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 55 

Abstract 56 

 57 
Insect biogeography is poorly documented globally, particularly in the tropics. Recent 58 
intensive research in tropical Asia, combined with increasingly available records from citizen 59 

science, provides an opportunity to map the distributions of tropical Asian butterflies. We 60 
compiled a dataset of 724,247 occurrences of 3,591 tropical Asian butterfly species by 61 
aggregating records from GBIF (651,285 records), published literature (21,271), published 62 

databases (37,695), and unpublished data (13,993). Here, we present this dataset and single-63 
species distribution maps of 1,520 species. Using these maps, along with records of the 2,071 64 
remaining species, we identified areas of limited sampling (e.g., the Philippines, Myanmar, 65 
and New Guinea) and predicted areas of high diversity (Peninsular Malaysia and Borneo). 66 
This dataset can be leveraged for a range of studies on Asian and tropical butterflies, 67 

including 1) species biogeography, 2) sampling prioritization to fill gaps, 3) biodiversity 68 

hotspot mapping, and 4) conservation evaluation and planning. We encourage the continued 69 
development of this dataset and the associated code as a tool for the conservation of tropical 70 

Asian insects.  71 
 72 
 73 

Background & Summary 74 

 75 

Tropical Asia, home to multiple major global biodiversity hotspots, harbors a rich assemblage 76 
of highly range-restricted endemic species1. Unfortunately, reliable distribution data for many 77 
species in this region are scarce2. One prominent challenge for invertebrate conservation, 78 

known as the Wallacean shortfall, stems from our inadequate knowledge of species 79 
distributions3. Insufficient information on species distributions impedes the identification of 80 

vulnerable species and the efficient allocation of conservation resources across regions and 81 
species3,4. 82 
 83 
While recent global studies of butterfly biogeography have incorporated data from tropical 84 

Asia5,6, they have primarily relied on coarse, country-level data to examine biogeographic 85 
patterns5-7. The distribution information summarized based on those data is largely influenced 86 
by political boundaries rather than relevant ecological areas and is less ideal for identifying 87 
important conservation/vulnerable areas, which requires fine-scale, biogeographic data with 88 

low bias8. There have also been attempts to map spatial phylogenetic diversity using range 89 
maps9, but the quality of such spatial analyses is highly dependent on the range maps used, 90 
which often fail to capture distribution patterns at local scales, thereby limiting the resolution 91 

of the spatial pattern of interest. Although fine-scale geographic distributions of several Asian 92 
butterfly groups have been mapped (e.g., Elymnias in Wei et al.10; Papilio in Condamine et 93 
al.11; Polyura in Toussaint et al.12; range‐restricted butterflies in Scriven et al.13), to date, no 94 
unified, fine-scale distribution dataset has been produced for the entire region – despite the 95 
importance of such a tool for examining patterns of diversity within this highly biodiverse 96 

region1,6. Existing locality data might not be readily accessible and frequently require 97 
aggregation and standardization. Fine-grained information on species distributions is an 98 
essential first step for understanding insect biodiversity patterns and conservation needs.  99 
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 100 

The creation of regional datasets of species distributions is aided by the recent development 101 
of large, open-source biodiversity data platforms such as the Global Biodiversity Information 102 
Facility (hereafter, GBIF), an online database that organizes crowd-sourced data from citizen 103 

science platforms, scientific literature, and specimen collections14. These data, however, often 104 
include large spatial biases due to uneven sampling and data mobilization efforts among 105 
regions14,15. Even if available, much of the fine-scale biogeographic data that could be 106 
employed to reduce these biases remains buried in literature and regional databases, requiring 107 
concerted efforts to make it analysis-ready7. Without unified and standardized datasets, it is 108 

difficult to test macroecological and macroevolutionary questions16, produce high-quality 109 
species distribution models17, and identify effective conservation targets5,6,8,18. 110 
 111 
The process of mapping species distributions can be accomplished either through data-driven 112 

modeling or by relying on expert knowledge. Range maps (expert range maps) solely based 113 
on expert knowledge tend to overestimate active areas of species at the local scale15,17,19. In 114 
addition, the quality of their source data, hence the uncertainty of the analysis, is often 115 

unknown16. The dependency of range maps on expert knowledge means this method is 116 
available to a small subset of well-studied species7. In contrast, data-driven distribution maps 117 
offer greater transparency and reproducibility18,20. Modern modeling techniques allow the 118 
interpolation of potential distributions into areas for which primary data collection may not 119 

be possible, enabling the production of more detailed and reliable distribution maps3,21. 120 
However, major data gaps exist for occurrence records of most taxa16,22, particularly 121 

invertebrates, and the non-random distribution of these gaps necessitates careful treatment 122 
within models23.  123 
 124 

