e., including 11 421 

variables and fitting to catches using process errors) includes both benthic and pelagic sources of 422 

production (Fig. 1 and Table S3), and has variables that range from trophic level 1 (producer and 423 

detritus) to 4.3 (northern fur seal).  It estimates both decadal trends and interannual variation that 424 

is consistent with biomass surveys (Fig. 2).  Major consumers (pollock and cod) show biomass 425 
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cycles, i.e., elevated biomass from 2000-2005 and decreased biomass from 2005-2010, followed 426 

by elevated biomass from 2012-17 and subsequently lower biomass.  By contrast, arrowtooth 427 

flounder, northern fur seal, and zooplankton are dominated by decadal trends, i.e., arrowtooth 428 

showed a large increase in biomass from 1982-1990, northern fur seal showed a progressive 429 

decrease in biomass from 1995 onward, and both krill and primary producers both show a 430 

pronounced decline from 2008 onward.  As expected, pollock biomass is higher than the bottom-431 

trawl survey index due to an estimated catchability coefficient less than one, i.e., log(𝑞𝑞𝑠𝑠) =432 

−0.836, and closely fits specified catch data (Fig. S1).   433 

The increasing biomass trend for arrowtooth and decreasing trend for northern fur seal 434 

are largely explained by the estimated difference between initial and equilibrium biomass 435 

(log(𝛿𝛿𝑠𝑠) = −2.226 and 0.27, respectively; see Table S4).  As a result, the trends for these taxa 436 

are also captured by models that ignore process errors, or the null model without process errors 437 

or catches (Fig. 3).  However, the model without process errors (blue line in Fig. 3) fails to 438 

capture the biomass cycles for pollock, the trends for other zooplankton, chlorophyll, and krill, 439 

and dampens the cycles for Pacific cod.  Similarly, the model without process errors and catches 440 

estimates lower biomass overall for zooplankton (krill, copepods, and other), pollock, and 441 

benthic variables.  This difference in scale arises because we specify ecotrophic efficiency 𝑒𝑒𝑠𝑠 =442 

1 for these species (to avoid using auxiliary information to define their population scale).  443 

Without fishery harvest, the model can decrease copepod biomass from 4 to 2 million tons while 444 

still maintaining the biomass of species with indices of absolute abundance (cod, arrowtooth, and 445 

northern fur seals).  446 

 The state-space model attributes biomass patterns to annual variation in growth 𝑔𝑔(𝑡𝑡), 447 

natural mortality 𝑚𝑚(𝑡𝑡), fishing mortality 𝑓𝑓(𝑡𝑡) for the three exploited fishes (Fig. 4), and process 448 
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errors (Fig. S3).  Growth exceeds natural and fishing mortality rates for arrowtooth during the 449 

initial years (1982-1995), which drives an increase in biomass, and this difference subsequently 450 

declines towards zero as population biomass stabilizes.  Similarly, northern fur seals have lower 451 

growth than natural mortality, in particular from 1995-2000 and again 2005-2015, which drives a 452 

decline in biomass over time.  However, biomass patterns cannot be entirely explained by 453 

changes in consumption driving growth and natural mortality.  Cod and pollock have lower-than-454 

average biomass from 2005-2010, and density dependence causes estimated growth to exceed 455 

natural mortality rates (Fig. 4); however, this density-dependent increase in productivity is offset 456 

by negative process errors 𝜖𝜖𝑠𝑠(𝑡𝑡) (Fig. S3), which allows the model to estimate that lower-than-457 

average biomass persists over these years.  Similarly, decadal trends for northern fur seal are 458 

driven by a sequence of positive process errors until 2000 followed by negative process errors.   459 

 The model can be used to further decompose growth and mortality rates into the 460 

contribution of individual prey and predator species, respectively (Fig. 5).  This exercise shows 461 

that elevated growth rates for pollock during positive cycles (top-left panel of Fig. 5) are 462 

associated with an increased proportion of krill consumption, while the contribution of copepods 463 

to pollock growth rate has been relatively consistent over time.  Predation on pollock shows a 464 

small but noticeable increase when arrowtooth biomass increased from 1982-1990 (bottom-left 465 

panel of Fig. 5).  However, fluctuations in pollock mortality are largely due to changes in 466 

cannibalism from pollock and predation from cod, during their population cycles.  By contrast, 467 

growth rate for cod largely follows the cycles for pollock as their major prey (red in top-right 468 

panel of Fig. 5).  We do not explicitly model many predators for cod, and hence their natural 469 

mortality is largely attributed to the residual mortality that is constant over time.  Finally, krill 470 

has higher growth and mortality rates than either pollock or cod due to their faster life-history, 471 
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and this means that small relative differences (e.g., changing growth 𝑔𝑔𝑠𝑠(𝑡𝑡) from 6 to 5.8) can still 472 

result in large absolute differences in population dynamics.  However, the decline in chlorophyll 473 

biomass in 2010 (Fig. 2) is immediately apparent in decreased consumption and growth-rate for 474 

krill (Fig. 5), which is synchronous with the decrease in krill biomass around that time.   475 

 Finally, our self-test simulation experiment confirms the state-space model can accurately 476 

estimate annual growth 𝑔𝑔(𝑡𝑡) and mortality 𝑚𝑚(𝑡𝑡) components (red line in Fig. 6), and generally 477 

was more precise than a model that does not estimate process errors (blue line in Fig. 6).  This 478 

difference results from the ability of the state-space model to more-accurately estimate annual 479 

variation in biomass for predators and prey, and therefore also improves the estimates of 480 

consumption 𝑐𝑐𝑠𝑠2,𝑠𝑠1(𝑡𝑡) and resulting estimates of predator growth and prey mortality rates.  Both 481 

the full and null models can accurately estimate the vulnerability and equilibrium biomass 482 

parameters (see Fig. S5). 483 

Discussion 484 

Here, we demonstrated the first (to our knowledge) state-space version of a whole-of-ecosystem 485 

model for marine ecosystems that allows for more complete and systematic estimation of process 486 

error across all species, without pre-specifying the driving processes.  We extended the Ecopath-487 

with-Ecosim model, which has over 487 models compiled online1 and remains one of the most 488 

widely used models for ocean ecosystems worldwide (Colléter et al. 2015).  EcoState specifies 489 

mass-balance dynamics using nonlinear differential equations.  We integrate this differential 490 

equation over time by embedding alternative ODE solvers within a statistical language RTMB 491 

that implements automatic differentiation and uses the Laplace approximation to efficiently 492 

marginalize across random effects.  Including random effects allows us to capture decadal trends 493 