Species distribution maps facilitate the identification of species ranges and hotspots of 125 

diversity. This provides valuable insights for local conservation planning/prioritization24,25 126 

and policy-making, paving the way for future investigations into butterfly biogeography5 and 127 
phylogeographic patterns24. Specifically, species distribution maps can guide the allocation of 128 

conservation resources, inform the strategic design of protected areas in high-129 
suitability/biologically diverse areas, and identify low-suitability areas in need of 130 
management25,26, enabling effective conservation interventions. In conjunction with SDMs, 131 
occurrence datasets can help inform species reintroduction programs by identifying 132 

potentially suitable areas25,27 and optimal source populations28, and expedite IUCN Red List 133 
assessment, which has poor species coverage in Asia. Additionally, applications of SDMs 134 
include the modeling of species and community-level responses to climate change24,27,29 and 135 
the assessment of extinction risks30. 136 
 137 

The need for species conservation is particularly acute in tropical Asia, defined broadly here 138 

to include South Asia and Southeast Asia (see Fig. 1). The area is home to over 20,000 139 

islands, many of which were repeatedly connected and separated from adjacent landmasses 140 
during drastic sea-level fluctuations over the past 4 Mya31. This dynamic past led to the 141 
evolution of numerous species endemic to single islands or island groups, and as such this 142 
region hosts some of the world’s greatest biodiversity – an estimated 15-25% of all well-143 
studied terrestrial taxa and a large proportion of undescribed taxa32,33. This highly biodiverse 144 

region is also one of the globe’s most biologically threatened: it is estimated that 42% of 145 
Southeast Asia’s biodiversity may be lost by 2100 as three quarters of its primary forests are 146 
lost to agriculture, urbanization, and mineral extraction32,34,35. 147 
 148 
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We present a comprehensive dataset of tropical Asian butterflies, with more than half of the 149 

records possessing high spatial accuracy (uncertainty < 10 km). This fills a major sampling 150 
gap, given that Asia is poorly represented in global biodiversity data repositories15,22,36, 151 
improved datasets are urgently needed to enable effective monitoring and management of 152 

biodiversity across the region. Leveraging the data along with tailored species distribution 153 
models (SDMs), we generate data-driven distribution maps at a resolution of 10 km x 10 km. 154 
These maps enhance a fundamental understanding of butterfly macroecological patterns in 155 
tropical Asia. Each butterfly species’ distribution was individually modeled and, together 156 
with buffered occurrence points of unmodelled species, employed to assess regional patterns 157 

of species diversity. Combined with species distribution models, our aggregated data 158 
advances knowledge of butterfly macroecology and facilitates evidence-based decision-159 
making for butterfly conservation in tropical Asia. 160 
 161 

 162 

Methods 163 

 164 
Occurrence data 165 
We manually extracted GBIF records for tropical Asian Papilionoidea (Lepidoptera: 166 

Nymphalidae, Papilionidae, Lycaenidae, Pieridae, Hesperiidae, Riodinidae; -11.426 – 35.64 167 

N, 67.588 – 174.990 E) for the years 1970-present on 15 April 2024 (Derived dataset 168 
GBIF.org37). The geographical extent of the study area was selected to encompass northern 169 

temperate Asia to secure sufficient data to capture the full niche breadth of all species in the 170 
subsequent SDMs. We included presence records derived from human observation, preserved 171 
specimens, material samples, or literature, provided they had associated coordinates. We 172 

omitted all records with >100,000 m coordinate uncertainty, so-called “fuzzy” taxon matches, 173 
and records for which the scientific name was missing or incomplete unless nomenclature 174 

could be extracted using a BOLD identifier (boldsystems.org/). This resulted in a final 175 
number of GBIF records equalling 651,285.  176 

 177 
Roughly 73% (472,714) of these records are ‘Research-grade’ observations from iNaturalist. 178 

Information on how this designation is made is available at GBIF.org. The accuracy of 179 
opportunistically collected data from crowd-sourced platforms like GBIF is often diminished 180 
due to misidentifications, taxonomic, spatial, and temporal biases, as well as uneven 181 
taxonomic validation due to lack of standardized reference data14,38-41. Given these potential 182 

issues, and to fill geographic gaps, we supplemented these GBIF data with expert data 183 
(coauthor datasets, published literature) and harmonized binomials to a single expert dataset 184 
(Lamas, 2015. Catalogue of the butterflies (Papilionoidea), available from the author.; see 185 
below). 186 
 187 

We extracted data from the B2D2 Database of Butterflies for Borneo provided by JKH/the 188 
Darwin Initiative (n = 19,417), a dataset for Bangladesh provided by SC (Chowdhury et al.42; 189 

n = 18,278), and unpublished datasets from coauthors AN, DJL, LVV, TK, and YB (n = 190 
13,993). For geographic regions with relatively few records (e.g., China, Myanmar, Thailand) 191 
and for species with < 10 records, we conducted targeted searches of post-1970 published 192 
literature on Google Scholar in English and Chinese (simplified and traditional) (genus OR 193 
genus + species + country name), producing an additional 21,271 records. Although some 194 

publications lacked collection dates for records (e.g., checklists), we assume that the 195 
inclusion of species in recent publications is indicative of species’ current localities.  196 
 197 
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For all records in published sources, we extracted coordinates, locality name, locality type 198 

(e.g., exact coordinates, city, national park, island, or province), country, and year of record 199 
(where available). If exact coordinates were not provided by the source, we used Google 200 
Earth Pro (v7.3.6.9345) to estimate the locality centroid for any record provided at the 201 

province level or below (e.g., national park or city). For records from islands ≤ 100 km at the 202 
widest dimension (e.g., localities within the Philippines and Indonesia), we estimated the 203 
island or archipelago centroid. If a range of coordinates was provided (e.g., records from The 204 
Butterflies of Vietnam), we selected a point within the range. Data sources for all records are 205 
provided in the reference column in Occurrence Records of Tropical Asian Butterflies: 1970-206 

2024 (https://doi.org/10.6084/m9.figshare.25037645). 207 
 208 
Final binomial harmonization, validation, and authority assignment were conducted by DJL 209 
using a taxonomic reference prepared by Gerardo Lamas (Lamas, 2015). Family names were 210 

aligned by hand to GBIF. 211 
 212 
The resulting database consists of 724,247 occurrence records for 3,591 species from 546 213 

genera. These records represent approximately 20% of all described butterfly species 214 
globally43,44 (17,280-17,500 spp.; but see Pinkert et al., 20225). Records of Nymphalidae 215 
(313,899; 1,324 spp.) comprise 43% of the dataset, followed by Lycaenidae (968 spp; 216 
147,277 records), Papilionidae (264 spp.; 101,500 records), Pieridae (405 spp.; 97,120 217 

records), Hesperiidae (611 spp.; 60,460 records), and Riodinidae (22 spp.; 3,991 records).  218 
 219 

Of the 3,591 species in the database, 1,580 (< 31%) are represented by ≥ 10 records within 220 
the extent of 36˚ N to 10˚ S and 69˚ E to 161.6˚ E that are >10 km apart (see details on 221 
distribution modeling below). Most occurrence records are concentrated in a limited number 222 

of regions, for example, India (28.34% of all data), Taiwan (13.75% of all data), Singapore 223 

(8.92% of all data), Hong Kong (8.30% of all data), and Malaysia (7.16% of all data) (Fig. 1). 224 

Equatorial regions together with southern China are relatively underrepresented in our 225 
dataset. As much of the data is derived from GBIF, which contains a large proportion of 226 

citizen science data, we observed a clustering of our data in areas of high population and a 227 
general lack of data in more inaccessible regions. 228 
 229 

 230 
 231 

https://doi.org/10.6084/m9.figshare.2503764
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Figure 1. Distribution of GBIF and other occurrence records in our study area. Sampling 232 

intensity was estimated by running kernel density on the coordinates of all available 233 
occurrence data of every species. Regions of Asian landmasses based on the ecoregions and 234 
biogeographic realms as revised by Dinerstein et al.45, as well as Wallace's Line, Huxley’s 235 

Line, and Weber's Line. 236 
 237 
SDM methods and results 238 
Five algorithms, Generalized Linear Model (GLM), Maximum Entropy (MaxEnt), 239 
Multivariate Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA), and 240 

eXtreme Gradient Boosting (XGBOOST) were selected to create an ensemble model for each 241 
butterfly species, using the ensemble platform “biomod2”46 in R. We ensured that the 242 
underlying mechanism of our selection of algorithms was diverse and relatively balanced 243 
between the main categories of algorithms. We used 13 predictor variables for selection by 244 

individual models. All modeling was conducted at 10 km x 10 km resolution.  245 
 246 
The Generalized Linear Model (GLM) is a regression-based algorithm widely used in 247 