                                                           
1 As compiled on EcoBase (https://ecobase.ecopath.org/) and accessed June 11, 2024.  

https://ecobase.ecopath.org/
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and interannual cycles in biomass (which are otherwise mis-specified in a model that does not 494 

have process errors, Fig. S3), and to more accurately capture the variable growth and mortality 495 

rates that result from changes in consumption.  Estimating parameters via maximum likelihood 496 

also allows us to propagate variance in both fixed effects (e.g., equilibrium biomass) and process 497 

errors when predicting biomass in unsampled years.  This predictive variance includes the 498 

contribution of both fixed effects and process errors, such that biomass has higher predictive 499 

uncertainty when distant from available data and/or for taxa with rapid life-histories.   500 

Previous research has explored alternative methods to fit Ecosim models to time-series 501 

data, and standard practice is to include time-series calibration based on tools built into EwE for 502 

maximum likelihood estimation of vulnerability (𝑥𝑥𝑖𝑖,𝑗𝑗) parameters (Scott et al. 2016; Bentley et 503 

al. 2024).  Further, EwE includes “anomaly search” functions that either use external indices 504 

(e.g. upwelling) to explain residuals in fit to time-series, or fit pre-specified types of process 505 

error, for example, finding a primary productivity time series that best fits the data (Shannon et 506 

al. 2008).  However, these methods require pre-specifying the type of process error (e.g. 507 

assuming prior to fitting that primary production is the main process driver); this could have the 508 

effect of building some hypotheses for process effects into the model at the expense of others, 509 

with implications for the fit and projections (Gaichas et al. 2011).                510 

 Our case-study involving the Bering Sea illustrates several notable patterns in this 511 

ecosystem, which generates nearly 2 million metric tons of catches annually.  Specifically, the 512 

ecosystem includes both cyclic and long-term biomass trends that are not well captured by a 513 

mass-balance model without process errors (also noted by Aydin and Mueter 2007).  In 514 

particular, primary producers have declined by nearly 30%, and this is synchronous with a 515 

declining trend in krill biomass.  Previous studies have debated the relative importance of top-516 
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down and bottom-up control for krill biomass (Ressler et al. 2012, 2014), and our study identifies 517 

declining chlorophyll-a concentrations (and its impact on growth) as a potential mechanism (see 518 

Fig. 4 bottom-left panel).  The model then attributes a small decline in productivity for pollock to 519 

this depressed krill biomass.  This bottom-up impact from chlorophyll (producer) to krill 520 

(intermediate consumer) to predator (pollock) is the reverse of a trophic-cascade, wherein a 521 

change in predator abundance is predicted to impact producers (Ripple et al. 2016).  These types 522 

of multi-level bottom-up impacts are not represented by statistical multispecies models, and 523 

emphasizes the importance of improved monitoring for krill in understanding climate-impacts on 524 

ecosystem productivity.  However, we note that bottom-up forcing is also favored by model 525 

assumptions, i.e., assuming ecotrophic efficiency 𝑒𝑒𝑖𝑖 = 1 for prey groups (thus eliminating non-526 

predation natural mortality) and assuming that vulnerability 𝑥𝑥𝑖𝑖,𝑗𝑗 = 2.  In particular, future studies 527 

should seek to identify whether declining primary producers is associated with an increase in 528 

consumption 𝑤𝑤𝑠𝑠 and/or production 𝑝𝑝𝑠𝑠 per biomass, which could offset the food-web impacts of 529 

declining primary producers (Nielsen et al. 2023).   530 

 The Bering Sea case-study illustrates how a mass-balance model can be recast using a 531 

reduced set of focal species.  Recent Rpath models for the eastern Bering Sea have included 532 

nearly 100 taxa (Aydin et al. 2007; Whitehouse et al. 2021), and the resulting model is typically 533 

used to evaluate strategic (long-term) tradeoffs among management strategies.  By contrast, our 534 

EcoState model includes only 10 functional groups and one detrital pool; this small size is 535 

relatively rare for mass-balance models (although see Chagaris et al. 2020), although pooling 536 

taxa still results in nearly 80% of biomass from the full Rpath model being included (see 537 

Supplementary Materials S3).  Including fewer taxa allows us to calculate a high-accuracy 538 

solution to the differential equation for biomass, as required when estimating process errors.  It 539 
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also allows us to provide a statistically rigorous prediction of ecosystem variables (and 540 

associated uncertainty) beyond the range of abundance indices, as desired for Models of 541 

Intermediate Complexity for Ecosystems (Plagányi et al. 2014).  These predictions could then be 542 

used for seasonal-to-decadal forecasting, identifying annual status relative to ecosystem targets, 543 

or other tactical (short-term) management decisions (Plagányi 2007).  Additionally, capacity 544 

constraints limit the use of ecosystem and multispecies models for short-term fisheries 545 

management.  Modelers typically have just a few years to develop a “research” model and then 546 

show its usefulness for management.  In that time, a model may not be used because (1) data 547 

streams were not available in a timely manner, (2) time allocated for peer review was inadequate, 548 

and (3) additional scenarios or diagnostics could not be conducted within the time allocated for 549 

peer review.  Including fewer species can address these concerns by (1) reducing model 550 

implementation time as an analyst could focus on developing a smaller set of data inputs, (2) 551 

simplifying the peer review process, and 3) reducing model run time thus allowing more time for 552 

running different management scenarios. However, using a smaller set of taxa also has 553 

drawbacks, i.e., it narrows the range of alternate pathways for trophic interactions, and therefore 554 

may result in stronger predator-prey interactions than those estimated when including more taxa.  555 

In the case-study presented here, we have included major predators and prey for Alaska pollock 556 

but, e.g., a model focused on cod would need to include additional predators to better represent 557 

the residual mortality rate (Fig. 4 2nd row right column).   558 

 This state-space mass-balance model can also be interpreted as a mechanistic model to 559 

incorporate time-varying productivity into biomass-dynamic (a.k.a., surplus production) models.  560 

Biomass-dynamic models are one of the oldest models in ecology (Pearl and Reed 1920) and 561 

fisheries (Russell 1931), and state-space extensions are still widely used to identify stock status 562 
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for many fisheries worldwide (Pedersen and Berg 2017; Winker et al. 2020).  These models 563 

typically estimate population scale (equilibrium biomass and a catchability coefficient) by 564 

treating the fishery as a depletion experiment (Magnusson and Hilborn 2007).  We encourage 565 

future research to compare EcoState against state-space biomass-dynamics models.  In particular, 566 

EcoState would provide a parsimonious approach to predict nonstationarity (in intrinsic growth 567 

rate 𝑟𝑟 or equilibrium 𝐾𝐾) resulting from changing predator or prey biomass (Aydin 2004), while 568 

allowing estimates of the catchability coefficient in some cases.  We hypothesize that trophic 569 

interactions could result in population-cycles that are otherwise missing from single-species 570 

biomass-dynamic models (Walters and Kitchell 2001), and could also change the shape of the 571 

production function (and resulting biological reference points).   572 

 We envision several ways that EcoState could be further advanced by future studies.  573 

Most importantly, population dynamics and statistical multispecies models typically use 574 

information about population age and size structure to better represent population lags (e.g., how 575 

changes in recruitment have a lagged effect on population biomass), nonstationary demographic 576 

rates (e.g., a lower consumption-per-biomass when average age is higher than equilibrium), and 577 

diet switching (e.g., ontogenic changes in consumptive interactions).  Ecopath-with-Ecosim 578 

represents these impacts by dividing taxa into “stanzas” (multiple life-stages) for focal taxa 579 

(Christensen and Walters 2004).  We recommend future research to incorporate stanzas into 580 

EcoState; we did not do this here to focus attention on the many novel aspects of our study, 581 

including (1) jointly fitting equilibrium biomass and observation errors (catchability), and (2) 582 

incorporating process errors in a nonlinear differential equation model.  Similarly, future studies 583 

could include stomach-content data to identify changes in diet over time, ideally while jointly 584 

estimating the “data-weighting” for time-varying diet (Grüss et al. 2020).  Finally, we 585 
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recommend continued simulation-testing of EcoState, e.g., to identify whether Bayesian priors 586 

can be used to also estimate production and consumption parameters.  Such testing could be used 587 

to explore model diagnostics, both to determine when mass-balance models are likely to have 588 

good (or poor) predictive skill, or to identify when additional processes should be added 589 

(Carvalho et al. 2021).   590 

 Finally, we recommend that future studies attribute process errors to additional 591 

oceanographic, ecological, physical drivers.  We have specified that process errors are 592 

independent and identically distributed, but recent research has demonstrated how to specify a 593 

dynamic structural equation model (DSEM) representing lagged and simultaneous causal effects 594 

among process errors (Thorson et al. 2024).  We therefore envision that future studies could treat 595 

annual covariates (e.g., ocean temperature or predator-prey overlap) as additional model 596 

variables that are treated as measured without error, and then estimate the impact of these 597 

covariates on estimated process errors.  This is somewhat akin to the “forcing functions” that are 598 

estimated using covariates in Ecopath-with-Ecosim, although DSEM would allow missing 599 

covariate values to be imputed based on temporal and multivariate correlations, similar to recent 600 

practices in stock assessment (du Pontavice et al. 2022). For example, previous research suggests 601 

that predator-prey dynamics are affected by spatial overlap by predator and prey (Goodman et al. 602 

2022), which is in turn driven by winter sea ice production and the spatial extent of the summer 603 

“cold pool” (Thorson et al. 2021).  Incorporating covariates into mass-balance models is a long-604 

term goal for ecosystem modelers (Gaichas et al. 2011), and we suspect that combining DSEM 605 

with EcoState represents a computationally efficient and expressive interface for doing so.   606 
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Fig. 1:  Estimated trophic level (y-axis) and pelagic proportions (x-axis) for the eastern Bering Sea 828 

case study (top panel) or the simulation experiment (bottom panel).  Taxa are labeled 829 

alphabetically following their row-order in Table S2 and S3, respectively, with vertex circles 830 

having size representing the log-mass of each variable, and the edges color-coded to represent the 831 

log-consumption flowing from predator to prey.  We compute “Pelagic proportion” by treating 832 

“Pelagic prod.” and “Producer” as the source of pelagic production in each model, respectively.   833 

 834 
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Fig. 2 – Estimated abundance (y-axis in teragrams a.k.a. million metric tons, black line) +/- one 836 

standard error (grey shaded ribbon) in each year (x-axis) for each modeled variable (panels), 837 

plotted against the indices of biomass (black dots) for cod, arrowtooth, northern fur seals, 838 

Pollock, Copepods, Other Zooplankton, Krill, and Primary producers.  For pollock, we also show 839 

the raw index of biomass (x-symbols) and the index divided by the estimated catchability 840 

coefficient (black dots), to show the estimated biomass relative to the bottom-trawl survey scale.  841 

Note that Benthic invertebrates, Benthos, and Detritus have neither absolute nor relative 842 

abundance available.  843 
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Fig. 3:  Comparison of biomass estimates using the full model (black), a null model without 846 

process errors or catches (red), and a “measurement-error” model that includes catches but no 847 

process errors (blue), where each shows +/- one standard error as shading.  848 

 849 
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Fig. 4 – Estimated rates that affect productivity, i.e., 𝑔𝑔(𝑡𝑡) (production rate; green) and 𝑚𝑚(𝑡𝑡) 851 

(mortality rate including consumption; blue) for each modeled species in the eastern Bering Sea, 852 

as well as 𝑓𝑓(𝑡𝑡) (fishing mortality rate; red) for the three species with fishery catches, showing 853 

the predicted value (line) +/- 1 standard error (shaded area).  Note that change in biomass 854 