SDMs47. They are not as flexible when fitting complex response curve shapes, but this also 248 
means that GLMs are less vulnerable to overfitting47. Maximum Entropy (MaxEnt) in our 249 
study was based on the “maxnet” R package48, which uses penalized maximum likelihood for 250 
model fitting. MaxEnt is one of the computationally less expensive algorithms that perform 251 

well, making it a popular SDM algorithm49. MaxEnt is more capable of fitting complicated, 252 
non-linear response curves, enabling users to model more complex relationships by using 253 

progressively complex statistics based on the number of samples available50. The 254 
classification tree analysis (CTA) used by our SDM is based on the “rpart” R package51. The 255 
CTA algorithm recursively splits one group of data into two subgroups using one of the 256 

predictor variables given; therefore, the final model can be visualized as binary decision 257 

trees51. Finally, eXtreme Gradient Boosting (XGBoost) is one of the more computationally 258 

efficient gradient boosting algorithms implemented in R by the “xgboost” package52. 259 
Boosting algorithms feature an ensemble of weak models, each trained to minimize the errors 260 

of the previous models47,53. 261 
 262 
For the species distribution models, we used 13 predictor variables, which comprised 8 263 
Bioclim variables extracted from WorldClim54, three soil variables extracted from SoilGrids55 264 

through ISRIC (International Soil Reference and Information Centre)56, and 2 vegetation 265 
variables derived from satellite data. The Bioclim variables employed included annual mean 266 
temperature (Bio 1), temperature seasonality (Bio 4), maximum temperature of warmest 267 
month (Bio 5), minimum temperature of coldest month (Bio 6), annual precipitation (Bio 12), 268 
precipitation of wettest month (Bio 13), precipitation of driest month (Bio 14), precipitation 269 

seasonality (Bio 15). The soil variables at a depth of 5-15 cm were used, including soil pH 270 

(phh2o), soil organic carbon content in the fine earth fraction (SOC), and total nitrogen 271 

(nitrogen). Nitrogen is generally recognized as one of the main limiting elements for plant 272 
growth57, while soil organic carbon indicates soil quality58. In addition, soil pH exerts 273 
considerable influence on soil biogeochemical processes, ultimately impacting plant 274 
growth59. The selection of variables for our models was guided by expert knowledge to 275 
reflect/cover the key limitations and resources relevant to both butterflies and their host 276 

plants. Knowledge of the study region and biology/ecophysiology of the species being 277 
modeled allows the identification of the most ecologically relevant variables; therefore, it is 278 
the preferred approach for variable selection47,49,60,61. 279 
 280 
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The vegetation variables used were the Normalized Difference Vegetation Index (NDVI) and 281 

Canopy Height. NDVI was calculated from the USGS Landsat 5 (Level 2, Collection 2, Tier 282 
1, 1985 – 1999) and USGS Landsat 7 (Level 2, Collection 2, Tier 1, 2000 – 2020) datasets, 283 
with a customized script to filter satellite images by cloud cover (retaining images with 15% 284 

or less cloud cover over land) and to obtain the mean NDVI value. Canopy Height data was 285 
retrieved from the ETH Global Sentinel-2 10 m Canopy Height dataset62. These vegetation 286 
cover variables were directly used to model the land cover/habitat available to butterflies. 287 
Mean NDVI provided information on the general greenness of an area, while Canopy Height 288 
data offered structural details on vegetation to better identify different types of habitats. 289 

Together, these variables indicate resource availability and, to some extent, habitat structure. 290 
To address potential issues associated with negative values in NDVI data, an alternative 291 
variable, Corrected NDVI, which contains no negative values, was also examined. The 292 
Corrected NDVI is derived from the equation Corrected NDVI = NDVI +1. However, the 293 

SDMs using Corrected NDVI produced identical results to those using standard NDVI data, 294 
indicating that our models were unaffected by negative NDVI values. 295 
 296 

The resolution of all environmental variables was set to 10 km x 10 km by averaging the 297 
values from contributing grid cells. This resolution was chosen as a result of balancing the 298 
spatial accuracy of available data and computational capabilities. Our data comprises 440,731 299 
records with coordinate uncertainty data, while an additional 283,523 records that do not 300 

have coordinate uncertainty data. Among the records with known coordinate uncertainty, 301 
73,372 (18.31% of records with uncertainty data) had uncertainties ranging from 1-10 km, 302 

and 39,302 (9.81% of records with uncertainty data) had uncertainties exceeding 10 km, thus 303 
10 km seemed a reasonable compromise to reflect this. For the construction of SDMs, the 304 
map of the study area and predicting variables were formatted to share the same extent, 305 

resolution, and projection. We excluded entries with invalid species names (e.g., “NA” and 306 

“not present”) or outside of our study area and those recorded before 1970. Data entries 307 

published after 1970 but without date records were kept, assuming that their publication 308 
infers their validity at the time of publication. Next, the map of tropical Asia and all 309 

explanatory variable rasters were all projected to equal area projection EPSG:6933 and 310 
cropped to the extent of 36˚ N to 10˚ S and 69˚ E to 161.6˚ E to fully cover the study region. 311 
Our final cleaned database included 721,060 global records.   312 
 313 

We used a function to further prepare the input files required by biomod2 and to generate 314 
SDMs individually for each species. Occurrence data of a species was first extracted from our 315 
butterfly occurrence dataset and used to produce a raster of resolution of 10 km x 10 km. A 316 
total of n cells in the raster were assigned a value of “1” to represent at least one occurrence 317 
record present in that cell, while cells with no record were assigned “n/a” instead of “0” since 318 

no true absence data is available. 319 

 320 

Only species with n ≥ 10 were modeled. It has been shown that SDMs based on ten 321 
occurrence points can reach 90% of the maximum possible accuracy63, while recent studies 322 
suggest a minimum requirement of 3 to 13 occurrence points in virtual simulations and 14 to 323 
25 occurrence points in real-world conditions to infer accurate SDMs64. Therefore, n=10 was 324 
chosen as the lower limit of sample size for constructing SDMs to maximize the number of 325 

species modeled while maintaining a reasonably high predictive accuracy63. A total of 1,580 326 
species met this qualification, whereas 1951 species had fewer records. For each species, 327 
occurrence records were split into three sets: 10% of the data was first reserved for model 328 
evaluation, and another 10% was then partitioned for model validation, leaving the remaining 329 
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80% of data for model calibration. The partitioning of model validation data was repeated 5 330 

times to generate five different combinations of calibration and validation occurrence data. 331 
 332 
Before SDM construction, pseudo-absence records were generated. Despite our efforts to fill 333 

the spatial data gaps, the sampling effort of our dataset is still spatially biased toward highly 334 
populated areas and roads due to the overwhelming number of records from GBIF and 335 
iNaturalist in our dataset (more than 80%). As part of our effort to account for biases in our 336 
data, we integrated the spatial bias of our dataset into the generation of pseudo-absence 337 
records, assuming that all species were sampled in areas with at least one occurrence record 338 

of any species. To capture such spatial bias, we created a raster layer of the spatial sampling 339 
effort for all species across our study area (shown as sampling intensity in Fig. 1), which is 340 
equivalent to the bias layer commonly used in the MaxEnt program. This was done by 341 
pooling occurrence data of all species used in our models and summarising them in a raster, 342 

then performing two-dimensional kernel density estimation (kde2d) using the R package 343 
“MASS”65 with the default settings. We excluded cells with occurrence records and sampled 344 
the remaining study area for pseudo-absence records based on the bias layer, giving more 345 

weight to well-sampled areas, as suggested by Phillips et al.66 and Ferrier et al.67. Following 346 
the recommendation of Barbet‐Massin et al.68, for calibration, validation, and evaluation data, 347 
we produced five sets of pseudo-absence data for each species, maintaining a 1:1 ratio 348 
between the number of pseudo-absence points and occurrence points in each set.  349 

 350 
Subsequently, we constructed SDMs for each species using five different partitions of 351 

calibration and validation occurrence data, five selected algorithms, and five sets of pseudo-352 
absence data. This resulted in a total of 125 SDM models (5 x 5 x 5). Both presence and 353 
pseudo-absence records were given equal weight during model construction to ensure a 354 

consistent prevalence of 0.5 among all species. We applied a generalized setting for all 355 

butterfly species for consistency across species, with adjustments made only to the learning 356 

rate and the number of decision trees for the XGBoost algorithm to address overfitting. Other 357 
model tuning options were retained at their default. 358 

 359 
We generated binary outputs by maximizing True Skill Statistics (TSS), a widely used 360 
threshold-dependent index of model fit. Ensemble modeling was selected over single best 361 
models for its superior performance in rare species69, and its robustness to uncertainties in 362 

individual models by capturing the central tendency among models47,70,71. We constructed an 363 
ensemble model using all single models with TSS values greater than 0.7, ensuring that only 364 
“substantial” models were included72. 1,520 species out of the 1,580 modeled species 365 
obtained one or more single models meeting such criteria, allowing the further construction 366 
of ensemble models. The ensemble model was generated using the mean algorithm71, where 367 

all candidate models' probabilistic predictions were averaged without weighting. Finally, we 368 

projected the ensemble model to the current environment using the same variables when 369 