𝑎𝑎
𝑎𝑎𝑡𝑡
𝛽𝛽(𝑡𝑡) = �𝑔𝑔(𝑡𝑡) − 𝑓𝑓(𝑡𝑡) −𝑚𝑚(𝑡𝑡) + 𝜖𝜖(𝑡𝑡)� × 𝛽𝛽(𝑡𝑡) (where process error 𝜖𝜖 is plotted separately in 855 

Fig. S2) such that 𝑔𝑔 has a positive effect while 𝑚𝑚 and 𝑓𝑓 have negative effects  856 

  857 
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Fig. 5 – Stacked barplot showing growth rate 𝑔𝑔(𝑡𝑡) (left column) or natural mortality rate 𝑚𝑚(𝑡𝑡) 858 
(right column) for pollock (top row, i.e., matching green and blue lines in first panel of Fig. 3), 859 
cod (middle row, i.e., second panel of Fig. 3), and krill (bottom row, i.e., 8th panel of Fig. 3), 860 
while decomposing these demographic rates into the contribution for each prey species (i.e., each 861 
component of Eq. 5 for Growth) or for each predator species as well as a constant residual 862 
mortality rate (i.e., each component of Eq. 6 for Natural mortality), where 𝑀𝑀0 (pink) indicates 863 
residual natural mortality.   864 
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Fig. 6 – Range of errors that covers 10% and 90% of the 50 simulation replicates (y-axis) for 867 

each year (x-axis) in annual estimates of growth from consumption (𝑔𝑔), mortality due to 868 

predation (𝑚𝑚) (columns), or biomass (𝛽𝛽) for each simulated species (rows) for either the state-869 

space model (red shading) or the same model but without estimating process errors in dynamics 870 

(blue shading), and also showing the median error for both models (red and blue lines, 871 

respectively).  Note that the two predators (bottom two rows) experience no predation (see Table 872 

S3) such that their mortality is specified without error and therefore not shown.   873 

 874 
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Supplementary Materials 1:  Simplifying functional responses 875 

In the main text, we present a formula for consumption (Eq. 4) that eliminates additional terms 876 

that can be used to represent ecological interactions among predators and prey.  We follow 877 

default settings from Rpath (described in Lucey et al. (2020)), and only eliminate terms that are 878 

not used given those default values.  Here, we summarize how Eq. 4 results from the default 879 

values used for these additional terms: 880 

1. Foraging time:  Ecosim can be configured to represent prey-specific foraging time.  Lucey et 881 

al. (2020) defines prey-specific foraging time 𝐹𝐹𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖,𝑚𝑚 (see Eq. 19-22 of that paper) and an 882 

adjustment rate 𝐹𝐹𝐹𝐹𝑑𝑑𝑗𝑗𝑖𝑖.  Their default is to start 𝐹𝐹𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖,𝑚𝑚 = 1 in the initial time, with 883 

adjustment rate 𝐹𝐹𝐹𝐹𝑑𝑑𝑗𝑗𝑖𝑖 = 0, such that 𝐹𝐹𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒𝑖𝑖,𝑚𝑚 = 1 for all subsequent times.  As a result, 884 

prey-specific foraging time is constant, and this specification avoids integrating additional 885 

state variables.  Lucey et al. (2020) states that the EwE software uses a default value of 886 

𝐹𝐹𝐹𝐹𝑑𝑑𝑗𝑗𝑖𝑖 = 0.5, so EcoState does not correspond to the default values for the EwE software.    887 

2. Forcing functions:  Ecosim can be configured to include forcing functions, which represent 888 

unmodeled variation in consumption.  We instead assume that these are captured in estimated 889 

process errors, and do not include the option in our definition of consumption.   890 

3. Prey functional response:  Ecosim can be configured to represent the prey functional 891 

response (third term of the right-hand-side of Eq. 4) using a parameter representing predator-892 

specific handling time that controls the shape of the functional response.  We again refer to 893 

notation from Lucey et al. (2020 Eq. 19-22), which defines predator-specific handling time 894 

parameter 𝐷𝐷𝑖𝑖𝑗𝑗 (which accounts for predator saturation as prey become abundant), and 895 

functional-response parameter 𝜃𝜃 (𝜃𝜃 = 1 results in a Holling’s Type-2 and 𝜃𝜃 = 2 results in a 896 
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Holling’s Type-3 functional response).  Their default is 𝐷𝐷𝑖𝑖𝑗𝑗 = 1000 and 𝜃𝜃 = 1, and they note 897 

that “for practical use, values 𝐷𝐷𝑖𝑖𝑗𝑗 > 1000  are indistinguishable from infinity” for parameter 898 

𝐷𝐷𝑖𝑖𝑗𝑗.  We therefore instead define 𝐷𝐷𝑖𝑖𝑗𝑗 → ∞, where these values for 𝐷𝐷𝑖𝑖𝑗𝑗 and 𝜃𝜃 then simplify to 899 

the linear prey functional response that is included in the main text.   900 

4. Facilitation and multispecies functional response:  Ecosim includes parameters that control 901 

whether consumption for a given pair of predator and prey is affected the biomass of other 902 

predators or prey.  This then represents e.g., facilitation or interference competition.  Default 903 

values from Lucey et al. (2020) eliminate those responses, so we do not include them in Eq. 4 904 

notation.   905 

We recommend that future research explore the costs (e.g., computational time), benefits (e.g., 906 

ecological realism and stability), and trade-offs (e.g., statistical parsimony) that arise when 907 

adding these back in.   908 
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Supplementary Materials 2:  Solving for scale for each taxon 1006 

For each taxon 𝑠𝑠, the user must choose whether to treat equilibrium biomass �̅�𝛽𝑠𝑠 or 1007 

ecotrophic efficiency 𝑒𝑒𝑠𝑠 as a parameter for that taxon.  A different choice can be made for each 1008 

taxon, and EcoState then solves for the unspecified value for each taxon (e.g., solves for 𝑒𝑒𝑠𝑠 if �̅�𝛽𝑠𝑠 1009 

is specified for taxon 𝑠𝑠).  The user can specify one (but not both) of �̅�𝛽𝑠𝑠 and 𝑒𝑒𝑠𝑠 for any single 1010 

taxon, and at least one taxon must have �̅�𝛽𝑠𝑠 to avoid a degenerate solution of 𝛃𝛃� = 𝟎𝟎 (Polovina, 1011 

1984).  This algorithm is included in Rpath (Lucey et al., 2020), but we repeat it here using 1012 

notation from EcoState for readers who are not familiar with the algorithm.   1013 

Specifically, we define indicator 𝐹𝐹𝑠𝑠 as: 1014 

𝐹𝐹𝑠𝑠 = �0 if 𝛽𝛽𝑠𝑠 is specified
 1 if 𝑒𝑒𝑠𝑠 is specified 1015 

such that EcoState will treat 𝛃𝛃�{𝐚𝐚=0} and 𝐞𝐞{𝐚𝐚=1} as specified values and will solve for the value of 1016 

𝛃𝛃�{𝐚𝐚=1} and 𝐞𝐞{𝐚𝐚=0}.  We first calculate consumption �̃�𝑐𝑖𝑖 for each prey 𝑖𝑖 given any specified values 1017 

of �̅�𝛽𝑗𝑗 for predators 𝑗𝑗: 1018 

�̃�𝑐𝑖𝑖 = � 𝛽𝛽𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗
𝑗𝑗∈{𝐚𝐚=1}

 1019 

We next define a vector that includes all specified values multiplied by production per biomass, 1020 

𝐱𝐱 = 𝐩𝐩⊙ �(𝟏𝟏 − 𝐚𝐚) ⊙𝛃𝛃� + 𝐚𝐚⊙ 𝐞𝐞�, and define the matrix of prey-consumption-per-predator 1021 

biomass for those species where ecotrophic efficiency is specified, 𝐙𝐙 = 𝐃𝐃⊙ (𝟏𝟏𝐰𝐰𝑇𝑇) ⊙ (𝟏𝟏𝐚𝐚𝑇𝑇).  1022 

We seek to solve for the unspecified values 𝐲𝐲 = 𝐚𝐚⊙ 𝛃𝛃� + (𝟏𝟏 − 𝐚𝐚) ⊙𝐞𝐞.  To do so, we calculate: 1023 

𝐲𝐲 = (diag(𝐱𝐱) − 𝐙𝐙)−1𝐜𝐜� 1024 
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where diag(𝐱𝐱) is a diagonal matrix with diagonal elements of 𝐱𝐱.  We then plug 𝐲𝐲 into the 1025 

unknown values, 𝛃𝛃�{𝐚𝐚=1} = 𝐲𝐲{𝐚𝐚=1} and 𝐞𝐞{𝐚𝐚=0} = 𝐲𝐲{𝐚𝐚=0}. 1026 

  1027 
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Supplementary Materials 3:  Data standardization 1028 

 1029 

Zooplankton Sampling and Data Processing 1030 

Zooplankton was collected using oblique tows of paired bongo nets (20 cm frame, 153 1031 

μm mesh and 60 cm frame, 333 or 505 μm mesh) (Incze et al., 1997; Napp et al., 1996). The 1032 

tows were within 5-10 m of the bottom depending on sea state and depth was monitored 1033 

continuously using a SeaBird FastCAT CTD. Volume filtered was estimated using a General 1034 

Oceanics flowmeter mounted inside the mouth of each net. Samples were preserved in 5% 1035 

buffered formalin/seawater. Whole sample displacement volumes were estimated by first 1036 

concentrating all animals onto a sieve using a small mesh size (53 μm) and all water was allowed 1037 

to drain from the sieve. The animals are then added to a graduated cylinder of known volume and 1038 

the difference in volume was recorded in mL. Zooplankton were identified to the lowest 1039 

taxonomic level and stage possible at the Plankton Sorting and Identification Center in Szczecin, 1040 

Poland, and verified at the Alaska Fisheries Science Center, Seattle, Washington, USA. A 1041 

methodological change in zooplankton collection occurred in 2012, when the 60 cm frame net 1042 

had its mesh changed to 505 μm. The majority of taxa were not affected by this change; 1043 

however, the potential for some differences to arise were noted, see Kimmel and Duffy-1044 

Anderson (2020) for details.  1045 

Biomass was estimated for whole samples by converting the displacement volume (mL) 1046 

to biomass using literature equations (Wiebe et al. 1975, Wiebe 1988). Biomass estimates for 1047 

individual species were calculated from abundance (ind m-3) estimates. Individual stage weight 1048 

(wet mass) was estimated from laboratory measurements for Calanus marshallae/glacialis, 1049 

Neocalanus spp. (N. plumchrus and N. flemingeri combined), and N. cristatus (Hopcroft unpub.) 1050 

(Sullaway, In revisions). Note that the ability to distinguish between these Calanus species 1051 
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morphologically is based on taxonomic characters that require significant processing time (Frost, 1052 

1974). This appears to be a problem across the genus as it has been suggested that the ability to 1053 

distinguish between C. glacialis and C. finmarchicus in Atlantic waters can only be 1054 

accomplished with DNA methods (Choquet et al., 2018). Recent results suggest that most 1055 

Calanus spp. in the Bering Sea may in fact be C. glacialis (Tarrant et al., 2021). Similarly, N. 1056 

flemingeri and N. plumchrus are closely related species in both size and mass (Miller, 1988); 1057 

therefore, these two species were not distinguished in this analysis. Individual masses for the 1058 

following stages were then summed for each sampling event to produce a single biomass 1059 

estimate for copepodite stages C1-C6, with C6 being the adult stage. Wet mass was converted to 1060 

dry mass or carbon using literature equations (Wiebe, 1975, 1988). Total large copepod biomass 1061 

was then substracted from the whole sample biomasses to remove that contributing fraction to 1062 

produce the large copepod and the other zooplankton biomass time-series. 1063 

 1064 

Northern Fur Seals 1065 

Northern fur seal pups have been routinely counted on the Pribilof Islands (St. Paul Island, St. 1066 

George Island) since the 1950s.  From 1982 to 1992, pup counts were largely conducted annually 1067 

on St. Paul Island and biennially on St. George Island, whereas from 1992 onwards they were 1068 

largely biennial on both islands. Counts of the entire population are not possible because at any 1069 

given time a certain proportion of the population is at sea. The Pribilof Island population has 1070 

been in decline since the mid-to-late 1990s, primarily driven by declines on St. Paul Island, 1071 

although it is unknown which component of the population is driving the decline. To estimate 1072 

population size, we used the modeling approach described in McHuron et al. (2020), which 1073 

resulted in a total of 11 different estimates of numbers at age for male and female fur seals. 1074 