constructing the SDMs. 370 
 371 
Ensemble models were evaluated using two metrics: TSS and Boyce index. TSS and Kappa 372 
are two of the most popular SDM threshold-dependent evaluation metrics. TSS was chosen 373 
over Kappa due to the inherent dependency of Kappa on species prevalence73. Since we are 374 

modeling thousands of species with differing degrees of rarity and prevalence, TSS is more 375 
appropriate for model comparison between species. TSS varies from +1 to -1, in which +1 376 
indicates perfect agreement with evaluation data, while a TSS value close to or less than 0 377 
indicates model performance comparable to a random model73. 378 
 379 
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Following the suggestions of Hernandez et al.74 and Breiner et al.69 to use multiple evaluation 380 

measures when using presence-only data, we also calculated the Boyce index for all models 381 
built to supplement TSS. The Boyce index is capable of providing an accurate and reliable 382 
measure of model performance for models based on presence-only data75, which is the key 383 

reason for its use in our study. Another reason for the use of the Boyce index is its lower 384 
sensitivity (correlation) to species prevalence relative to other metrics, including CVI, 385 
MaxKappa, and adjusted D275, while AUC and TSS also have a negative correlation with 386 
prevalence73. AUC was also found to produce inflated estimates of model quality when the 387 
modeled species is rare76. Boyce index ranges from +1 to -1, in which +1 indicates the model 388 

is of the highest quality and perfectly predicts evaluation data, while -1 indicates counter-389 
prediction of evaluation data75. Boyce index with a value close to 0 indicates the model 390 
performs no better than a random model75. 391 
 392 

To factor biogeography into predictions and correct for biogeographic overprediction 393 
generated by our SDMs (and account for differences between fundamental and realised 394 
niches), we restrained the sampling of pseudo-absence records and distribution maps 395 

produced by our models to regions that hosted more than 1% of species points (as such 396 
regions fall within species biogeographic ranges). By incorporating biogeography into model 397 
predictions, we aimed to reflect the impact of oceans as dispersal barriers in the SDM outputs 398 
to give a more realistic estimate of species’ distribution and reduce false positive predictions. 399 

We first divided the landmasses of tropical Asia into 11 regions (Fig. 1) based on the 400 
ecoregions and biogeographic realms as revised by Dinerstein et al.45, as well as Wallace's 401 

Line, Huxley’s Line, and Weber's Line. For each species, we identified regions that included 402 
at least 1% of the species occurrence records, considering them to be active regions. We then 403 
cropped the SDM-predicted distribution maps to include only the active regions specific to 404 

each species. These cropped distribution maps were stacked together to generate an alpha 405 

diversity map, which illustrates the number of species present in each 10 km x 10 km cell 406 

across tropical Asia. The stacked SDM predictions highlighted a number of locations with 407 
relatively high diversity, exceeding 600 species in some locations (Fig. 2).  408 

 409 

 410 
Figure 2. Projected distribution of butterfly diversity based on our species distribution 411 
models, using the mean algorithm for ensemble modeling. 412 
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 413 

Point buffer methods  414 
For the 2,011 species (56% of all recorded species in our dataset) excluded from our species 415 
distribution modeling outputs either due to insufficient data or low quality of species 416 

distribution models, we plotted and buffered their occurrence records to infer alpha diversity. 417 
We first mapped their occurrence records and created 30 km-wide polygons (buffers) around 418 
these points to enhance clarity. Subsequently, the buffered occurrence points were converted 419 
into binary raster maps for each species and stacked to generate an additional alpha diversity 420 
map, representing species with limited occurrence records. 421 

 422 
The diversity map derived from buffered occurrence points was then stacked with the species 423 
distribution model (SDM) projections to produce Fig. 3. This figure provides an overview of 424 
the alpha diversity of all species documented in our dataset. We identified two major 425 

butterfly diversity hotspots: peninsular Malaysia and the Sabah region of Borneo. We also 426 
found high levels of diversity predicted in Borneo, Sumatra, coastal Cambodia, southern 427 
Thailand, the Western Ghats in peninsular India, the Assam region of India, the Cardamom 428 

mountains in Cambodia, and Vietnam.  429 
 430 
 431 
 432 

 433 
Figure 3. Estimated distribution of butterfly diversity based on our species distribution model 434 

projections and buffered occurrence points (for species not included in our SDM outputs). 435 
 436 
 437 
 438 

Software 439 
We calculated the SDMs in R77, version 4.1.2. To construct and merge the SDMs into 440 
ensemble models, we utilized the "biomod2" package, version 4.2-446. The high-performance 441 
computing cluster HPC2021 at The University of Hong Kong, operating on CentOS 8, was 442 
employed to run the SDMs. 443 
 444 
 445 
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Data Records 446 