Animals <2 years of age were not included in population estimates since pups predominately rely 1075 
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on milk from their mother while in the eastern Bering Sea, and once they depart on their post-1076 

weaning migration, most pups do not return until two years of age. See Supplementary Text in 1077 

McHuron et al. (2020) for a more complete description.  Population biomass in each year was 1078 

estimated by multiplying the numbers at age for each sex (averaged across all 11 models) with 1079 

age-sex specific mass estimates (Trites & Bigg, 1996) and then summing across all age and sex 1080 

classes. The resulting population estimate was multiplied by ca. 30% to account for the fact that 1081 

fur seals are seasonal residents of the eastern Bering Sea, spending on average of 105 - 109 days 1082 

foraging in the model area.  We only used biomass estimates from years where empirical 1083 

estimates of pup production were available.  1084 

 1085 

Ecopath parameters 1086 

Estimates of production per biomass (𝑝𝑝𝑠𝑠 and called P/B elsewhere), consumption per biomass 1087 

(𝑤𝑤𝑠𝑠 and called Q/B elsewhere), and diet composition were derived from previous Ecopath with 1088 

Ecosim models for the eastern Bering Sea.  Detailed parameter estimation methods for all EBS 1089 

EwE functional groups can be found in Aydin et al. (2007).  Specifically: 1090 

• Groundfish groups combined mortality estimates from the literature and stock assessments 1091 

with growth information available from field studies or the literature. Groundfish diet 1092 

compositions were obtained from the NOAA/AFSC groundfish food habits monitoring 1093 

program (Livingston et al., 2017). The groundfish diet compositions were combined across 1094 

predator size classes by taking the weighted average of age-specific consumption, weighted 1095 

by the product of abundance-at-age from stock assessments, size-at-age from assumed 1096 

growth functions, and ration-at-size from bioenergetic models.   1097 

• Northern fur seal production was estimated with Siler’s (1979) competing risk model  as 1098 

modified by Barlow and Boveng (1991) to construct a general model of survivorship. The 1099 
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northern fur seal diet composition was compiled from the literature.  However, we substitute 1100 

a bioenergetic calculation for consumption per biomass based on a recently published 1101 

bioenergetic model (McHuron unpublished work), which corrected for seasonal residency in 1102 

the modeled area; 1103 

• Zooplankton production rates and diet compositions were estimated from values reported in 1104 

the literature. The copepod consumption rate was retrieved from the literature, while the 1105 

consumption of euphausiids and other zooplankton was estimated with an assumed growth 1106 

efficiency.  1107 

• Benthic invertebrate production rates were from the literature and consumption was 1108 

estimated with an assumed growth efficiency. Estimates of P/B and Q/B for commercial 1109 

crabs were derived from stock assessment information. Benthic invertebrate diet 1110 

compositions were derived from literature sources. The production of benthic microbes were 1111 

derived from literature values for pelagic microbes. The Q/B of benthic microbes was 1112 

estimated assuming a growth efficiency of 0.35, and the diet composition was assumed to 1113 

consist entirely of detritus. 1114 

We then aggregated multiple groups to create the variables used here.  This aggregation is done 1115 

by taking the biomass-weighted average of production per biomass 𝑝𝑝𝑠𝑠, consumption per biomass 1116 

𝑤𝑤𝑠𝑠, and diet proportions 𝑑𝑑𝑖𝑖,𝑗𝑗 across multiple taxa from Whitehouse et al. (2021).  Pollock, cod, 1117 

arrowtooth, and northern fur seal all aggregated juvenile and adult stages from Whitehouse et al. 1118 

(2021).  Similarly, Chloro included large and small phytoplankton, and Benthic_invert included 1119 

tanner, snow, and king crabs, pandalid shrimps, benthic zooplankton, motile epifauna, structural 1120 

epifauna, and infauna.  The biomass variables from Whitehouse et al. (2021) that are aggregated 1121 

into our 10 biomass variables (i.e., excluding detritus) represents 79% of the total biomass from 1122 
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Whitehouse et al. (2021).  The diet-composition matrix was then rescaled to ensure that each 1123 

predator had proportions that summed to one.   1124 

 1125 

Primary producers 1126 

Satellite chlorophyll-a concentration data from 1998 to 2023 for the southern (<60 N) Bering Sea 1127 

middle and outer shelf (50-180 m bottom depth) were used to calculate annual time series trends. 1128 

We compiled 8-day satellite chlorophyll-a concentration (ug l-1) at a 4 km-resolution from The 1129 

Hermes GlobColour website: http://hermes.acri.fr/ (Maritorena et al., 2010). This product is a 1130 

standardized merged chlorophyll-a product, combining remote sensing data from SeaWiFS, 1131 

MERIS, MODIS, VIIRS and OLCI. chlorophyll-a concentration data. Data were averaged for 1132 

the months May to October for the middle and outer southern Bering Sea shelf region. 1133 

Chlorophyll-a concentration data from locations near river plumes from the Yukon and 1134 

Kuskowim rivers can be highly uncertain and were excluded, following recommendations in 1135 

Brown et al. (2011). 1136 

  1137 



53 
 

Supplementary Materials 4:  Additional tables and figures 1138 

Table S1:  Notation used in the model presentation and results, including the symbol, units, a 1139 
brief description, and the type.  Note that notation differs from past Ecopath-with-Ecosim 1140 
standards, to avoid using multiple symbols to indicate a single variable (Edwards & Auger‐1141 
Méthé, 2019).   1142 

Symbol Units Description Type 
𝑠𝑠 - Species Index 
𝑖𝑖 - Prey Index 
𝑗𝑗 - Predator Index 
𝑡𝑡 - Time index Index 
𝑘𝑘 - Fishery Index 

ℎ𝑠𝑠(𝑡𝑡) 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 Catch for each species 𝑠𝑠 and time 𝑡𝑡 Data 
𝑏𝑏𝑠𝑠(𝑡𝑡) 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 Biomass index Data 
𝑝𝑝𝑠𝑠 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Production rate per biomass (elsewhere called PB) Specified  
𝑤𝑤𝑠𝑠 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Consumption rate per biomass (elsewhere called QB) Specified  
𝑥𝑥𝑖𝑖,𝑗𝑗 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Vulnerability for prey 𝑠𝑠2 to predator 𝑠𝑠1 (called 𝑋𝑋𝑖𝑖𝑗𝑗 in 

Walters et al. (1997)) 
Specified  

𝑑𝑑𝑖𝑖,𝑗𝑗 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Diet fraction for prey 𝑠𝑠2 and predator 𝑠𝑠1 Specified  
𝑟𝑟𝑠𝑠,𝑓𝑓 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Selectivity ratio for each species 𝑠𝑠 in a given fishery 𝑓𝑓 Specified 
𝜎𝜎𝑠𝑠2 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Measurement error variance for biomass indices Specified 
𝜈𝜈𝑠𝑠2 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Measurement error variance for catch data Specified 
𝑦𝑦𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Tracer release for taxa 𝑠𝑠 Specified 
�̅�𝛽𝑠𝑠 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 Equilibrium biomass Estimated  

𝜙𝜙𝑘𝑘(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Annual fishing mortality rate Estimated 
𝑞𝑞𝑠𝑠 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Catchability coefficient for species 𝑠𝑠 Estimated 
𝛿𝛿𝑠𝑠 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Difference between biomass and equilibrium biomass in the 

initial time 
Estimated 

𝜏𝜏𝑠𝑠2 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Process error variance for biomass dynamics Estimated 
𝜖𝜖𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Process error variation Estimated 
𝛽𝛽𝑠𝑠(𝑡𝑡) 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 Modeled biomass Derived 
𝜂𝜂𝑠𝑠(𝑡𝑡) 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 Modeled catch Derived 
𝑔𝑔𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Growth rate Derived 
𝑒𝑒𝑠𝑠 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Ecotrophic efficiency Derived  
𝑣𝑣𝑠𝑠 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Detritus export (a.k.a. turnover) rate Derived 
𝑢𝑢𝑠𝑠 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Unmodeled mortality rate (elsewhere called 𝑀𝑀0) Derived  

𝑐𝑐𝑖𝑖,𝑗𝑗(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Consumption for each prey 𝑠𝑠2 and predator 𝑠𝑠1 Derived 
𝑐𝑐�̅�𝑖,𝑗𝑗 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Equilibrium consumption Derived 
𝑔𝑔𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Growth rate per biomass Derived 
𝑚𝑚𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Natural mortality rate per biomass Derived 
𝑓𝑓𝑠𝑠(𝑡𝑡) 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒−1 Fishing mortality rate per biomass Derived 
𝑧𝑧𝑠𝑠(𝑡𝑡) 𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑈𝑈𝑒𝑒𝑠𝑠𝑠𝑠 Tracer concentration for predator 𝑠𝑠 Derived 
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Table S2:  Data sets used for fitting the eastern Bering Sea case study 1144 

Data set Years covered Details Reference 
Cod, pollock, and 

arrowtooth 
biomass 

1982-2023 (annual) Using the design-based 
biomass index from a 
summer bottom trawl 
survey 

(Markowitz et al., 
2022) 

Copepod and 
Other pelagic 
zooplankton 
biomass index 

2008, 2009, 2011, 
2014, 2016, 2018, 
2021, 2022 

From an oblique-tow small-
mesh pelagic trawl, 
averaging Spring (May) and 
Fall (September) densities  

(Incze et al., 1997; 
Kimmel & Duffy-
Anderson, 2020) 

Primary 
production 
biomass index 

1998-2023 (annual) From satellite chlorophyll-a 
concentration 
measurements, averaged 
from May through October 
of each year 

 

Krill biomass 2004, 2006-2010, 
2012, 2014, 2016, 
2018, 2022 

From summer acoustic-
midwater trawl survey 

(Ressler et al., 
2012) 

Northern fur seal 
biomass 

1982-2018 (biennial 
after 1990) 

 (McHuron et al., 
2020) 

Total catch 
biomass for 
cod, pollock, 
and arrowtooth 

1982-2023 (annual) From stock assessments (Barbeaux et al., 
2022; Ianelli et al., 
2022; Shotwell et 
al., 2021) 

Ecopath 
parameters and 
diet matrix 

NA From previous Rpath model (Aydin et al., 2007; 
Whitehouse et al., 
2021) 

 1145 
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Table S3:  Ecopath parameters (rows) specified or calculated for each taxa (column) in the eastern Bering Sea case study (see Table 1146 
S1 for units, where 𝑀𝑀𝐹𝐹𝑠𝑠𝑠𝑠 is using million metric tons and 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 is using years), and also showing diet proportions for prey (rows) 1147 
given each taxa as predator (columns).  Note that cod, arrowtooth, and northern fur seal (NFS) estimate equilibrium biomass �̅�𝛽𝑠𝑠 given 1148 
the assumption that their catchability coefficient 𝑞𝑞𝑠𝑠 = 1, and ecotrophic efficiency 𝑒𝑒𝑠𝑠 is calculated to match that value.  For other 1149 
species, we specify ecotrophic efficiency 𝑒𝑒𝑠𝑠 = 1 and equilibrium biomass �̅�𝛽𝑠𝑠 is calculated to match that value.   1150 

 
 

Pollock Cod Arrow. Copepod Other 
zoop. 

Pelagic 
prod. 