 447 
All project files are publicly available in a Figshare repository 448 
(https://doi.org/10.6084/m9.figshare.25037645). Users may access the referenced occurrence 449 
dataset and metadata as .csv files, the SDM rasters (as file type, e.g., Fig. 4), and links to R 450 

scripts for SDM construction and distribution map generation were published on GitHub: 451 
https://github.com/eugeneyau/Tropical-Asian-Butterfly-Distribution/tree/main  452 
The GBIF-derived dataset is available at GBIF37 (https://doi.org/10.15468/dd.nvw5wr). 453 
These outputs are licensed under a CC BY 4.0 license. 454 
 455 

 456 
Figure 4. SDM-predicted distribution of Euripus nyctelius (Doubleday, 1845) (Nymphalidae:  457 

Apaturinae) based on our occurrence dataset. 458 
 459 
 460 

Technical Validation 461 

 462 
SDM model evaluation/verification 463 

The mean TSS score of all ensemble models is 0.922, with a standard deviation of 0.155, 464 
while the Boyce index is 0.766, with a standard deviation of 0.305. 465 
 466 

Both evaluation metrics indicate that the models constructed are of good quality. The mean 467 
TSS score of our ensemble models is higher than 0.8, falling into the category of “almost 468 

perfect” models according to the widely used division suggested by Landis & Koch72 (e.g., 469 
Capinha et al.78; Jones et al.79). Since we only included models with TSS values of more than 470 

0.7 in our ensemble models, a high mean TSS score among the ensemble models is expected. 471 
The mean Boyce index of our models is higher than 0.7, which has been considered an 472 
indicator of good models in other studies (e.g., Rupprecht et al.80). Boyce index value of 0.5 473 
is usually considered a cutoff for acceptable performance81. 474 
 475 

Collaborator Evaluation 476 
Our model outputs were also inspected by experts to evaluate their plausibility. Plausibility 477 
checks form an important part of model validation by making sure the modeling results 478 
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confine to the known range and possible range of the species modeled49,82, serving as a 479 

supplement to evaluation metrics, which only measure the goodness of fit of models.  480 
 481 
Experts (coauthors/collaborators) agreed that our model outputs are generally reasonable and 482 

informative. However, it is important to note that some of the sampling biases persisted in the 483 
final model outputs despite our efforts to address data gaps by incorporating additional 484 
datasets. We, therefore, encourage future data contributions to improve the coverage of our 485 
dataset, especially in the areas with identified data gaps. 486 
 487 

Although the majority of data gaps can be attributed to insufficient sampling effort, the 488 
absence of data in the Philippines (and potentially other parts of tropical Asia) is primarily a 489 
result of the dominance of Facebook over other platforms like iNaturalist for citizen science 490 
data contribution. However, such data on Facebook contains limited information since EXIF 491 

data (containing GPS coordinates) of photos are removed when uploaded. Filling the 492 
Philippine data gap should be a priority, and mining Facebook data (e.g., Chowdhury et al.18) 493 
and other sources would be a good place to start. 494 

 495 
Our modeling results identified the Cardamom Mountains on the Cambodian-Thai border as a 496 
butterfly diversity hotspot. During the Pleistocene when sea levels were up to 120 m lower 497 
than present, and this area was on the eastern edge of a paleoriver watershed that included the 498 

similarly diverse Malay peninsula and extended south to present-day Borneo83,84. The high 499 
diversity in this area is likely relictual85.  Endemism in this area likely contributes to high 500 

butterfly diversity, which supports our models’ prediction there. 501 
 502 
Multiple experts pointed out the unexpected diversity differences between different parts of 503 

Borneo. While our models identified Sabah as a hotspot for butterfly diversity, lower 504 

diversity was predicted for other parts of Borneo, such as Sarawak and Kalimantan. This 505 

contradicted our expectations, as all these areas possess mountainous regions and endemic 506 
species, suggesting similar levels of butterfly diversity. The heart of Borneo, characterized by 507 

lower disturbance compared to other parts of the island, was also predicted to host a relatively 508 
lower diversity of butterflies by our models. Such a model prediction also contradicts our 509 
expectation of higher butterfly diversity in less disturbed areas. This inconsistency between 510 
expected and modeled butterfly diversity in Borneo is likely attributed to sampling bias, 511 

evident through the alignment of modeled butterfly diversity with political boundaries and 512 
sampling intensity (Fig. 1), and the lower modeled diversity in less accessible areas such as 513 
the heart of Borneo (Fig. 2 and 3). The lack of data in less accessible areas has been discussed 514 
by Hughes et al.15 and Boakes et al.86, while this trend is even more obvious in citizen science 515 
data15, which constitutes a considerable proportion of our dataset. 516 