NFS Krill Benthic 
invert 

Benthic 
microbes 

Detritus 

Pa
ra

m
et

er
 o

r d
er

iv
ed

 
qu

an
tit

y 

type hetero hetero hetero hetero hetero auto hetero hetero hetero hetero detritus 
𝑤𝑤𝑠𝑠 4.226 2.745 1.201 27.74 10.19 NA 57.764 15.64 11.912 104.29 NA 
𝑝𝑝𝑠𝑠 0.825 0.507 0.186 6 3.57 99.407 0.094 5.48 2.43 36.5 0.5 
�̅�𝛽𝑠𝑠 7.186 1.639 0.896 3.95 0.325 1.39 0.005 2.324 11.706 1.186 390.038 
𝑒𝑒𝑠𝑠 1 0.073 0.176 1 1 1 0 1 1 1 1 
𝑢𝑢𝑠𝑠 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Trophic level 3.332 3.828 4.156 2 2.443 1 4.344 2.294 2.576 2 1 
Pelagic prop. 0.876 0.338 0.819 1 0.975 1 0.863 1 0.024 0 0 

Pr
ey

 p
ro

po
rti

on
s (
𝑑𝑑 𝑠𝑠

2,
𝑠𝑠 1

) Pollock 0.109 0.332 0.8 0 0 0 0.977 0 0 0 0 
Cod 0.001 0.007 0 0 0 0 0.023 0 0 0 0 
Arrowtooth 0.001 0.001 0.004 0 0 0 0 0 0 0 0 
Copepod 0.388 0.001 0 0 0.301 0 0 0.294 0.002 0 0 
Other zoop. 0.033 0 0 0 0.049 0 0 0 0 0 0 
Pelagic prod. 0 0 0 1 0.6 0 0 0.706 0.007 0 0 
NFS 0 0 0 0 0 0 0 0 0 0 0 
Krill 0.357 0.028 0.113 0 0.025 0 0 0 0.011 0 0 
Ben. Invert 0.112 0.632 0.082 0 0.025 0 0 0 0.158 0 0 
Ben. microbe 0 0 0 0 0 0 0 0 0.311 0 0 

 Detritus 0 0 0 0 0 0 0 0 0.511 1 0 
 1151 

 1152 
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Table S4:  Ecopath parameters in the simulation experiment (see Table S2 caption for details) 1153 

 
 Producer Detritus 

Pelagic 
consumer 

Benthic 
consumer 

Pelagic 
predator 

Benthic 
predator 

 Type auto detritus hetero hetero hetero hetero 

Pa
ra

m
 

𝑤𝑤𝑠𝑠 NA NA 10 4 3 1 
𝑝𝑝𝑠𝑠 90 0.5 4 1 0.2 0.1 
�̅�𝛽𝑠𝑠 0.11 10.02 0.78 1.33 1 1 
𝑒𝑒𝑠𝑠 0.9 0.9 0.9 0.9 0 0 
𝑢𝑢𝑠𝑠 0.2 0.2 0.2 0.2 0.2 0.2 

Trophic level 1 1 2 2 3 3 
𝑢𝑢𝑠𝑠 9 0.05 0.4 0.1 0.2 0.1 

Pr
ey

 
pr

op
or

tio
ns

 
(𝑑𝑑

𝑠𝑠 2
,𝑠𝑠 1

) 

Producer_1 0 0 0.9 0.3 0 0 
Producer_2 0 0 0.1 0.7 0 0 
Consumer_1 0 0 0 0 0.8 0.4 
Consumer_2 0 0 0 0 0.2 0.6 
Predator_1 0 0 0 0 0 0 

 Predator_2 0 0 0 0 0 0 
 1154 

 1155 
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Table S5:  List of estimated parameters and standard errors in the eastern Bering Sea case study, 1156 
listing the parameter name (see definitions in Table S1), the Taxon 𝑠𝑠, the maximum likelihood 1157 
estimator, and the standard error 1158 

Parameter Taxon Estimate SE 
log(𝛿𝛿𝑠𝑠) Pollock -0.416 0.124 

 Cod -0.38 0.159 
 Arrowtooth -2.424 0.267 
 NFS 0.27 0.221 

log��̅�𝛽𝑠𝑠� Cod 0.494 0.123 
 Arrowtooth -0.11 0.247 
 NFS -5.385 0.2 

log(𝜏𝜏𝑠𝑠) Pollock -1.128 0.141 
 Cod -1.591 0.148 
 Arrowtooth -1.997 0.192 
 Copepod 0.128 0.169 
 NFS -3.259 0.35 

log(𝑞𝑞𝑠𝑠) Pollock -0.412 0.109 
 Copepod 0.102 0.104 
 Chloro 4.836 0.124 
 Other_zoop 1.848 0.098 
 Krill 2.098 0.121 
 1159 
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Fig. S1 – Simulated time-series (y-axis) for each year (x-axis) of growth 𝑔𝑔(𝑡𝑡) (left column), 1161 
natural mortality 𝑚𝑚(𝑡𝑡) (middle column), or biomass 𝛽𝛽(𝑡𝑡) (right column) for each simulated taxa 1162 
(rows). 1163 

  1164 
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Fig. S2 – Fits to catch data for the three species with a directed fishery, showing predicted 𝜂𝜂𝑠𝑠(𝑡𝑡) 1165 

(black line) +/- 1 standard error (grey shaded area) and observed catch ℎ𝑠𝑠(𝑡𝑡) (black bullets). 1166 

 1167 
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Fig. S3 – Annual estimates of process-error 𝜖𝜖𝑠𝑠(𝑡𝑡) (black lines) +/- 1 standard error (grey shaded 1169 
area) for those species for which it is estimated. 1170 

 1171 

  1172 
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Fig. S4:  Equilibrium trophic level resulting from consumption rates in a given year for each 1173 
modeled species (shaded area:  +/- 1 standard error) 1174 

 1175 

  1176 
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Fig. S5 – Performance (Box: 10% to 90% range; Line: mean) for estimated parameters in the 1177 
simulation experiment, showing the true value (red), and estimates from the full (green) or null 1178 
model (blue) for each of 13 parameters, where the single vulnerability parameter 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1179 
represents the predator-prey functional response for all predators and prey, 𝑥𝑥𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1 +1180 
exp(𝑋𝑋𝑝𝑝𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒_𝑖𝑖𝑗𝑗) where 𝑋𝑋𝑝𝑝𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒_𝑖𝑖𝑗𝑗 is the estimated parameter with unbounded support, and 1181 
𝑋𝑋𝑝𝑝𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒_𝑖𝑖𝑗𝑗 is shown here.  Note that the null model does not estimate process errors, and, 1182 
therefore, has no value listed for the standard deviation of process errors (𝜏𝜏𝑠𝑠).   1183 

 1184 

 1185 

  1186 
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 1187 