 517 

While some of the spatial variations in the sampling effort of our dataset are reflected in the 518 

spatial bias of our modeling results, there are several notable discrepancies between the 519 
distribution of data and modeled diversity. Fig. 1 illustrates that Japan, Taiwan, and northern 520 
Thailand have a relatively high intensity of sampling effort compared to their predicted 521 
butterfly diversity in Fig. 2. Conversely, a reversed pattern is evident in Southern Borneo and 522 
Southern Sumatra, where our data shows low sampling effort but our models predict high 523 

butterfly diversity. These patterns demonstrate the robustness of the models to some of the 524 
spatial sampling biases present in our data. 525 
 526 
To determine the variable importance in our SDMs, we calculated, for each variable, the 527 
mean variable importance throughout the ensemble models of all species. Temperature 528 
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seasonality (Bio 4) emerged as the most important variable (scoring 0.280 out of 1), followed 529 

by the minimum temperature of the coldest month (Bio 6, scoring 0.163 out of 1) and annual 530 
mean temperature (Bio 1, scoring 0.140 out of 1). Soil pH (phh2o, scoring 0.107 out of 1), 531 
precipitation of driest month (Bio 14, scoring 0.0973 out of 1), and Canopy Height (scoring 532 

0.0907 out of 1) also exhibited high importance in the models. The ranking of variable 533 
importance in the SDMs conforms to the hierarchical framework of Pearson & Dawson87, in 534 
which climatic variables exert greater control over species distribution at continental scales, 535 
while land cover and soil variables gain influence at more localized scales. In addition, the 536 
high importance of temperature variables, particularly temperature seasonality (Bio 4), is 537 

consistent with the results of Carvalho et al.88, which highlighted the strong impact of 538 
temperature, especially temperature seasonality, on butterfly distribution and diversity. 539 
 540 
 541 

Usage Notes 542 

 543 
The predictor variables considered in our SDMs, which include the 8 Bioclim variables and 544 
the 3 SoilGrids variables, are products of interpolation between available point data54,55. As 545 
with most data collected without stratified sampling, these point data are likely to be spatially 546 

biased. Users should note that our SDMs inherit these biases, as well as uncertainties in the 547 

interpolation result. 548 
 549 

By generating more pseudo-absences for SDMs in well-sampled areas with the use of the bias 550 
mask, we are essentially augmenting the weighting of extensively surveyed regions in our 551 
models, while unsampled habitats may be presumed as suitable. Consequently, the 552 

transferability of our models to unsampled areas is limited, especially when extrapolating in 553 
novel environments not covered by training data66 or in areas where biogeographic barriers 554 

prevent dispersal. This is also one of the reasons for restraining our model predictions to the 555 
regions where a species is known to occur so that the results are not overly optimistic. Such 556 

an approach to pseudo-absence generation also assumes that the data collection method is 557 
consistent throughout the entire dataset66, while our dataset is compiled from various sources. 558 

However, since a majority of our data is derived from a single source (GBIF), we can 559 
consider the data collection method consistent in terms of the observation method. To use our 560 
data and models for the prediction of future butterfly distribution under climate change, we 561 
suggest using the “random” method from the biomod2 package to generate pseudo-absence 562 

records. 563 
 564 
Regarding uncertainty in model results, we have limited confidence in the model predictions 565 
in the Philippines and New Guinea. The scarcity of occurrence data in these two regions (Fig. 566 
1) prevents strong inferences. Additionally, the presence of biogeographic barriers such as 567 

Wallace's Line and Huxley’s Line restricts the use of occurrence data from other regions to 568 
infer butterfly distribution in these specific areas. 569 

 570 
 571 

Code Availability 572 

 573 
All code used to conduct synonym harmonization, preprocess environmental variables for 574 
SDMs, execute SDMs, process SDM outputs, and conduct point buffer analysis can be 575 

accessed in our GitHub project repository: 576 
https://github.com/eugeneyau/Tropical-Asian-Butterfly-Distribution 577 

https://github.com/eugeneyau/Tropical-Asian-Butterfly-Distribution
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under the Code directory. All data, including our butterfly occurrence dataset, SDM-predicted 578 

distribution maps, tropical Asian biogeographic regions shapefile, and buffered occurrence 579 
points for species excluded from our species distribution modeling are available from our 580 
FigShare repository (https://doi.org/10.6084/m9.figshare.25037645). Some data for Sulawesi, 581 

provided by TK, have not been included in the data release but are available upon request to 582 
TK.  583 
 584 
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